
Karlsruhe Insitute of Technology

Institut für Angewandte Informatik und

Formale Beschreibungsverfahren (AIFB)

SAP AG

SAP Research, CEC Karlsruhe

Semantic Service Discovery using Natural
Language Queries

Diploma Thesis

Prof. Dr. Rudi Studer

Institute of Applied Informatics

and Formal Description Methods AIFB

Karlsruhe Institute of Technology

of

cand. inform.

Marc Mültin

Supervisors:

Prof. Dr. Rudi Studer (AIFB)

Veli Bicer (FZI)

Paul Peitz (SAP Research CEC Karlsruhe)

Started on: June 01, 2008

Submitted on: Feburary 15, 2009

Address:

Marc Mültin

Klosterweg 28/G402

76131 Karlsruhe

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller

bereits bekannte Hilfe selbständig angefertigt, alle benutzten Hilfsmittel vollständig

und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten an-

derer unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe,

Zusammenfassung, deutsch

Das Internet, wie wir es heute kennen, kann als die größste globale Datenbank an-

gesehen werden. Zu Beginn bestand es nur aus einzelnen Webseiten, welche über

sogenannte Hyperlinks miteinander verbunden waren. Diese Form des Internets wird

auch als das Web of pages bezeichnet. Aber es hat sich weiterentwickelt zu einem

Internet, welches auch aktivere Komponenten beinhaltet, die Rede ist hier von Web

Services.

In seinem Artikel im Magazin Scientific American aus dem Jahre 2001 stellt Tim

Berners-Lee, der Erfinder des Internets, fest, dass es dem heutigen Internet an einer

semantischen Struktur fehlt, welche den Zusammenhang seiner Komponenten fest-

hält. Basierend auf diesem Artikel ist die Vision des Semantic Web eine, in der durch

Ontologien angereicherte semantische Beschreibungen überall verfügbar sein werden.

Hierdurch soll anspruchsvolle Interoperabilität zwischen Agenten beispielsweise im

E-Commerce-Bereich ermöglicht werden. Die semantische Beschreibung von Web

Services wurde unter anderem dadurch angeregt, die serviceorientierte elektronische

Datenverarbeitung zu einem nächst höheren Level zu führen, wodurch zeitaufwän-

dige Programmiertätigkeiten semi-automatisiert werden sollen.

Das übergeordnete Ziel dieser Arbeit ist die Ermöglichung einer Suche nach Web

Services, die von SAP in ihrem Enterprise Service Repository bereit gestellt werden,

mit Hilfe von semantischen Technologien. Wir entscheiden uns für ein semantisches

Suchwerkzeug welches uns ermöglicht, Anfragen in natürlicher Sprache zu stellen.

Somit soll verhindert werden, dass der normale Benutzer weder ein fundiertes Wissen

über SQL-ähnliche Anfragesprachen noch über den Inhalt der benutzten semanti-

schen Informationen (Ontologien) mitbringen muss. Denn dies würde ansonsten die

Akzeptanz der Software erheblich verringern. Wir testen unser Suchwerkzeug mit

diversen Ontologien, um herauszufinden, wie geeignet unsere Software bezüglich Re-

asoning und Portabilität ist.

v

Abstract

The current Web as we know it today can be assumed to be the biggest global

database. Beginning with just pages on the Web being related to each other via

hyperlinks (also referred to as the Web of pages), the Internet has further devel-

oped and enhanced to also include more active components, namely so-called Web

Services. In his article on Scientific American in 2001, Tim Berners-Lee states that

the Web today lacks the existence of a semantic structure to keep the interdepen-

dency of its components. According to this article, the Semantic Web vision is one

in which rich, ontology-based semantic markup becomes widely available, enabling

sophisticated interoperability among agents, e.g., in the e-commerce area. The se-

mantic description of Web Services was proposed amongst others to take service

oriented computing to a new level by allowing to semi-automate time-consuming

programming tasks.

The overall goal of this work is to facilitate the search for Web Services provided by

SAP in its Enterprise Service Repository with the help of semantic technologies. We

choose to use a semantic search tool which allows for queries formulated in natural

language, thus avoiding the need of extensive knowledge about the semantic data

being used or SQL-like query languages such as SPARQL, as this would lower the

acceptance for a naive user. We test our question answering tool against several on-

tologies to find out how capable this tool is regarding reasoning power, expressivity

and portability.

vii

Acknowledgements

I want to thank my colleagues at SAP for their great support and help throughout

my work.

Big thanks also to Vanessa Lopez, the developer of AquaLog, who spent a lot of

time explaining AquaLog to me and fixing bugs I discovered during my research.

I also want to thank my advisors, Veli Bicer (FZI) and Paul Peitz (SAP), for their

advises and support.

I for sure want to thank my friends who supported me during harsh times and also

proofread my work.

Last but not least, I definitely want to thank my parents who supported me through-

out my studies at the University of Karlsruhe (TH) and made this diploma thesis

possible.

ix

Contents

Abstract vii

Acknowledgements ix

List of Figures xiii

List of Abbreviations xv

List of Abbreviations xv

1 Introduction 1

1.1 Motivation, Goals and Approach . 1

1.2 Requirements . 3

1.3 Thesis Structure . 5

2 Current Web Technologies 7

2.1 Web Services . 8

2.2 The Web Service Technology Stack 9

2.3 WSDL . 11

2.4 UDDI . 13

3 Step into the Semantic World 17

3.1 The Vision of the Semantic Web . 17

3.2 Semantic Web Services . 19

3.3 Information Retrieval and Service Discovery 19

3.4 Mechanisms of Service Discovery . 21

3.5 Ontologies . 22

3.6 Knowledge Bases vs. Ontologies . 24

3.7 RDF . 24

3.7.1 RDFS - RDF Schema . 26

3.7.2 Sesame . 27

3.8 OWL . 27

3.9 Ontology-based Discovery Approaches 28

3.10 Reasoning . 30

3.10.1 Subsumption Reasoning . 31

3.11 Quality of Ontology Design . 32

xi

CONTENTS CONTENTS

4 Question Answering 35

4.1 AquaLog . 36

4.1.1 An Illustrative Example . 37

4.1.2 AquaLog’s Helpers . 40

4.1.2.1 GATE . 40

4.1.2.2 WordNet . 41

4.2 SeRQL . 41

5 Design and Adaptation 43

5.1 The Global Architecture . 43

5.1.1 From Questions to Query Triples 45

5.1.2 From Triples to Answers . 48

5.2 Query Answering Limitations . 51

5.3 The Triple Approach Problem . 52

5.3.1 Blank Nodes . 55

5.3.2 Enhancing reasoning capabilities 57

5.3.2.1 TRREE Engine . 58

5.3.2.2 The SAIL API . 59

5.4 Custom Rule-Sets . 60

5.4.1 Semantics Supported by Default 61

6 Implementation 63

6.1 SwiftOWLIM SAIL Configuration . 63

6.2 Performance Optimisation Parameters 65

6.3 Custom Rule-Set Creation . 66

6.4 Problems with SeRQL-Directives . 72

6.5 Applicability of the TEXO Ontology 75

6.6 Customising Configuration Files . 78

6.7 Applicability of the Parameter Ontology 80

7 Summary and Conclusions 81

8 Outlook 83

A Appendix A 85

B Appendix B 87

C Appendix C 91

Bibliography 93

Index 96

xii

List of Figures

2.1 Service . 8

2.2 The service lifecycle . 9

2.3 The Web Service Technology Stack 10

2.4 A representation of concepts defined by a WSDL 1.1 document 12

2.5 The Web Services Framework . 14

3.1 The Semantic Web technology stack 18

3.2 The vision of the Semantic Web . 20

3.3 Recall and Precision . 20

3.4 A graphical representation of a business trip ontology 23

3.5 A simple RDF graph to describe the relationship between a book and

the publishing house Springer . 25

3.6 An example RDF graph . 26

4.1 The AquaLog data model . 38

4.2 Illustrative example of user interactivity in AquaLog 39

4.3 Illustrative example of AquaLog disambiguation 40

5.1 The overall architecture of our approach 44

5.2 Example of GATE annotations and linguistic triples for basic queries 47

5.3 Example of GATE annotations and linguistic triples for basic queries

with clauses . 48

5.4 Example of AquaLog in action for basic generic-type queries 50

5.5 Example of RSS in action for relations formed by a concept 51

5.6 The structure of the pizza ontology as illustrated by Protégé 53

5.7 Margherita pizza modelled in OWL 54

5.8 AquaLog is unable to satisfactorily answer a simple question for pizza

toppings . 54

xiii

LIST OF FIGURES LIST OF FIGURES

5.9 AquaLog aks for user feedback to disambiguate a relation term 55

6.1 Configuration of the SAIL stack for the SwiftOWLIM SAIL 64

6.2 SeRQL query results before application of OWLIM rule 69

6.3 SeRQL query results after application of OWLIM rule 70

6.4 Hierarchical view of the pizza ontology in AquaLog 72

6.5 The TEXO ontology as illustrated by Protégé 76

6.6 Information about the eco-calculator presented by AquaLog 76

6.7 Answer drawn from the TEXO ontology 77

6.8 Answer drawn from the TEXO ontology 77

6.9 Information about the instance cde_provider 78

xiv

List of Abbreviations

API Application Programming Interface

DBMS Data Base Management System

DL Description Logics

GATE General Architecture for Text Engineering

KB Knowledge Base

KR Knowledge Representation

NL Natural Language

NLP Natural Language Processing

OWL Web Ontology Language

QA Question Answering

QoS Quality of Service

RDF Resource Description Framework

RQL RDF Query Language

RSS Relation Similarity Service

SAIL Storage And Inference Layer

SeRQL Sesame RDF Query Language

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

TRREE Triple Reasoning and Rule Entailment Engine

UDDI Universal Description Discovery and Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WSD Web Service Description

WSDL Web Service Description Language

XML Extensible Markup Language

XSD XML-Schema-Definition

xv

LIST OF FIGURES LIST OF FIGURES

xvi

”Getting information off the Internet is like taking a drink from a fire hydrant.”

- Mitchell Kapor

1
Introduction

This diploma thesis aims at facilitating an easy, intuitive way to query for Web

Services - which are described by using semantic technologies - and introduces all

the software and methodologies needed to achieve this overall goal. The introductory

chapter explains motivation, goals and our very own approach to the solution of the

given problem. An outline of the remaining chapters is given at the end of chapter

one.

1.1 Motivation, Goals and Approach

The current Web as we know it today can be assumed to be the biggest global

database. Starting off in 1989, when its inventor Tim Berners-Lee launched the

World Wide Web project while working at the European Organisation for Nuclear

Research (CERN), it was primarily an academic, technical Internet. It took about

half a decade for the Internet to gain public interest and thus laying the groundwork

for its evolving nature ever since. Not only the network itself evolved in its size,

but the content published over the Internet as well. Beginning with just pages on

the Web1 being related to each other via hyperlinks (also referred to as the Web of

pages), the Internet has further developed and enhanced to also include more active

components, namely so-called Web Services2.

John Naisbitt remarks in [Nais88], ”We are drowning in data but starving for infor-

mation”, which has become a dictum nowadays as more and more data has spread

over the internet, but it is getting harder and harder to exactly find what we are

1Note that we use the terms Web and Internet synonymously.
2Web Services are elaborated on in section 2.1

1

Introduction 1.1. Motivation, Goals and Approach

looking for and get precise answers.

Berners-Lee, who has served as the W3C3 Director since W3C was founded in 1994,

has a vision of the Semantic Web which he first outlined in his article on Scientific

American in 2001 [BLHL01]. There he states that the Web today lacks the exis-

tence of a semantic structure to keep the interdependency of its components: ”The

Semantic Web will bring structure to the meaningful content of Web pages, creating

an environment where software agents roaming from page to page can readily carry

out sophisticated tasks for users.”

According to this article, the Semantic Web vision is one in which rich, ontology-

based4 semantic markup becomes widely available, enabling sophisticated interop-

erability among agents, e.g., in the e-commerce area, and to support human web

users in locating and making sense of information. Thus, the availability of se-

mantic markup on the web opens the way to novel, sophisticated forms of question

answering, which can potentially provide increased precision and recall5 compared

to today’s search engines.

The semantic description of Web Services (SWS) was proposed amongst others to

take service oriented computing to a new level by allowing to semi-automate time-

consuming programming tasks, as Küster et al. [Grad08] state: ”At the core of SWS

are solutions to the problem of SWS matchmaking, e.g., the problem of compar-

ing a set of semantic service advertisements with a semantic request description to

determine those services that are able to fulfil the given request.”

The overall goal of this work is to facilitate the search for Web Services provided by

SAP in its Enterprise Service Repository with the help of semantic technologies.

The descriptions of these Web Services have been analysed in a prior work [Zalt08]

to generate a service ontology for the SAP domain. With the help of resources

such as the SAP-own glossary SAPterm [AG] and Business Object6 descriptions, a

parameter ontology was created which serves as a starting point for our work.

A variety of semantic technology standards, namely i.e. RDF(S) [BrGu04], OWL

[W3C04], as well as query languages for semantic data such as SPARQL [W3Cb]

have been developed in order to create and work with semantically enhanced data.

However, a user who is not familiar with these technologies would face high barriers

if he or she would have to learn e.g. the syntax of SPARQL prior to the formulation

of a semantic request. In order to introduce a query front-end to a broad variety of

users, there must be an intuitive access to the semantic content for users, thus the

query front-end should behave as an interface between natural language queries and

semantic request descriptions. This is one of our major goals pursued throughout

this work.

3http://www.w3.org/
4The term ontology will be explained in section 3.5
5The terms precision and recall are further explained in section 3.3
6Business Objects represent real-world entities which are - with relation to business - significant

for a company

2

http://www.w3.org/

Introduction 1.2. Requirements

To accomplish this requirement, we came across a remarkable software system dur-

ing our research, called AquaLog7. It is a portable open-source question-answering

system which takes queries expressed in natural language and an ontology as input,

and returns answers drawn from this ontology. It is portable in the sense that the

AquaLog system allows the user to choose an ontology and then ask queries with

respect to the universe of discourse covered by the ontology (essentially a semantic

viewpoint)8. It makes use of the GATE9 NLP platform, string metric algorithms,

WordNet10 and a novel ontology-based Relation Similarity Service to make sense of

user queries with respect to the target ontology.

Thus, AquaLog is especially suitable as a front-end software to organisational se-

mantic intranets where an organisational ontology is used as the basics for semantic

markup. This being said, we will show in this work how this tool will help us to

achieve the goals of this diploma thesis.

To further enhance the reasoning capabilities of AquaLog, another tool called Swift-

OWLIM11 is being used, in order to make use of reasoning not only for RDF(S) files

but also for ontologies modelled in the OWL language (as is the parameter ontology

mentioned above). To be more precise, SwiftOWLIM is a plug-in for Sesame12 which

is one of the most popular semantic repositories that supports RDF(S) and all the

major syntaxes and query languages related to it, according to [BrKH02]. AquaLog

closely collaborates with the Sesame framework, and hence, Aqualog, SwiftOWLIM

and Sesame will be the major tools enabling us to reach our goals.

Since the parameter ontology delivered by the prior work needs to be adjusted to

properly formulate queries and get meaningful results in return, we will also take a

look at how this adjustment could be achieved.

Finally, we will evaluate our approach and have a look at further enhancement and

optimisation possibilities.

1.2 Requirements

The scope of our work is to facilitate the discovery of Web Services provided by SAP

by making use of semantic technologies. We want to achieve that a user will be able

to search for these Web Services in an intuitive way.

These Web Services, which were modelled with regard to the business domain cov-

ered by SAP, are stored in SAP’s Enterprise Service Repository. They have been

analysed in a prior work [Zalt08] in order to generate a parameter ontology out of

the input and output parameters of the respective services. This parameter ontology

serves as a starting point for our research, leading us to suitable tools which we dis-

covered during this research and which will help to fulfil the requirements discussed

7http://technologies.kmi.open.ac.uk/aqualog/
8A further discussion on AquaLog is given in section 4.1
9http://gate.ac.uk/

10http://wordnet.princeton.edu/
11http://www.ontotext.com/owlim/. A thorough understanding is given is section 5.3.2
12http://www.openrdf.org/

3

http://technologies.kmi.open.ac.uk/aqualog/
http://gate.ac.uk/
http://wordnet.princeton.edu/
http://www.ontotext.com/owlim/
http://www.openrdf.org/

Introduction 1.2. Requirements

in this section.

We also mention ideas which would be useful to pursuit, but are nevertheless out

of scope of this work. Those features might however be of concern for a further

enhancement of the results presented in this work.

• Requirement 1

A common problem regarding search engines in the domain of the Semantic

Web is knowledge overhead, which is requiring users to be equipped with ex-

tensive knowledge of the back-end ontologies and knowledge bases or specific

SQL-like querying languages in order to be able to formulate queries or to

understand the search result. Hence, we want to enable a search for service

descriptions - which were modelled with the help of ontologies - by using nat-

ural language queries. A user should not be expected to be knowledgeable

of query languages in the semantic domain such as SPARQL13 or SeRQL (see

section 4.2). The lower the barrier for a user to use this application right away,

the higher its acceptance.

• Requirement 2

The search engine should be portable to any ontology describing Web Services

and not be limited to one special formed ontology. The effort for customis-

ing an ontology to the search engine should be negligible, again raising the

acceptance for this software system.

• Requirement 3

Sometimes, a question answering system might not be able to deliver meaning-

ful results because of ambiguous data. Thus, if no unambiguous search result

can be delivered, the user’s feedback should be demanded. He should be able

to encroach upon the search process and further specify his request.

• Requirement 4

The successful results of the search process should be listed in a simple and

clear way. The user should not be required to have background knowledge of

any kind in order to understand the search results.

• Requirement 5

The search engine needs to accept only queries formulated in the English lan-

guage since the parameter ontology is modelled using English concepts and

names. No multi-lingual support is necessary.

• Requirement 6

The tool should be easily accessible, thus, a graphical user interface (GUI)

should be presented to insert one’s queries.

There are several issues which would be for sure relevant for this work as well, but

are not part of our requirements. However, the issues listed below can be understood

as suggestions for further development of this application.

13http://www.w3.org/TR/rdf-sparql-query/

4

http://www.w3.org/TR/rdf-sparql-query/

Introduction 1.3. Thesis Structure

1. Non-functional requirements

It is not our goal to pursue non-functional requirements such as performance,

security, Quality of Service or availability.

2. Support for multi-lingual natural language queries

As mentioned in Requirement 5, we focus on English as the only supported lan-

guage to formulate queries. If this application faces high popularity sometime

in the future, the need to support other languages will arise eventually.

3. Ranking of search results

Although the ranking of search results is an interesting feature to further

involve the user into the search process, we will not include this in our work.

We consider this as a feature not necessary to generally facilitate a search for

Web Service descriptions modelled with semantic technologies.

The following section will outline the structure of our work and give an overview on

the content of the different chapters.

1.3 Thesis Structure

The remainder of this work is outlined as follows:

Chapter 2 will introduce a variety of Web technologies which are currently in use

and widely accepted. A basic understanding of these technologies is needed to

comprehend the demonstrated drawbacks and follow the motivation for semantic

technologies.

In chapter 3 we will introduce the reader to the world of semantics and explain

established semantic technologies. Some related work done in the fields of ontology-

based discovery will be discussed as well.

Chapter 4 will start off with an overview of state-of-the-art semantic search tools,

while identifying four categories of semantic search engines, according to the user

interface they provide. Since we will focus on question answering (QA) tools, we

will give a short presentation a QA-tool which we considered as suitable for our use

case.

Chapter 5 will demonstrate our very own approach, showing how we design our

solution by adjusting useful tools introduced in the previous chapter and by creating

a so-called rule-set. This rule-set will be a key-element to make our solution even

more portable as its underlying tools already are.

Our implementation part will be presented in chapter 6, where we discuss advantages

as well as drawbacks of our question answering system.

Finally, we will summarise our results in chapter 7 and draw some conclusions. An

outlook highlighting further possibilities to improve and enhance our solution will

be presented in chapter 8.

5

Introduction 1.3. Thesis Structure

6

2
Current Web Technologies

In this chapter we will start by introducing the reader to the basic concepts of

current Web technologies such as Web Services and the current industry standard

of describing and advertising as well as discovering these services. Throughout this

chapter we will highlight the drawbacks of current mechanisms and hence motivate

the need for semantic enhancement, disposing the reader for established semantic

technologies and methods introduced in the following chapter.

The primary purpose of the Web, as it was originally intended by its inventors, is

to facilitate an easy way of sharing information between interested parties through

Web pages, linked together via so-called hyperlinks. This infrastructure is what also

facilitates the e-commerce applications for companies that want to reach their cus-

tomers over the Internet. As foreshadowed in the introductory chapter, the concept

of the Web has further developed and enhanced to not only include Web pages, but

also more active components, meaning Web Services. Naresh et al. already state in

[ApMe01], that ”a Web of services is similar to the Web of pages in a lot of ways. For

example, they will be connected to each other through some mechanism, and their

users will be able to go from one service to the other using these links. However, the

service Web is also very different from the Web of pages.” The principal differences

are in the form of service interactions, e.g. there is user-to-service interaction as well

as service-to-service interaction.

The next section will take a closer look at Web Services, highlighting mechanisms

which are used to describe Web Service interfaces as well as technologies enabling

the registration and discovery of desired Web Services.

