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Abstract. (Semi-)automatic mapping — also called (semi-)automatic alignment
— of ontologies is a core task to achieve interoperability when two agents or
services use different ontologies. In the existing literature, the focsisbdar
been on improving the quality of mapping results. We here consider QQ@iMkQ
Ontology Mapping, as a way to trade off between effectiveness (i@litgu

and efficiency of the mapping generation algorithms. We show that QGM ha
lower run-time complexity than existing prominent approaches. Thershow

in experiments that this theoretical investigation translates into practicditsene
While QOM gives up some of the possibilities for producing high-qualityltesu

in favor of efficiency, our experiments show that this loss of quality isgnait.

1 Introduction

Semantic mappinigbetween ontologies is a necessary precondition to edtaiblisr-
operation between agents or services using differentogies. In recent years we have
seen a range of research work on methods proposing such myadgi-3]. The focus
of the previous work, however, has been laid exclusivelynoproving theeffectiveness
of the approach (i.e. the quality of proposed mappings se@valuated against some
human judgement given either a posteriori or a priori).

When we tried to apply these methods to some of the real-woddasios we ad-
dress in other research contributions (e.g., [4]), we fotlnad existing mapping meth-
ods were not suitable for the ontology integration task adhas they all neglected
efficiency To illustrate our requirements: We have been working itnneavhere light-
weight ontologies are applied such as the ACM Topic hieravaih its 10 concepts or
folder structures of individual computers, which corrasged to10* to 10° concepts.
Finally, we are working with Wordnet exploiting it$° concepts (cf. [5]). When map-
ping between such light-weight ontologies, the tradetwdt bne has to face is between
effectiveness and efficiency. For instance, consider tlmviedge management plat-
form built on a Semantic Web And Peer-to-peer basis in SWAPI{# not sufficient
to provide its user with the best possible mapping, it is @lscessary to answer his
queries within a few seconds — even if two peers use two diffeontologies and have
never encountered each other before.

In this paper we present an approach that considers bothutdéygof mapping
results as well as the run-time complexity. Our hypothesithat mapping algorithms
may be streamlined such that the loss of quality (comparedsiandard baseline) is
marginal, but the improvement of efficiency is so tremendia it allows for the

! Frequently also called alignment.



ad-hoc mapping of large-size, light-weight ontologies.stibstantiate the hypothesis,
we outline a comparison of the worst-case run-time behggwen in full detail in
[6]) and we report on a number of practical experiments. To@@aches used for our
(unavoidably preliminary) comparison represent a widegeaof different classes of
algorithms for ontology mapping. From these approachesameatready infer a good
performance of our new efficient approach QOM, for which ctaxipy is of O(n)
(measuring with being the number of the entities in the ontologies) agir{st) for
the approach that comes closest.

The remainder of the paper starts with a clarification of tealogy (Section 2). To
compare the worst-case run-time behavior of different apghes, we then describe a
canonical process for ontology mapping that subsumes ffeatit approaches com-
pared in this paper (Section 3). The process is a core bgilbliock for later deriving
the run-time complexity of the different mapping algorithnSection 4 presents our
toolbox to analyze these algorithms. In Section 5, diffesgyproaches for proposing
mappings are described and aligned to the canonical protkesvay to derive their
run-time complexity is outlined in Section 6. Experimemtdults (Section 7) comple-
ment the comparison of run-time complexities.

2 Terminology

2.1 Ontology

As we currently focus on light-weight ontologies, we builil RDF/S to represent on-
tologies. To facilitate the further description, we brieglymmarize its major primitives
and introduce some shorthand notations. An RDF model isritbestcby a set of state-
ments, each consisting of a subject, a predicate and antohjeontologyO is defined
by its set of Concept§€ (instances of “rdf:Class”) with a corresponding subsuompti
hierarchyH ¢ (a binary relation corresponding to “rdfs:subClassOf"g¢l&ionsR (in-
stances of “rdf:Property”) exist between single concepédations are arranged alike in
a hierarchyH g, (“rdfs:subPropertyOf”). An entity € Z may be an instance of a class
c € C (“rdf:type”). An instancei € Z may have ong or many role fillers front¥ for a
relationr from R. We also call this type of tripléi, r, j) a property instance.

