
Efficiency of Ontology Mapping Approahces

Marc Ehrig and Steffen Staab

Institute AIFB, University of Karlsruhe

Abstract. (Semi-)automatic mapping — also called (semi-)automatic alignment
— of ontologies is a core task to achieve interoperability when two agents or
services use different ontologies. In the existing literature, the focus has so far
been on improving the quality of mapping results. We here consider QOM, Quick
Ontology Mapping, as a way to trade off between effectiveness (i.e. quality)
and efficiency of the mapping generation algorithms. We show that QOM has
lower run-time complexity than existing prominent approaches. Then, weshow
in experiments that this theoretical investigation translates into practical benefits.
While QOM gives up some of the possibilities for producing high-quality results
in favor of efficiency, our experiments show that this loss of quality is marginal.

1 Introduction

Semantic mapping1 between ontologies is a necessary precondition to establish inter-
operation between agents or services using different ontologies. In recent years we have
seen a range of research work on methods proposing such mappings [1–3]. The focus
of the previous work, however, has been laid exclusively on improving theeffectiveness
of the approach (i.e. the quality of proposed mappings such as evaluated against some
human judgement given either a posteriori or a priori).

When we tried to apply these methods to some of the real-world scenarios we ad-
dress in other research contributions (e.g., [4]), we foundthat existing mapping meth-
ods were not suitable for the ontology integration task at hand, as they all neglected
efficiency. To illustrate our requirements: We have been working in realms where light-
weight ontologies are applied such as the ACM Topic hierarchy with its 104 concepts or
folder structures of individual computers, which corresponded to104 to 105 concepts.
Finally, we are working with Wordnet exploiting its106 concepts (cf. [5]). When map-
ping between such light-weight ontologies, the trade-off that one has to face is between
effectiveness and efficiency. For instance, consider the knowledge management plat-
form built on a Semantic Web And Peer-to-peer basis in SWAP [4]. It is not sufficient
to provide its user with the best possible mapping, it is alsonecessary to answer his
queries within a few seconds — even if two peers use two different ontologies and have
never encountered each other before.

In this paper we present an approach that considers both the quality of mapping
results as well as the run-time complexity. Our hypothesis is that mapping algorithms
may be streamlined such that the loss of quality (compared toa standard baseline) is
marginal, but the improvement of efficiency is so tremendousthat it allows for the

1 Frequently also called alignment.

ad-hoc mapping of large-size, light-weight ontologies. Tosubstantiate the hypothesis,
we outline a comparison of the worst-case run-time behavior(given in full detail in
[6]) and we report on a number of practical experiments. The approaches used for our
(unavoidably preliminary) comparison represent a wide range of different classes of
algorithms for ontology mapping. From these approaches we can already infer a good
performance of our new efficient approach QOM, for which complexity is of O(n)
(measuring withn being the number of the entities in the ontologies) againstO(n2) for
the approach that comes closest.

The remainder of the paper starts with a clarification of terminology (Section 2). To
compare the worst-case run-time behavior of different approaches, we then describe a
canonical process for ontology mapping that subsumes the different approaches com-
pared in this paper (Section 3). The process is a core building block for later deriving
the run-time complexity of the different mapping algorithms. Section 4 presents our
toolbox to analyze these algorithms. In Section 5, different approaches for proposing
mappings are described and aligned to the canonical process. The way to derive their
run-time complexity is outlined in Section 6. Experimentalresults (Section 7) comple-
ment the comparison of run-time complexities.

2 Terminology

2.1 Ontology

As we currently focus on light-weight ontologies, we build on RDF/S2 to represent on-
tologies. To facilitate the further description, we brieflysummarize its major primitives
and introduce some shorthand notations. An RDF model is described by a set of state-
ments, each consisting of a subject, a predicate and an object. An ontologyO is defined
by its set of ConceptsC (instances of “rdf:Class”) with a corresponding subsumption
hierarchyHC (a binary relation corresponding to “rdfs:subClassOf”). RelationsR (in-
stances of “rdf:Property”) exist between single concepts.Relations are arranged alike in
a hierarchyHR (“rdfs:subPropertyOf”). An entityi ∈ I may be an instance of a class
c ∈ C (“rdf:type”). An instancei ∈ I may have onej or many role fillers fromI for a
relationr fromR. We also call this type of triple(i, r, j) a property instance.