7

Current Web Technologies 2.1. Web Services

2.1 Web Services

Web Services are distributed and reusable software components programmatically

accessible over standard internet protocols. They encapsulate a discrete functionality

and add a new level of functionality on top of the current Web. The W3C explains

in a working draft [W3C03] that ”a Web Service is viewed as an abstract notion that

must be implemented by a concrete agent. The agent is the concrete entity (a piece

of software) that sends and receives messages, while the service is the abstract set

of functionality that is provided” (e.g. booking of flight tickets in general and not

a specific flight ticket). It further states: ”To illustrate this distinction, you might

implement a particular Web Service using one agent one day (perhaps written in

one programming language), and a different agent the next day (perhaps written

in a different programming language). Although the agent may have changed, the

Web Service remains the same.” This way, reusability, which is a desired concept in

computer science, is provided.

Figure 2.1: Service

In general, a Service is a software entity provided by a Service Provider (see figure

2.1). As explained in [Broe04], it performs an action - which is based on inputs - on

behalf of a Service Requester and provides a result - the output - in return. A Web

search engine is a good example to illustrate these concepts: when a user (service

requester) types a query (input) into the search engine (service provider), the search

engine tries to find relevant Web sites (action) and returns the findings to the user

(output).

A Web Service can be described and characterised by his properties. Those proper-

ties can be subcategorised into so-called functional and non-functional properties.

Concerning functional properties, we are speaking of e.g. the action it performs,

which in- and outputs it supports and who performs the action. Non-functional

8

Current Web Technologies 2.2. The Web Service Technology Stack

properties, on the other side, try to describe its qualities: Quality of Service (QoS),

cost, performance and security can be specified here, for instance.

Messages are exchanged between Web Services and agents and Web Services. The

mechanics of these message exchange are documented in a Web Service description

(WSD). The WSD is, according to [W3C03], ”a machine-processable specification

of the Web Service’s interface. It defines the message formats, datatypes, trans-

port protocols, and transport serialisation formats that should be used between the

requester agent and the provider agent. It also specifies one or more network loca-

tions (’endpoints’) at which a provider agent can be invoked, and may provide some

information about the message exchange pattern that is expected.”

Figure 2.2: The service lifecycle, [O’EH02]

The operational lifecycle of a service consists of three successive phases: Advertise-

ment, Discovery and Delivery. This is a generalisation of the model proposed in

[O’EH02]. In the advertisement phase, the service provider creates a service de-

scription which is based on the properties of a service. This service is then enabled

for use with the help of this description. The next step is on the user side, where the

requester tries to find (i.e. via manual or automatic discovery) a service that sat-

isfies his need in the discovery phase. It maybe the case that the service requester

and provider are not associated with each other or even unaware of each other’s

existence. This is taken care of in the delivery phase, when both parties become

associated with each other, which is demonstrated by the bold lines in figure 2.2.

The general structure of a Web Service as well as the technologies involved for

describing, processing and communicating with Web Services are modelled as a

stack, the so-called Web Service Technology Stack, which will be discussed in the

next section.

2.2 The Web Service Technology Stack

The model of the Web Service Technology Stack was developed by the W3C Web

Service Architecture Group and has been purposely designed on a very abstract level,

meaning that no explicit technologies for the implementation have been specified in

order not to limit the scope of Web Service technology. The official Web Service

9

Current Web Technologies 2.2. The Web Service Technology Stack

Architecture Document is publicly available1. The basic structure of the Web Service

Technology Stack is depicted in figure 2.3.

Figure 2.3: The Web Service Technology Stack, [StGA07]

The Web Service Technology Stack is very well explained in [StGA07]. At the very

bottom of the stack we find the Communications block, which comprises generic

transport mechanisms for sending messages over the Internet, e.g. HTTP, SMTP,

FTP, and serves as the basis for all other layers. All these protocols provide specific

benefits and drawbacks. Which one to use is not determined by the Web Service

Technology Stack since the optimal choice may heavily depend on the use case.

The next layer includes the core technology of a Web Service. It starts with the Mes-

sages block, which provides basic functionality for encapsulating network messages

in a way that makes them independent from any specific programming language or

operating system. The message representation aims at being syntactically under-

stood by humans and computers, as well as achieving syntactical interoperability

in the Web Service world. This can be achieved with the general-purpose mark-

up language XML2, indicated by the green box around Messages, Descriptions and

Processes in figure 2.3. The Simple Object Access Protocol (SOAP)3, being an XML

language itself, provides a framework for packaging and exchanging XML messages,

platform and application independent.

The layer defining technologies that are used for describing Web Services formally

is called Descriptions. Such a description is of utmost importance because in order

for a Web Service consumer to use a Web Service, he needs exact access parame-

ters. Those parameters include data about the location of the service as well as a

1http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
2http://www.w3.org/XML/
3http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

10

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/XML/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Current Web Technologies 2.3. WSDL

specification of supported data types and operations. The most widely used and

well established solution here is the Web Service Description Language (WSDL, see

section 2.3). It is important to note that WSDL does only cover the technical but

not the semantical description of a Web Service.

On the very top of the stack we find the Processes block, which comprises several

important processes in the Web Service world. For instance, when considering the

combination of a number of services in order to complete a certain task, we talk

about Web Service aggregation or Web Service composition. One of the most im-

portant processes in the field of Web Services is the discovery of a service, which

we apply ourselves to in this work. It is the question of how we can locate a Web

Service that fits our needs. The most popular solution here is Universal Description,

Discovery and Integration (UDDI, see section 2.4).

There are certain issues that are relevant to all layers of the Web Service Technology

Stack, for instance Security, which is located on the very left side of figure 2.3. In

April 2002 Microsoft and IBM introduced the Web Service Security (WS-Security)

specification. It provides a comprehensive security framework that is based on two

other W3C standards as core components, namely XML Encryption and XML Sig-

nature.

Another very important issue, located on the right side of the figure, is Manage-

ment. Since the Web Service technology primarily targets the domain of business

applications, were the availability and reliability of a service might be crucial, it is

very important that there are capable measures for monitoring and controlling the

state of a Web Service. If we think of ‘pay per use’ scenarios, it is also desirable that

the service provides a certain Quality of Service (QoS), for example by sending back

query results within a given time interval. IBM addresses this issue in a framework

called Web Service Level Agreement (WSLA), which has been introduced in 2003.

Web Services today face a couple of major problems. First of all, descriptions

are syntactic and not enriched with semantic information, enabling machines to

properly ’understand’ what the Web Services do. This leads to the fact, that all

tasks associated with Web Services application development have to be carried out

by humans, such as discovery, composition and invocation, so scalability issues arise.

The following section will focus on the ”Descriptions” part of the stack, namely

WSDL files.

2.3 WSDL

The Web Services Description Language (WSDL) is an XML-based language for

describing Web Services as a set of network endpoints that operate on messages.

According to [W3C01], ”the operations and messages are described abstractly, and

then bound to a concrete network protocol and message format to define an end-

point. Related concrete endpoints are combined into abstract endpoints (services).”

This means that abstract definition of endpoints and messages is separated from

their concrete network deployment or data format bindings.

11

Current Web Technologies 2.3. WSDL

This allows the reuse of abstract definitions: messages, which are abstract descrip-

tions of the data being exchanged, and port types which are abstract collections of

operations. The concrete protocol and data format specifications for a particular

port type constitutes a reusable binding. A port is defined by associating a network

address with a reusable binding, and a collection of ports define a service [W3C01].

Figure 2.4 illustrates the correlation between the above mentioned terms.

Figure 2.4: A representation of concepts defined by a WSDL 1.1 document, [http:
//en.wikipedia.org/wiki/Image:Wsdl.png]

In short, WSDL is used to define how Web Service interfaces look like. It is often

used in combination with SOAP and XML Schema to provide Web Services over

the Internet. A client program connecting to a Web Service can read the WSDL to

determine what functions are available on the server. Any special datatypes used

are embedded in the WSDL file in the form of XML Schema. The client can then

use SOAP to actually call one of the functions listed in the WSDL.

The W3C Web Services Architecture Working Group does not prescribe a certain

data format and therefore WSD (Web Service Description) documents might be

written in any suitable language.

As [StGA07] states, it is important to note that WSDL does only cover the technical

but not the semantical description of a service. Let us demonstrate this issue on the

well-known echo operation. WSDL is able to express that a Web Service offers an

operation echo which takes a string as parameter and returns another string. We as

humans can guess from the operation’s name that the two strings will be identical.

But machines normally do only understand what they are explicitly told, thus they

do need an additional semantic service description. This way they will be able to

discover services that provide suitable operations for a given problem.

12

http://en.wikipedia.org/wiki/Image:Wsdl.png
http://en.wikipedia.org/wiki/Image:Wsdl.png

Current Web Technologies 2.4. UDDI

Mentioning the discovery process, we finally want to introduce the established reg-

istry UDDI, which enables businesses to publish service listings, discover each other

and define how the services or software applications interact over the Internet.

2.4 UDDI

Web Services are meaningful only if potential users may find information sufficient

to permit their execution. The focus of Universal Description Discovery and Inte-

gration (UDDI) is the definition of a platform-independent registry supporting the

description and discovery of (1) businesses, organisations, and other Web Service

providers, (2) the Web Services they make available, and (3) the technical interfaces

which may be used to access those services [Comm]. Based on a common set of in-

dustry standards, including HTTP, XML, XML Schema, and SOAP, UDDI provides

an interoperable, foundational infrastructure for a Web Services-based software en-

vironment for both publicly available services and services only exposed internally

within an organisation. UDDI is an open industry initiative, sponsored by the global

consortium OASIS (Organisation for the Advancement of Structured Information

Standards, [OASI]).

This worldwide service registry can be seen as a huge phone book. A UDDI business

registration consists of three components:

• White Pages

Address, contact, and known identifiers

• Yellow Pages

Industrial categorisations based on standard taxonomies such as NAICS (North

American Industry Classification System)

• Green Pages

Technical information about services exposed by the business

One term not mentioned so far (and depicted in figure 2.5) is SOAP.

Originally defined as Simple Object Access Protocol [W3Ca], SOAP is a protocol

specification for exchanging structured information in the implementation of Web

Services in computer networks. It relies on Extensible Markup Language (XML)

as its message format and usually relies on other Application Layer protocols, most

notably Remote Procedure Call (RPC) and HTTP for message negotiation and

transmission. Version 1.2 became a W3C Recommendation on 24 June 2003. The

second and latest W3C Recommendation is from 27 April 2007.

However, UDDI has not prevailed in the domain of public Web Services for a number

of reasons, according to [(see] and [ThSN03]:

13

Current Web Technologies 2.4. UDDI

Figure 2.5: The Web Services Framework, [DoMa08]

• UDDI is centred around programmatic access to the registry and only a few

mostly technically focused user interfaces are available. There is a considerable

learning curve required for somebody not familiar with Web Services to under-

stand the technicalities of UDDI specification. If we use an analogy to Web of

pages, all what the new user of Web of pages requires to have is a pre-installed

browser to start exploring websites. It is very important that somebody who

learns for the first time about Web Service technologies (or services in general)

can start exploring and enjoying them with a few simple steps.

• There are no policies such as availability checks for Web Services in place and

thus many services in the public registries are outdated. A mechanism must

be in place allowing to eliminate these services which are not available any

more. Even in Google search results we sometimes find websites which are not

working at a particular time, but in the long run, unavailable sites are getting

always removed from Google’s index.

• There are no means for community feedback. No service is perfect from the

beginning. Practically there is only one possibility for feedback allowing the

user to contact a provider using an email listed in the service description.

But in the Web2.0 world it is not enough. While email might work for some

particular cases, it does sustain a community around providers of Web Services,

so in the long run the UDDI model has little applicability to the Web.

• It is hard to expect that users would select a service based just on its WSDL

definition and a short description. You need pricing, terms and condition,

service level agreements to name just a few. UDDI as API centric approach

neglects that using a Web Service means first understanding it and making a

contract - this requires to learn and understand various aspects of the service,

not just its interface and short description.

• The degree of automation for discovering Web Services is minimal. UDDI

does not represent service capabilities (metadata about services describing

14

Current Web Technologies 2.4. UDDI

operations, types and the bindings provided by a service), the information used

only provides a tagging mechanism, and the search performed is only done by

string matching on some fields they have defined. Thus, it is of no use for

locating services on the basis of a semantic specification of their functionality.

The lack of support of service selection based on non-functional attributes such

as Quality of Service (QoS), security or availability is not negligible.

Although there are mechanisms in UDDI for realising concepts such as data repli-

cation, it is basically a centralised approach and therefore UDDI contradicts the

concept of service distribution in some way.

Today, when the time of public UDDI registries is practically over (more about shut-

down of IBM, Microsoft and SAP public UDDI registries in [Info05]), the process

of publishing Web Services is mainly done by providing an access to the interface

description as well as a couple of Web pages explaining the peculiarities of a service.

This information can be then found by the crawlers of search engines.

Having stated the drawbacks of UDDI, is it clear that there must be found a more

forward-looking technology to automate the way how Web Services are described,

registered and discovered. The following chapter, which introduces to the world of

semantics, will lead us to this forward-looking technology.

15

Current Web Technologies 2.4. UDDI

16

”The Semantic Web is not a separate Web but an extension of the current one, in which information

is given well-defined meaning, better enabling computers and people to work in cooperation.”

- Tim Berners-Lee

3
Step into the Semantic World

We now step into the world of semantic technology and guide the reader through

its standards, technologies and concepts, while highlighting how they will help us to

overcome the disadvantages mentioned in the previous chapters.

3.1 The Vision of the Semantic Web

In an article for the Scientific American in 2001 [BLHL01], Tim Berners-Lee, direc-

tor of the World Wide Web Consortium, outlined his vision for the Semantic Web.

There he states that the Web today - which can be assumed to be the biggest global

database - lacks the existence of a semantic structure to keep the interdependency

of its components, and as a result the information available on the Web is mostly

human understandable. According to this article, the Semantic Web vision is one

in which rich, ontology-based semantic markup becomes widely available, enabling

sophisticated interoperability among agents, e.g., in the e-commerce area, and to

support human web users in locating and making sense of information. Thus, the

availability of semantic markup on the web opens the way to novel, sophisticated

forms of question answering, which can potentially provide increased precision and

recall (see definition of terms in section 3.3) compared to today’s search engines.

According to [GoGA08], a huge amount of data is conceptually related, but much of

these relationships still have to be kept in human memory and are not stored in an

understandable way for machines. The Semantic Web aims at machine-processable

information. When the content is understood by machines, some assertions may

come out of the content and new pieces of information will be produced. A very

17

Step into the Semantic World 3.1. The Vision of the Semantic Web

suitable quote comes from [StGA07]: ”The step from the current Web to the Se-

mantic Web is the step from the manual to the automatic processing of information.

This step is comparable to the step from the manual processing of goods to the

machine processing of goods at the beginning of the industrial revolution. Hence,

the Semantic Web can be seen as the dawn of the informational revolution, enabling

automated intelligent services such as information brokers, search agents, informa-

tion filters etc., and beyond that, further levels of software-system interoperability.”

Besides the technology and standards which already exist for syntactic representa-

tion of documents (e.g. HTML), there is also the need for standards representing

the semantic content. Fortunately, a couple of such standards have been developed

in the course of recent W3C standardisation efforts, as well as standards facilitat-

ing semantic interoperability, such as XML/XML Schema [BrPSM04], RDF/RDF

Schema [BrGu04] (see section 3.7) and OWL [W3C04] (see section 3.8). The tech-

nology stack envisioned by the W3C is depicted in figure 3.1.

Figure 3.1: The Semantic Web technology stack, [Bern00]

The ground work for this Web layer cake is made up of the two blocks URIs and

Unicode, since URIs are used in the semantic world to reference every modelled entity

and make it uniquely identifiable. Above, we find XML as well as XML Schema,

guaranteeing interoperability between technologies by making any semantic content

serializeable. The third layer consists of RDF and RDFS (RDF schema), which is a

language recommended by the W3C standardisation body for the representation of

metadata about identifiable Web resources. The next layer is the ontology language.

On top of the ontology language, there is a need for a language to express logic, so

that information can be inferred and better put into relation. Once there is logic,

it makes sense to use it to prove things. The proof layer enables everyone to write

logic statements, and an agent can follow these semantic ’links’ to construct proofs,

so that validity of a statement, especially an inferred statement, can be checked.

Trust is established by combining the proof layer with digital signature, indicated

18

Step into the Semantic World 3.2. Semantic Web Services

by the white box on the right hand side of the picture. Consequently, ontology and

ontology-based metadata are the basic ingredients for the Semantic Web layer cake.

In the previous chapter we introduced for the first time the concept of a Web Service.

Having now arrived in the world of semantics, it is obvious that we will also talk

about how Web Services and semantics can be combined. This is the topic of the

next section.

3.2 Semantic Web Services

Semantic description of Web Services was proposed by the W3C in an attempt to

resolve the heterogeneity at the level of Web Service specifications (including nam-

ing of parameters and a description of the service behaviour), and to take service

oriented computing to a new level by allowing to semi-automate time-consuming

programming tasks [ToGa07]. Using languages such as OWL1, Web Services are

unambiguously described by relating properties such as input and output parame-

ters to common concepts, and by defining execution characteristics of the service.

The concepts are defined in Web ontologies2, which serve as the key mechanism to

globally define and reference concepts.

As Küster et al. [Grad08] state: ”At the core of SWS are solutions to the problem

of SWS matchmaking, e.g., the problem of comparing a set of semantic service ad-

vertisements with a semantic request description to determine those services that

are able to fulfil the given request.”

The vision of the integration of Semantic Web Services in the range of syntactic vs.

semantic as well as static vs. dynamic Web content is depicted in figure 3.2.

Before we take a closer look on already mentioned semantical description methods,

we elaborate on the coherence of information retrieval and service discovery, further

motivating the need for ontologies, RDF and OWL.

3.3 Information Retrieval and Service Discovery

Service discovery and information retrieval are related areas, according to [Broe04].

The information retrieval paradigm is about a user having a need for information,

and a set of information objects from which this need has to be satisfied. Similarly,

there is the service requester who has a need for a service, and a set of advertised

services from which this need has to be satisfied. Therefore, some of the concepts

of information retrieval can be applied to service discovery.

In information retrieval, there are two key quality measurements, which can also be

applied in service discovery [Broe04]:

1Further explained in section 3.8
2Further explained in section 3.5

19

Step into the Semantic World3.3. Information Retrieval and Service Discovery

Figure 3.2: The vision of the Semantic Web, [DoMa08]

• Recall

The number of relevant items (services) retrieved, divided by the total number

of relevant items (services) in the collection. The highest value of recall is

achieved when all relevant items (services) are retrieved.

• Precision

The number of relevant items (services) retrieved, divided by the total number

of items (services) retrieved. The highest value of precision is achieved when

only relevant items (services) are retrieved.

Figure 3.3: Recall and Precision, [Broe04]

20

Step into the Semantic World 3.4. Mechanisms of Service Discovery

To improve service discovery both recall and precision rates should improve. The

circle with the bold line in figure 3.3 is the set with services of an optimal (100%

recall, 100% precision) discovery result. Improved recall rates of a discovery method

shift the inner border of the result more to the optimal border while improved

precision rates shift the outer border more to the optimal border.

Currently, the keyword-based approach is the most widespread in industrial at-

tempts to implement service retrieval. The most prominent example is the already

mentioned UDDI protocol, which is an industry standard for locating Web Services

through keyword and category search. The main drawback of UDDI, as well as other

keyword-based approaches, is the lack of sufficient information for describing Web

Services.

The next section will show, why a keyword-based search inevitably results in poor

precision and recall.

3.4 Mechanisms of Service Discovery

Many of the existing service discovery mechanisms retrieve service descriptions that

contain particular keywords from the user’s query. In the majority of the cases, this

leads to a low quality of retrieved results (and hence to low precision and recall)

[Broe04]. There are two major reasons for this, namely synonyms and homonyms.

• Synonyms

Query keywords might be semantically similar but syntactically different from

the terms in service description, e.g. ’buy’ and ’purchase’.

• Homonyms

Query keywords might be syntactically equivalent but semantically different

from the terms in the service description, e.g. ‘order’ in the sense of proper

arrangement and ‘order’ in the sense of a commercial document used to request

supply of something.

This ambiguity of keywords can lead to mismatches between the user query and

service descriptions, which leads to a low quality discovery result.

Another problem with the keyword-based service discovery approaches is that they

cannot completely capture the semantics of the user’s query because they do not

consider the relations between the keywords (e.g. if the query is ’order food’, the

relation between these keywords could indicate a need for a restaurant).

An approach to overcome these limitations is to use ontology-based (or concept-based)

service discovery. In this approach, which we will follow in this work, ontologies are

used for classification of the services based on their properties. This enables retrieval

based on service types rather than keywords. Consider, for instance, a shop that

defines that it sells ’music products’ (e.g. CD’s, DVD’s). When the user specifies

21

Step into the Semantic World 3.5. Ontologies

that he wants to buy a ’CD’, a syntactic mismatch occurs. When we use an ontology

(that is shared by both parties) to derive that ’CD’ is a type of ’music product’, we

can infer that this is a semantic match.

Furthermore, ontologies can specify interrelations among context entities and ensure

common, unambiguous representation of these entities. Now, having mentioned

so many times the concept of ontologies, it is time to take a closer look at what

ontologies really are and how they are modelled.

3.5 Ontologies

After we have motivated the use of ontologies in service discovery, we will now in-

troduce ontologies and explain their structure.

