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ABSTRACT
Growth of multimodal content on the web and social media has
generated abundant weakly aligned image-sentence pairs. However,
it is hard to interpret them directly due to intrinsic “intension”. In
this paper, we aim to annotate such image-sentence pairs with con-
notations as labels to capture the intrinsic “intension”. We achieve it
with a connotation multimodal embedding model (CMEM) using a
novel loss function. It’s unique characteristics over previous models
include: (i) the exploitation of multimodal data as opposed to only
visual information, (ii) robustness to outlier labels in a multi-label
scenario and (iii) works effectively with large-scale weakly super-
vised data. With extensive quantitative evaluation, we exhibit the
effectiveness of CMEM for detection of multiple labels over other
state-of-the-art approaches. Also, we show that in addition to anno-
tation of image-sentence pairs with connotation labels, byproduct
of our model inherently supports cross-modal retrieval i.e. image
query - sentence retrieval.
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1 INTRODUCTION
Vast amount of visual data is created daily and major chunk of it is
found on the web and social media. Many approaches are built to
leverage such data (e.g. Flickr1) for building datasets [8, 19, 21] by
employing human efforts to filter the noisy images and annotate
themwith object categories. However, human involvement includes
cost and also acquire other problems such as incompleteness and
bias [22]. Hence, an alternative approach would be is to learn visual
features and object detectors directly without using any manual
labeling.

Hitherto, some approaches have explored the idea of automat-
ically leveraging different types of web data from sources consti-
tuting only images [7] and images accompanied with text [36] to
build visual models [31]. Although, it is asserted that the data is
automatically extracted (e.g. search engines) and trained. Models
are generally subjected to bias added by sources from which they
are acquired. For example, image search engines (e.g. Google) usu-
ally concentrate on acquiring high-precision over recall and hence
rank those images higher where a single object is centered with a
clean background. In this case, images obtained may contain false
positives but images themselves are not very complex to interpret
i.e. images represent objects which can be easily localized.

However, other forms of web data (e.g. social media) usually
contain complex images which can be refereed with labels denoted
by different connotations. Linguistically, a connotation is refereed
to an idea that a word may hold which is in addition to its main
or literal meaning (i.e. denotation). Pertaining images, it denotes
that an image can also be described with connotations (e.g. ab-
stract meaning) in addition to their usual denotations (e.g. visual
objects depicting WordNet categories). Also from the perspective
of logic and semantics, connotation refers to intension2 [5]. Figure 1
shows sample image-tweet pairs where an image-tweet pair aug-
mented with connotations along with their denotations is better
interpretable when compared against rest. It is evident that adding
connotations to complex images usually found on social media plat-
forms is beneficial. Howbeit, most part of current research usually
concentrate only building visual models that handle denotations
and only learn from images.
1https://www.flickr.com/
2Not to be confused with “intention”.
3https://clarifai.com/
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Figure 1: Augmenting connotations acquired from an image-
tweet pair along with denotations provide better compre-
hension of “intension”. Boxes in red denote ground-truth
“intension” observed in the image-tweet pair. Denotations
are captured only from an image with a commercial image
recognition API3.

Hence in this paper, we aim to add such diversity in labels by har-
nessing large-scale data. Usually, standard web-scale image datasets
(e.g. YFCC100M [30]) have shorter textual context and provide only
denotations. However, connotations can be acquired only from the
larger textual context. Therefore, our first goal is to acquire such
image-textual data which provide such a context. Specifically, 1)
we leverage Twitter4 to collect weakly supervised image-tweet
pairs data that provides such a context. Since manual annotation
of images-tweet pairs at the scale of Twitter is tedious. We lever-
age semantic annotation and disambiguation approaches [3] for
generating connotations. 2) Second, an architecture based on em-
bedding models [13, 33] is leveraged to capture correlation between
image-tweets and connotations by learning their common space
representation. Further, for any given input image-tweet, connota-
tions are ranked according to the dot product between connotation
and image-tweet embeddings. 3) Lastly, byproduct of our model is
used to perform cross-modal retrieval to compare its effectiveness
with other similar approaches.