2.2 Mapping

We here define our use of the term “mapping”. Given two ontologiesO1 andO2, map-
ping one ontology onto another means that for each entity (conceptC, relationR, or
instanceI) in ontologyO1, we try to find a corresponding entity, which has the same
intended meaning, in ontologyO2.

Definition 1. We define an ontology mapping function,map, based on the vocabulary,
E , of all termse ∈ E and based on the set of possible ontologies,O, as a partial
function:

map : E × O ×O ⇀ E ,

2 http://www.w3.org/RDFS/

with ∀e ∈ O1(∃f ∈ O2 : map(e,O1, O2) = f ∨ map(e,O1, O2) = ⊥).

An entity can either be mapped to exactly one other entity or none.

A term e interpreted in an ontologyO is either a concept, a relation or an instance,
i.e. e|O ∈ C ∪ R ∪ I. We usually writee instead ofe|O when the ontologyO is clear
from the context of the writing. We writemapO1,O2

(e) for map(e,O1, O2). We derive
a relationmapO1,O2

by definingmapO1,O2
(e, f) ⇔ mapO1,O2

(e) = f . We leave out
O1, O2 when they are evident from the context and writemap(e) = f andmap(e, f),
respectively. Once a (partial) mapping,map, between two ontologiesO1 and O2 is
established, we also say “entity e is mapped onto entityf ” iff map(e, f). A pair of
entities(e, f) that is not yet inmap and for which appropriate mapping criteria still
need to be tested is called acandidate mapping.

2.3 Example

The following example illustrates an example mapping. Two ontologiesO1 andO2 de-
scribing the domain of car retailing are given (Figure 1). A reasonable mapping between
the two ontologies is given in Table 1 as well as by the dashed lines in the figure.

Ontology 1

Ontology 2

Ontology 1

Ontology 2

Fig. 1.Example Ontologies and their Mappings

OntologyO1 OntologyO2

Object Thing
Car Automobile

Porsche KA-123Marc’s Porsche
Speed Characteristic

250 km/h fast
Table 1.Mapping Table for RelationmapO1,O2

(e, f)

Apart from one-to-one mappings as investigated in this paper one entity often has
to be mapped to a complex composite such as a concatenation ofterms (first and last
name) or an entity with restrictions (a sports-car is a car going faster than 250 km/h).
We refer to [7] for adequate methods.

3 Process

We briefly introduce a canonical process that subsumes all the mapping approaches we
are aware of.3 Figure 2 illustrates its six main steps. It is started with two ontologies,
which are going to be mapped onto one another, as its input:

1. Feature engineeringtransforms the initial representation of ontologies into aformat
digestible for the similarity calculations. For instance,the subsequent mapping process
may only work on a subset of RDFS primitives.

2. Selection of Next Search Steps.The derivation of ontology mappings takes place
in a search space of candidate mappings. This step may choose, e.g., to compute the
similarity of a subset of candidate concepts pairs{(c1, c2)|c1 ∈ O1, c2 ∈ O2} and to
ignore others.

3. Similarity Computation determines similarity values between pairs of entitiese, f

based on their definitions inO1 andO2, respectively.

4. Similarity Aggregation. In general, there may be several similarity values for a
candidate pair of entitiese, f from two ontologiesO1, O2, e.g. one for the similarity of
their labels and one for the similarity of their relationship to other terms. These different
similarity values for one candidate pair must be aggregatedinto a single aggregated
similarity value.

5. Interpretation uses the individual or aggregated similarity values to derive mappings
between entities fromO1 andO2. Some mechanisms here are, e.g., to use thresholds
for similarity mappings, to perform relaxation labelling,or to combine structural and
similarity criteria.

6. Iteration. Several algorithms perform an iteration over the whole process in order
to bootstrap the amount of structural knowledge. Iterationmay stop when no new map-
pings are proposed. Note that in a subsequent iteration one or several of steps 1 through
5 may be skipped, e.g. because all features might already be available in the appropri-
ate format or because some similarity computation might only be required in the first
round.

Eventually, the output returned is a mapping table representing the relation
mapO1,O2

.

Search
 Step

Selection

Similarity

Computation

Similarity

Aggregation

Iteration

2
 3
 4

6

Feature

Engineering

Inter
-

pretation

1
 5
Input
 Output

Search
 Step

Selection

Similarity

Computation

Similarity

Aggregation

Iteration

2
 3
 4

6

Feature

Engineering

Inter
-

pretation

1
 5
Input
Input
 Output
Output

Fig. 2.Mapping Process

3 The process is inspired by CRISP-DM, http://www.crisp-dm.org/, the CRoss Industry Standard
Process for Data Mining.

4 A Toolbox of Data Structures and Methods

The principal idea of this section is to provide a toolbox of data structures and methods
common to many approaches that determine mappings. This gives us a least common
denominator based on which concrete approaches instantiating the process depicted in
Figure 2 can be compared more easily.