The Semantic Web relies heavily on the formal ontologies that structure its under-

lying data by providing vocabularies that can be used by applications in order to

understand shared information. Ontology is a term borrowed from philosophy that

refers to the science of describing the kinds of entities in the world and how they are

related.

Studer et al. [StGA07] present a very compact definition of an ontology in the

context of computer science:

An ontology is a formal explicit specification of a domain conceptualisation shared

by the members of a community.

This statement captures several characteristics of an ontology, which is said to spec-

ify domain knowledge, namely the aspects of formality, explicitness, being shared,

conceptuality and domain-specificity, which require some explanation. A very well

explanation of these terms is given in [StGA07]:

• formality

An ontology is expressed in a knowledge representation language that provides

a formal semantics (see section 3.7 and 3.8) . This ensures that the specifica-

tion of domain knowledge in an ontology is machine-processable and is being

interpreted in a well-defined way.

• explicitness

An ontology states knowledge explicitly to make it accessible for machines.

Notions that are not explicitly included in the ontology are not part of the

machine-interpretable conceptualisation it captures.

• being shared

An ontology reflects an agreement on a domain conceptualisation among peo-

ple in a community. The larger the community, the more difficult it is to

come to an agreement on sharing the same conceptualisation. Thus, an onto-

logy is always limited to a particular group of people in a community, and its

construction is associated with a social process of reaching consensus.

22

Step into the Semantic World 3.5. Ontologies

• conceptuality

An ontology specifies knowledge in a conceptual way in terms of symbols that

represent concepts and their relations. The concepts and relations in an onto-

logy can be intuitively grasped by humans, as they correspond to the elements

in our mental model. Moreover, an ontology describes a conceptualisation in

general terms and does not only capture a particular state of affairs. Instead of

making statements about a specific situation involving particular individuals,

an ontology tries to cover as many situations as possible that can potentially

occur.

The basic elements of an ontology are concepts, relations and instances. Concepts

represent the ontological categories that are relevant in the domain of interest. Con-

cepts and instances are semantically related to each other using relations. Instances

represent the named and identifiable concrete objects in the domain of interest, i.e.

the particular individuals which are classified by concepts.

”An ontology can be viewed as a set of statements, expressed in terms of this vo-

cabulary, which are also referred to as axioms. A simple axiom would, for example,

state that ‘Mister X is an employee’, involving an instance and a concept. A more

complex axiom could state that ’only employees of a particular company can be on

trips booked by this company’, imposing a restriction on a relation between two

concepts”, as stated in [StGA07].

Figure 3.4: A graphical representation of a business trip ontology, [StGA07]

Figure 3.4 depicts a graphical representation of a business trip ontology and shows

a graph whose nodes represent concepts and whose arcs represent relations bet-

ween these concepts. The business trips domain contains typical concepts such as

’Company’, ’Employee’ or ’Flight’, while typical relations would be ’books’, ’isEm-

ployedAt’ or ’participatesIn’.

In summary, an ontology used in an information system is a conceptual yet exe-

cutable and machine-interpretable model of an application domain. It can be used

23

Step into the Semantic World 3.6. Knowledge Bases vs. Ontologies

by applications to base decisions on reasoning about domain knowledge. They cre-

ate a common understanding on a specific domain (keyword-based service discovery

drawbacks can be overcome, see section 3.4) and enable semantic matchmaking.

The next section deals with the concepts of ontologies and knowledgebases, since

they are often used synonymously or without further distinction in texts dealing

with this subject matter. However, we feel that we need to differentiate these two

terms to not confuse the reader when both terms are used in the same context in

this work.

3.6 Knowledge Bases vs. Ontologies

Sometimes, ontologies are confused with knowledge bases, in particular because the

same languages (OWL, RDF, etc., see following sections for further explanation) and

the same tools and infrastructure can be used both for creating ontologies and for

creating knowledge bases. [HLMS08] draws a clear distinction: ”Ontologies are the

vocabulary and the formal specification of the vocabulary only, which can be used

for expressing a knowledge base. It should be stressed that one initial motivation

for ontologies was achieving interoperability between multiple knowledge bases. So,

in practice, an ontology may specify the concepts ’man’ and ’woman’ and express

that both are mutually exclusive - but the individuals Peter, Paul, and Marry are

normally not part of the ontology.” Consequently, not every OWL file is an ontology,

since OWL files can also be used for representing a knowledge base.

This distinction is insofar difficult as individuals (instances) sometimes belong to

the ontology and sometimes do not. Only those individuals that are part of the

specification of the domain and not pure facts within that domain belong to the

ontology. Sometimes it depends on the scope of the purpose of an ontology which

individuals belong to it, and which are mere data. For example, the city of Innsbruck

as an instance of the class ’city’ would belong to a tourism ontology, but a particular

train connection would not [HLMS08].

We suggest speaking of ontological individuals and data individuals. With ontological

individuals we mean such that are part of the specification of a domain, and with

data individuals, we mean such being part of a knowledge base within that domain.

3.7 RDF

Several ontology languages and variants with different expressiveness are available,

one of which is the Resource Description Framework (RDF). It is a language rec-

ommended by the W3C standardisation body for the representation of metadata

about identifiable Web resources, such as title and author of a Web page, topic

and copyright information of an electronic document retrievable from the Web, or

functionality and access conditions of a Web Service. The RDF metadata model

24

Step into the Semantic World 3.7. RDF

is based upon the idea of making statements about Web resources in the form of

subject-predicate-object expressions, called triples in RDF terminology [HKRS08].

The subject denotes the resource, and the predicate denotes traits or aspects of

the resource and expresses a relationship between the subject and the object. For

example, one way to represent the notion ’The book Semantic Web is published by

Springer’ in RDF is as the triple: a subject denoting ’The book Semantic Web’, a

predicate denoting ’is published by’, and an object denoting ’Springer’. Figure 3.5

illustrates this example.

Figure 3.5: A simple RDF graph to describe the relationship between a book and
the publishing house Springer, [HKRS08]

RDF basically uses URIs (a generalisation of URLs - Uniform Resource Locators)

to identify all resources. A collection of RDF statements intrinsically represents a

labelled, directed RDF graph, whose nodes are resource URIs and whose arcs are

properties. A node in an object position can be either a resource or an RDF literal,

which represents a data value like the string ’mailto:someone@something.com’ or

some number. RDF, in general, is not limited to the description of Internet-based

resources. A resource can be any kind of object: books, places, people, publish-

ing houses, relationships between these things, abstract concepts and so on. These

resources are obviously not retrievable and their URIs are exclusively used for iden-

tification.

Another Web-related aspect of RDF is its XML serialisation format in which RDF

graphs are encoded for machine processing. The following example describes the

RDF graph from figure 3.5 [HKRS08].

1 <?xml version=’1.0’ encoding=’utf -8’?>

2 <rdf:RDF xmlns:rdf=’http://www.w3.org /1999/02/22 -rdf -syntax -ns

/#’ xmlns:ex =’http:// example.org/’>

3 <rdf:Description rdf:about=‘http:// example.org/SemanticWeb ’>

4 <ex:PublishedBy >

5 <rdf:Description rdf:about=’http:// springer.com/

PublishingHouse ’>

6 </rdf:Description >

7 </ex:PublishedBy >

8 </rdf:Description >

9 </rdf:RDF >

Listing 3.1: Syntax example of an RDF file

Descriptions of resources are encoded using special XML tags from the RDF prede-

fined vocabulary.

25

Step into the Semantic World 3.7. RDF

Recapitulatory, we can say that RDF puts the information in a formal way that a

machine can understand. While XML only provides mechanisms to create structured

data with elements and attributes, RDF also describes the data. The purpose of

RDF is to provide an encoding and interpretation mechanism so that resources can

be described in a way that particular software can ’understand’ it, meaning that

software can access and use information that it otherwise could not use.

3.7.1 RDFS - RDF Schema

It is important to note that RDF is designed to provide a basic subject-predicate-

object model for Web-data, it makes no data modelling commitments. In particular,

no reserved terms are defined for further data modelling. As with XML, the RDF

data model provides no mechanisms for declaring vocabulary that is to be used,

according to [HKRS08].

RDF Schema - as an extension to RDF - is a mechanism that lets developers define a

particular vocabulary for RDF data (such as the predicate hasWritten) and specify

the kinds of objects to which predicates can be applied (such as the class Writer,

[BrKH02]). RDFS does this by pre-specifying some terminology, such as class,

subClassOf and Property, which can then be used in application-specific schemata.

RDFS expressions are also valid RDF expressions, the only difference is that in

RDFS an agreement is made on the semantics of certain terms and thus on the

interpretation of certain statements. For example, the subClassOf property allows

the developer to specify the hierarchical organisation of classes. Objects can be

declared to be instances of these classes using the type property. Constraints on the

use of properties can be specified using domain and range constructs.

Figure 3.6: An example RDF Schema, [BrKH02]

Figure 3.6 tries to explain the aforementioned difference between Schema, depicted

above the dotted line, and Data. We see an example RDF schema that defines vo-

cabulary for an RDF example stating that Mark Twain wrote a book with a certain

ISBN called ’The Adventures of Tom Sawyer’: Book, Writer and FamousWriter

are introduced as classes, and hasWritten is introduced as a property. A specific

instance is described below the dotted line, in terms of this vocabulary.

The combined use of both RDF and RDFS is often referred to as RDF(S) and

26

Step into the Semantic World 3.8. OWL

provides a simple ontology language for conceptual modelling with some basic infe-

rencing capabilities.

RDF’s means of expression are restricted and sometimes not sufficient for the rep-

resentation of complex interrelations. For that reason, a more expressive ontology

language, called OWL, has been developed, which we will elaborate on in section

3.8. But first we want to mention a framework called Sesame, which provides for

efficient storage and expressive querying of large quantities of metadata in RDF and

RDF Schema. We will be using this framework later on in our own approach.

3.7.2 Sesame

Sesame is an open-source Java framework for efficient storage and expressive query-

ing of large quantities of metadata in RDF and RDF Schema. It can be deployed

on top of a variety of storage devices, such as relational databases, triple stores, or

object-oriented databases, without having to change the query engine or other func-

tional modules. Sesame offers support for concurrency control, independent export

of RDF and RDFS information and a query engine for RQL, a query language for

RDF that offers native support for RDF Schema semantics.

A central concept in the Sesame framework is the repository, which is a storage

container for RDF. This can simply mean a Java object (or set of Java objects) in

memory, or it can mean a relational database as mentioned above. Whatever way

of storage is chosen, it is important to realise that almost every operation in Sesame

happens with respect to a repository: when RDF data is added, it is added to a

repository. When a query is executed, it is done with respect to a repository.

Sesame supports RDF Schema inferencing. This means that given a set of RDF

and/or RDF Schema, Sesame can find the implicit information in the data. It

supports this by simply adding all implicit information to the repository as well when

data is being added. Note that inferencing in Sesame is associated with the type of

repository that is used. Sesame supports several different types of repositories, of

which some do support inferencing, others do not. Whether the user wants Sesame

to do inferencing is a choice that depends very much on his application.

3.8 OWL

The Web Ontology Language OWL is a semantic markup language for publishing

and sharing ontologies on the World Wide Web. OWL is developed as a vocab-

ulary extension of RDF and has been standardised by the W3C [W3C04]. RDF

is suitable for the modelling of simple ontologies and allows for the inferencing of

implicit knowledge, but its restricted means of expression is not sufficient for the

representation of complex interrelations.

An important issue for the design of OWL was the trade-off between expressivity of

27

Step into the Semantic World 3.9. Ontology-based Discovery Approaches

the language on the one hand and scalability of reasoning on the other. To this end,

OWL comes in three different flavours, namely OWL-Lite, OWL-DL (a fragment

of Description Logics) and OWL-Full, reflecting different degrees of expressiveness.

In our presentation of OWL we focus on OWL-DL as the most prominent language

variant with the most support by the Semantic Web community. One of the key

features of OWL-DL is that superclass-subclass relationships (subsumption relation-

ships, useful for subsumption reasoning, see 3.10.1) in an ontology can be computed

automatically by a reasoner.

Similar to RDF(S), OWL provides syntactic modelling constructs for the basic ele-

ments of an ontology, i.e. concepts, relations and instances. In OWL these are called

classes, properties and individuals, respectively. In contrast to RDF(S), OWL-DL

strictly separates classes from individuals and allows for building complex classes

out of simpler ones by means of class constructors.

The named standards (RDF, RDFS and OWL) have a role to the Semantic Web

similar to the role SQL played for the development and for the spread of the rela-

tional DBMS. Although primarily designed for use within the Semantic Web, the

standards were widely accepted in areas like Enterprise Application Integration and

life sciences.

3.9 Ontology-based Discovery Approaches

After having discussed the drawbacks of keyword-based search approaches in section

3.4 and introduced the term of ontologies as well as ontological markup languages,

we will now give a short overview on interesting approaches taking into account

ontologies and ubiquitous context information to increase recall and precision of

search results.

Broens [Broe04] focuses on a semantic service discovery using ontologies to match

service requests against service offerings and, thus, tries to avoid the major draw-

backs of keyword-based service discovery. He also follows the idea of integrating

contextual information of the user in the service request in order to regard the user’s

environment, therewith aiming at retrieving better-suited service results. Using the

example of a hungry person travelling by car and searching for a place to eat, they

consider contextual information like location (where is the nearest-by restaurant?),

speed (which restaurant is the fastest to get to?), time (which restaurant is still

opened?), personal interest (italian or fast food?) and car status (how much gas is

still left in the tank?). This is an interesting approach, though it might not exactly

meet the needs in our scenario where we imagine a SAP user looking for SAP Web

Services located in the service repository.

Eran Toch et al. [ToGa07] base their approach on three strategies: (1) using the

current research in semantic Web Services; (2) using approximation techniques to in-

crease the recall of possible service compositions; (3) exploring indexing techniques

28

Step into the Semantic World 3.9. Ontology-based Discovery Approaches

for sublinear response time. This approximate matching accounts for an amount

of extra effort needed which is reflected in the ranking of results, combining both

the semantic distance between query and result and the partiality of the result. A

Web-based search engine, called OPOSSUM (Object-PrOcedure-SemanticS Unified

Matching), was built that uses semantic methods for precise and efficient retrieval of

Web Services, based on their WSDL descriptions3. OPOSSUM crawls the Web for

WSDL descriptions, transforming them into ontological-based models of the Web

Services. It does that by automatically augmenting the service properties with ex-

isting concepts, which are collected from ontologies on the Semantic Web. Solutions

for issues of indexing, retrieval and ranking are provided within this framework.

However, it would be desirable for the search engine interface to accept queries for-

mulated in natural language (which is one of our major requirements as we will see in

the next chapter) instead of keywords combined with parameters, such as ”input:city

output:flight booking”, as it is the case in OPOSSUM.

Gopal et al. [GoGA08] pick up the idea of the Web-based search engine OPOSSUM

but try to improve the user satisfaction and increasing the user trust on the search

engine by improving the response time and reliability of Web Service repositories.

This is achieved by a so called Ontology based Service Index Annotator (OSIAN)

which is a module that can work in association with a search engine and acts as

a mediator between the user and the search engine. OSIAN consists of two parts:

(1) An availability checker and (2) RTub (Recent Tub). RTub is a tub of Web

Services which have been recently checked for availability. There are two cases to be

considered in the OSIAN message exchange: In case 1, RTub has the data required

by the user and can directly supply the data to the user. The Web Services in

the RTub need not be checked for availability, resulting in a quick reply by saving

time for availability checking. In case 2, RTub does not have the data required by

the user. Now the control is handed over to the search engine and the usual search

procedure is carried out. The result is passed to OSIAN and it checks the availability

of the Web Services in the result. Available Web Services get qualified to enter the

RTub and to be displayed to the user.

Automatic availability checks for the Web Services in the repository without user

intervention, provision of a cache effect when users access the services from the

repository (making the response very fast) and reduction of the use of resources like

processor time by reducing the number of disk access needed increase the overall

performance of the search engine using OSIAN. These are central advantages of this

approach.

Since this approach is based on the search engine OPOSSUM, it also does not accept

queries formulated in natural language.

In [PKCH05], Jyotishman et al. propose a work that stresses the fact that different

users may use different ontologies to specify the desired functionality and capabilities

of a service, which rises the need for some kind of ontology mapping during service

discovery, such that terms and concepts in the service requester’s ontologies are

3A live view of this search engine can be found at http://dori.technion.ac.il/

29

http://dori.technion.ac.il/

Step into the Semantic World 3.10. Reasoning

brought into correspondence with the service provider’s ontologies. This is done

using so called interoperation constraints (ICs) between the terms and concepts of its

ontologies to the domain ontologies. This is again an interesting approach, however,

these ICs are defined manually which might be quite time consuming and thus

calls for a more (semi-)automatic solution. Furthermore, they propose a taxonomy

for the non-functional attributes, namely QoS, which provide a better model for

capturing various domain-dependent and domain-independent QoS attributes of the

services. This way they are facing the problem that different aspects of QoS might be

important in different applications and different classes of Web Services (e.g. bits per

second may be an important QoS criterion for a service providing online streaming

multimedia, whereas security is more important for a service which provides online

banking).

3.10 Reasoning

We already used the term reasoning a couple of times in this chapter without pro-

viding a definition, which we will make up for now.

Studer et al. [StGA07] give a very comprehensive explanation, stating that the

way in which we, as humans, process knowledge is by reasoning, i.e. the process

of reaching conclusions. Similarly, a computer processes the knowledge stored in

a knowledge base by drawing conclusions from it, i.e by deriving new statements

that follow from the given ones. The basic operations a knowledge-based system

can perform on its knowledge base are typically denoted by tell and ask [RuNo95].

The tell-operation adds a new statement to the knowledge base, whereas the ask-

operation is used to query what is known. The statements that have been added to

a knowledge base via the tell-operation constitute the explicit knowledge a system

has about the domain of interest. The ability to process explicit knowledge compu-

tationally allows a knowledge-based system to reason over a domain of interest by

deriving implicit knowledge that follows from what has been told explicitly.

This leads to the notion of logical consequence or entailment. A knowledge base KB

is said to entail a statement α if α ’follows’ from the knowledge stored in KB. A

knowledge base entails all the statements that have been added via the tell-operation

plus those that are their logical consequences.

The inference procedures implemented in computational reasoners aim at realising

the entailment relation between logical statements [RuNo95]. They derive implicit

statements from a given knowledge base or check whether a particular statement is

entailed by a knowledge base.

Studer et al. [StGA07] further state that an inference procedure that only derives

entailed statements is called sound. Soundness is a desirable feature of an inference

procedure, since an unsound inference procedure would potentially draw wrong con-

clusions. If an inference procedure is able to derive every statement that is entailed

by a knowledge base then it is called complete. Completeness is a desirable property

30

Step into the Semantic World 3.10. Reasoning

as well, since a complex chain of conclusions might break down if only a single state-

ment in it is missing. Hence, for reasoning in knowledge-based systems we desire

sound and complete inference procedures.

3.10.1 Subsumption Reasoning

Subsumption corresponds with checking whether a class description subsumes (is

more general than) another class description. By doing this for all classes in the

knowledge base, one can compute the subsumption hierarchy. By checking the place

in the subsumption hierarchy of a given class description, this class description is

classified with respect to the knowledge base and hidden relationships with other

classes in the knowledge base become visible [StGA07].

Querying for subsumption between two classes underlies the most important usage

of reasoning in the OWL language, namely classification. The following OWL onto-

logy allows for the automatic classification of two classes that are not explicitly put

in subsumption relation.

1 {

2 class(SplitCity complete

3 intersectionOf(City

4 restriction(governedBy minCardinality (2)))),

5 class(GreekTurkishCity partial

6 intersectionOf(City

7 restriction(governedBy someValuesFrom(oneOf(Greece)))

8 restriction(governedBy someValuesFrom(oneOf(Turkey))))),

9 DifferentIndividuals(Greece Turkey)

10 }

Listing 3.2: Ontology example demonstrating subsumption, [StGA07]

The first statement introduces split cities, while the second statement introduces a

class GreekTurkishCity for cities which are governed by both Greece and Turkey.

The third statement assures the two involved countries to be distinct. From the

knowledge specified in the ontology, GreekTurkishCity is a subclass of SplitCity and

a DL reasoner would derive the statement subClassOf(GreekTurkishCity SplitCity)

as a logical consequence. By checking subsumption between all the named classes

in an OWL ontology, an inferred class hierarchy can be established.

In this thesis, we will focus on subsumption reasoning as a technique to locate the

desired services in a service discovery process. We will see later on in section 5.1.2

how exactly subsumption reasoning will be applied in our apporach.

Up to this point, we have introduced the reader to the current standard of Web

technologies, have highlighted their drawbacks and consequently motivated the need

for semantic technology. After this step into the semantic world, we now reached

the point to introduce question answering techniques, which are to be introduced in

the following chapter.

31

Step into the Semantic World 3.11. Quality of Ontology Design

But before we move to the next chapter, we shortly want to discuss the topic of

ontologies design. We give a quick digest on current approaches to guidelines on

how to create rich and rigorous ontologies. This is a subject matter which will

occupy us later on in section 6.7.

3.11 Quality of Ontology Design

There is no official standard or industry-proof solution set up in the Semantic Web

community on how to design a ’correct’ or perfectly modelled ontology. However,

there are approaches to guidelines in this direction, e.g. the so-called ontology de-

sign patterns (ODPs). ODPs are ready made modelling solutions for creating and

maintaining ontologies. They intend to help in creating rich and rigorous ontologies

with less effort. These patterns are analogous to the programming design patterns

used by software engineers.