We believe that this work will provide a new direction for ex-
ploiting social media data to achieve varied visual tasks without
human labeling effort. In rest of the paper, Section 2 presents related
work and the Section 3 describes our approach to learn features
from image-tweet pairs and then learn a connotation model to rank
the connotations. Further, experimental setup Section 4 present the
preliminaries about dataset and evaluation measure, While experi-
mental results are presented in Section 5 followed by the conclusion
and future work.

2 RELATEDWORK
Our related work can be drawn from many closely aligned areas.
4https://twitter.com/

2.1 Labeling Images with Webly Supervised
Learning

There has been a long standing interest in mining visual data from
the web [6]. Many approaches [34] have focused there efforts on
either cleaning the web data by leveraging pre-trained models built
from datasets created with human supervision (e.g. ImageNet [8])
or aimed to automatically discover hidden patterns to train models
directly from it [39]. Our work also focuses on the later objective
and has an intent to tackle noise involved in such scenarios for
building effectual models. Already, some approaches [35] have han-
dled similar challenges by filtering the noise when learning visual
models. However, we differ from them by directly not learning
visual representation models (e.g. CNNs [16, 28]) as we understand
that learning from CNN with noisy labeled data is still an open
problem. But, we leverage multimodal data to address the challenge.
Also, aforementioned approaches only operate with single label per
image, while we predict multiple labels per image.

2.2 Cross-Modal Retrieval with Images and
Text

One of the closely aligned research fields is cross-modal retrieval
with images and text. Over the past few years many approaches
are proposed for cross-modal retrieval concerning images and tex-
tual forms observed in variable lengths such as phrases, sentences
and paragraphs. Most of these early proposed approaches belong
to subspace learning methods which learn a common space for
cross-modal data, in which the similarity between the modalities is
measured using varied distance metrics. Several of such subspace
learning methods exists such as Canonical Correlation analysis
(CCA) [23] etc.

However, subspace learning methods are generally susceptible
to scaling challenges. To overcome such issues, probabilistic graph-
ical model (PGM) based approaches are proposed such as corre-
spondence Latent Dirichlet Allocation (Corr-LDA) [2] and their
variations. Howbeit, these approaches also faced drawback as exact
inference in general is intractable and has to depend on the approx-
imate inference methods, such as variational inference, expectation
propagation, or Gibbs sampling.

Deep neural network based methods overcame challenges ob-
served in subspace learning and PGM models by designing robust
techniques that can scale to large data and also avoid intractable
inference issues. Approaches such as deep restricted boltzmann
machine (Deep RBM) [29], deep canonical correlation analysis
(DCCA) [1], correspondence autoencoder (Corr-AE) [12] and deep
visual-semantic embeddings [13] used multimodal inputs to learn
representations of common spaces.

Our approach falls in-line with the family of deep learning meth-
ods and is proximal to the visual-semantic embedding approaches.
However, our model goal is bigger than performing common space
learning, we aim to predict of multiple labels by leveraging common
space of each multimodal pair.

2.3 Hashtag Prediction
Prediction of connotations which captures intension in social me-
dia data is also closely aligned with the hashtag prediction [33] or
recommendation [27]. Hashtags are regularly observed to capture
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authors sentiment or comprehension on a particular topic. How-
ever, they are usually illustrated with n-grams or abbreviations and
sometimes difficult to interpret when compared with semantically
enriched connotation labels.

Nevertheless, initially several approaches have leveraged deep
neural networks to build their models only with social media text
(e.g. Tweets) for prediction or recommendation. However, these
approaches pursued different paths to achieve their goal. Weston
et al., [33] composed semantic embeddings from hashtags, while
Dhingra et al. [10] utilized character-based embeddings and Gong
et al., [15] used attention-based CNN. Only recently, using hashtags
for image tagging was explored. Denton et al. [9] proposed a 3-way
multiplicative gating approach, where the image model is condi-
tioned on the user metadata on Facebook dataset. While, Park et
al. [24] Context Sequence Memory Network (CSMN) model mainly
built for personalized image captioning to predict hashtags on In-
stagram dataset. However, none of the aforementioned approaches
leveraged multimodal social media data for utilizing larger contexts.
Also, none of the hashtags were semantically enriched for better
interpretation.

3 APPROACH
Let S = {(Ij ,Tj ),Yj }Nj=1 be our dataset with (Ij ,Tj ) the j-th image-
tweet pair and Yj ⊆ Y the automatically extracted corresponding

connotations set, whereY ∆
= {1,2, ,K } is set of all possible connota-

tions. Each image-tweet can have different number of connotations
(Ij ,Tj ) = |Yj |.