4.1 Features of Ontological Entities

To compare two entities from two different ontologies, one considers some of their
characteristics, i.e. their features. The features may be specific for a mapping genera-
tion algorithm, in any case the features of ontological entities (of concepts, relations,
instances) need to be extracted from extensional and intensional ontology definitions.
Then an entity is described by the kind of appearance that is found to hold for this entity
for characteristics like:

– Identifiers: i.e. strings with dedicated formats, such as unified resource identifiers
(URIS) or RDF labels.

– RDF/S Primitives: such as properties or subclass relations
– Derived Features: which constrain or extend simple RDFS primitives (e.g.,most-

specific-class-of-instance)
– Aggregated Features: i.e. more than one simple RDFS primitive, e.g. a sibling is

every instance-of the parent-concept of an instance
– OWL Primitives: such as the usage of thesameAs relation
– Domain Specific Features: i.e. features which only apply to a certain domain with

a predefined shared ontology, e.g. in an application where files are represented as
instances and the relation hashcode-of-file is defined, we use this feature to compare
representations of concrete files

Example We again refer to the example in Figure 1. The actual feature consists of
a juxtaposition of relation name and entity name. TheCar concept of ontology 1 is
characterized e.g. through its (label, Car), the concept which it is linked to through
(super concept,Vehicle) resp. (subclassOf, Vehicle), its (concept sibling,boat), (di-
rect property,hasSpeed), and the instances linked through ((instance,Porsche KA-
123) resp. (type-of, Porsche KA-123). The relationhasSpeed on the other hand is
described through e.g. the (domain,Car) and the (range,Speed). An instance would
bePorsche KA-123, which is characterized e.g. through the instantiated (property in-
stance, (hasOwner, Marc)), and the instantiated (property instance, (hasSpeed, 250
km/h)).

4.2 Similarity Computation

Definition 2. We define a similarity measure for comparison of ontology entities as a
function as follows (cf. [8]):

sim : E × E × O ×O → [0, 1]

Different similarity measuressimk(e, f,O1, O2) are indexed through a labelk. Further,
we leave outO1, O2 when they are evident from the context and writesimk(e, f). The
following similarity measures are needed to compare the features of ontological entities.

– Object Equalityis based on existing logical assertions — especially assertions from
previous iterations:simobj(a, b) := {1 iff mapprev(a) = b, 0 otherwise}

– Explicit Equalitychecks whether a logical assertion already forces two entities to
be equal:simexp(a, b) := {1 iff statement(a, “sameAs′′, b), 0 otherwise}

– String Similaritymeasures the similarity of two strings on a scale from 0 to 1 (cf.
[9]) based on Levenshtein’s edit distance,ed [10].
simstr(c, d) := max(0, min(|c|,|d|)−ed(c,d)

min(|c|,|d|))
– SimSet: For many features we have to determine to what extent two sets of entities

are similar. To remedy the problem multidimensional scaling [11] measures how
far two entities are from all other entities and assumes thatif they have very similar
distances to all other entities, they must be very similar:

simset(E,F) =
∑

e∈E e

|E| ·
∑

f∈F f

|F |

with e = (sim(e, e1), sim(e, e2), . . . , sim(e, f1), sim(e, f2), . . .), f analogously.

These measures are all input to the similarity aggregation.

4.3 Similarity Aggregation

Similarities are aggregated by:
Aggregated Similarity:simagg(e, f) =

∑
k=1...n wk·adj(simk(e,f))

∑
k=1...n wk

with wk being the weight for each individual similarity measure, and adj being a func-
tion to transform the original similarity value (adj : [0, 1] → [0, 1]) such as the sigmoid
function.

4.4 Interpretation

From the similarity values we derive the actual mappings. The basic idea is that each
entity may only participate in one mapping and that we assignmappings based on a
greedy strategy that starts with the largest similarity values first. Ties are broken arbi-
trarily.

P (g, h, U\{e}, V \{f}) ← P (e, f, U, V) ∧ sim(g, h) > t

∧(g, h) ∈ U\{e}×V \{f} = argmax(g,h)sim(g, h).