2.2 Mapping

We here define our use of the term “mapping”. Given two ont@®, andO,, map-
ping one ontology onto another means that for each entityo@otC, relation R, or
instancel) in ontology O, we try to find a corresponding entity, which has the same
intended meaning, in ontologys,.

Definition 1. We define an ontology mapping functiamp, based on the vocabulary,
&, of all termse € £ and based on the set of possible ontologi@s,as a partial
function:

map: EX O x O — &,

2 http:/lwww.w3.0rg/RDFS/



withVe € O1(3f € O : map(e, 01,02) = f Vmap(e,01,0,) = L1).
An entity can either be mapped to exactly one other entityooen

A terme interpreted in an ontologg is either a concept, a relation or an instance,
i.e.ejp € CURUZ. We usually writee instead ofe|o when the ontology) is clear
from the context of the writing. We writewap,, o, (e) for map(e, Oy, O2). We derive
arelationmap, o, by definingmap,,, o, (e, f) < mapg, o,(e) = f. We leave out
01, O2 when they are evident from the context and writep(e) = f andmap(e, f),
respectively. Once a (partial) mappingap, between two ontologie®; and O; is
established, we also sagpritity e is mapped onto entity” iff map(e, f). A pair of
entities (e, f) that is not yet inmap and for which appropriate mapping criteria still
need to be tested is calledcandidate mapping

2.3 Example

The following example illustrates an example mapping. TwttpgiesO, andO-, de-
scribing the domain of car retailing are given (Figure 1)eAsonable mapping between
the two ontologies is given in Table 1 as well as by the dasimed in the figure.

{Charactensic

__-----?f -----

has Prone Motor1 23456

Porsche KA-123

hasCwner ~ -~ TE&EM

Fig. 1. Example Ontologies and their Mappings

| OntologyO; | OntologyO |

Obiject Thing
Car Automobile
Porsche KA-128Vlarc’s Porsche
Speed Characteristig
250 km/h fast

Table 1. Mapping Table for Relatiomap,,, o, (e, f)

Apart from one-to-one mappings as investigated in this pape entity often has
to be mapped to a complex composite such as a concatenatienef (first and last
name) or an entity with restrictions (a sports-car is a cangéaster than 250 km/h).
We refer to [7] for adequate methods.



3 Process

We briefly introduce a canonical process that subsumeseaathtipping approaches we
are aware of. Figure 2 illustrates its six main steps. It is started witlo tantologies,
which are going to be mapped onto one another, as its input:

1. Feature engineeringransforms the initial representation of ontologies inforanat
digestible for the similarity calculations. For instanttes subsequent mapping process
may only work on a subset of RDFS primitives.

2. Selection of Next Search Step§.he derivation of ontology mappings takes place
in a search space of candidate mappings. This step may ¢hagseto compute the
similarity of a subset of candidate concepts paiis , c2)|c; € O1,c2 € Oy} and to
ignore others.

3. Similarity Computation determines similarity values between pairs of entitigs
based on their definitions i®; andO,, respectively.

4. Similarity Aggregation. In general, there may be several similarity values for a
candidate pair of entities f from two ontologieD;, O, e.g. one for the similarity of
their labels and one for the similarity of their relationsto other terms. These different
similarity values for one candidate pair must be aggregateda single aggregated
similarity value.

5. Interpretation uses the individual or aggregated similarity values tovdemappings
between entities fron®; andO,. Some mechanisms here are, e.g., to use thresholds
for similarity mappings, to perform relaxation labelling, to combine structural and
similarity criteria.
6. Iteration. Several algorithms perform an iteration over the wholecgss in order
to bootstrap the amount of structural knowledge. Iteratiay stop when no new map-
pings are proposed. Note that in a subsequent iterationrseveral of steps 1 through
5 may be skipped, e.g. because all features might alreadydilalale in the appropri-
ate format or because some similarity computation mighy bel required in the first
round.