Our goal is now to learn a ranking model R(I,T,Y) that computes
the confidence scores to all connotations to rank relevant connota-
tions for a given image-tweet pair. We further decompose R(I,T,Y)
= f(g(Φ(I ),Ψ(T )),Ey ) where EY ∈ Rd×K denote connotation label
embeddings matrix and g(Φ(I ),Ψ(T )): RI × RT → Rd computa-
tion model to add tweet bias to image representations. Further,
f(g(Φ(I ),Ψ(T )),Y): (Rd ,Rd ) → RK computes dot product between
g(Φ(I ),Ψ(T )) and connotation embedding matrix EY for finding
confidence scores of relevant connotations Y . We now adapt a Con-
volutional Neural Network (CNN) [16] for an image representation
(Φ(I )), character-level long short-term memory (charLSTM) [17]
for the tweet representation (Ψ(T )) and a novel loss function for
learning R(I,T,Y) model.

In the following, we provide details of individual components of
the ranking model R(I,T,Y).

3.1 Image-Tweet Bilinear Model
Aim of the image-tweet bilinear model is to compute g(Φ(I ),Ψ(T )).
Initially, we present architectures used for extracting feature rep-
resentations from both image (I) and tweet (T) i.e. Φ(I ) and Ψ(T )
respectively followed by the bilinear model.

3.1.1 Tweet Representation. Tweets (T ) are sequences upto 140
characters with inherent semantic and syntactic meaning. Encoding
a tweet into a embedding vector (RT ) can encapsulate the composi-
tional structure of the entire tweet. Thus, we propose to leverage
charLSTM i.e. Ψ(T ,Θ) to build embedding for each tweet, where Θ
represent parameters of charLSTM. Initially, characters in a tweet

are read sequentially to be further fed as input to an charLSTM
encoder for encoding a tweet it into a RT vector.

3.1.2 Image Representation. For representing images (I ) into
fixed vector (RI ). We use pre-trained CNN on ImageNet classes as a
feature extractor i.e. Φ(I ) to obtain the image embeddings from the
raw image. The image vectors of dimensionality RI are extracted
from the final fully connected layer of the network without the top
Softmax layer.

3.1.3 Tweet-Biased Image Representation. Image and tweet rep-
resentations belong to two different feature spaces and do not share
any common representation. To associate image and tweet repre-
sentations, image-tweet bilinear model gives a simple method for
leveraging tweet information by adding a tweet dependent bias
term to the image embedding. In particular, the tweet-biased image
embedding g(Φ(I ),Ψ(T )): RI × RT → Rd is defined by Equation 1.

д(Φ(I ),Ψ(T )) =WT
I Φ(I ) +WT

T Ψ(T ) (1)

whereWI ∈ R
I×d andWT ∈ R

T×d are image and tweet parameter
matrices respectively.

3.2 Connotation Multimodal Embedding Model
The connotation multimodal embedding model (CMEM) denoted
using the function f(g(Φ(I ),Ψ(T )),EY ;θ ) ∈ RK learns a joint em-
bedding space for connotation embedding matrix (EY ) and tweet-
biased image representations (д(Φ(I ),Ψ(T ))) to rank connotations.
Figure 2 presents the overall model.

To learn parameters of f(·) ∈ RK , an optimization problem is
solved using the loss function (l ) given by Equation 2.

min
θ

1
N

N∑
n=1

l ( f (д(Φ(In ),Ψ(Tn )),EY ;θ ),Yn ) + λ | |θ | |22 (2)

where θ refers to the parameters of the CMEM.
Furthermore, we design the loss function (l) in a manner to

leverage large datasets and enforce f(·) to produce results whose
values for true connotations are greater than those for negative
connotations for any given image-tweet pair. In particular, pairwise
rank loss (PRL) [4] suits such a criteria and is given by Equation 3.

lpr l =
∑
ŷ<Yi

∑
y∈Yi

max (0,α + fŷ (·) − fy (·)) (3)

where ŷ represent negative connotations for any given positive
connotation y, alpha is the hyper-parameter that denotes margin.
However, lpr l is not smooth everywhere and thus makes it difficult
to optimize.