First of all, there is the Ontology Engineering and Patterns Task Force (OEP)

[En(O], established by the Semantic Web Best Practices and Deployment Working

Group of the W3C. The aim of this task force is ”to provide guidance for developers

of Semantic Web applications. In particular, we focus on the engineering of seman-

tic web ontologies, through the publication of notes that document common and

reusable ontology patterns, and general ontology engineering best practices.”

Furthermore, there has been a tutorial offered by Rector et al. [RSNK+04] at the

ISWC2004 (the 3rd International Semantic Web Conference), called Ontology Design

Patterns and Problems: Practical Ontology Engineering using Protege-OWL. The

outline of this tutorial states: ”This tutorial will introduce attendees to the concept of

ontology patterns and discuss key patterns developed by the Task Force and others.

Example patterns include quantities and units, value partitions, n-nary relations,

problems of distinguishing classes and individuals, the choice between representing

relationships as classes or properties, and qualified cardinality restrictions.”

Another online resource dedicated to the topic of ontology design patterns is Onto-

logy Design Patterns.org (ODP) [ODP]. This is a semantic web portal dedicated to

ontology design patterns (OPs) for the Semantic Web developed in the context of

the NEON4 project. They offer amongst others a public catalog of ODPs ”focused

on the biological knowledge domain. ODPs in this catalog have been collected else-

where or created ’in house’ and they are open for discussion.” They categorise their

ODPs in Extension ODPs (such as Nary DataType Relationship5, Exception, and

Nary Relationship), Good Practice ODPs (e.g. Entity Feature Value6, Selector, and

Normalisation), and Domain Modelling ODPs (e.g. Interactor Role Interaction7

and Sequence).

4http://www.neon-project.org
5http://www.gong.manchester.ac.uk/odp/html/Nary DataType Relationship.html
6http://www.gong.manchester.ac.uk/odp/html/Entity Feature Value.html
7http://www.gong.manchester.ac.uk/odp/html/Interactor Role Interaction.html

32

http://www.neon-project.org
http://www.gong.manchester.ac.uk/odp/html/Nary_DataType_Relationship.html
http://www.gong.manchester.ac.uk/odp/html/Entity_Feature_Value.html
http://www.gong.manchester.ac.uk/odp/html/Interactor_Role_Interaction.html

Step into the Semantic World 3.11. Quality of Ontology Design

Another related topic concerning the quality of ontology design is about the metrics

of ontologies. Vrandečić et al. [VrSu07] discuss in their paper the need for proper

metrics which allow the fast and simple assessment of an ontology by taking into

account not only the structural metrics of an ontology but the semantics of the onto-

logy language as well. They state that measuring ontologies is necessary to evaluate

ontologies both during engineering and application, thus, performing quality assur-

ance and controlling the process of improvement. They introduce two key properties

of metrics, namely ontology normalisation and stability of metrics. The former is

a preprocessing step in order to align structural measures with intended semantic

measures by explicating some features of the semantics of an ontology within its

structure, so that the structural metrics actually capture the semantics they are

supposed to capture. The latter examines how stable the metrics are with regards

to the open world assumption8 of OWL DL ontologies.

8In formal logic, the open world assumption is the assumption that the truth-value of a state-
ment is independent of whether or not it is known by any single observer or agent to be true. It is
the opposite of the closed world assumption which holds that any statement that is not known to
be true is false.

33

Step into the Semantic World 3.11. Quality of Ontology Design

34

4
Question Answering

The previous chapter guided the reader through the world of semantics and empha-

sised the need for semantic technologies.

Semantic search promises to produce precise answers to user queries by taking ad-

vantage of the availability of explicit semantics of information which is to be queried.

Furthermore, the underlying semantic relations of metadata can be exploited to sup-

port the retrieval of information which is closely related to the query term. Lei et

al. [LeUM06] present in their paper an overview of state-of-the-art semantic search

tools, while identifying four categories of semantic search engines, according to the

user interface they provide. They show that, although these tools do enhance the

performance of traditional search technologies, some of them are not suitable for

naive users. With naive users we mean ordinary end users who are not necessarily

familiar with domain specific semantic data, the concept of ontologies, or SQL-Like

query languages such as SPARQL [W3Cb] or SeRQL (see section 4.2 for further

explanation).

The mentioned categories are:

• Form-based search engines

These are search engines, which provide sophisticated web forms that allow

users to specify queries by choosing ontologies as well as their contained classes,

properties, values, etc. One example mentioned in [LeUM06] for this category

is the SHOE search engine1. Although, taking semantic information into ac-

count, SHOE is only suitable for those users who are familiar with the un-

derlying ontologies and knowledge bases. Naive users, as defined above, have

difficulties in understanding these forms and formulating queries.

1http://www.cs.umd.edu/projects/plus/SHOE/search/

35

http://www.cs.umd.edu/projects/plus/SHOE/search/

Question Answering 4.1. AquaLog

• RDF-based querying languages fronted search engines

Such search engines, e.g. the Corese search engine2, usually provide a so-

phisticated querying language to support semantic data querying. But again,

considering naive end users, this is not an approach promising a wide diffusion

since the user would have to be familiar with both the back-end ontologies and

the provided querying language.

• Semantic-based keyword search engines

According to [LeUM06], the search process of such search engines often com-

prises two major steps: (1) finding an instance match for the user keyword and

(2) retrieving instances which are closely related to the instance match of the

user keyword. Although, it takes into account semantic information without

requiring the user to have any knowledge about ontologies or query languages,

it is still a keyword-based approach and does not allow for complex queries.

• Question answering tools

The fourth and last category summarises examples of ontology-based question

answering engines, such as AquaLog [LUMP07] and ORAKEL [Cimi04]. Such

search engines make use of natural language processing technologies to refor-

mulate natural language queries into either ontological triples (which is the

case in AquaLog) or into specific query languages (as in ORAKEL). These

tools appear to be ideal for naive users. Lei [LeUM06] however notes that

the search performance is heavily influenced by the performance of the used

natural language processing techniques.

In order to avoid the linguistic processing and potential loss in performance, Lei et

al. [LeUM06] advocate a keyword-based search over a natural language question

answering. A major goal of their work is to hide the complexity of semantic search

from end users and to make it easy to use and effective for naive users. A Google-like

query interfaces is provided where a user can type in his query in form of keywords.

We, however, will from now on focus on a question answering machine which sup-

ports queries formulated in natural language, in order to meet our first requirement.

After having conducted intensive research, we decided to utilise AquaLog. Our

motivation for this decision will be explained in the following section.

4.1 AquaLog

AquaLog allows users who are knowledgeable about a certain domain and have a

question in mind to query the semantic markup which is viewed as a knowledge base

(KB) [LUMP07]. The aim is to provide a system which does not require users to

learn specialised vocabulary, or to know the structure of the knowledge base, but

they have to have some idea of the contents of the domain. So, AquaLog is designed

2http://www-sop.inria.fr/acacia/soft/corese/

36

http://www-sop.inria.fr/acacia/soft/corese/

Question Answering 4.1. AquaLog

to serve as an interface for the Semantic Web.

It is a portable question-answering system which takes queries expressed in nat-

ural language and an ontology as input, and returns answers drawn from one or

more KBs, which instantiate the input ontology with domain-specific information,

according to [LUMP07]. It is portable in the sense that the AquaLog system allows

the user to choose an ontology and then ask queries with respect to the universe of

discourse covered by the ontology (essentially a semantic viewpoint, so to speak).

The configuration time required to customise the system for a particular ontology

is negligible. This being said, it seems that AquaLog is also a perfect tool to meet

our requirements 1 and 2, as established in the introductory chapter.

Thus, AquaLog seems to be predestined especially as a front-end to organisational

semantic intranets where an organisational ontology is used as the basics for seman-

tic markup, which is exactly our case.

AquaLog presents an elegant solution in which different strategies are combined to-

gether in a novel way. It makes use of the GATE NLP platform (see section 4.1.2.1),

string metric algorithms, WordNet (see section 4.1.2.2) and a novel ontology-based

Relation Similarity Service to make sense of user queries with respect to the target

KB by applying syntactic and semantic analysis of the question. Moreover, it also

includes a learning component to obtain domain-dependent knowledge by creating

a lexicon. This ensures that the performance of the system improves over time, in

response to the particular community jargon used by end users.

Finally, AquaLog makes use of a generic plug-in mechanism, which means it can

be easily interfaced to different ontology servers and knowledge representation plat-

forms. One of the plug-ins used in this work is the so-called SesamePlugin which

has been developed to collaborate with Sesame, an open source RDF framework

with support for RDF Schema inferencing and querying. We elaborated on Sesame

in section 3.7.2.

To give a first impresson on how AquaLog works and what it is capable of, we will

have a closer look at an illustrative example.

4.1.1 An Illustrative Example

In [LUMP07], a quick illustrative example is given which best illustrates at a coarse-

grained level how AquaLog actually works. Since the development of AquaLog took

place at the Knowledge Media Institute and Centre for Research in Computing (The

Open University)3, some exemplary questions are formulated with a focus on the

KMI domain (research institute, researchers, projects, staff of the institute, etc.).

The AquaLog architecture can be characterised as a cascaded model, according to

[LUMP07], in which a NL query gets translated by the Linguistic Component into a

set of intermediate triple-based representations, which are referred to as the query-

triples. Subsequent to this process, the Relation Similarity Service (RSS) component

3http://kmi.open.ac.uk/

37

http://kmi.open.ac.uk/

Question Answering 4.1. AquaLog

Figure 4.1: The AquaLog data model, [LUMP07]

takes as an input these query-triples and further processes them to produce the

ontology-compliant queries, called onto-triples, as shown in figure 4.1.

The decision of transforming the NL query into a triple-format is based on the

fact that knowledge representation formalisms for the semantic web, such as RDF

or OWL, also subscribe to this binary relational model and express statements as

<subject, predicate, object>.

The exemplary ontology of the KMI is modelled quite well in order to illustrate the

power of AquaLog since many statements are expressed in the <subject, predicate,

object> form, where predicate forms a relation between the subject and the object.

At first, to demonstrate the possibilities of AquaLog, we will adduct some queries

which targets the mentioned KMI ontology. The interested reader is encouraged to

try some of these queries on his own by using the AquaLog demo available online4.

Later on, when describing our own approach, we will certainly consider the applica-

bility of our SAP Enterprise Services ontology, but since some problems might occur

with the SAP ontology, we will elaborate on this particular issue at a later stage in

section 6.7.

In the context of the academic domain in the KMI department, an exemplary ques-

tion given by [LUMP07] is ”what is the homepage of peter who has an interest on

the semantic web?”. As we can see, this question actually consists of two parts,

namely the main question about a person’s homepage, and a modifier part, which

imposes a constraint on the person to look for (”who has an interest ...”). This NL

query is translated by AquaLog into the ontology-compliant logical query

• <what is?, has-web-address, peter-scott> and

• <person?, has-research-interest, Semantic Web area>

expressed as a conjunction of triples containing variables. In order to transform the

NL query to these triples, some steps have been invoked before.

4http://plainmoor.open.ac.uk:8080/aqualog2/index.html

38

http://plainmoor.open.ac.uk:8080/aqualog2/index.html

Question Answering 4.1. AquaLog

Focusing on the first part (”what is the homepage of peter?”), the Linguistic Compo-

nent created the intermediate query-triple <what is?, homepage, peter>. The role

of the RSS is now to map the intermediate form into the target ontology-compliant

query. If ambiguities occur which the RSS can not resolve with the information

available, it calls the user to participate in the question answering (QA) process.

Figure 4.2 demonstrates on the left side how this disambiguation step is achieved

with the help of the user. By using string metrics, the system is unable to disam-

biguate between Peter-Scott, Peter-Sharpe, Peter-Rutherford, etc. Moreover, the

user feedback is required to disambiguate the term ”homepage” since it is the first

time AquaLog came across this term. No synonyms have been found using Word-

Net, and the ontology does not provide further information to disambiguate. After

the user has chosen ”has-web-address”, he can activate the Learn checkbox so that

the system is able to learn the user’s vocabulary and context for future occasions.

Figure 4.2: Illustrative example of user interactivity to disambiguate a basic query,
[LUMP07]

In figure 4.3 we repeat the aforementioned question, but this time with the modifier

”who has an interest on the semantic web”. This time, AquaLog does not need

any assistance from the user, given that, by analysing the ontology, only one of the

”Peters” has an interest in Semantic Web, and only one possible ontology relation,

”has-research-interest” (taking into account taxonomy inheritance) exists between

”person” and the concept ”research area”, of which ”semantic web” is an instance.

Since the similarity relation between ”homepage” and ”has-web-address” has been

learned before by the learning mechanism, the performance improves over time.

We can now see that a major challenge for AquaLog is to efficiently deal with complex

queries, which could include more than just one term, but two or even more. As

pointed out in the above exemplary query, these terms may take the form of modifiers

39

Question Answering 4.1. AquaLog

that change the meaning of other parts of the query, and they can be mapped to

instances, classes, values, or combinations of them, in compliance with the ontology

to which they subscribe.

Figure 4.3: Illustrative example of AquaLog disambiguation, [LUMP07]

4.1.2 AquaLog’s Helpers

Up to now, we have tried to give the reader a basic understanding of the functioning

of AquaLog. We now go on and present the technologies on which AquaLog relies

and which we have mentioned before, namely GATE and WordNet.

4.1.2.1 GATE

GATE, a General Architecture for Text Engineering [GATE], is a leading toolkit for

text mining and was first released in 1996, then completely re-designed, re-written,

and re-released in 2002. The system is now one of the most widely-used systems of its

type and is a relatively comprehensive infrastructure for language processing software

development. It is comprised of an architecture, a free open-source framework (or

SDK) and graphical development environment and used for all sorts of language

processing tasks, including Information Extraction in many languages. Information

Extraction (IE) is a process which takes unseen texts as input and produces fixed-

format, unambiguous data as output. This data may be used directly for display

to users, to be stored in a database or spreadsheet for later analysis, or may be

40

Question Answering 4.2. SeRQL

used for indexing purposes in Information Retrieval (IR) applications. IE covers a

family of applications including named entity recognition, relation extraction (which

is amongst others the use case in AquaLog) and event detection.

4.1.2.2 WordNet

WordNet is a large lexical database for the English language, developed at the

University of Princeton. Nouns, verbs, adjectives and adverbs are grouped into

sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets

are interlinked by means of conceptual-semantic and lexical relations. Numerous

lexical semantic relations are formally modelled, like hyponyms (subsumption from

a more-general term) and antonyms (negation, a term with the opposite meaning).

WordNet is freely and publicly available for download [Word]. Its structure makes

it a useful tool for computational linguistics and natural language processing, as it

is our case in this work.

4.2 SeRQL

At the beginning of this chapter, we shortly mentioned an SQL-like query language

named SeRQL. SeRQL will be an important aspect in our own approach, thus, it

should be introduced to the reader, giving a basic overview and understanding.

SeRQL [BrKa04] stands for Sesame RDF Query Language and is a querying and

transformation language loosely based on several existing languages, most notably

RQL, RDQL and N3 (see [HBEV04] for further explanation on and a comparison

between RQL, RDQL and N3). As the name suggests, it is the query language used

in the Sesame framework which we introduced in section 3.7.2. Its primary design

goals are unification of best practices from query languages and delivering a light-

weight yet expressive query language for RDF that addresses practical concerns.

SeRQL supports generalised path expressions, boolean constraints and optional

matching, as well as two basic filters: select-from-where and construct-from-where.

The first returns the familiar variable-binding/table result, the second returns a

matching (optionally transformed) subgraph.

During this work we had to change some SeRQL-queries built-in in the AquaLog

code, specifically in the class SesamePlugin.java. We will comment this issue in

chapter 6 (see section 6.4). For a detailed description of the syntax of SeRQL,

please refer to the online documentation5.

5http://openrdf.org/doc/sesame/users/userguide.html#chapter-serql

41

http://openrdf.org/doc/sesame/users/userguide.html#chapter-serql

Question Answering 4.2. SeRQL

42

”Design is not just what it looks like and feels like. Design is how it works.”

- Steve Jobs

5
Design and Adaptation

This chapter presents the overall architecture of our approach and contribution. The

previous chapters have already introduced some software frameworks and tools which

are utilised to meet our requirements. We now explain how all of these components

interact and seamlessly integrate.

5.1 The Global Architecture

At first, we shortly want to mention Tomcat, the overall runtime environment in

which our application runs. Apache Tomcat is a servlet container developed by

the Apache Software Foundation (ASF)1 and implements the Java Servlet and the

JavaServer Pages (JSP) specifications from Sun Microsystems. Tomcat provides an

environment for execution of Java-code on web servers. It offers a ”pure Java”HTTP

web server.

Figure 5.1 illustrates all the components involved in our application.

When we were first talking about AquaLog in chapter 4, we stated that our aim is

to provide a system which does not require users to learn specialised vocabulary, or

to know the structure of the knowledge base, but they have to have some idea of

the contents of the domain. Hence, we want a system which is designed to serve as

an interface for the Semantic Web, giving the end user the possibility to formulate

questions in natural language. This possibility is provided via the query interface of

our architecture.

1http://tomcat.apache.org/

43

http://tomcat.apache.org/

Design and Adaptation 5.1. The Global Architecture

Figure 5.1: The overall architecture of our approach

44

Design and Adaptation 5.1. The Global Architecture

Two of the major components of this system are the Linguistic Component and the

Relation Similarity Service (RSS), both of them portable and independent. They

are actually part of the AquaLog system [LUMP07], as most of the components in

the diagram. Our own approach and contribution is depicted by the L-Box at the

lower left corner. We will elaborate on this a little later. The Linguistic Component

and the RSS will be addressed in a separate section (see section 5.1.1 and 5.1.2) as

well.

Since AquaLog is modular, it makes use of a plug-in mechanism, which allows it

to be configured for different Knowledge Representation (KR) languages, such as

OCML (Operational Conceptual Modeling Language)2, RDF3 and OWL4.

AquaLog also caches basic indexing data from the target Knowledge Bases (KBs)

at initialisation time to reduce the number of calls/requests to the target KB and

to guarantee real-time question answering.

At startup, some initialisation information is read from the configuration files, which

require human intervention for adapting the system to a new domain, thus realising

portability. In section 6.6, we will show how to adjust these configuration files for

our use case.

Lopez et al. [LUMP07] state that a query can be translated into one or more

linguistic-triples5 (see ’Triples’ between Linguistic Component and Relation Simi-

larity Service in the diagram), of which each of them can be translated into one ore

more ontology-compliant-triples.

Moreover, this architecture also includes a learning component to obtain domain-

dependent knowledge by creating a lexicon. This ensures that the performance of

the system improves over time, in response to the particular community jargon used

by end users and retrieved via the user’s feedback.

As soon as an answer to the user’s question has been generated, it is delivered to

the user via the answering processing interface.

We will now take a closer look at the Linguistic Component and the RSS, as well as

the resources they utilise in order to fulfil their tasks.

5.1.1 From Questions to Query Triples

The process of translating from natural language (NL) to the triple format, which

is used to query the ontology, is done by the Linguistic Component.

One of the resources used by this component is the GATE infrastructure (see section

4.1.2.1) which communicates with the Linguistic Component through the standard

2http://technologies.kmi.open.ac.uk/ocml/
3Earlier explained in section 3.7
4Earlier explained in section 3.8
5See next section and section 5.3 for more on the triple approach.

45

http://technologies.kmi.open.ac.uk/ocml/

Design and Adaptation 5.1. The Global Architecture

GATE API. The GATE processing resources, e.g. English tokenizer, sentence split-

ter, POS (Part-Of-Speech) tagger and VP (Verb Phrase) chunker, sequentially in-

voked by the Linguistic Component, return a set of syntactic annotations associated

with the input query, as stated in [LUMP07]. These annotations include informa-

tion about sentences, tokens, nouns and verbs. As an example, we get voice and

tense for the verbs and categories for the nouns, such as determinant, singular/plu-

ral, conjunction, possessive, determiner, preposition, existential, wh-determiner etc.,

and information about which is the main verb (the one that separates the nominal

group and the predicate).

The team developing AquaLog extended the set of annotations returned by GATE

by identifying noun terms, relations, question indicators (which/who/when, refer

to section 6.6 to see how this contributes to portability) and patterns of types of

questions. This could be achieved through the use of GATE JAPE transducers,

a set of JAPE grammars that they wrote for AquaLog. JAPE6 is an expressive,

regular expression based rule language offered by GATE. Examples of the annota-

tion obtained after the use of these JAPE grammars can be seen in figures 5.2 and

5.3. Currently, the Linguistic Component dynamically identifies around 14 different

question types or intermediate representations, which can be viewed in detail in

Appendix A of [LUMP07]. We will not further elaborate on the syntax of JAPE

grammars and how to adapt them to our application since this goes beyond the

scope of our work. However, it needs to be stated that this is a very powerful tool

and should be taken into account when further developing this application. The

interested reader is therefore referred to section 4.2 of [LUMP07].

Basically, at a coarse-grained level, there are three main groups of queries (based on

the number of triples needed to generate an equivalent representation of the query).

We think that it is essential for the user to be aware of the different kinds of queries

he or she can ask our question answering engine, so we will shortly go into detail.