Eventually, the output returned is a mapping table reptewgprthe relation
mapg, o,-

Iteration (8) \

2 3 4
Search Step Similarity Similarity Inter-
Selection Computation Aggregation pretation

@iz

Feature
Engineering

@@

Fig. 2. Mapping Process

3 The process is inspired by CRISP-DM, http://www.crisp-dm.org/, thes8Ruadustry Standard
Process for Data Mining.



4 A Toolbox of Data Structures and Methods

The principal idea of this section is to provide a toolbox afalstructures and methods
common to many approaches that determine mappings. Thés giv a least common
denominator based on which concrete approaches instagttae process depicted in
Figure 2 can be compared more easily.

4.1 Features of Ontological Entities

To compare two entities from two different ontologies, omasiders some of their
characteristics, i.e. their features. The features maypbeific for a mapping genera-
tion algorithm, in any case the features of ontologicalte#i(of concepts, relations,
instances) need to be extracted from extensional and inteisontology definitions.

Then an entity is described by the kind of appearance thatiisf to hold for this entity

for characteristics like:

— Ildentifiers i.e. strings with dedicated formats, such as unified residentifiers
(URIS) or RDF labels.

— RDF/S Primitivessuch as properties or subclass relations

— Derived Featureswhich constrain or extend simple RDFS primitives (emgast-
specific-class-of-instance)

— Aggregated Features.e. more than one simple RDFS primitive, e.g. a sibling is
every instance-of the parent-concept of an instance

— OWL Primitives such as the usage of tsameAs relation

— Domain Specific Featurege. features which only apply to a certain domain with
a predefined shared ontology, e.g. in an application whege dite represented as
instances and the relation hashcode-of-file is defined, eéhisfeature to compare
representations of concrete files

Example We again refer to the example in Figure 1. The actual featarsists of
a juxtaposition of relation name and entity name. T8 concept of ontology 1 is
characterized e.g. through it&lfel, Car), the concept which it is linked to through
(super conceplyehicle) resp. éubclassOf, Vehicle), its (concept siblingboat), (di-
rect propertyhasSpeed), and the instances linked through ((instariéersche KA-
123) resp. type-of, Porsche KA-123). The relationhasSpeed on the other hand is
described through e.g. the (domafar) and the (rangeSpeed). An instance would
be Porsche KA-123, which is characterized e.g. through the instantiatedpgnty in-
stance, ljasOwner, Marc)), and the instantiated (property instandeagSpeed, 250
km/h)).

4.2 Similarity Computation

Definition 2. We define a similarity measure for comparison of ontologjtieatas a
function as follows (cf. [8]):

sim: ExEx O xO—[0,]1]



Different similarity measuresmy (e, f, O1, O2) are indexed through a labkl Further,
we leave ouq, O, when they are evident from the context and wsitey (e, f). The
following similarity measures are needed to compare thifea of ontological entities.

— Object Equalityis based on existing logical assertions — especially dessrtrom
previous iterationssim; (a, b) := {1 iff mappres(a) = b, 0 otherwisg

— Explicit Equalitychecks whether a logical assertion already forces twoiestio
be equalsime,y,(a,b) := {1 iff statement(a, “sameAs”,b), 0 otherwisg

— String Similaritymeasures the similarity of two strings on a scale from 0 tof1 (c
[9]) based on Levenshtein’s edit distaneé [10].
simgy,- (¢, d) := maz(0, %)

— SimSetFor many features we have to determine to what extent tvgocdegntities
are similar. To remedy the problem multidimensional sep[ihl] measures how
far two entities are from all other entities and assumesitiia¢y have very similar

distances to all other entities, they must be very similar:

st B, ) = Z4gf< - Efg

with e = (sim(e, eq), sim(e, e2), .. .,sim(e, f1),sim(e, f2),...), f analogously.