Therefore for CMEM,we propose to explore three different losses
that provides better theoretical guarantees than the lpr l and makes
easier for optimization. In the following, we first present the two
existing techniques based on pairwise rank loss (i.e. WARP [32]
and LSEP [20]) and then present our proposed loss function.

3.2.1 Weighted Approximate Rank Pairwise (WARP) Loss. We-
ston et al. [32] extended pairwise rank loss provided in Equation 3
by adding weights on violations with Weighted Approximate Rank
Pairwise (WARP) loss given by Equation 4.

lwarp =
∑
ŷ<Yi

∑
y∈Yi

w (r
y
i )max (0,α + fŷ (·) − fy (·)) (4)
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Figure 2: Connotation Multimodal embedding model with its different constituents. Rd refers to the final d-dimension repre-
sentation of image-tweet pair in-line with the connotation embeddings dimensions. ⊙ denote element-wise dot product.

where w(·) denote monotonically increasing function and ryi is the
predicted rank of the positive connotation y. The intuition is that if
the positive connotation is ranked lower, then the violation should
be penalized higher. However, due its non-smoothness it is not
differentiable everywhere and makes optimization difficult.

3.2.2 Log-Sum-Exp Pairwise (LSEP) loss. Addressing issues in
lpr l and lwarp such as non-smoothness, adaptable margins etc., Li
et al. [20] proposed Log-Sum-Exp pairwise (LSEP) loss bymodifying
exponential pairwise rank loss (lepl ) [38] given by the Equation 5.

llsep = loд*
,
1 +
∑
ŷ<Yi

∑
y∈Yi

exp ( fŷ (·) − fy (·))+
-

(5)

LSEP is expected to provide flexibility to the learning problem by
allowing adaptable margins per sample pair and also making it
smooth everywhere. Also, LSEP do not use weight function w(·)
as it is expected have implicit weight effect to penalize the lower
ranked positive connotations harder. Although, LSEP have many
advantages such as it can linearly scale with vocabulary size with
negative sampling technique [14] and provide better numeric sta-
bility. Nevertheless, it still lack two key abilities. (1) llsep is not
α-convex [25]. This means that we cannot place a bound on how
long gradient descent takes to converge. Howbeit, it partially mit-
igates the problem with regularization (2) llsep uses variant of
logistic loss, thus making it sensitive to outliers in the data and
assigns large loss values to them. We aim to overcome such chal-
lenges with our proposed penalized-logistic-sum pairwise (PLSP)
loss.

3.2.3 Penalized-Logistic-Sum Pairwise (PLSP) Loss. It can be
comprehended from aforementioned sections that pairwise ranking
approaches dependent on variants of hinge loss (e.g. lpr l ,lwarp ),
exponential loss (e.g. lepl ) and logistic loss (e.g. llesp ). Our proposed
approach is the variant of truncated logistic loss and is expected to
be alpha-convex while being robust to outliers. Equation 6 shows

the loss function lplsp .

lplsp = loд*
,
1 +
∑
ŷ<Yi

∑
y∈Yi

exp
( min( fŷ (·) − fy (·),s )

max ( fŷ (·) − fy (·),−s )

)
+
-

(6)

where s < 0 denotes location of truncation. Important property
of lplsp is that the denominator value in the exponential cannot
get extremely small because it is lower bounded by s . Similarly,
numerator of the equation cannot get cannot get extremely big.
Therefore, it makes lplsp robust to noise of outliers and also smooth
everywhere due to exponential.

4 EXPERIMENTAL SETUP
4.1 Dataset
In this section, we introduce a new dataset called TwitterBrexit
collected from Twitter.

4.1.1 Dataset Procurement. In the following, we present varied
stages involved in creation of the dataset.
Tweets Collection is specific to a domain i.e. Brexit in our case.
This is undertaken to reduce noise in the collection and to ensure
connotations set is interpretable. Otherwise, we will end up procur-
ing randomly distributed labels and could lead to uninterpretable
results. Initially, we attained seed topic words using Google trends5
during the period of May 2015 and May 2016 for searching Twitter.
Topic words such as Brexit, Immigration, Racism, Theresa, etc., are
then used as queries to Twitter search API 6 for collecting tweets.
This step is iterated several times until a long list of tweets are
acquired.
Tweets pruning is performed to acquire only those tweets with
corresponding images. We found that only 25% of the tweets col-
lected are accompanied with images. Further, pruned image-tweet
5https://trends.google.com/trends/
6https://developer.twitter.com/en/docs/tweets/search/overview/basic-search
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pairs is again processed to eliminate junk, tweets without words,
English only tweets and duplicates.