• Basic queries

• Basic queries with clauses

• Combinations of queries

Basic queries can be further divided into basic queries requiring an affirmation/nega-

tion (e.g. ”is vanessa working as a research fellow?”, see figure 5.2) or a description

as an answer. Moreover, there is the big set of queries constituted by a wh-question

(starting with: what, who, when, where), for instance ”are there any phd students

in dotkom?”, where the relation is implicit or unknown, or ”which is the job title of

John”, where no information about the type of answer expected is provided. Also

imperative commands such as list, give, tell, and name are treated as wh-queries.

Basic queries with clauses are those three-term queries which have modifiers in-

cluded. Considering the request ”list all the projects in the knowledge media insti-

tute about the semantic web”, there are two modifiers, namely ”in knowledge media

6http://gate.ac.uk/sale/tao/index.html

46

http://gate.ac.uk/sale/tao/index.html

Design and Adaptation 5.1. The Global Architecture

institute” and ”about semantic web”. These modify the meaning of the other syntac-

tic constituents (”projects”). The main challenge here is to identify the constituent

to which each modifier has to be attached. The Relation Similarity Service (RSS)

is responsible for resolving this ambiguity through the use of the ontology, or in

an interactive way by asking for user feedback. The Linguistic Component’s task

is, therefore, to pass the ambiguity problem to the RSS through the intermediate

representation.

At last, we have the case where a query can be a composition of two basic queries.

There are three ways in which queries can be combined. Firstly, by using a ”and”

or ”or” conjunction parameter, secondly by making use of modifiers as in ”which

researchers wrote publications related to social aspects” (where the second clause

modifies one of the previous terms), and finally by combining two basic patterns,

e.g. ”are there any planet news written by researchers working in akt?”, where the

two linguistic triples will be <planet new, written, researchers> and <which are,

working, akt>.

Once the intermediate representation is created, prepositions and auxiliary words,

such as ”in”, ”about”, ”of”, ”at”, ”by”, ”does”, are removed from the query-triples

because in the current implementation their semantics are not exploited to provide

any additional information.

The resultant query-triple is the input for the Relation Similarity Service that pro-

cesses the combinations of queries as explained in section 5.1.2.

Figure 5.2: Example of GATE annotations and linguistic triples for basic queries,
[LUMP07]

It is important to emphasise that, at this stage, all the terms are still strings or

arrays of strings, without any correspondence with the ontology. This is because

the analysis is completely domain independent and is entirely based on the GATE

analysis of the English language.

47

Design and Adaptation 5.1. The Global Architecture

Figure 5.3: Example of GATE annotations and linguistic triples for basic queries
with clauses, [LUMP07]

A key feature for each triple is its category.

Depending on the category, the triple tells us how to deal with its elements, what

inference process is required and what kind of answer can be expected. These

categories are i.e. called wh-generic term (e.g. ”Who are the researchers in the

semantic web research area?”), wh-unknown term (like ”Show me the job title of

Peter Scott”) or wh-unknown relation (like ”Are there any projects about semantic

web?”). For a detailed list of all possible categories identified by AquaLog, please

refer to Appendix A of [LUMP07].

Let us take for example the query ”what are the research areas covered by the akt

project?”. Thanks to the category, the Linguistic Component knows that it has to

create one triple that represents an explicit relationship between an explicit generic

term and a second term. It gets the annotations for the query terms, relations and

nouns, preprocesses them and generates the following query-triple: <research areas,

covered, akt project> in which ”research areas” has correctly been identified as the

query term (instead of ”what”).

As soon as the query-triples are generated, they are forwarded to the Relation Sim-

ilarity Service for further processing.

5.1.2 From Triples to Answers

The RSS is the backbone of the question-answering system and responsible for gen-

erating an ontology-compliant logical query after the NL query has been transformed

into a term-relation form and classified into the appropriate category. By using string

similarity matching, generic lexical resources such as WordNet (see section 4.1.2.2),

a domain-dependent (or ontology-dependent) lexicon which is obtained through the

use of a Learning Mechanism, and by looking at the structure of the ontology and

the information stored in the KBs, the RSS tries to make sense of the input query

(delivered in the form of query-triples). An important aspect of the RSS is that it

48

Design and Adaptation 5.1. The Global Architecture

is interactive in the sense that the user will be required to interpret the query when

ambiguity arises between two or more possible terms or relations. This is a very im-

portant aspect of our system, because we can therefore fulfil the third requirement,

as introduced at the beginning of this thesis.

Relations and concept names are identified and mapped within the ontology through

the RSS.

Proper names, instead, are normally mapped into instances by means of string met-

ric algorithms. However, this can be a disadvantage since some questions may not

be accepted without some facilities for dealing with unrecognised terms. As an ex-

ample, take the question ”is there any researcher called Thompson?”. This query

would not be accepted if Thompson is not identified as an instance in the current

KB.

However, a partial solution is implemented for affirmative/negative types of ques-

tions, where a query contains more than one instance of which one is recognised, e.g.

in the query ”is Enrico working in ibm?”, where ”Enrico” is mapped into ”Enrico-

motta” in the KB, but ”ibm” is not found. The answer in this case is an indirect

answer, namely the place where Enrico Motta is working.

Some sentences are structurally and syntactically ambiguous and although general

world knowledge does not resolve this ambiguity, within a specific domain it may

happen that only one of the interpretations is possible.

To give the reader an impression on how RSS works for basic queries, we will start

off with a simple question, for instance ”what are the research areas covered by akt?”

(see figure 5.4).

The query is classified by the Linguistic Component as a basic generic-type (one

wh-query represented by a triple formed by an explicit binary relationship between

two explicit terms). The first step for the RSS is to identify that ”research areas”

is actually a ”research area” in the target KB and ”akt” is a ”project” through the

use of string distance metrics and WordNet synonyms if needed. As soon as a

successful match has been found, the challenge arises to find a relation which links

”research areas”or any of its subclasses to ”projects”or any of its superclasses, which

can be achieved via the inheritance of relations through the subsumption hierarchy

(remember section 3.10.1, where we stated that we want to focus on subsumption

reasoning). By analysing the taxonomy and the relationships in the target KB, the

RSS finds out that the only relations between both terms are ”addresses-generic-

area-of-interest”and ”uses-resource”. With the help of the WordNet lexicon, the RSS

is able to identify the word ”addresses” as a synonym for ”covered”, and therefore

suggests to the user that the question could be interpreted in terms of the relation

”addresses-generic-area-of-interest”.

Whenever multiple relations are possible candidates for interpreting the query, if

the ontology does not provide ways to further discriminate between them, string

matching is used to determine the most likely candidate, using the relation name,

the Learning Mechanism, eventual aliases, or synonyms provided by lexical resources

49

Design and Adaptation 5.1. The Global Architecture

Figure 5.4: Example of AquaLog in action for basic generic-type queries, [LUMP07]

such as WordNet. If no relations are found by using these methods, then the user

is asked to choose from the current list of candidates.

In many cases, the RSS has to cope with situations in which the structure of the

intermediate query does not match the way the information is represented in the on-

tology. For instance, the query ”who is the secretary in Knowledge Media Institute?”,

as shown in figure 5.5, may be parsed into <person, secretary, kmi>. While this is

the result of purely following linguistic criteria, it does not really match the way the

ontology is organised, namely in terms of <secretary, works-in-unit, kmi>. This is

where the RSS shows its intelligent reasoning power, as it is able to reason about the

mismatch, re-classify the intermediate query an generate the correct logical query.

The procedure is as follows. The Linguistic Component classifies the above question

as a ”basic generic type”. The first step is now to identify that KMI is a ”research

institute”, which is also part of an ”organisation” in the target KB, and to realise

that who could be pointing to a ”person”7. So now, the problem becomes (similarly

to the previous example) one of finding a relation which links a ”person” (or any of

its subclasses like ”academic”, ”students”, ”professors”, ...) to a ”research institute”,

but in this particular case, there is also a successful matching for ”secretary” in the

KB, in which ”secretary” is not a relation but a subclass of ”person”. Following this

clue, the triple is classified from a generic one formed by a binary relation ”secretary”

between the terms ”person” and ”research institute” to a generic one in which the

relation is unknown or implicit between the terms ”secretary” (which is more specific

than ”person”) and ”research institute”.

7See further explanation in section 6.6.

50

Design and Adaptation 5.2. Query Answering Limitations

Figure 5.5: Example of RSS in action for relations formed by a concept, [LUMP07]

We could also go on and elaborate on how RSS procedures work for basic queries

with clauses and combinations of queries, but this would somewhat go beyond the

actual scope of this work. The example shown above had the aim to demonstrate

the capabilities and power of the RSS component and give an idea on how this very

important component basically works. Therefore, the interested reader is referred

to [LUMP07] for continuative comprehension.

Before we go on and discuss our own contribution by explaining the integration of

the Sesame framework and OWLIM plug-in into the AquaLog architecture, we first

want to mention some limitations concerning the question answering abilities, and,

thereby, motivate the need for this very useful integration.

5.2 Query Answering Limitations

During their evaluation, Lopez et al. [LUMP07] identified several failures which

they divided in different categories, since a query may fail at several different levels.

We think that it is also important to mention these categories in order to better

understand the causes of a potential failure.

• Linguistic failure

This occurs when the NLP component is unable to generate the intermediate

representation (but the question can usually be reformulated and answered).

• Data model failure

This occurs when the NL query is simply too complicated for the intermediate

representation.

51

Design and Adaptation 5.3. The Triple Approach Problem

• RSS failure

This occurs when the Relation Similarity Service is unable to map an inter-

mediate representation to the correct ontology-compliant logical expression.

• Conceptual failure

This occurs when the ontology does not cover the query, e.g. lack of an ap-

propriate ontology relation or term to map with, or if the ontology is wrongly

populated in a way that hampers the mapping (e.g., instances that should be

classes).

• Service failure

In the context of the Semantic Web, they believe that these failures have less

to do with shortcomings of the ontology than with the lack of appropriate

services, defined over the ontology (like aggregation services for understanding

key words like ”most”, ”best five”, etc.).

A user evaluation, conducted by Lopez et al. [LUMP07], showed that the linguistic

failures were by far the most common problems. Errors were amongst others due

to questions not recognised or classified (e.g. when a multiple relation is used, as in

”what are the challenges and objectives [...]”) or questions annotated wrongly (such

as tokens not recognised as a verb by GATE, e.g. ”present results”) and therefore

relations annotated wrongly.

In many cases questions can be easily reformulated by the user to avoid these failures

so that the question can be recognised by the NLP component (linguistic failure),

avoiding the use of nominal compounds (typical RSS failure) or avoiding unnecessary

functional words, for instance different, main, and most of (service failure).

AquaLog claims to be portable in the sense that it is ontology-independent, but as

we will see now, there are major restrictions which are based on assumptions made

by AquaLog about the design of an ontology. These restrictions deter AquaLog

from being able to handle ontologies modelled in a certain way, which is relatively

wide-spread on the semantic Web.

5.3 The Triple Approach Problem

The components of AquaLog operate best under the assumption that all relation-

ships are modelled in the triple approach <subject, predicate, object>, with predi-

cate being the relation.

There exist a number of ontologies which are well-known in the semantic community

and tend to serve as standard ontologies when introducing a user not yet familiar

with the design and assembly of an ontology to the world of semantics and OWL

files. When dealing with ontologies for the first time, it is likely that one will come

across the wide-spread ”pizza ontology” or ”wine ontology”, for instance. In fact, a

tutorial for introducing an interested person to ontologies with the help of the free,

52

Design and Adaptation 5.3. The Triple Approach Problem

open-source ontology editor Protégé8 has been provided by the CO-ODE project

[HKRS+04]. This tutorial uses the pizza ontology to demonstrate how ontologies

are modelled step by step.

One of the first things we tried after exploring the AquaLog system and its capa-

bilities was to formulate a number of simple questions in natural language and let

AquaLog answer it with respect to this well-known and wide-spread pizza ontology.

Since we knew that we would have to redesign the given parameter ontology [Zalt08]

because of its lack of proper relationship design (no object properties were available),

we first wanted to make sure that AquaLog is able to deal with a quite common,

well-designed ontology. Figure 5.6 depicts the structure of the pizza ontology.

Figure 5.6: The structure of the pizza ontology as illustrated by Protégé

On the left side, the hierarchies of the asserted classes as well as the object proper-

ties are visualised, while on the right side we see the class description of the marked

class, listing Equivalent classes, Superclasses, Members, etc.

Beneath the branch ”NamedPizza” we find a number of popular pizza names such as

FruttiDiMare, QuattroFormaggi or Margherita. Figure 5.7 shows how the Margherita

pizza is modelled.

8http://protege.stanford.edu/

53

http://protege.stanford.edu/

Design and Adaptation 5.3. The Triple Approach Problem

Figure 5.7: Margherita pizza modelled in OWL

One of the first questions which came into our mind was ”show me toppings of

margherita”, expecting a list of all toppings - namely TomatoTopping and Mozzarel-

laTopping - for the Margherita pizza. After the RSS component of AquaLog was

successfully able to recognise that ”toppings” corresponds to the relation (object

property) ”hasTopping” and that ”margherita” matches the class ”Margherita” in

the ”NamedPizza” branch, it unfortunately fails to list the expected toppings of the

Margherita pizza as shown in figure 5.8. The system states that there are no values

for class Margherita using relation hasTopping.

Figure 5.8: AquaLog is unable to satisfactorily answer a simple question for pizza
toppings

We then realised, that the term ’Margherita’ is used as an object, and not as a

subject. If we take a closer look at the ontology triple (see figure 5.8), we see that

AquaLog generated the triple <which is, hasTopping, Margherita>, assuming that

Margherita is the topping. Hence, we reformulated our question and asked ”what is

the topping of margherita”, hoping that AquaLog would take into account the object

property isToppingOf (which is the inverse property of hasTopping). This question

54

Design and Adaptation 5.3. The Triple Approach Problem

resulted in an error message of the Relation Similarity Service, stating: ”Cannot

validate query: possible malformed expression. In sentence what is the topping of

margherita Missing a relation in the pattern

The query: what

The noums: margherita

The relations: is topping

The pattern: margherita

This seems to be a typical linguistic failure, as explained in section 5.2. However,

skipping the definite article ”the” (”what is topping of margherita”) lead us to the

screen where we could choose between two relations, namely hasTopping and isTop-

pingOf, as illustrated in figure 5.9.

Figure 5.9: AquaLog aks for user feedback to disambiguate a relation term

Unfortunately, this reformulation of the query did not help either, we received the

same response, telling us that there are no values for class Margherita using relation

isToppingOf.

It seems odd at first that AquaLog can not find the explicitly stated relations between

Margherita and its toppings as indicated in figure 5.7. It took us a substantial

amount of time to figure out why exactly this is the case and what we can do about

it.

This is where SwiftOWLIM comes into play. Before we explain why exactly we use

SwiftOWLIM here, we have to introduce a ”feature” of RDF called Blank Nodes and

explain why this conflicts with the way AquaLog understands ontologies.

5.3.1 Blank Nodes

Referring to the W3C9, a blank node ”is a node that is not a URI reference or a

literal. In the RDF abstract syntax, a blank node is just a unique node that can be

used in one or more RDF statements, but has no intrinsic name.”

A classical use case, where blank nodes are applied, is the representation of complex

9http://www.w3.org/TR/rdf-concepts/#section-blank-nodes

55

http://www.w3.org/TR/rdf-concepts/#section-blank-nodes

Design and Adaptation 5.3. The Triple Approach Problem

data. It can be used to indirectly attach a resource to a consistent set of properties,

which together represent a complex data, such as a postal address. The different

fields of the complex data are represented as properties attached to the blank node.

The ontology language OWL uses blank nodes to represent so-called anonymous

classes such as unions or intersections of classes, or classes called restrictions, defined

by a constraint on a property. And this is exactly the case in our Margherita pizza

example. The toppings of the Margherita pizza are not defined in a <subject, pred-

icate, object> way, such as <”Margherita”, ”hasTopping”, ”MozzarellaTopping”>

(this way AquaLog could easily answer our question above), but via restrictions on

properties. Let us have a closer look at the part of the ontology file, where the

Margherita pizza is defined (RDF serialisation in XML format).

1 ...

2 <owl:Class rdf:about="#Margherita">

3 <rdfs:label xml:lang="pt">Margherita </rdfs:label >

4 <rdfs:subClassOf >

5 <owl:Restriction >

6 <owl:onProperty >

7 <owl:ObjectProperty rdf:about="#hasTopping"/>

8 </owl:onProperty >

9 <owl:allValuesFrom >

10 <owl:Class >

11 <owl:unionOf rdf:parseType="Collection">

12 <owl:Class rdf:about="#MozzarellaTopping"/>

13 <owl:Class rdf:about="#TomatoTopping"/>

14 </owl:unionOf >

15 </owl:Class >

16 </owl:allValuesFrom >

17 </owl:Restriction >

18 </rdfs:subClassOf >

19 <rdfs:subClassOf >

20 <owl:Restriction >

21 <owl:someValuesFrom >

22 <owl:Class rdf:about="#MozzarellaTopping"/>

23 </owl:someValuesFrom >

24 <owl:onProperty >

25 <owl:ObjectProperty rdf:about="#hasTopping"/>

26 </owl:onProperty >

27 </owl:Restriction >

28 </rdfs:subClassOf >

29 <rdfs:subClassOf >

30 <owl:Restriction >

31 <owl:onProperty >

32 <owl:ObjectProperty rdf:about="#hasTopping"/>

33 </owl:onProperty >

34 <owl:someValuesFrom rdf:resource="#TomatoTopping"/>

35 </owl:Restriction >

36 </rdfs:subClassOf >

37 <rdfs:subClassOf rdf:resource="#NamedPizza"/>

38 ...

39 </owl:Class >

56

Design and Adaptation 5.3. The Triple Approach Problem

Listing 5.1: RDF serialisation of the Margherita pizza description

As we can see from listing 5.1, the Margherita class is a subclass of several restrictions

(anonymous superclasses, the superclasses illustrated in figure 5.7). These restric-

tions represent a complex data (namely the toppings definition) and are represented

by a blank node, a resource (or node in an RDF graph), which is not identified by

a URI.

We denoted before that AquaLog imposes a few requirements on the ontology in

order to get an answer:

• The ontology must be structured as a directed labelled graph (taxonomy and

relationships).

• The ontology must be populated (triples) in such a way that there is a short

(two relations or less), direct path between the query terms when mapped to

the ontology.

These assumptions conflict with the restrictions (owl:Restriction) depicted above,

which are realised as blank nodes. In short: AquaLog does not understand restric-

tions modelled in OWL and can therefore not guess that the Margherita pizza has

Tomato and Mozzarella as toppings.

This seems to be a handicap of this software system. Nevertheless, Lopez et al.

[LUMP07] state that AquaLog was aimed to be built as a portable system tar-

geted to the Semantic Web. Therefore, its developers chose to build an interface for

querying ontology taxonomy, types, properties and instances, i.e. structures which

are almost universal in Semantic Web ontologies. The assumptions AquaLog makes

about the format of semantic information it handles leads to a balance between porta-

bility and reasoning power.

Thus, AquaLog can not reason with ontology peculiarities, such as the restrictions

in the pizza ontology, and is therefore not fully qualified to meet our requirements.

Fortunately, there is a way to make AquaLog understand this very peculiarities,

namely we can reason about these restrictions so that new statements in the form

of <subject, predicate, object> can be inferred and added to the knowledge base.

The tool which enables us to fulfil this task is the already mentioned SwiftOWLIM.

5.3.2 Enhancing reasoning capabilities

OWLIM is a high-performance semantic repository, implemented in Java and pack-

aged as a Storage and Inference Layer (SAIL) for the Sesame RDF database (we

will explain SAIL in section 5.3.2.2) [Onto07]. It is based on TRREE - a native

rule entailment engine. The supported semantics can be configured through rule-set

57

Design and Adaptation 5.3. The Triple Approach Problem

definition and selection. Custom rule-sets allow tuning for optimal performance and

expressivity. We will further discuss the adjustment of rule-sets in section 5.4.

OWLIM is available in two versions:

• SwiftOWLIM

Performs reasoning and query evaluation in-memory, while a reliable persis-

tence strategy assures data preservation, consistency, and integrity. As stated

in [Onto07], SwiftOWLIM is the fastest RDF(S) and OWL engine.

• BigOWLIM

Operates directly with binary persistence files, which allows it to scale to

billions of statements. BigOWLIM is the only engine proven to support non-

trivial OWL inference against 3 Billion triples [Onto07].

We use SwiftOWLIM, since it is an open-source library, published under the LGP

License10. It perfectly matches the needs we face in this work. BigOWLIM on the

other hand is available under an RDBMS-like commercial licence on a per-server-

CPU basis, and is neither free nor open-source.

In this section we already introduced the term semantic repository, which refers to

a system for storage, querying, and management of structured data with respect

to ontologies. Semantic repositories can be used as a replacement for the DBMS,

offering easier integration of diverse data and more analytical power. In a nutshell,

a semantic repository can dynamically interpret metadata schemata (e.g. RDF(S)

files) and ontologies (such as the ones modelled in OWL), which define the structure

and the semantics related to the data and the queries. Compared to the approach

taken in the relational DBMS, this allows for easier changes to and combinations of

data schemata, and for automated interpretation of the data.