These measures are all input to the similarity aggregation.

4.3 Similarity Aggregation

Similarities are aggregated by:
Aggregated Similaritysim,4 (e, f) = Lislg wf'ladj(zl’;k (e.f)

with w;, being the weight for each individual similarity measurej adj being a func-
tion to transform the original similarity valuedj : [0, 1] — [0, 1]) such as the sigmoid
function.

4.4 Interpretation

From the similarity values we derive the actual mappings basic idea is that each
entity may only participate in one mapping and that we asgeigppings based on a
greedy strategy that starts with the largest similaritygalfirst. Ties are broken arbi-
trarily.

P(g,h, U\{e}, VA{f}) — Ple, f,U,V) Asim(g, h) > ¢
A(g,h) € U\{e}xV\{f} = argmax, ;) sim(g, h).
PL,L,EU{L}, EU{L}).
map(e, f) < 3X1, XoP(e, f, X1, X2) A (e, f) = (L, 1).

5 Approaches to Determine Mappings

In the following we now use the toolbox, and extend it, toayiider to define a range of
different mapping generation approaches. In the courski®kection we present our
novel Quick Ontology Mapping approach — QOM.



5.1 NOM - Naive Ontology Mapping

Our Naive Ontology Mapping (NOM) constitutes a straightifard baseline for later
comparisons. It is defined by the steps of the process modellas's:

1. Feature EngineeringFirstly, the ontologies have to be represented RDFS. The fea
tures are required in a way shown in Section 4.1.

2. Search Step SelectioAll entities of the first ontology are compared with all eietit
of the second ontology.

3. Similarity Computation The similarity computation between an entity@f and an
entity of O is done by using a wide range of similarity functions. Eachilsirity func-
tion is based on a feature (Section 4.1) of both ontologiéstlam respective similarity
measure (Section 4.2). The corresponding ontology is atéitthrough an index. For
NOM they are shown in Table 2.

[ Comparing [No|] Feature | Similarity Measure |
1 (label X7) string similarity (X, X2)
2 (URILL) string equalityU R1,, U RI2)
3| (X1,sameAsX>) relation explicit equality(X1, X2)
4 (direct propertied;) SimSett1, Y2)
5 | all (inherited propertie%;) SimSet{7, Y2)
Concepts 6 all (super-concepts;) SimSetl1, Y2)
7 all (sub-concept¥;) SimSett1, Y2)
8 (concept siblingd;1) SimSetl7, Y2)
9 (direct instance¥}) SimSetl, Y2)
10 (instances;;) SimSetf1, Y2)
1 (label X4) string similarity (X, X5)
2 (URIL) string equalityl RI1, U RI>)
3 (X1,sameAsX>,) relation explicit equality(X1, X2)
Relations 4 |(domainX 1) and (rangeX,1)|object equalityi 41, Xa42) and (Xr1, Xr2)
5 all (super-propertie¥;) SimSet{, Y2)
6 all (sub-propertied;;) SimSet{, Y2)
7 (property siblingsy;) SimSet{1, Y2)
8 (property instance¥;) SimSett1, Y2)
1 (label X4) string similarity(X;, X2)
2 (URIL) string equalityU RI;, U RI:)
Instances 3 (X1,sameAsX?,) relation explicit equality(X1, X5)
4 all (parent-concept®; ) SimSet{, Y2)
5 (property instances;) SimSet{:, Y2)
. | 1 |(domainX41) and (rangeX, 1)|object equality& 41, X42) and (X1, Xr2)
Property-instance$ > (parent property;:) SimSet{, Y2)
Table 2. Features and Similarity Measures for Different Entity Ty@&ontributing to

Aggregated Similarity in NOM

4. Similarity Aggregation NOM emphasizes high individual similarities and de-
emphasizes low individual similarities by weighting indival similarity results with



a sigmoid function first and summing the modified values tflenproduce an aggre-
gated similarity (cf. Section 4.2) NOM appliedj(z) = HT{I,M) Weightsw;, are
assigned by maximizing the f-measure on training data.