4.1.2 Dataset Peculiarity. The new dataset introduced in this
paper is peculiar and also challenging to process when compared
against other similar datasets on the following aspects. First, dataset
is collected from the social media platform. Hence, the language
usually used will be informal comprising grammatical mistakes and
large vocabularies. However, there are also additional character-
istics which is helpful for highlighting information present in the
image-tweet pair such as hashtags. Second, the association between
the image and tweet is often loosely connected. Hence, they are
weakly supervised. Third, dataset is useful for large-scale training
and can be exploited to test robustness of multi-label classifiers.

4.1.3 Creation of Connotations. For acquiring connotations for
images present in the collection, text aligned with images is lever-
aged. An usual strategy to make sense or extract intension from the
social media text is by annotating them with semantic enricher’s.
Acquired connotations are considered as a brief summarization of
the content present in the text. Hence, connotations also support
better information interpretation. We leveraged semantic annota-
tion and disambiguation tool [37] to obtain such labels. Since these
labels are acquired from the text aligned with images, labels are
also expected to describe images. However, they are not preferable
for direct learning of image recognition models. As they are ex-
tracted automatically without human supervision and hence can
induce noise into learning. In total, the dataset contained ∼30k dis-
tinct connotations as labels. The mean number of labels per tweet
was 2.3 with a standard deviation of 1.3. A large fraction of labels
describe the content of the image, with many synonyms. Others
describe abstract meaning representing possible intension in the
image content (e.g. Economics, Xenophobia).

The distribution of labels in the dataset is far from uniform: the
top 10 labels account for 47% of the total and ∼27k of them appear
less than 10 times throughout the whole dataset. It is difficult to
predict infrequent labels, so we limit top 1387 labels which have
appeared at least 25 times in the dataset to create a balanced version
of the dataset. Figure 3 shows sample annotations, while Figure 4
presents top-50 frequent labels in the entire dataset. In total, our

                     OCR                 Abstract

Racism

United 
Kingdom

Stock market, 
Financial market

European 
Union

Figure 3: Example connotations as labels observed for dif-
ferent variants of images. For example, “OCR” variant rep-
resent images which contain text and “Abstract” denote con-
cepts close to real-world entities.

collection comprises around 160,004 image-tweet pairs for training,
10,000 for validation and 10220 for testing.

4.1.4 Applications of the Dataset. We leverage the datasetmainly
for multi-label prediction. However, we also show that it is also
useful for cross-modal retrieval.

4.2 Evaluation Measures
To measure the effectiveness of discovering connotations as labels
for images. We use different measures such as recall, multi-label
accuracy, Hamming loss [11] and coverage.

4.2.1 Recall@k (R@k). measures of the fraction of relevant con-
notation labels for each test image-tweet pair that are ranked in
the top k given by Equation 7.

Accuracy =
1
|q |

|q |∑
j=1

|X j
⋂
Yj |

|Yj |
(7)

where X j refers to the predicted correct labels and Yj the ground-
truth labels for the j-th query.

4.2.2 Multi-label Accuracy@k (ML-A@k). measures the propor-
tion of predicted correct labels that are ranked in the top k to the
total number of ground-truth labels for a given image query. Overall
accuracy is the average across all queries given by Equation 8.

Accuracy =
1
|q |

|q |∑
j=1

|X j
⋂
Yj |

|X j
⋃
Yj |

(8)

Higher the value of accuracy, better the performance.

4.2.3 Hamming Loss (HL). measures how many times on an
average the relevance of an instance to a class label is incorrectly
predicted. Also, hamming loss consider both prediction error (i.e.
prediction of incorrect label) and missing error (i.e. missing out
the relevant label) normalized over total number of classes and
examples given by Equation 9

HL =
1
|q |N

|q |∑
j=1

N∑
l=1

[F (l ∈ X j ∧ l < Yj ) + F (l < X j ∧ l ∈ Yj )] (9)

where F refers to the indicator function and l to the semantic labels.
In practice, smaller the value of HL, better the performance.