P (⊥,⊥, E ∪ {⊥}, E ∪ {⊥}).

map(e, f) ← ∃X1,X2P (e, f,X1,X2) ∧ ¬(e, f) = (⊥,⊥).

5 Approaches to Determine Mappings

In the following we now use the toolbox, and extend it, too, inorder to define a range of
different mapping generation approaches. In the course of this section we present our
novel Quick Ontology Mapping approach — QOM.

5.1 NOM - Naive Ontology Mapping

Our Naive Ontology Mapping (NOM) constitutes a straight forward baseline for later
comparisons. It is defined by the steps of the process model asfollows:

1. Feature EngineeringFirstly, the ontologies have to be represented RDFS. The fea-
tures are required in a way shown in Section 4.1.

2. Search Step SelectionAll entities of the first ontology are compared with all entities
of the second ontology.

3. Similarity Computation The similarity computation between an entity ofO1 and an
entity ofO2 is done by using a wide range of similarity functions. Each similarity func-
tion is based on a feature (Section 4.1) of both ontologies and the respective similarity
measure (Section 4.2). The corresponding ontology is indicated through an index. For
NOM they are shown in Table 2.

Comparing No. Feature Similarity Measure

Concepts

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 (direct properties,Y1) SimSet(Y1, Y2)
5 all (inherited properties,Y1) SimSet(Y1, Y2)
6 all (super-concepts,Y1) SimSet(Y1, Y2)
7 all (sub-concepts,Y1) SimSet(Y1, Y2)
8 (concept siblings,Y1) SimSet(Y1, Y2)
9 (direct instances,Y1) SimSet(Y1, Y2)
10 (instances,Y1) SimSet(Y1, Y2)

Relations

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 (domain,Xd1) and (range,Xr1) object equality(Xd1, Xd2) and (Xr1, Xr2)
5 all (super-properties,Y1) SimSet(Y1, Y2)
6 all (sub-properties,Y1) SimSet(Y1, Y2)
7 (property siblings,Y1) SimSet(Y1, Y2)
8 (property instances,Y1) SimSet(Y1, Y2)

Instances

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 all (parent-concepts,Y1) SimSet(Y1, Y2)
5 (property instances,Y1) SimSet(Y1, Y2)

Property-instances
1 (domain,Xd1) and (range,Xr1) object equality(Xd1, Xd2) and (Xr1, Xr2)
2 (parent property,Y1) SimSet(Y1, Y2)

Table 2. Features and Similarity Measures for Different Entity Types Contributing to
Aggregated Similarity in NOM

4. Similarity Aggregation NOM emphasizes high individual similarities and de-
emphasizes low individual similarities by weighting individual similarity results with

a sigmoid function first and summing the modified values then.To produce an aggre-
gated similarity (cf. Section 4.2) NOM appliesadj(x) = 1

1+e−5(x−0.5) . Weightswk are
assigned by maximizing the f-measure on training data.

5. Interpretation NOM interpretes similarity results by two means. First, it applies a
threshold to discard spurious evidence of similarity. Second, NOM enforces bijectivity
of the mapping by ignoring candidate mappings that would violate this constraint and
by favoring candidate mappings with highest aggregated similarity scores.

6. Iteration The first round uses only the basic comparison method based onlabels and
string similarity to compute the similarity between entities. By doing the computation
in several rounds one can access the already computed pairs and use more sophisticated
structural similarity measures. Therefore, in the second round and thereafter NOM may
rely on all the similarity functions listed in table 2.

5.2 PROMPT

PROMPT is a semi-automatic tool described in [2]. It was one of the first tools for
ontology merging. For this paper we concentrate on the actions performed to identify
possible mapping candidates aka. merging candidates. For this PROMPT does not re-
quire all of the steps of the process model.

1. Feature EngineeringAs a plug-in to Protege, PROMPT uses RDFS with features as
in the previous approach.

2. Search Step SelectionLike NOM, PROMPT relies on a complete comparison. Each
pair of entities from ontology one and two is checked for their similarities.

3. Similarity Computation The system determines the similarities based on whether
entities have similar labels. Specifically, PROMPT checks for identical labels. This is a
further restriction compared to our string similarity, which also allows small deviations
in the spelling.