5. Interpretation NOM interpretes similarity results by two means. First,fphes a
threshold to discard spurious evidence of similarity. ®elcdNOM enforces bijectivity
of the mapping by ignoring candidate mappings that wouldatothis constraint and
by favoring candidate mappings with highest aggregatedasity scores.

6. Iteration The first round uses only the basic comparison method baskdbels and
string similarity to compute the similarity between emtiti By doing the computation
in several rounds one can access the already computed pdissa more sophisticated
structural similarity measures. Therefore, in the secondd and thereafter NOM may
rely on all the similarity functions listed in table 2.

5.2 PROMPT

PROMPT is a semi-automatic tool described in [2]. It was ohéhe first tools for
ontology merging. For this paper we concentrate on the refi@rformed to identify
possible mapping candidates aka. merging candidateshiBoPROMPT does not re-
quire all of the steps of the process model.

1. Feature EngineeringAs a plug-in to Protege, PROMPT uses RDFS with features as
in the previous approach.

2. Search Step Selectiohike NOM, PROMPT relies on a complete comparison. Each
pair of entities from ontology one and two is checked forttisénilarities.

3. Similarity Computation The system determines the similarities based on whether
entities have similar labels. Specifically, PROMPT checkddentical labels. This is a
further restriction compared to our string similarity, whialso allows small deviations

in the spelling.

4. Similarity Aggregation As PROMPT uses only one similarity measure, aggregation
is not necessary.

5. Interpretation PROMPT presents the pairs with a similarity above a definesbti
old. For these pairs chances are high that they are mergdeehyser. The user selects
the ones he deems to be correct, which are then merged in PROMP

6. Iteration lteration is done in PROMPT to allow manual refinement. Atiberuser has
acknowledged the proposition, the system recalculatesdhesponding similarities
and comes up with new merging suggestions.

5.3 Anchor-PROMPT

Anchor-PROMPT represents an advanced version of PROMPThwhtludes simi-
larity measures based on ontology structures. Only thdagiityi computation (step 3)
changes.

3. Similarity Computation Anchor-PROMPT traverses paths between anchor points
(entity pairs already identified as equal). Along these paidw mapping candidates
are suggested. Specifically, paths are traversed alongrtiiees as well as along other
relations.



5.4 GLUE

GLUE [3] uses machine learning techniques to determine mgpp

1. Feature Engineeringln a first step the Distribution Estimator uses a multi-ggst
machine learning approach based on a sample mapping setrrisla strategy to iden-
tify equal instances and concepts.

2. Search Step Selectio®LUE checks every candidate mapping.

3. Similarity Computation, 4. Similarity Aggregation, 5. I nterpretation The Sim-
ilarity Estimator determines the similarity of two instascbased on the learnt rules.
From this also the mapping of concepts is derived.

Concepts and relations are further compared using Retaxatibelling.The intuition
of Relaxation Labelling is that the label of a node (in oumgmlogy: mapping as-
signed to an entity) is typically influenced by the featuréthe node’s neighborhood
in the graph. The authors explicitly mention subsumptioagéiency, and “nearby”
nodes.A local optimal mapping for each entity is determineihg the similarity re-
sults of neighboring entity pairs from a previous round.

Normally one would have to check all possible labelling cgufations, which includes
the mappings of all other entities. The developers are wedra of the problem arising
in complexity, so they set up sensible partitions i.e. lEfgkets with the same features
are grouped and processed only once.

From the previous step we receive the probabilities of twtities mapping onto each
other. The maximum probable pair is the final mapping result.

6. Iteration To gain meaningful results only the relaxation labellingpsand its inter-
pretation have to be repeated several times. The otheratepsst carried out once.

