Stage-oe-small.jpg

Inproceedings3353

Aus Aifbportal
Version vom 23. Juli 2013, 11:23 Uhr von Awa (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorNachname=Bicer |ErsterAutorVorname=Veli }} {{Publikation Author |Rank=2 |Author=Duc Thanh Tran }} {{Publikation Author |Ran…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche


TRM – Learning Dependencies between Text and Structure with Topical Relational Models


TRM – Learning Dependencies between Text and Structure with Topical Relational Models



Published: 2013 Oktober

Buchtitel: International Semantic Web Conference
Verlag: Springer

Referierte Veröffentlichung

BibTeX

Kurzfassung
Text-rich structured data become more and more ubiquitous on the Web and on the enterprise databases by encoding heterogeneous structural relationships between entities such as people, locations, or organizations and the associated textual information. For analyzing this type of data, existing topic modeling approaches, which are highly tailored toward document collections, require manually-defined regularization terms to exploit and to bias the topic learning towards structure information. We propose an approach, called Topical Relational Model, as a principled approach for automatically learning topics from both textual and structure information. As a topic model, we show that our approach is effective in exploiting heterogeneous structure information, outperforming a state-of-the-art approach that requires manually-tuned regularization.

Download: Media:Iswc-bicer-trm.pdf



Forschungsgruppe

Wissensmanagement


Forschungsgebiet

Semantische Suche