4. Similarity Aggregation As PROMPT uses only one similarity measure, aggregation
is not necessary.

5. Interpretation PROMPT presents the pairs with a similarity above a defined thresh-
old. For these pairs chances are high that they are merged by the user. The user selects
the ones he deems to be correct, which are then merged in PROMPT.

6. Iteration Iteration is done in PROMPT to allow manual refinement. Afterthe user has
acknowledged the proposition, the system recalculates thecorresponding similarities
and comes up with new merging suggestions.

5.3 Anchor-PROMPT

Anchor-PROMPT represents an advanced version of PROMPT which includes simi-
larity measures based on ontology structures. Only the similarity computation (step 3)
changes.

3. Similarity Computation Anchor-PROMPT traverses paths between anchor points
(entity pairs already identified as equal). Along these paths new mapping candidates
are suggested. Specifically, paths are traversed along hierarchies as well as along other
relations.

5.4 GLUE

GLUE [3] uses machine learning techniques to determine mappings.

1. Feature EngineeringIn a first step the Distribution Estimator uses a multi-strategy
machine learning approach based on a sample mapping set. It learns a strategy to iden-
tify equal instances and concepts.

2. Search Step SelectionGLUE checks every candidate mapping.

3. Similarity Computation, 4. Similarity Aggregation, 5. Interpretation The Sim-
ilarity Estimator determines the similarity of two instances based on the learnt rules.
From this also the mapping of concepts is derived.
Concepts and relations are further compared using Relaxation Labelling.The intuition
of Relaxation Labelling is that the label of a node (in our terminology: mapping as-
signed to an entity) is typically influenced by the features of the node’s neighborhood
in the graph. The authors explicitly mention subsumption, frequency, and “nearby”
nodes.A local optimal mapping for each entity is determinedusing the similarity re-
sults of neighboring entity pairs from a previous round.
Normally one would have to check all possible labelling configurations, which includes
the mappings of all other entities. The developers are well aware of the problem arising
in complexity, so they set up sensible partitions i.e. labelling sets with the same features
are grouped and processed only once.
From the previous step we receive the probabilities of two entities mapping onto each
other. The maximum probable pair is the final mapping result.

6. Iteration To gain meaningful results only the relaxation labelling step and its inter-
pretation have to be repeated several times. The other stepsare just carried out once.

5.5 QOM — Quick Ontology Mapping

The goal of this paper is to present an efficient mapping algorithm. For this purpose, we
optimize the effective, but inefficient NOM approach towards efficiency. The outcome
is QOM — Quick Ontology Mapping.

1. Feature EngineeringLike NOM, QOM exploits RDF triples.

2. Search Step SelectionA major problem in run-time complexity is due to the num-
ber of candidate mapping pairs which have to be compared to actually find the best
mappings. Therefore, we use heuristics to lower the number of candidate mappings.

In particular we use a dynamic programming approach [12]. Inthis approach we
have two main data structures. First, we have candidate mappings which ought to be
investigated. Second, an agenda orders the candidate mappings in a meaningful and ef-
ficient way, discarding some of them entirely. The completedanalysis of a candidate
mapping may or may not bring a new candidate mapping onto the agenda. The behav-
ior of initiative and ordering constitutes a search strategy. The strategy QOM pursues
corresponds to a beam search that focuses on the most promising candidate mappings
— possibly missing some good candidate mappings altogether.

To focus on the most promising candidate mappings we consider ontology struc-
tures that direct the beam effectively and efficiently. QOM combines the subsequent

strategies to propose new candidate mappings for inspection: First, QOMrandomlyse-
lects a fixed number (or percentage) of candidate mappings from all possible mappings.
Second, QOM restricts candidate mappings to entity pairs whoselabelsare near to each
other in a sorted list, i.e. that have the same first three letters. Third, QOM compares
only entities for which adjacent entities were assigned newmappings in a previous it-
eration (Mapping Change Propagation). Thecombinedapproach of QOM makes use
of different optimization strategies: it uses a label subagenda, a randomness subagenda,
and a mapping change propagation subagenda. In the first iteration the label subagenda
is pursued. Afterwards we focus on mapping change propagation. Finally we shift to
the randomness subagenda, if the other strategies do not sufficiently identify correct
mapping candidates.4 With this agenda we only have to check a fixed and restricted
number of mapping candidates for each original entity.

3. Similarity Computation In order to optimize NOM towards QOM, we have re-
stricted the range of costly features as specified in Table 3.In particular, QOM avoids
the complete pair-wise comparison of trees in favor of a(n incomplete) top-down strat-
egy. All other features are maintained from NOM.