5.5 QOM — Quick Ontology Mapping

The goal of this paper is to present an efficient mapping ahyar For this purpose, we
optimize the effective, but inefficient NOM approach towagdfficiency. The outcome
is QOM — Quick Ontology Mapping.

1. Feature EngineeringLike NOM, QOM exploits RDF triples.

2. Search Step Selectio\ major problem in run-time complexity is due to the num-
ber of candidate mapping pairs which have to be comparedtt@lbcfind the best
mappings. Therefore, we use heuristics to lower the numbearalidate mappings.

In particular we use a dynamic programming approach [12this approach we
have two main data structures. First, we have candidate imggpvhich ought to be
investigated. Second, an agenda orders the candidatemgappia meaningful and ef-
ficient way, discarding some of them entirely. The completedlysis of a candidate
mapping may or may not bring a new candidate mapping ontogbeda. The behav-
ior of initiative and ordering constitutes a search strat@dpe strategy QOM pursues
corresponds to a beam search that focuses on the most prgro@sididate mappings
— possibly missing some good candidate mappings altogether

To focus on the most promising candidate mappings we consiutelogy struc-
tures that direct the beam effectively and efficiently. QOdMbines the subsequent



strategies to propose new candidate mappings for inspe&ist, QOMrandomlyse-
lects a fixed number (or percentage) of candidate mappingsédil possible mappings.
Second, QOM restricts candidate mappings to entity paisselabelsare near to each
other in a sorted list, i.e. that have the same first threerketThird, QOM compares
only entities for which adjacent entities were assigned mappings in a previous it-
eration Mapping Change Propagati)nThe combinedapproach of QOM makes use
of different optimization strategies: it uses a label s@vata, a randomness subagenda,
and a mapping change propagation subagenda. In the fiegidgiethe label subagenda
is pursued. Afterwards we focus on mapping change propagdfinally we shift to
the randomness subagenda, if the other strategies do riziesufy identify correct
mapping candidatesWith this agenda we only have to check a fixed and restricted
number of mapping candidates for each original entity.

3. Similarity Computation In order to optimize NOM towards QOM, we have re-
stricted the range of costly features as specified in Tablie Barticular, QOM avoids
the complete pair-wise comparison of trees in favor of agoinplete) top-down strat-
egy. All other features are maintained from NOM.

| Comparing [Change] Feature |Similarity Measuré
— ba |(properties of direct super-concepts)| SimSetl, Y2)
Concents — 6a (direct super-concepts) SimSet{, Y2)
P — 7a (direct sub-concept$;1) SimSet{s, Y2)
— 10a (instances of direct sub-concepls) | SimSetl, Y2)
Relations — 5a (direct super-properties’;) SimSet{, Y2)
— 6a (direct sub-properties;;) SimSett:, Y2)

[Instances |— 4a] (direct parent-concept¥}) | SimSety:,Ys) |

Table 3. Features and Similarity Measurs used in QOM

4. Similarity Aggregation The aggregation of single methods is the same as in the
NOM approach.

5. Interpretation Also the interpretation step of QOM is the same as in NOM. &shr
old is determined and bijectivity of mappings is maintained

6. Iteration QOM iterates to find mappings based on lexical knowledgedindtbased
on knowledge structures later. In all our tests we have fahatafter five to ten rounds
hardly any further changes occur in the mapping table. QO&efiore restricts the
number of runs to ten.

4 We have also explored a number of other strategies (e.g. based orahertay, already identi-
fied mappings) or combinations of strategies with simple data sets but thaptdidtperform
results of QOM presented here.