5.3.2.1 TRREE Engine

TRREE11 stands for Triple Reasoning and Rule Entailment Engine. It is imple-

mented in Java and performs reasoning based on forward-chaining of entailment

rules over RDF triple patterns with variables [Onto07]. TRREE’s reasoning stra-

tegy is total materialisation. For further explanation of this strategy, please refer to

Appendix C.

TRREE can be configured via so-called ”rule-sets”, which are basically sets of ax-

iomatic triples and entailment rules determining the supported semantics. The ver-

sion of TRREE used in SwiftOWLIM performs reasoning and query evaluation in-

memory, which means that the full content of the repository is loaded and maintained

in a proprietary representation in the main memory, allowing for rapid retrieval.

10The GNU Lesser General Public License, http://www.gnu.org/copyleft/lesser.html
11http://www.ontotext.com/trree/

58

http://www.gnu.org/copyleft/lesser.html
http://www.ontotext.com/trree/

Design and Adaptation 5.3. The Triple Approach Problem

The TRREE rule compiler became part of the SwiftOWLIM Version 2.8.4 distri-

bution (in this work we are using version 2.9.1), which allows the usage of custom

rule-sets for inference. This way one can specify semantics which best fit the con-

crete application in terms of expressivity and performance. In the next chapter, we

will further concentrate on the custom rule-sets.

As one can see in figure 5.1, a query sent to Sesame (via the Answer Engine) is

forwarded to Sesame’s SAIL API (which has a complete understanding of the storage

model). The SAIL API then asks the OWLIM plug-in to forward the semantics of its

request to the TRREE engine which, finally, executes the query and reasons about

the knowledge base (or ontology).

Originally, AquaLog uses its own ”Interpreter” which is interconnected between the

Answer Engine and the Ontologies Knowledge Bases (see section 3 of [LUMP07]).

But as we have shown, the expressivity and reasoning capabilities of this inter-

preter are very limited because of the close collaboration with the Sesame framework

(through its Sesame plug-in) which only supports RDF(S) inferencing. Hence, we

extended the reasoning capabilities by interconnecting the OWLIM plug-in, which

supports reasoning for OWL files as well and allows for customisation of rule-set

files to extend the expressivity of the reasoner.

5.3.2.2 The SAIL API

For persistent storage of RDF data, Sesame needs a scalable repository. At first,

a Data Base Management System (DBMS) may come to mind, as these have been

used for decades for storing large quantities of data. Since a variety of different

DBMS have been developed over the last couple of decades, and it is impossible to

know which way of storing the data is best fitted for which DBMS or which appli-

cation domain, the Sesame architecture is built to keep itself DBMS-independent

by concentrating all DBMS-specific code in a single architectural layer of Sesame:

the Storage and Inference Layer (SAIL). Any particular SAIL implementation has

a complete understanding of the storage model (e.g. the database schema in the

case of an RDBMS). This SAIL is an application programming interface (API) that

offers RDF-specific methods (for instance, methods for querying class and property

subsumption, and domain and range restrictions) to its clients and translates these

methods to calls to its specific DBMS.

But the data does not necessarily have to be stored in a DBMS. When setting up

the Sesame server, some pre-configured SAILs are already installed and ready to

use, e.g. SAILs for storing data in memory, or in files. SAIL implementations can

also be stacked on top of each other, to provide functionality such as caching or

concurrent access handling.

In our case, we are strongly interested in repositories which support inferencing.

Hence, when setting up Sesame with its SAILs delivered by default, it would be the

best to choose the MySQL SAIL which supports inferencing in contrast to native or

in memory repositories.

59

Design and Adaptation 5.4. Custom Rule-Sets

However, as we already pointed out, the MySQL SAIL (used by AquaLog in its stan-

dard settings) has some inferencing restrictions which hinder us to get all the infor-

mation we want from an OWL file (Sesame supports inferencing for RDF Schema,

not for OWL). Remembering the introductory part, we mentioned that we have been

delivered a parameter ontology by a prior work [Zalt08], and this parameter ontology

is modelled using the OWL language. The solution to this problem is SwiftOWLIM,

which is basically another SAIL and supports inferencing on OWL-files.

5.4 Custom Rule-Sets

As introduced in section 5.3.2, SwiftOWLIM is a high-performance semantic reposi-

tory and based on the native rule entailment engine TRREE. Custom rule-sets (sets

of axiomatic triples and entailment rules) allow tuning for optimal performance and

expressivity and determine the supported semantics. It is now time to go into more

detail and have a look at the rule language used by the TRREE engine, since we

will create our own rules to enable AquaLog to handle restrictions.

A rule-set file basically consists of three major parts: Prefices, Axioms and Rules.

These sections, which must appear in exactly this ordering, are each enclosed in

curly braces { and }. Only the Rules section is mandatory.

• Prefices

The prefices of the common namespaces, such as the one for rdf, rdfs or owl,

are defined here. Each pair of prefix/namespace should appear on a separate

line. These defined prefices can later on be used in the Axioms and Rules

section for qualifying resources with their local name only.

• Axioms

This section encloses a set of axiomatic triples to be asserted by default into

the repository. They are usually used to describe the meta-level primitives

which define the schema, such as rdf:type or rdfs:Class. Each line consists of

exactly three node names, enclosed in < and > symbols and delimited by a

white-space.

• Rules

This is the most interesting and important part of the rule-set file. A rule is

defined via one ore more premises and one or more corollaries, each defined

via subject, predicate and object components. For these components, the user

can either use a variable (single Latin letter that is not enclosed in < and

>), a full URI or its short name (formed by a prefix as it was defined in the

Prefices section, followed by ’:’ and its local name). Each triple component

should be as well enclosed in < and > symbols (except the variables). Every

rule obligatory starts with an ID which should appear in the beginning of a

new line just after the ID: constant.

60

Design and Adaptation 5.4. Custom Rule-Sets

Each premise and corollary can be restricted via a constraint, stating that the

value of one or more variables in the statement must not be equal to some

specific full URI (or its short name) or to the value that is bound to another

variable from the same rule. The left-hand side argument must be a variable,

while the right-hand side value can be either a variable, a short name or a full

URI. Constraints start with the Constraint constant, are delimited by comma

and enclosed in [and] symbols. The premises and corollaries are delimited by

a single line consisting of one ore more - symbols.

The listing A.1 in Appendix A gives an impression on how such a rule-set file might

look like.

A user who wants to utilise SwiftOWLIM does not have to create a complete rule-set

file by his own, there are in fact some pre-defined rule-sets which come along with a

respective distribution of SwiftOWLIM.

5.4.1 Semantics Supported by Default

The complexity, and thus the speed, of the inference can vary considerably across

different rule-sets. The already mentioned pre-defined rule-sets are properly nested

in each other regarding inference power. These rule-sets are identified by names and

listed here in increasing expressivity order.

• empty

No sort of reasoning, i.e. OWLIM acts as a plain RDF store.

• rdfs

Support for the standard model theoretic RDFS semantics.

• owl-horst

OWL dialect close to OWL horst. For further explanation of OWL horst, refer

to [Onto07].

• owl-max

A combination of most of the semantics of OWL Lite in combination with full

compatibility with (support for) RDFS.

The most interesting and richest rule-set in this list is owl-max, which we will use

as a starting point to create our own rule-set. Many OWL primitives used widely

in ontologies on the Semantic Web are supported, for instance: SymmetricProp-

erty, TransitiveProperty, equivalentClass, sameAs, FunctionalProperty, allValues-

From, someValuesFrom, unionOf, differentFrom, Thing and many more.

OWLIM has an internal rule compiler that is used to configure TRREE with our

custom set of inference rules and axioms. In order to get SwiftOWLIM to use

our custom rule-set, we have to modify the mentioned owl-max rule-set - which is

61

Design and Adaptation 5.4. Custom Rule-Sets

basically a text file with the extension .pie - and specify the rule-set to use via the

ruleset configuration parameter of the SAIL. The file will then be processed and its

respective ”inferences” will be generated and compiled.

The next chapter will clarify how exactly a SAIL in Sesame is to be configured

and what parameters we have to set in order to get AquaLog working properly in

the sense that it will use our custom rule-set and therefore be able to understand

restrictions modelled in OWL.

62

”In theory there is no difference between theory and practice. In practice, there is.”

- Bruce Schneier

6
Implementation

This chapter will describe all necessary steps which need to be done to get our archi-

tecture up and running. We will explain how to configure the aforementioned tools,

what parameters we have to set, how the AquaLog system needs to be adjusted,

and, most importantly, how exactly the custom rule-set file will look like, enabling

us to query any ontology we want.

6.1 SwiftOWLIM SAIL Configuration

As discussed earlier, OWLIM is a specific plug-in (namely, a Storage And Inference

Layer) for Sesame. To configure, run, and use OWLIM means to do so for a specific

configuration of Sesame. There are numerous parameters which can be adjusted

when using SwiftOWLIM. The table shown in Appendix B lists all these parameters

together with a short description of their usage.

The parameters can be set via a very intuitive Sesame GUI, as shown in figure 6.1,

and are finally stored in a configuration file named system.conf, which is located

in the WEB-INF folder of the Sesame application. Remember that Sesame is run-

ning in a Tomcat servlet container and therefore the Sesame files are located in the

webapps folder of Tomcat. For more information on how to install and configure

SwiftOWLIM either in embedded mode (as a library, invoked in the same process as

the application using it; this is the case here) or via remote access (running as a

standalone server in a separate process, communication via RMI calls), please refer

to section 7 of [Onto07].

63

Implementation 6.1. SwiftOWLIM SAIL Configuration

Figure 6.1: Configuration of the SAIL stack for the SwiftOWLIM SAIL

1 <repository id=’pizza -owlim’>

2 <title>Pizza - OWLIM</title>

3 <sailstack >

4 <sail class=’org.openrdf.sesame.sailimpl.

OWLIMSchemaRepository ’>

5 <param name=’imports ’ value=’/Library/Tomcat/Home/

webapps/sesame/SwiftOWLIM/ontologies/owl.rdfs;/

Library/Tomcat/Home/webapps/sesame/SwiftOWLIM/

ontologies/pizza.owl’/>

6 <param name=’partialRDFS ’ value=’true’/>

7 <param name=’dataFormat ’ value=’rdfxml ’/>

8 <param name=’transitive ’ value=’true’/>

9 <param name=’file’ value=’/Library/Tomcat/Home/webapps/

sesame/SwiftOWLIM/persistfiles/pizza_kb.rdf’/>

10 <param name=’ruleset ’ value=’/Library/Tomcat/Home/

webapps/sesame/SwiftOWLIM/rulefiles/owl -max -pizza’/>

11 <param name=’baseURL ’ value=’http://www.co -ode.org/

ontologies/pizza/pizza.owl#’/>

12 <param name=’newTriplesFile ’ value=’/Library/Tomcat/

Home/webapps/sesame/SwiftOWLIM/persistfiles/new -temp

-triples.nt’/>

13 <param name=’defaultNS ’ value=’http://www.w3.org

/2002/07/ owl#;http://www.co-ode.org/ontologies/pizza

/2005/05/16/ pizza.owl#’/>

14 </sail>

15 </sailstack >

16 <acl worldReadable=’true’ worldWriteable=’false’/>

17 </repository >

Listing 6.1: Configuration of the SAIL stack for SwiftOWLIM

64

Implementation 6.2. Performance Optimisation Parameters

An example <repository> section that may appear in the system.conf configu-

ration file of Sesame is depicted in listing 6.1 (reflects settings depicted in figure

6.1).

A further understanding of the used parameters is given by looking at the detailed

description in Appendix B. However, two of those parameters should be considered

in more detail since they affect the compilation of our custom rule-set and thus the

compilation of the inferencers: partialRDFS and transitive.

6.2 Performance Optimisation Parameters

As [Onto07] states, there are several features in the specification of RDF(S) and

OWL that cause the performance of a reasoning engine to decrease significantly

because of ”inefficient” entailment rules and axioms. Examples are as follows:

• The statement <?X, rdf:type, rdfs:Resource> is true for each URI node

in any given RDF graph. Every URI node is a resource, and the engine should

be able to entail and check this.

• All OWL classes are sub-classes of owl:Thing, thus the statement <?X, rdf:type,

owl:Thing> applies for all individuals.

• The system should be able to infer that resources are classes and properties if

they appear in schema-defining statements like <?X, rdfs:subClassOf, ?Y>.

Although these listed inferences are correct and important for the completeness of

the formal semantics, they have a negative impact on the performance which may

not be justified considering their utility in controlled environments. For instance,

usually RDF schema and OWL ontologies are formalised so that their classes are

explicitly introduced as instances of rdfs:Class or owl:Class. If this is the case,

then the entailment of <C, rdf:type, rdfs:Class> each time when an instance of

the class is defined by <I, rdf:type, C> is redundant.

The partialRDFS1 parameter of OWLIM allows for switching on and off the use

of rule-sets which are ”optimised” in the sense that they do not contain the above

mentioned inefficient axioms and rules.

The second parameter we have to mention is transitive.

If this parameter is set to true, the rule with the ID owl_invOf is excluded.

TRREE’s rule-compiler uses a single rule-set file to generate four different infer-

encers, corresponding to the combinations of the values of these two parameters.

Note, however, that some RDF(S) resources are to be mentioned within an axiom or

a rule for the TRREE engine to work properly. These are rdf:type, rdfs:range,

1The name reflects earlier versions when there were only RDFS ”optimisations”. Since version
2.9.1 (which we use) of SwiftOWLIM similar optimisations are introduced also in the OWL support.

65

Implementation 6.3. Custom Rule-Set Creation

rdfs:domain, rdfs:subClassOf, rdfs:Class and rdfs:subPropertyOf.

The next section will explain how exactly we customise our rule-set and create our

own rule to enrich the semantic support and make our system an even more sophis-

ticated question answering machine.

6.3 Custom Rule-Set Creation

In section 5.4, we were introducing the basic assembly of a rule-set file, which com-

prises a prefices-, axioms-, and rules-part. Our new rule will be placed into this last

part and compiled by the TRREE engine to infer new statements and add them to

the knowledge base. This rule, which we call owl_relationFromRestriction, is

presented in listing 6.4. But before we explain the idea of this rule, we first have to

take a look at a rule which already exists in the owl-max rule-set file and by means

of which we will clarify the difference between instances and classes. This is impor-

tant to understand, otherwise one might run into problems when troubleshooting

his own rule.

The rule we are talking about is called owl_typeBySomeVal, illustrated in listing 6.2.

1 Id: owl_typeBySomeVal

2 // Support for restrictions owl:onProperty of type

3 // owl:someValuesFrom. The support is limited to the

4 // inference of a restriction membership for nodes related

5 // to other nodes (values) of the corresponding class

6 // through the restricted property.

7

8 q <rdf:type > c

9 r <owl:someValuesFrom > c

10 r <owl:onProperty > p

11 i p q

12 -------------------------------

13 i <rdf:type > r

Listing 6.2: Rule supporting restrictions owl:onProperty of type

owl:someValuesFrom

This rule infers class membership2 i to the restriction r for all nodes which are used

as subjects of a statement (<i, p, q>) in which these subjects are linked to objects

q - which are members of class c (the someValuesFrom argument) - via a property

p (onProperty argument) such as the one used in the restriction r.

OWLIM does nothing to close the semantics in the opposite direction, e.g. it does

not try to entail anything for the explicit members of the restriction. This means

that it does not try to ensure or assert a fictive relation so that there exists such a

relation between the instance which is member of the restriction and some instance

of the class c.

2Note that rdf:type is used to define an instance of a certain class.

66

Implementation 6.3. Custom Rule-Set Creation

Having this in mind and looking at the Margherita definition in the pizza ontology,

we now suggest the following:

First of all, we have to introduce a new property called pizza:relatedTo, which is

to be used to ’propagate’ the meaning of hasTopping, hasSpiciness and hasBase

from the realm of instances to the realm of classes. This means that we have to add

these statements:

• <pizza:hasBase, pizza:relatedTo, pizza:useBase>

• <pizza:hasTopping, pizza:relatedTo, pizza:useTopping>

• <pizza:hasSpiciness, pizza:relatedTo, pizza:useSpiciness>

The pizza ontology file should therefore be modified in the following way:

1 ...

2

3 <owl:ObjectProperty rdf:about="#hasBase">

4 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

5 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

6 <rdfs:subPropertyOf rdf:resource="#hasIngredient"/>

7 <rdfs:range rdf:resource="#PizzaBase"/>

8 <rdfs:domain rdf:resource="#Pizza"/>

9 <owl:inverseOf rdf:resource="#isBaseOf"/>

10

11 <pizza:relatedTo rdf:resource ="# useBase"/>

12

13 </owl:ObjectProperty >

14

15 <owl:ObjectProperty rdf:about="#hasSpiciness">

16 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

17 <rdfs:range rdf:resource="#Spiciness"/>

18 <rdfs:comment xml:lang="en">A property created to be used with

the ValuePartition - Spiciness.</rdfs:comment >

19

20 <pizza:relatedTo rdf:resource ="# useSpiciness "/>

21

22 </owl:ObjectProperty >

23

24 <owl:ObjectProperty rdf:about="#hasTopping">

25 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

26 <rdfs:comment xml:lang="en">Note that hasTopping is inverse

functional because isToppingOf is functional </rdfs:comment >

27 <rdfs:domain rdf:resource="#Pizza"/>

28 <rdfs:subPropertyOf rdf:resource="#hasIngredient"/>

29 <rdfs:range rdf:resource="#PizzaTopping"/>

30 <owl:inverseOf rdf:resource="#isToppingOf"/>

31

32 <pizza:relatedTo rdf:resource ="# useTopping "/>

33

34 </owl:ObjectProperty >

67

Implementation 6.3. Custom Rule-Set Creation

35

36 ...

37

38 <!-- http://www.co -ode.org/ontologies/pizza/pizza.owl#relatedTo

-->

39 <pizza:Property rdf:about="#relatedTo">

40 <rdfs:label xml:lang="pt">A property that relates one

ObjectProperty to another (in pizza ontology)</rdfs:label >

41 </pizza:Property >

42

43 <!-- http://www.co -ode.org/ontologies/pizza/pizza.owl#useBase -->

44 <owl:ObjectProperty rdf:about="#useBase">

45 </owl:ObjectProperty >

46

47 <!-- http://www.co -ode.org/ontologies/pizza/pizza.owl#

useIngredient -->

48 <owl:ObjectProperty rdf:about="#useIngredient">

49 </owl:ObjectProperty >

50

51 <!-- http://www.co -ode.org/ontologies/pizza/pizza.owl#useSpiciness

-->

52 <owl:ObjectProperty rdf:about="#useSpiciness">

53 </owl:ObjectProperty >

54

55 <!-- http://www.co -ode.org/ontologies/pizza/pizza.owl#useTopping

-->

56 <owl:ObjectProperty rdf:about="#useTopping">

57 </owl:ObjectProperty >

58

59 ...

Listing 6.3: Modification the the pizza ontology file

Secondly, we need to create a rule which asserts the related relation instead of the one

used in the restriction definition (because that is actually used between instances,

as we just explained). This rule is the one illustrated in listing 6.4.

1 Id: owl_relationFromRestriction

2 a <rdfs:subClassOf > r [Constraint a != r]

3 r <rdf:type > <owl:Restriction >

4 r <owl:onProperty > p

5 p <pizza:relatedTo > q

6 p <rdf:type > <owl:ObjectProperty >

7 r <owl:someValuesFrom > c

8 -------------

9 a q c

Listing 6.4: Rule handling restrictions

It would be best for the reader to again take a look at listing 5.1 (the RDF serialisa-

tion of the Margherita pizza description) in order to properly follow and understand

the assembly of this rule. The rule is to be interpreted in the following way:

68

Implementation 6.3. Custom Rule-Set Creation

We are looking for classes a which are subclasses of a restriction r (where a and r

may not be equal3). This restriction restricts some class to a class c via an object

property p, which is in turn related to a property q.

We can test our results right away using the Sesame Web-GUI and typing in the

following SeRQL query4:

1 select pizza:Margherita , P, T

2 from {pizza:Margherita} P {T},

3 {Q} pizza:relatedTo {P}

4 using namespace

5 rdfs = <http://www.w3.org /2000/01/rdf -schema#>,

6 rdf = <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>,

7 pizza = <http://www.co-ode.org/ontologies/pizza/pizza.owl#>,

8 owl = <http://www.w3.org /2002/07/ owl#>

Listing 6.5: SeRQL query to verify the success of the new rule

Figure 6.2 shows the query results before applying the new rule, figure 6.3 illustrates

our results after applying it.

Figure 6.2: SeRQL query results before application of OWLIM rule

As we can see in figure 6.3, new statements have been inferred from the restrictions,

which have been added to the knowledgebase and would never have been asserted

without the help of the rule created using SwiftOWLIM.

3In RDF, every class is sub-class of its own.
4Please refer to the online documentation available under http://openrdf.org/doc/sesame/

users/userguide.html#chapter-serql to comprehend the syntax of SeRQL.

69

http://openrdf.org/doc/sesame/users/userguide.html#chapter-serql
http://openrdf.org/doc/sesame/users/userguide.html#chapter-serql

Implementation 6.3. Custom Rule-Set Creation

Figure 6.3: SeRQL query results after application of OWLIM rule

70

Implementation 6.3. Custom Rule-Set Creation

The next step would be to test if the new inferred statements are recognised by

AquaLog. Therefore, we ask the query engine one more time the same question,

namley ”what is topping of margherita”. Surprisingly, we again did not get the ex-

pected answer in the form of a list of pizza toppings belonging to the Margherita

pizza. Instead, we receive the same (error) message as last time. Having insured

ourselves one more time that the new statements are added to the knowledgebase

(see figure 6.3), we remember that the new statement uses the object property use-

Topping (and useSpiciness, useBase, respectively) instead of hasTopping. Thus, we

adjust our ontology in the way that useTopping is in the list of equivalent object

properties of hasTopping, making it an inverse property of isTopping as well.