Comparing Change Feature Similarity Measure

Concepts

−→ 5a (properties of direct super-concepts,Y1) SimSet(Y1, Y2)
−→ 6a (direct super-concepts,Y1) SimSet(Y1, Y2)
−→ 7a (direct sub-concepts,Y1) SimSet(Y1, Y2)
−→ 10a (instances of direct sub-concepts,Y1) SimSet(Y1, Y2)

Relations
−→ 5a (direct super-properties,Y1) SimSet(Y1, Y2)
−→ 6a (direct sub-properties,Y1) SimSet(Y1, Y2)

Instances −→ 4a (direct parent-concepts,Y1) SimSet(Y1, Y2)
Table 3.Features and Similarity Measurs used in QOM

4. Similarity Aggregation The aggregation of single methods is the same as in the
NOM approach.

5. Interpretation Also the interpretation step of QOM is the same as in NOM. A thresh-
old is determined and bijectivity of mappings is maintained.

6. Iteration QOM iterates to find mappings based on lexical knowledge firstand based
on knowledge structures later. In all our tests we have foundthat after five to ten rounds
hardly any further changes occur in the mapping table. QOM therefore restricts the
number of runs to ten.

4 We have also explored a number of other strategies (e.g. based on the taxonomy, already identi-
fied mappings) or combinations of strategies with simple data sets but they didnot outperform
results of QOM presented here.

6 Comparing Run-time Complexity

We determine the worst case run-time complexity of the mapping proposing algorithms
depending on the size of the two given ontologies. Thereby, we wanted to base our
analysis on realistic ontologies and not on artifacts, e.g.we wanted to avoid the con-
sideration of large ontologies withn leaf concepts but a depth of the concept hierarchy
HC of n − 1. For this purpose, we constrain our ontologies to have parameter settings
like the ones found in [13]. They have examined the structureof a large number of on-
tologies and found, e.g., that concept hierarchies typically have a branching factor of
around2 and that the concept hierarchies are neither extremely shallow nor extremely
deep. Hence, in the following we base our results on their findings.

Theorem 1. The worst case run-time behaviors of NOM, PROMPT, Anchor-PROMPT,
GLUE and QOM are given by the following table:

NOM O(n2 · log2(n))
PROMPT O(n2)
Anchor-PROMPT O(n2 · log2(n))
GLUE5 O(n2)
QOM O(n · log(n))

Proof Sketch 1 The different algorithmic steps contributing to complexity are aligned
to the canonical process of Section 3.

For each of the algorithms, one may then determine the costs of each step. First,
one determines the cost for feature engineering (feat). The second step is the process of
search step i.e. candidate mappings selection (sele). For each of the selected candidate
mappings (comp) we need to computek different similarity functionssimk and aggre-
gate them (agg). The number of entities involved and the complexity of the respective
similarity measure affect the run-time performance. Subsequently the interpretation of
the similarity values with respect to mapping requires a run-time complexity ofinter.
Finally we have to iterate over the previous steps multiple times (iter).

Then, the worst case run-time complexity is defined for all approaches by:

c = (feat + sel + comp · (
∑

k simk + agg) + inter) · iter

Depending on the concrete values that show up in the individual process steps the dif-
ferent run-time complexities are derived in detail in [6].

7 Empirical Evaluation and Results

In this section we show that the worst case considerations carry over to practical ex-
periments and that the quality of QOM is only negligibly lower than the one of other
approaches. The implementation itself was coded in Java using the KAON-framework6

for ontology operations.

6 http://kaon.semanticweb.org/

7.1 Test Scenario

Metrics We use standard information retrieval metrics to assess thedifferent ap-
proaches (cf. [14]):

Precision p = #correct found mapping
#found mappings

Recall r = #correct found mappings
#existing mappings

F-Measuref1 = 2pr
p+r

Data SetsThree separate data sets were used for evaluation purposes.As real world on-
tologies and especially their mappings are scarce, students were asked to independently
create and map ontologies.

Russia 1In this first set we have two ontologies describing Russia. The students cre-
ated the ontologies with the objectives to represent the content of two independent travel
websites about Russia. These ontologies have approximately 400 entities each, includ-
ing concepts, relations, and instances. The total number ofpossible mappings is 160,
which the students have assigned manually.

Russia 2The second set again covers Russia. This time the two ontologies are more
difficult to map. They differ substantially in both labels and structure. Each ontology has
about 300 entities with 215 possible mappings, which were captured during generation.