6 Comparing Run-time Complexity

We determine the worst case run-time complexity of the mapproposing algorithms
depending on the size of the two given ontologies. Thereleywanted to base our
analysis on realistic ontologies and not on artifacts, wgwanted to avoid the con-
sideration of large ontologies withleaf concepts but a depth of the concept hierarchy
H¢ of n — 1. For this purpose, we constrain our ontologies to have pat@msettings
like the ones found in [13]. They have examined the struadfigelarge number of on-
tologies and found, e.g., that concept hierarchies tylyidedve a branching factor of
around2 and that the concept hierarchies are neither extremeljoghabr extremely
deep. Hence, in the following we base our results on theirfgsd

Theorem 1. The worst case run-time behaviors of NOM, PROMPT, Anchd®RT,
GLUE and QOM are given by the following table:

NOM 0% Tog(n))
PROMPT O(n?)
Anchor-PROMPT |  O(n? - log?(n))
GLUP® O(n?)

QOM O(n - log(n))

Proof Sketch 1 The different algorithmic steps contributing to complgxite aligned
to the canonical process of Section 3.

For each of the algorithms, one may then determine the cdstach step. First,
one determines the cost for feature engineerfegf(. The second step is the process of
search step i.e. candidate mappings selectsmig. For each of the selected candidate
mappings ¢omp we need to computedifferent similarity functionsim, and aggre-
gate themdgg. The number of entities involved and the complexity of dspective
similarity measure affect the run-time performance. Sgbeatly the interpretation of
the similarity values with respect to mapping requires a-tinme complexity ofinter.
Finally we have to iterate over the previous steps multiphes (ter).

Then, the worst case run-time complexity is defined for gif@aches by:

c = (feat + sel + comp - (3, simi + agg) + inter) - iter

Depending on the concrete values that show up in the indiidocess steps the dif-
ferent run-time complexities are derived in detail in [6].

7 Empirical Evaluation and Results

In this section we show that the worst case considerationrg oger to practical ex-
periments and that the quality of QOM is only negligibly lawkan the one of other
approaches. The implementation itself was coded in Java tise KAON-framework
for ontology operations.

8 http://kaon.semanticweb.org/



7.1 Test Scenario

Metrics We use standard information retrieval metrics to assesdifferent ap-

proaches (cf. [14]):
F#correct_found_-mapping

Precision p = P #founfd,ma Dings
. — #correct_found-mappings
Recall o= #Hexisting-mappings

F-Measuref; = £~

Data Sets Three separate data sets were used for evaluation purpasesl world on-
tologies and especially their mappings are scarce, stas@re asked to independently
create and map ontologies.

Russia 1In this first set we have two ontologies describing Russia Jtudents cre-
ated the ontologies with the objectives to represent theecoof two independent travel
websites about Russia. These ontologies have approxiymti8lentities each, includ-
ing concepts, relations, and instances. The total numbposdible mappings is 160,
which the students have assigned manually.

Russia 2The second set again covers Russia. This time the two ornésl@ege more
difficult to map. They differ substantially in both labelstestructure. Each ontology has
about 300 entities with 215 possible mappings, which wepturad during generation.
Tourism Finally, the participants of a seminar created two ont@egvhich separately
describe the tourism domain of Mecklenburg-VorpommernthBantologies have an
extent of about 500 entities. No instances were modelleH this ontology though,
they only consist of concepts and relations. The 300 magpirege created manually.

Strategies We evaluated the mapping strategies described in the pregiections:

— PROMPT — As the PROMPT algorithm is rather simple and fast aeitias a
baseline to evaluate the speed.

— NOM / Anchor-PROMPT — Naive Ontology Mapping is an approaciking use
of a wide range of features and measures. Therefore it redmtle levels of effec-
tiveness and represents our quality baseline. In termsuaftstal information used
and complexity incurred it is somewhat similar to AnchorcNRPT.

— QOM — Quick Ontology Mapping: QOM is our novel approach fdogson effi-
ciency.

To circumvent the problem of having semi-automatic merdimgjs (PROMPT and
Anchor-PROMPT) in our fully automatic mapping tests, weuassd that every propo-
sition of the system is meaningful and correct. Further, asave difficulties in run-
ning Anchor-PROMPT with the size of the given data sets, i@ tte the results of the
somewhat similar NOM. For GLUE we face another general gmoblThe algorithm
has a strong focus on example instance mappings. As we cgrowtle this, we re-
frained from running the tests on a lowly trained estimatbiolr would immediately
result in poor quality results.