Unfortunately, there seems to be a bug in the AquaLog system, causing it to fail at

startup after having applied our changes by saving the ontology and hitting the ”Send

configuration to server button” in the SAIL configuration GUI of Sesame. The error

message informed us about a java.lang.OutOfMemoryError: Java heap space

error.

We should mention at this point, that there is not a final release of AquaLog de-

clared as stable. Although it is open-source and the developers officially stopped the

development process, we discovered numerous bugs during our usage. This might as

well be another bug not yet discovered by the developers of AquaLog.

One of these bugs, for instance, concerns the ontology view delivered with the Web

user interface of AquaLog. Depending on the kind of ontology used, the SeRQL-

query that is responsible for the buildup of the hierarchical view of the ontology

needs to be changed. The query used in AquaLog by default and our adaption is

illustrated in the following listing.

1 // The original query - we call it Query 1

2 select distinct sc

3 from {sc} serql:directSubClassOf

4 {<http://www.w3.org /2000/01/rdf -schema#Resource >}

5 where not sc =<http://www.w3.org /2000/01/rdf -schema#Resource >

6 and isURI(sc)

7 and not namespace(sc) like "http://www.w3.org*"

8

9 //The query used for the pizza ontology - we call it Query 2

10 select distinct sc

11 from {sc} serql:directSubClassOf

12 {<http://www.w3.org /2002/07/ owl#Thing>}

13 where not sc =<http://www.w3.org /2002/07/ owl#Thing>

14 and isURI(sc)

Listing 6.6: SeRQL query to find out the root classes of an ontology

The major difference is, that when using an OWL ontology, we obviously should

query for Thing, since all OWL classes are sub-classes of owl:Thing, and not Re-

source.

When using an OWLIM SAIL, we also have to consider the setting of the parameter

71

Implementation 6.4. Problems with SeRQL-Directives

partialRDFS. We elaborated on this parameter earlier in section 6.2. A summary

of our results is given in the following list:

• Query 1 used with partialRDFS set to true

The only class which is listed is the class Property.

• Query 1 used with partialRDFS set to false

The only class which is listed is the class Nothing.

• Query 2 used with partialRDFS set to true

The correct hierarchical view is listed, as illustrated in figure 6.4.

• Query 2 used with partialRDFS set to false

The only class which is listed is the class Nothing.

Figure 6.4: Hierarchical view of the pizza ontology in AquaLog

Note that during initialisation of AquaLog, the process of creating this hierarchical

view takes place. After the view has been created, it is saved as a text file in

the descriptions folder of the AquaLog application (which resides in the Tomcat

webapps folder), named after the respective ontology name. If this file already exists,

AquaLog reads this file and does not create it again in order to save start-up time.

There is one more peculiarity of OWL files we have to mention and which deals

with a correct depiction of the ontology hierarchy in the AquaLog ontology viewer.

This peculiarity has to do with the OWL construct equivalentClass, which we

will discuss in the next section.

6.4 Problems with SeRQL-Directives

The Java class contained in the AquaLog system, which serves as an interface for

the Sesame framework, is called SesamePlugin.java. All methods and functions

which deal with data read from or written to a Sesame repository are placed in here.

The MySQL SAIL, which is one of the few SAILs delivered with a SwiftOWLIM

distribution that is capable of RDF(S) inferencing (and which we first used to ask

questions against the pizza ontology), is not able to find classes modelled as equiv-

alentClass, but only if these equivalent classes are not explicitly modelled as a

72

Implementation 6.4. Problems with SeRQL-Directives

sub-class of another class (which is most of the time the case in the pizza ontology).

This means, if there is a class modelled as an equivalent class and also has a ”

<rdfs:subClassOf ...>” statement, then this SAIL can find it, otherwise not.

For instance, the following query was not able to find the classes MeatyPizza, In-

terestingPizza, CheeseyPizza and so on, which are modelled as sub-classes of

class Pizza.

1 select distinct p

2 from {p} rdfs:subClassOf {<http://www.co-ode.org/ontologies/pizza

/2005/05/16/ pizza.owl#Pizza>}

3 where isURI(p)

Listing 6.7: SeRQL query to find sub-classes of class Pizza

This seemed odd at first, then we figured, that the MySQL SAIL is only a RDF(S)

inferencer, but the equivalency is an OWL language construct. Hence, this SAIL

can not understand this construct and ignores it (as well as the class itself).

The SwiftOWLIM SAIL, on the other hand, is able to do OWL inferencing and

thus recognises MeatyPizza, InterestingPizza, etc. as sub-classes of class Pizza.

BUT: The SwiftOWLIM SAIL can not recognise these equivalent classes as di-

rect sub-classes of class Pizza, because then premise 1) and 2) of the definition

of serql:directSubClassOf are violated. There are three so-called directives in

SeRQL. Please refer to the online documentation of SeRQL5 to follow this argumen-

tation.

X serql:directSubClassOf Y. This relation holds for every X and Y where:

1) X rdfs:subClassOf Y

2) X != Y

3) There is no class Z (Z != Y and Z != X) such that X rdfs:subClassOf Z and Z

rdfs:subClassOf Y

Thus, equivalent classes can not be found because they are always sub-class of their

own and their equivalent classes (-> X = Y).

For that reason, we have been thinking about a suitable and working query which

substitutes the serql:directSubClassOf directive. Then we changed the Java code

at the according location in SesamePlugin.java (the method is called GetDirect-

SubClasses()), as illustrated in listing 6.8.

1 ...

2

3 /*serql="select distinct c,l " +

4 "from {c} serql:directSubClassOf {<"+concept+">}, [{c}

rdfs:label {l}] " +

5 "where isURI(c) and not c =<"+concept+">";*/

6

7 serql="select distinct c " +

5http://openrdf.org/doc/sesame/users/userguide.html#chapter-serql

73

http://openrdf.org/doc/sesame/users/userguide.html#chapter-serql

Implementation 6.4. Problems with SeRQL-Directives

8 "from {c} rdfs:subClassOf {<" + concept + ">} " +

9 "where isURI(c) and not c=<" + concept + "> " +

10 "minus " +

11 "select distinct c " +

12 "from {c} rdfs:subClassOf {c2} rdfs:subClassOf {<" + concept

+ ">} " +

13 "where isURI(c) and

14 isURI(c2) and

15 not c2=<" + concept + "> and

16 not c=c2";

17

18 (... the rest stays the same)

Listing 6.8: SeRQL query to find the direct sub-classes of a certain class

With that SeRQL-query we managed to get a correct hierarchical class view in the

AquaLog ontology viewer.

Another SeRQL directive for which we had to find a substitution is serql:directType.

AquaLog uses this directive in its getInstances() method in SesamePlugin.java.

The change is illustrated in listing 6.9.

1 ...

2

3 /* serql="select distinct i,l " +

4 "from {i} serql:directType {<"+classURI+">}, [{i}

rdfs:label {l}] " +

5 "where isURI(i)"; */

6

7 serql="select i,l " +

8 "from {i} rdf:type {j} rdfs:subClassOf {<" + classURI + "

>}, [{i} rdfs:label {l}] " +

9 "where isURI(i) " +

10 "minus " +

11 "select i,j,l from {i} rdf:type {j} rdfs:subClassOf {<" +

classURI + " >}, [{i} rdfs:label {l}] " +

12 "where isURI(i) and j!=<" + classURI + ">";

13

14 (... the rest stays the same)

Listing 6.9: SeRQL query to find the instances of a certain class

The reason why the serql:directType directive is not working is again the OWL

language construct<owl:equivalentClass> (rule 2 is violated). With this new SeRQL-

query, all instances for each and every class can be found and AquaLog is fortunately

able to answer the query ”show me countries”, returning a list of all countries mod-

elled as instances of the class Country.

Recapitulatory, we can say that we were able to show that we can extend the ex-

pressiveness supported by Sesame (and, thus, AquaLog as well) with SwiftOWLIM,

to be more precise, with the rule-sets offered by SwiftOWLIM, and minor changes

74

Implementation 6.5. Applicability of the TEXO Ontology

to the AquaLog code. Any modelling aspect and peculiarity of an ontology not un-

derstood by Sesame because of its restriction to RDF(S) inferencing can be reasoned

about and hence, new statements can be asserted and added to the knowledgebase,

making it Sesame easier to handle this information. AquaLog is in principle able to

’see’ everything Sesame ’sees’. But due to several implementation bugs still existing

in the AquaLog system, it is not able to display this information right away. As-

sumptions made by AquaLog about the design of the underlying ontology are too

strict to handle any peculiarity, hence, reasoning power (offered by AquaLog from

scratch) is sacrificed to portability, as stated by Lopez et al. [LUMP07]. However,

as it turns out, the aimed portability is not reached by far as it takes a substantial

amount of time to figure out how to adjust AquaLog to ’understand’ an ontology

which is not modelled in the way its developers sought it to be.

However, there is an ontology which might meet the assumptions made by AquaLog

on the ontology design. The results of this diploma thesis are supposed to be utilised

in TEXO6, a BMWi7 funded project aiming at research in business webs in the

so-called Internet of Services. In the course of this project, a service ontology is

being developed, trying to capture amongst others service descriptions for so-called

EcoCalculator services, MaterialLookup services, and Monitoring services.

In the following section, we will test our question answering system against this

ontology.

6.5 Applicability of the TEXO Ontology

Figure 6.5 illustrates the status quo of the TEXO ontology as visualised by the tool

Protégé. The ontology is not very dense populated at the time of writing this thesis

because it is still under development. But we should be able to work with this

ontology since it is properly modelled in a way so that the assumptions made by

AquaLog over the design of ontologies are met.

We can see from the above figure that there are several members of the class Eco-

CalculatorServiceDescription (which is a sub-class of ServiceDescription),

namely eco-calculator, eco-it, ecochexx, and oekorechner. A closer look to

the member eco-calculator reveals that it is offeredBy cde_provider, obeys

eco-label-decree, is composedOf M, I, and MS, and obeys aus-eco-label-2007

(a fictive Australian eco certificate).

It would be interesting to see how well AquaLog can handle this ontology by asking

some meaningful questions. At first, we are pleased to see that the ontology viewer

of AquaLog correctly illustrates the ontological hierarchy. Then we ask the following

question: ”show me eco calculator service descriptions”, expecting the list of members

we can see in figure 6.5. Unfortunately, we receive the message ”There are not

instances or classes found in the ontology” from the system.

6http://theseus-programm.de/scenarios/de/texo
7http://www.bmwi.de

75

http://theseus-programm.de/scenarios/de/texo
http://www.bmwi.de

Implementation 6.5. Applicability of the TEXO Ontology

Figure 6.5: The TEXO ontology as illustrated by Protégé

Omitting the last word ”descriptions”, we then ask ”show me eco calculator services”,

resulting in the ontology triple <who/what is, eco-calculator, [DESCRIPTION]>

and the information about the member eco-calculator, as depicted in figure 6.6.

Figure 6.6: Information about the eco-calculator presented by AquaLog

76

Implementation 6.5. Applicability of the TEXO Ontology

Although this is not exactly what we asked for (we expected a list of all the mem-

bers of an eco calculator description), the system acted corretly since it identified

the term ”eco calculator services” as the ontology concept eco-calculator, which

is self-evident, and presents all information found about this concept.

The next question which came into our mind was ”who offers eco calculator ser-

vice”. This time, we get an error message from the Relation Similarity Service,

stating: ”There was an error while trying to match the instances (Name of the

class person in the configuration file for queries type -who- is not found in the on-

tology).” This message brings us to the idea of customising the configuration file

query_properties.xml (we will take a closer look at the configuration files in sec-

tion 6.6). Here we declare that the question term ”who” shall correspond to ”Ser-

viceProvicer” instead of ”Person”. After restarting AquaLog, we asked the same

question once more and sadly failed again to get a satisfying answer, as we can see

from figures 6.7 and 6.8.

Figure 6.7: Answer drawn from the TEXO ontology

Figure 6.8: Answer drawn from the TEXO ontology

Although the system was able to map the question term ”who” correctly to ”Ser-

viceProvider”, it was - for a reason we are not aware of - not able to return an

answer to a really obvious question. We were expecting to receive the answer,

that cde_provider (which is an instance of ServiceProvider) provides the eco-

calculator, because this is explicitly modelled in the ontology as illustrated in

figure 6.9.

As we can see from the various examples given in this and the previous sections,

there are still some problems with the AquaLog implementation, some of which are

obvious and can be sailed around, some of which are not comprehensible at the

moment. Nevertheless, we have demonstrated the great potential of our question

answering system, which is a combination of the AquaLog system and our extension

formed by the SwiftOWLIM plug-in and its modified rule-set file, respectively.

We will now have a closer look at the configuration files, since we already introduced

the use of the query_properties.xml file in this section.

77

Implementation 6.6. Customising Configuration Files

Figure 6.9: Information about the instance cde_provider

6.6 Customising Configuration Files

We have mentioned several times that AquaLog is a portable software system. Aqua-

Log allows for its customisation by editing configuration files in order to adapt it to

a new domain. The configuration parameters in these files are required to initialise

the AquaLog server. The two most important files are listed below:

• service properties.xml

Ontology name and server, login details if necessary and the name of the plug-

in can be configured here. Optionally, the main concepts of interest in an

ontology can be specified.

• query properties.xml

This file holds the ontology-dependent parameters which specify that the term

”who”, ”where”, ”when” corresponds, for example, to the ontology terms ”per-

son/organisation”, ”location”and ”time-position”, respectively. Remember sec-

tion 5.1.2, where we presented the exemplary question ”who is the secretary in

Knowledge Media Institute?” and showed that RSS was able to figure out that

who could be pointing to a ”person”. Those question indicators are used in the

set of annotations returned by GATE which was extended by the AquaLog

development team.

• database properties.xml

There is a database, called ”learningmechanismdb”, to automatically store the

learned user jargon in a lexicon through the learning mechanism. MySQL must

be installed. A script called ”script create LM tables.sql” needs to be run in

order to create the database and tables to be used by the learning mecha-

nism, which automatically updates the tables ”lexicon” and ”relations” (the

last one links the user to the lexicon vocabulary). The user log-in information

is stored in the table ”users”. If desired, one can manually update the table

”termlexicon” to add new vocabulary. The location of the database is specified

in database properties.xml (the default setting is: localhost=3306, user=root

with no password).

78

Implementation 6.6. Customising Configuration Files

The independence of the application from the ontology is guaranteed through the

first two configuration files.

There are other files which need adjustment in order to run the system on a cer-

tain machine (such as files stating the path to the AquaLog installation directory,

absolute path to the WordNet library, proxy settings, etc.), but those are system-

dependent parameters which we will not discuss. With every distribution of Aqua-

Log, there comes a ”Installation steps for AquaLog2 server.doc” document, guiding

the user through the setup process to get AquaLog up and running.

An example how a service properties.xml and a query properties.xml file might look

like is given in listings 6.10 and 6.11, respectively.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <CONFIGURATION >

4 <REPOSITORY >

5 <ONTOLOGY >pizza -owlim </ONTOLOGY >

6 <SERVER >http:// localhost:8080/sesame </SERVER >

7 <PORT>8080</PORT>

8 <PLUGIN_MANAGER >WEB -INF/aquaplugins/</PLUGIN_MANAGER >

9 <ONTOLOGY_PLUGIN >sesame </ONTOLOGY_PLUGIN >

10 <LOGIN>testuser </LOGIN>

11 <PASSWORD >sesame </PASSWORD >

12 <CONCEPTS ></CONCEPTS >

13 <PRETTY_NAMES ></PRETTY_NAMES >

14 <TYPE>OWL</TYPE>

15 </REPOSITORY >

16 </CONFIGURATION >

Listing 6.10: Example of a service properties.xml file

1 <?xml version="1.0" encoding="UTF -8"?>

2 <CONFIGURATION >

3 <WHO>person ,organization </WHO>

4 <WHERE>location </WHERE>

5 <WHEN>time -position </WHEN>

6 </CONFIGURATION >

Listing 6.11: Example of a query properties.xml file

Up to now, the pizza ontology and the TEXO ontology have been the only ontologies

we tested our question answering system against. But as we stated in the begin-

ning of our thesis, we actually want to test our system with a completely different

ontology, namely the one parameter ontology which served as a starting point for

our work. The applicability of this ontology to our question answering system will

therefore be discussed in the following section.

79

Implementation 6.7. Applicability of the Parameter Ontology

6.7 Applicability of the Parameter Ontology

In the beginning we introduced the overall goal of this work, which is to facilitate the

search for Web Services provided by SAP in its Enterprise Service Repository with

the help of semantic technologies. We explained that the descriptions of these Web

Services have been analysed in a prior work [Zalt08] to generate a service ontology for

the SAP domain. With the help of resources such as the SAP-own glossary SAPterm

and Business Object descriptions, a parameter ontology was created which served

as a starting point for our work.

After we extensively tested our question answering system with the pizza ontology

and examined the details of the part of the system belonging to AquaLog, we had

to unfortunately realise, that this parameter ontology will not work with our system

at all. The reason for this is the simple fact that not a single object property is

included in this ontology.

The ontology was automatically created with the help of the WSDL files of the

respective Web Services, describing what each and every Web Service is doing, the

Business Object descriptions, explaining what a certain Business Object is all about,

and the SAP-own glossary SAPterm, explaining every possible term related to the

SAP world. Out of these resources, a hierarchical parameter ontology has been

created, which indeed displays the hierarchy of SAPterms used in these Web Services,

but without relating these terms together via object properties.

Thus, our system will not be able to answer any meaningful question asked against

this ontology. Therefore, we assert that the parameter ontology has to be completely

redesigned for our question answering system to be able to generate appropriate

query triples and ontology triples and get reasonable answers in return. Generally,

we state that an ontology modelled without any object property does not make sense

at all and is useless for any question answering system allowing natural language

queries.

If we would have to categorise ontologies on the basis of their design, then we would

propose three different categories:

• Ontologies which are strictly modelled in the three-terms way <subject, pred-

icate, object>. For every class modelled in the ontology, there is another class

related to it via an object property (the predicate).

• Ontologies using restrictions, such as the pizza or wine ontology. These kind

of ontologies use restrictions in the form of anonymous superclasses.

• Ontologies which do not use object properties at all.

We want to emphasise that this list is not an official categorisation proposed by any

committee, but our own experience during this thesis. This brings us back to section

3.11, where we already discussed different quality measures of ontology design.

80

7
Summary and Conclusions

In this thesis we presented an approach to search for semantically enhanced data

with the help a question answering tool named AquaLog and a semantic repository

named SwiftOWLIM. The combination of these tools results in a software system

which seems to be very powerful, but has its limitations as well.

On the one hand, it is able to accept questions formulated in natural language

and make sense out of these query terms by applying natural language processing

resources and trying to map query terms to concepts in an underlying ontology.

Furthermore, the AquaLog system claims to be portable in the sense that it allows

the user to choose an ontology and then ask queries with respect to the universe

of discourse covered by the ontology, while keeping configuration time required to

customise the system for a particular ontology to a minimum.

On the other hand, it makes assumptions on the design of ontologies which hinder the

question answering machine to deliver meaningful results when querying ontologies

with certain peculiarities not expected by AquaLog. The assumptions AquaLog

makes about the format of semantic information it handles is supposed to lead to

a balance between portability and reasoning power. However, we think that this

system is neither portable enough nor does it support enough reasoning power to

handle well-known ontologies such as the wide-spread pizza or wine ontology.

For this reason, we were doing further research to discover a solution which enhances

the reasoning power of AquaLog, while being easy to integrate in the existing system.

We then discovered SwiftOWLIM, a so-called semantic repository, which serves as a

plug-in for the Sesame framework. Since AquaLog uses a Sesame plug-in itself and is

relying on the expressivity of Sesame, we could enhance the overall expressivity of our

system by customising a so-called rule-set offered by SwiftOWLIM. With the help of

81

Summary and Conclusions

rules we are able to reason about almost any peculiarity of an ontology and therefore

assert new statements which are then added to the knowledgebase. This again

results in more meaningful results to questions formulated in natural language, thus,

enhancing our system to an even more sophisticated question answering machine.

We adducted several ontologies and tested their applicability to our question an-

swering machine, resulting in a discussion about the advantages and drawbacks of

our system concerning its ability to deliver meaningful results to simple questions

formulated in natural language.

82

8
Outlook

Throughout this work, we have mentioned starting points to further develop and

enhance our established solution of a sophisticated question answering machine.

First of all, we mentioned the JAPE grammars in section 5.1.1. JAPE is an ex-

pressive, regular expression based rule language offered by GATE. The Linguistic

Component of AquaLog relies on these grammars to recognise e.g. question terms

or intermediate representations of the query. One could extend the Linguistic Com-

ponent to increase AquaLog’s linguistic abilities by dealing with and creating new

JAPE grammar rules. This has a high potential to further enhance the expressivity

of our question answering system.

Secondly, the rule-set file is the central location to sail around the restrictions im-

posed by the AquaLog system. Any peculiarity of an ontology, which AquaLog

may not be able to handle, can be made ’understandable’, resulting in a higher

acceptance of this system when meaningful results to queries are delivered, which

otherwise could not be delivered.