Tourism Finally, the participants of a seminar created two ontologies which separately
describe the tourism domain of Mecklenburg-Vorpommern. Both ontologies have an
extent of about 500 entities. No instances were modelled with this ontology though,
they only consist of concepts and relations. The 300 mappings were created manually.

Strategies We evaluated the mapping strategies described in the previous sections:

– PROMPT — As the PROMPT algorithm is rather simple and fast we use it as a
baseline to evaluate the speed.

– NOM / Anchor-PROMPT — Naive Ontology Mapping is an approach making use
of a wide range of features and measures. Therefore it reaches high levels of effec-
tiveness and represents our quality baseline. In terms of structural information used
and complexity incurred it is somewhat similar to Anchor-PROMPT.

– QOM — Quick Ontology Mapping: QOM is our novel approach focusing on effi-
ciency.

To circumvent the problem of having semi-automatic mergingtools (PROMPT and
Anchor-PROMPT) in our fully automatic mapping tests, we assumed that every propo-
sition of the system is meaningful and correct. Further, as we have difficulties in run-
ning Anchor-PROMPT with the size of the given data sets, we refer to the results of the
somewhat similar NOM. For GLUE we face another general problem. The algorithm
has a strong focus on example instance mappings. As we can notprovide this, we re-
frained from running the tests on a lowly trained estimator which would immediately
result in poor quality results.

For the interested readers we will shortly make available both software and data sets
on our website. Researchers will be welcome to enhance and re-use them.

7.2 Results and Discussion

We present the results of the strategies on each of the data sets in Figures 3 to 4. The
tourism dataset shows similar characteristics as Russia 1 and is therefore not plotted.
The x-axis shows the elapsed time on a logarithmic scale, they-axis corresponds to the
f-measure. The symbols represent the result after each iteration step.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1000
 10000
 100000
 1000000
 10000000

time (ms)

f-
m

e
a

s
u

re

PROMPT

NOM

QOM

Fig. 3.Mapping quality reached over time with Russia 1 ontologies.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1000
 10000
 100000
 1000000

time (ms)

f-
m

e
a

s
u

re

PROMPT

NOM

QOM

Fig. 4.Mapping quality reached over time with Russia 2 ontologies.

Depending on the scenario PROMPT reaches good results within a short period of
time. Please notice that for ontologies with a small number of similar labels (Figure 4)
this strategy is not satisfactory (f-measure 0.06). In contrast, the f-measure value of the
NOM strategy rises slowly but reaches high absolute values of up to 0.8. Unfortunately
it requires a lot of time. Finally the QOM Strategy is plotted. It reaches high quality
levels very quickly. In terms of absolute values it also seems to reach the best quality
results of all strategies. This appears to be an effect of QOMachieving an about 20
times higher number of iterations than NOM within the given time time frame.

Lessons Learned.We had the hypothesis that faster mapping results can be obtained
with only a negligible loss of quality. We here briefly present the bottom line of our
considerations in this paper:

1. Optimizing the mapping approach for efficiency — like QOM does — decreases
the overall mapping quality. If ontologies are not too largeone might prefer to
rather avoid this.

2. Labels are very important for mapping, if not the most important feature of all, and
alone return very satisfying results.

3. Using an approach combining many features to determine mappings clearly leads
to significantly higher quality mappings.

4. The Quick Ontology Mapping approach shows very good results. Quality is low-
ered only marginally.

5. QOM is with a factor of 10 to 100 times faster than standard prominent approaches.

Recapitulating we can say that our mapping approach is very effective and efficient.

8 Related Work

Various authors have tried to find a general description of similarity with several of
them being based on knowledge networks. [15] give a general overview of similarity.
As the basic ontology mapping problem has been around for some years, first tools have
already been developed to address this. The tools PROMPT andAnchorPROMPT [2]
use labels and to a certain extent the structure of ontologies. However, their focus lies
on ontology merging i.e. how to create one ontology out of two. Potential matches are
presented to the user for confirmation. In their tool ONION [16] the authors use rules
and inferencing to execute mappings, but the inferencing isbased on manually assigned
mappings or heuristics simpler than PROMPT. [3] use a general approach of relaxation
labelling in their tool GLUE. However, most of their work is based on the similarity
of instances only. Besides equality first steps are taken in the direction of complex
matches. These could also include concatenation of two fields such as “first name”
and “last name” to “name”[7]. [17] further present an approach for semantic mappings
based on SAT. Recapitulating, despite the large number of related work, there are very
few approaches raising the issue of efficiency.