For the interested readers we will shortly make availabth boftware and data sets
on our website. Researchers will be welcome to enhance amgeréhem.



7.2 Results and Discussion

We present the results of the strategies on each of the datandeigures 3 to 4. The
tourism dataset shows similar characteristics as Russral 1satherefore not plotted.
The x-axis shows the elapsed time on a logarithmic scalgj-thés corresponds to the
f-measure. The svmbols renresent the result after eachidrrsten.
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f-measure

Depending on the scenario PROMPT reaches good resultswaitsihort period of
time. Please notice that for ontologies with a small numbeirilar labels (Figure 4)
this strategy is not satisfactory (f-measure 0.06). In st} the f-measure value of the
NOM strategy rises slowly but reaches high absolute valtiap to 0.8. Unfortunately
it requires a lot of time. Finally the QOM Strategy is plottédreaches high quality
levels very quickly. In terms of absolute values it also se¢oreach the best quality
results of all strategies. This appears to be an effect of GaMeving an about 20
times higher number of iterations than NOM within the giviend time frame.

Lessons LearnedWe had the hypothesis that faster mapping results can beebta
with only a negligible loss of quality. We here briefly preséme bottom line of our
considerations in this paper:



1. Optimizing the mapping approach for efficiency — like QOBEd — decreases
the overall mapping quality. If ontologies are not too laggee might prefer to
rather avoid this.

2. Labels are very important for mapping, if not the most intgat feature of all, and
alone return very satisfying results.

3. Using an approach combining many features to determirngpimgs clearly leads
to significantly higher quality mappings.

4. The Quick Ontology Mapping approach shows very good tesQuality is low-
ered only marginally.

5. QOM is with a factor of 10 to 100 times faster than standaotjinent approaches.

Recapitulating we can say that our mapping approach is feggtive and efficient.

8 Related Work

Various authors have tried to find a general description milarity with several of
them being based on knowledge networks. [15] give a gengeaview of similarity.
As the basic ontology mapping problem has been around foe y@ars, first tools have
already been developed to address this. The tools PROMPRcliorPROMPT [2]
use labels and to a certain extent the structure of ontcdogiewever, their focus lies
on ontology merging i.e. how to create one ontology out of. tR@tential matches are
presented to the user for confirmation. In their tool ONIOR][the authors use rules
and inferencing to execute mappings, but the inferencibgsed on manually assigned
mappings or heuristics simpler than PROMPT. [3] use a géappoach of relaxation
labelling in their tool GLUE. However, most of their work i@éed on the similarity
of instances only. Besides equality first steps are takemendirection of complex
matches. These could also include concatenation of twosfiglath as “first name”
and “last name” to “name”[7]. [17] further present an apmtoéor semantic mappings
based on SAT. Recapitulating, despite the large numbedatework, there are very
few approaches raising the issue of efficiency.

Apart from the ontology domain research on mapping and iatesn has been done
in various computer science fields. [1] present an appraaitiégrate documents from
different sources into a master catalog. As schema anchiresiategration have been a
topic within the database community we like to refer to tmelated approaches in [18]
and [19]), which already deal with efficiency.

9 Conclusion

The problem of mapping two ontologies effectively and edfitly arises in many ap-
plication scenarios [4, 5]. We have devised a generic psorexiel to investigate and
compare different approaches that generate ontology mgepin particular, we have
developed an original method, QOM, for identifying mapirizetween two ontolo-
gies. We have shown that QOM is on a par with other good statieesart algorithms
concerning the quality of proposed mappings, while outperfng them with respect
to efficiency — in terms of run-time complexity)(n) instead ofO(n?)) and in terms
of the experiments we have performed (by a factor of 10 t0.100)
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