Thirdly, the Sesame plug-in of AquaLog relies on the Sesame version 1.2.7. From

version 2.0 on, Sesame supports queries formulated in SPARQL-syntax. SPARQL is

a SQL-like query language similar to SeRQL, but more expressive. In order to adapt

our question answering system to Sesame 2.0, the SesamePlugin.java file would have

to be adapted to the new, completely redesigned API used by Sesame 2.0.

Last but not least, we have mentioned that AquaLog still seems to have some bugs

which causes the system not to work the way even an experienced user would expect

it to. During our work, the main architect of AquaLog, Vanessa Lopez, was more

than helpful when trying to understand the working mechanisms of this system. We

ourselves have discovered several bugs which have been fixed by Vanessa. She would

for sure be glad to get more feedback on her program and, thus, all the problems

83

Outlook

and bugs we were not able to solve due to the limited amount of time to write this

thesis could be solved by consulting her via e-mail, for instance.

In chapter 4, we were introducing another question answering tool named ORAKEL.

It would be interesting to analyse this tool as well and compare its reasoning capa-

bilities and user friendlyness to AquaLog. We could imagine a user study in which

a comparison between these tools is covered.

Furthermore, it would be interesting to see how well our question answering system

really works, if all bugs, which are still residing in the AquaLog system, are fixed

and the TEXO ontology is well developed. Again, a user study would be of big

interest, showing on the one side the real potential of our queston answering system,

and on the other side the level of user acceptance.

84

A
Appendix A

Listing A.1 gives an impression on how a basic rule-set used by the TRREE engine

could look like.

1 Prefices

2 {

3 rdf : http://www.w3.org /1999/02/22 -rdf -syntax -ns#

4 rdfs : http://www.w3.org /2000/01/rdf -schema#

5 owl : http://www.w3.org /2002/07/ owl#

6 xsd : http://www.w3.org /2001/ XMLSchema#

7 }

8

9 Axioms

10 {

11 // RDF axiomatic triples

12 <rdf:type > <rdf:type > <rdf:Property >

13 <rdf:subject > <rdf:type > <rdf:Property >

14 <rdf:predicate > <rdf:type > <rdf:Property >

15 <rdf:first > <rdf:type > <rdf:Property >

16 <rdf:rest > <rdf:type > <rdf:Property >

17 <rdf:nil > <rdf:type > <rdf:List >

18

19 // RDFS axiomatic triples

20 <rdf:type > <rdfs:domain > <rdfs:Resource >

21 <rdfs:domain > <rdfs:domain > <rdf:Property >

22 <rdfs:range > <rdfs:domain > <rdf:Property >

23 <rdfs:subPropertyOf > <rdfs:domain > <rdf:Property >

24 <rdfs:subClassOf > <rdfs:domain > <rdfs:Class >

25 <rdfs:label > <rdfs:domain > <rdfs:Resource >

26

27 // OWL trivial statements

85

Appendix A

28 <owl:sameAs > <rdf:type > <owl:TransitiveProperty >

29 <owl:sameAs > <rdf:type > <owl:SymmetricProperty >

30 <owl:inverseOf > <rdf:type > <owl:SymmetricProperty >

31 }

32

33 Rules

34 {

35 // This rule (Rule_Id) just serves as a template on

36 // how a rule would look like

37 ID: Rule_Id

38 < Premise #1 >

39 < Premise #2 >

40 ...

41 < Premise #n >

42 --------------

43 < Corollary #1 >

44 < Corollary #2 >

45 ...

46 < Corollary #n >

47

48 // A concrete rule

49 ID: rdfs_subMissesPropDomain

50 p <rdfs:subPropertyOf > q [Constraint p != q]

51 q <rdfs:domain > c

52 -------------------------------

53 p <rdfs:domain > c [Constraint p != q]

54

55 // Another concrete rule

56 Id: rdfs9

57 a <rdf:type > x

58 x <rdfs:subClassOf > y [Constraint x != y]

59 -------------------------------

60 a <rdf:type > y

61 }

Listing A.1: An example of a rule-set file

86

B
Appendix B

The OWLIM SAIL configuration parameters, with their default and allowed values,

together with a short description of each parameter [Onto07].

Name Default Allowed Values

file No default value Any valid file name

Specifies the NTriples (.NT) file, where the repository contents are

persisted (see [Onto07], section 3 for the persistency strategy and

the role of this file).

Example:

<param name="file" value="./kb/kb.nt"/>

dataFormat ntriples rdfxml, turtle, ntriples

Specifies the serialisation format for the main persist file.

Example:

<param name="dataFormat" value="ntriples"/>

compressFile No yes, no

Specifies whether a compression on the file will be used.

Example:

<param name="compressFile" value="no"/>

noPersist false false, true

87

Appendix B

Name Default Allowed Values

ruleset owl-horst owl-max, owl-horst, rdfs, empty

Specifies the set of axioms and entailment rules used for inference,

which determines the supported semantics. OWLIM is packaged

with four preconfigured sets, whose names are valid values of this

parameter. (See section 5.4.1 for further information)

Example:

<param name="ruleset" value="owl-max"/>

Note: If the value of this parameter does not match any of

the allowed values, then it is considered to be a filename of a

custom rule-set. The ’.pie’ extension is appended in case if not

present. Then, if such a file exists it is processed, compiled and

loaded dynamically so the TRREE engine can perform inference

based on the rules defined there.

partialRDFS true false, true

This parameter switches on (when set to true) and off few per-

formance ”optimisations” of the RDFS and OWL inference, as de-

scribed in section 6.2. Its purpose is to suspend part of the entail-

ments, which are useless for many datasets and applications, but

require considerable reasoning resources. This optimisation has no

effect when the ruleset parameter is set to empty.

indexSize 4.000.000 Limited by the memory available to the Java vir-

tual machine. Values lower than 100.000 are ig-

nored and the default one is used instead.

Controls the initial size of the primary triple index. Its default

value is convenient for repositories that hold approx. 5.000.000

explicit statements. One should alter this value in case that the

target size differs considerably. A smaller value of indexSize will

reduce the amount of memory used for the index, but such setting

will slow down the repository operation as the volume of the data

grows up. The amount of memory (in bytes) used for this index can

be calculated as 20*indexSize. With the default setting OWLIM

allocates 80MB of memory for its primary triple index.

Example:

<param name="indexSize" value="4000000"/>

newTriplesFile No default value Any valid file name

88

Appendix B

Name Default Allowed Values

The parameter specifies the name of a file where OWLIM tem-

porarily stores the new triples recently added to the repository.

It is used in case of abnormal termination, so that during the

initialisation its contents will be automatically added to the

repository right after the contents of the main persist file (see

parameter file). In case that OWLIM was properly shut down or

successfully synchronised with the main persist file, the contents

of the new-triples-file becomes superfluous, since each triple,

mentioned there, is already included in the main persist file. If

this parameter is omitted in the configuration of SAIL, the backup

strategy is set to off and the repository and the repository contents

will persist only in case the SAIL was properly shutdown. This

would happen if the repository shutdown() method is invoked.

Example:

<param name="new-triples-file" value="./kb/new-

triples.nt"/>

baseURL No default value Any valid URL

Specifies the default namespace for the main persist file. Non-empty

namespaces are recommended, because their use guarantees the

uniqueness of the anonymous nodes that may appear within the

repository.

Example:

<param name="baseURL"

value="http://www.ontotext.com/kim/2004/12/wkb#"/>

imports No default value Semicolon-delimited list of file names

A list of schema files which will be imported - all the statements

found in these files will be loaded in the repository and will be

treated as read-only. The serialisation format is assumed to be

RDFS/XML, unless the file has a .NT extension.

Example:

<param name="imports"

value="owl.rdfs;protons.owl;protont.owl"/>

defaultNS None Semicolon-delimited list of URLs. The number

and order should match this in the imports pa-

rameter.

Specifies the default namespaces for each of the imported files.

Example:

<param name="defaultNS" value="[namespaces list for

the imported files] "

89

Appendix B

Name Default Allowed Values

transitive false false, true

Switches ’on’ an experimental, backward-chaining based implemen-

tation for transitive, inverse and symmetric properties or combina-

tion of those. In this mode OWLIM is relatively slow, but allows for

handling of data which contain very long chains of resources con-

nected with transitive (or/and symmetric) properties or inverse of

such, thus avoiding materialisation of O(N2) statements that rep-

resent the whole transitive closure of such properties.

Note: The ”transitive” mode of TRREE is not thread safe, so the

basic multi-threading code introduced in this version of OWLIM

does not support it.

90

C
Appendix C

There are two principle strategies for rule-based inference, namely:

• Forward-chaining

Starting from the known facts (the explicit statements), inference is performed

in an inductive way. The goal is either to compute the inferred closure1, or

to infer a particular sort of knowledge (e.g. the class taxonomy) as well as to

answer a particular query.

• Backward-chaining

Starting from a particular fact or a query, it is geared towards its verification

as well as getting all possible results, using deductive reasoning. In a nutshell,

the reasoner decomposes (or transforms) the query (or the fact) into simpler

(or alternative) facts, which are available in the KB or can be proven through

further recursive transformations.

So, why are we mentioning these inference strategies? Well, a repository which

performs total forward-chaining tries to make sure that, after each update to the

KB, the inferred closure is computed and made available for query evaluation or

retrieval. This strategy is generally known as materialisation. An inference strategy

which follows this paradigm and also takes into account monotonic entailment2 is

1Inferred closure is defined as follows: A given KB (or a graph of RDF triples) is extended with
all the implicit facts (triples), which could be inferred from it, based on the enforced semantics.

2In case of monotonic logic, adding new explicit facts (statements) to the KB (repository) can
cause new implicit facts to extend its inferred closure. But facts which were part of the inferred
closure before must not be removed. In other words: addition of new facts can only monotonically
extend the inferred closure.

91

Appendix C

called total materialisation.

Total materialisation is adapted as a reasoning strategy in a number of popular Se-

mantic Web repositories, including some of the standard configurations of Sesame.

The TRREE engine - which we elaborated on in section 5.3.2.1 - uses total materi-

alisation.

92

Bibliography

[AG] SAP AG. SAP Glossary. http://help.sap.com/saphelp glossary/en/

index.htm.

[ApMe01] Naresh Apte und Toral Mehta. Web Services: A Java Developer’s Guide

Using e-Speak. Prentice-Hall. November 2001.

[Bern00] Tim Berners-Lee. Semantic Web Technology Stack. http://www.w3.

org/2000/Talks/1206-xml2k-tbl/slide10-0.html, 2000.

[BLHL01] Tim Berners-Lee, James Hendler und Ora Lassila. The Semantic Web.

Scientific American 284(5), 2001, S. 34–43.

[BrGu04] D. Brickley und R.V. Guha. RDF Vocabulary Description Language

1.0: RDF Schema. W3c working draft, W3C, February 2004.

[BrKa04] Jeen Broekstra und Arjohn Kampman. SeRQL: An RDF Query and

Transformation Language. Submitted to the International Semantic

Web Conference, ISWC, 2004.

[BrKH02] Jeen Broekstra, Arjohn Kampmann und Frank van Harmelen. Sesame:

A Generic Architecture for Storing and Querying RDF and RDF

Schema. ISWC 2002, 2002.

[Broe04] Tom Broens. Context-aware, Ontology based, Semantic Service Discov-

ery. Diplomarbeit, University of Twente, July 2004.

[BrPSM04] T. Bray, J. Paoli und C.M. Sperberg-McQueen. Extensible Markup

Language (XML) 1.0. Technischer Bericht, W3C, 2004.

[Cimi04] Philipp Cimiano. ORAKEL: A Natural Language Interface to an F-

Logic Knowledge Base. In Proceedings of the 9th International Con-

ference on Applications of Natural Language to Information Systems.

Springer, 2004, S. 401–406.

[Comm] UDDI Spec Technical Committee. UDDI Version 3.0.2. http://www.

uddi.org/pubs/uddi v3.htm.

[DoMa08] John Domingue und David Martin. Semantic Web Services. Presenta-

tion at the ISWC 2008, October 2008.

93

http://help.sap.com/saphelp_glossary/en/index.htm
http://help.sap.com/saphelp_glossary/en/index.htm
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
http://www.uddi.org/pubs/uddi_v3.htm
http://www.uddi.org/pubs/uddi_v3.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[En(O] Ontology Engineering und Patterns Task Force (OEP). Semantic Web

Best Practices and Deployment Working Group. http://www.w3.org/

2001/sw/BestPractices/OEP/.

[GATE] GATE - General Architecture for Text Engineering. http://gate.ac.uk/.

[GoGA08] Viji Gobal und N.S. Gowri GAnesh. Ontology Based Search Engine

Enhancer. IAENG International Journal of Computer Science Band

35:3, 2008.

[Grad08] Evaluating Semantic Web Service Matchmaking Effectiveness Based on

Graded Relevance. Technischer Bericht, Institute of Computer Science,

Friedrich-Schiller-University Jena, 2008.

[HBEV04] Peter Haase, Jeen Broekstra, Andreas Eberhart und Rapfael Volz. A

Comparison of RDF Query Languages. In 3rd International Semantic

Web Conference, 2004.

[HKRS+04] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens

und Chris Wroe. A Practical Guide To Building OWL Ontologies Using

The ProtÂ´egÂ´e-OWL Plugin and CO-ODE Tools. http://www.co-

ode.org/resources/tutorials/ProtegeOWLTutorial.pdf, August 2004.

[HKRS08] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph und York Sure.

Semantic Web. Springer. 2008.

[HLMS08] Martin Hepp, Pieter De Leenheer, Aldo de Moor und Yor Sure. Ontology

Management - Semantic Web, Semantic Web Services, and Business

Applications. Springer-Verlag Gmbh. 2008.

[Info05] InfoWorld.com. Microsoft, IBM, SAP discontinue UDDI registry ef-

fort. http://www.infoworld.com/article/05/12/16/HNuddishut 1.html,

December 2005.

[KüLKR07] Ulrich Küster, Holger Lausen und Brigitta König-Ries. Evaluation of

Semantic Service Discovery - A Survey and Directions for Future Re-

search. In WEWST, 2007.

[LeUM06] Yuangui Lei, Victoria Uren und Enrico Motta. SemSearch: A Search

Engine for the Semantic Web. In 3rd International Semantic Web Con-

ference, 2006.

[LiHo03] Lei Li und Ian Horrocks. A software framework for matchmaking based

on semantic web technology. In Twelfth International World Wide Web

Conference (WWW 2003), 2003.

[LUMP07] Vanessa Lopez, Victoria Uren, Enrico Motta und Michele Pasin. Aqua-

Log: An ontology-driven question answering system for organizational

semantic intranets. Journal of Web Semantics Band 5, 2007, S. 72–105.

94

http://www.w3.org/2001/sw/BestPractices/OEP/
http://www.w3.org/2001/sw/BestPractices/OEP/
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.infoworld.com/article/05/12/16/HNuddishut_1.html

BIBLIOGRAPHY BIBLIOGRAPHY

[Nais88] John Naisbitt. Megatrends: Ten New Directions Transforming Our

Lives. Grand Central Publishing. 1988.

[OASI] OASIS. OASIS: Advancing open standards for the global informa-

tion society. http://www.oasis-open.org/committees/tc home.php?wg

abbrev=uddi-spec.

[ODP] Ontology Design Patterns. http://ontologydesignpatterns.org.

[O’EH02] Justin O’Sullivan, David Edmond und Arthur H. M. ter Hofstede. Ser-

vice Description: A survey of the general nature of services, April 2002.

[Onto07] Ontotext. OWLIM - Semantic Repository for RDF(S) and

OWL. http://www.ontotext.com/owlim/OWLIMSysDoc.pdf, Septem-

ber 2007.

[PKCH05] Jyotishman Pathak, Neeraj Koul, Doina Caragea und Vasant G

Honavar. A Framework for Semantic Web Services Discovery. WIDM,

November 2005.

[PKPS02] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne und Katia

Sycara. Semantic Matching of Web Services Capabilities. In: First

International Semantic Web Conference (ISWC2002), 2002.

[RSNK+04] Alan Rector, Guus Schreiber, Natalya F. Noy, Holger Knublauch und

Mark A. Musen. Ontology Design Patterns and Problems: Prac-

tical Ontology Engineering using Protege-OWL. http://iswc2004.

semanticweb.org/CFParticipation/T2.html, 2004.

[RuNo95] S. Russel und P. Norvig. Artificial Intelligence - A Modern Approach.

Prentice-Hall. 1995.

[(see] Michal Zaremba (seekda!). The Fairytale of UDDI Registry and Public

Web Services. http://seekda.com/blog/the-fairytale-of-uddi-registry-

and-public-web-services/.

[StGA07] Rudi Studer, Stephan Grimm und Andreas Abecker. Semantic Web

Services Concepts, Technologies, and Applications. Springer-Verlag

Gmbh. May 2007.

[ThSN03] Uwe Thaden, Wolf Siberski und Wolfgang Nejdl. A Semantic Web based

Peer-to-Peer Service Registry Network. 2003.

[Toch] Eran Toch. OPOSSUM - A Web based search engine.

http://dori.technion.ac.il/.

[ToGa07] Eran Toch und Avigdor Gal. A Semantic Approach to Approximate

Service Retrieval. ACM Transactions on Internet Technology(Vol. 8,

No.1, Article 2), November 2007.

95

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec
http://ontologydesignpatterns.org
http://iswc2004.semanticweb.org/CFParticipation/T2.html
http://iswc2004.semanticweb.org/CFParticipation/T2.html
http://seekda.com/blog/the-fairytale-of-uddi-registry-and-public-web-services/
http://seekda.com/blog/the-fairytale-of-uddi-registry-and-public-web-services/

BIBLIOGRAPHY BIBLIOGRAPHY

[TsAH06] Vassileios Tsetsos, Christos Anagnostopoulos und Stathes Had-

jiefthymiades. On the evaluation of semantic web service matchmak-

ing systems. In 4th IEEE European Conference on Web Services

(ECOWS2006), 2006.

[VrSu07] Denny Vrandecic und York Sure. How to design better ontology met-

rics. In Proceedings of the 4th European Semantic Web Conference

(ESWC’07). Springer, 2007.

[W3Ca] W3C. SOAP Version 1.2. http://www.w3.org/TR/soap/.

[W3Cb] W3C. SPARQL Query Language for RDF. http://www.w3.org/TR/

rdf-sparql-query/.

[W3C01] W3C. Web Services Description Language (WSDL) 1.1. http://www.

w3.org/TR/wsdl# service, March 2001.

[W3C03] W3C. Web Services Architecture. http://www.w3.org/TR/2003/WD-

ws-arch-20030808/, August 2003.

[W3C04] W3C. OWL Web Ontology Language Reference. http://www.w3.org/

TR/owl-ref, 2004.

[Word] WordNet - a lexical database for the English language.

http://wordnet.princeton.edu/.

[Zalt08] Philipp Zaltenbach. Automatische Erstellung von semantischen

Beschreibungen für SAP Enterprise Services. Diplomarbeit, University

of Karlsruhe (TH), August 2008.

96

http://www.w3.org/TR/soap/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/wsdl#_service
http://www.w3.org/TR/wsdl#_service
http://www.w3.org/TR/2003/WD-ws-arch-20030808/
http://www.w3.org/TR/2003/WD-ws-arch-20030808/
http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/owl-ref

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Abbreviations
	List of Abbreviations
	1 Introduction
	1.1 Motivation, Goals and Approach
	1.2 Requirements
	1.3 Thesis Structure

	2 Current Web Technologies
	2.1 Web Services
	2.2 The Web Service Technology Stack
	2.3 WSDL
	2.4 UDDI

	3 Step into the Semantic World
	3.1 The Vision of the Semantic Web
	3.2 Semantic Web Services
	3.3 Information Retrieval and Service Discovery
	3.4 Mechanisms of Service Discovery
	3.5 Ontologies
	3.6 Knowledge Bases vs. Ontologies
	3.7 RDF
	3.7.1 RDFS - RDF Schema
	3.7.2 Sesame

	3.8 OWL
	3.9 Ontology-based Discovery Approaches
	3.10 Reasoning
	3.10.1 Subsumption Reasoning

	3.11 Quality of Ontology Design

	4 Question Answering
	4.1 AquaLog
	4.1.1 An Illustrative Example
	4.1.2 AquaLog's Helpers
	4.1.2.1 GATE
	4.1.2.2 WordNet

	4.2 SeRQL

	5 Design and Adaptation
	5.1 The Global Architecture
	5.1.1 From Questions to Query Triples
	5.1.2 From Triples to Answers

	5.2 Query Answering Limitations
	5.3 The Triple Approach Problem
	5.3.1 Blank Nodes
	5.3.2 Enhancing reasoning capabilities
	5.3.2.1 TRREE Engine
	5.3.2.2 The SAIL API

	5.4 Custom Rule-Sets
	5.4.1 Semantics Supported by Default

	6 Implementation
	6.1 SwiftOWLIM SAIL Configuration
	6.2 Performance Optimisation Parameters
	6.3 Custom Rule-Set Creation
	6.4 Problems with SeRQL-Directives
	6.5 Applicability of the TEXO Ontology
	6.6 Customising Configuration Files
	6.7 Applicability of the Parameter Ontology

	7 Summary and Conclusions
	8 Outlook
	A Appendix A
	B Appendix B
	C Appendix C
	Bibliography
	Index