Apart from the ontology domain research on mapping and integration has been done
in various computer science fields. [1] present an approach to integrate documents from
different sources into a master catalog. As schema and instance integration have been a
topic within the database community we like to refer to theirrelated approaches in [18]
and [19]), which already deal with efficiency.

9 Conclusion

The problem of mapping two ontologies effectively and efficiently arises in many ap-
plication scenarios [4, 5]. We have devised a generic process model to investigate and
compare different approaches that generate ontology mappings. In particular, we have
developed an original method, QOM, for identifying mappings between two ontolo-
gies. We have shown that QOM is on a par with other good state-of-the-art algorithms
concerning the quality of proposed mappings, while outperforming them with respect
to efficiency — in terms of run-time complexity (O(n) instead ofO(n2)) and in terms
of the experiments we have performed (by a factor of 10 to 100).

AcknowledgementsResearch reported in this paper has been partially financed by the
EU in the IST projects SWAP (IST-2001-34103) and SEKT (IST-2003-506826).

References

1. Agrawal, R., Srikant, R.: On integrating catalogs. In: Proceedings of the tenth international
conference on World Wide Web, ACM Press (2001) 603–612

2. Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies59 (2003) 983–1024

3. Doan, A., Domingos, P., Halevy, A.: Learning to match the schemasof data sources: A
multistrategy approach. VLDB Journal50 (2003) 279–301

4. Ehrig, M., Haase, P., van Harmelen, F., Siebes, R., Staab, S., Stuckenschmidt, H., Studer, R.,
Tempich, C.: The SWAP data and metadata model for semantics-based peer-to-peer systems.
In: Proceedings of MATES-2003. First German Conference on Multiagent Technologies.
LNAI, Erfurt, Germany, Springer (2003)

5. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text documentclustering. In: Pro-
ceedings of the International Conference on Data Mining — ICDM-2003,IEEE Press (2003)

6. Ehrig, M., Staab, S.: Quick ontology mapping with QOM. Technical report, University of
Karlsruhe, Institute AIFB (2004) http://www.aifb.uni-karlsruhe.de/WBS/meh/mapping/.

7. Do, H., Rahm, E.: COMA - a system for flexible combination of schemamatching ap-
proaches. In: Proceedings of the 28th VLDB Conference, Hong Kong, China (2002)

8. Bisson, G.: Why and how to define a similarity measure for object based representation
systems. Towards Very Large Knowledge Bases (1995) 236–246

9. Maedche, A., Staab, S.: Measuring similarity between ontologies. In:Proceedings of the Eu-
ropean Conference on Knowledge Acquisition and Management (EKAW), Springer (2002)

10. Levenshtein, I.V.: Binary codes capable of correcting deletions,insertions, and reversals.
Cybernetics and Control Theory (1966)

11. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall (1994)
12. Boddy, M.: Anytime problem solving using dynamic programming. In: Proceedings of the

Ninth National Conference on Artificial Intelligence, Anaheim, California,Shaker Verlag
(1991) 738–743

13. Tempich, C., Volz, R.: Towards a benchmark for semantic web reasoners - an analysis of the
DAML ontology library. In Sure, Y., ed.: Evaluation of Ontology-basedTools (EON2003)
at Second International Semantic Web Conference (ISWC 2003). (2003)

14. Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proceedings
of the second int. workshop on Web Databases (German Informatics Society). (2002)

15. Rodrguez, M.A., Egenhofer, M.J.: Determining semantic similarityamong entity classes
from different ontologies. IEEE Transactions on Knowledge and Data Engineering (2000)

16. Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of ontology
interdependencies. Lecture Notes in Computer Science1777(2000) 86+

17. Bouquet, P., Magnini, B., Serafini, L., Zanobini, S.: A SAT-based algorithm for context
matching. In: IV International and Interdisciplinary Conference on Modeling and Using
Context (CONTEXT’2003), Stanford University (CA, USA) (2003)

18. Roddick, J., Hornsby, K., de Vries, D.: A unifying semantic distance model for determining
the similarity of attribute values. In: Proceedings of the 26th Australsian Computer Science
Conference (ACSC2003), Adelaide, Australia (2003)

19. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional data sets
with application to reference matching. In: Knowledge Discovery and DataMining. (2000)
169–178