4.2.4 Coverage. evaluates how much one needs to traverse the
ranked list of labels on average to cover all the relevant labels of
the sample and is provided by Equation 10.

Cov =
1
|q |

|q |∑
j=1

max (rank (X j )) − 1 (10)

Smaller the value of coverage, better the performance.

5 EXPERIMENTS
5.1 Implementation
As discussed in aforementioned sections, important constituents
of our CMEM are CNN, charLSTM, connotation embeddings and a
loss function. For image representation, we explored two different
CNN models, mainly VGG16 [28] and ResNet50 [16] pre-trained on
the ImageNet ILSVRC dataset [26] by extracting features of dimen-
sions 4096 and 2048 respectively from the final fully connected layer
of the network without the top Softmax layer. For the charLSTM,



Figure 4: Top-50 frequent labels and their distribution.

we initialized character embeddings with 512 dimensions using
Glorot uniform. Connotations acquired from semantic enricher are
Wikipedia titles (i.e. concepts) which are also observed in DBpedia7.
Therefore, we leveraged wiki2vec8 to obtain 256 and 512 dimen-
sion embeddings for concepts. CMEM is now trained using Adam
optimizer [18] with gradient clipping having maximum norm of
1.0 for 10 epochs. The weight decay λ in the regularization term of
Equation 2 is set to 5e-5.

5.2 Results and Discussion
5.2.1 Baselines. We design our baselines based on the usage

of varied loss functions with CMEM. For example, CMEM-warp
represents our CMEM with the WARP loss.

5.2.2 Quantitative Analysis (Label Prediction). To conduct our
evaluation, we leveraged the TwitterBrexit dataset mentioned in the
Section 4.1. Different approaches are evaluated based on measures
such as recall at 10 (R@10), accuracy at 10 (ML-A@10) and hamming
loss (HL). Table 1 shows the results attained. We can notice that
the CMEM-prl performed poorly when compared against all other
models. However, when only advanced models like CMEM-warp
and CMEM-lsep are compared, it can be observed that CMEM-lsep
outperforms CMEM-warp on both recall and accuracy. Howbeit,
for HL there seems to have no significant difference. This can be
attributed to better optimization achieved with llsep .

Furthermore, we can perceive that CMEM with our proposed
loss i.e. CMEM-plsp performs particularly well in terms of accu-
racy, recall and HL when compared against other baselines. Results
also convey that our proposed loss in CMEM was particularly ro-
bust to outliers and could leverage that with significant gains in
both recall and accuracy. Also, few more observations can be made
about visual features and dimensions of connotation embeddings.
ResNet50 performs better than VGG16, while larger dimensions for
connotation embeddings perform better than their counterparts
with lesser dimensions.
7http://wiki.dbpedia.org/
8https://github.com/idio/wiki2vec

Figure 5 shows average precision-recall (PR) curves that allow
us to comprehend the effect of label prediction. It can be perceived
that our CMEM-plsp outperforms others suggesting the robustness
of our lplsp loss with CMEM when compared to other baselines.

Figure 5: Average Precision-Recall Curve

5.2.3 Quantitative Analysis (Cross-modal Retrieval). A natural
consequence of CMEM is learning of parametersWI andWT . During
learning, both of them are updated jointly when optimized w.r.t
connotations. Hence, they inherently share correlation between
image and tweets.

In this section, we evaluate their effectiveness with image query
for tweet retrieval and compare them with standard subspace learn-
ing methods such as canonical correlation analysis (CCA) and its
variants (i.e. regularized CCA (RCCA) ) using Mean rank. We also
explored other representations for the text such as latent Dirichlet
allocation (LDA) [2]. The LDA model is trained with 50 topics to
represent each tweet with 50-dimensional LDA feature by the topic
assignment probability distributions. Table 2 shows the comparison
of different approaches for image to tweet retrieval.

5.2.4 Qualitative Analysis (Label Prediction). Figure 6 presents
sample results attained with CMEM using different loss functions.
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Loss Function Connotation Embeddings CNN Architecture R@10 ML-A@10 HL Cov

CMEM-pr l
256 VGG16 18.11 35.42 0.416 12.61

ResNet50 18.17 35.84 0.412 12.54

512 VGG16 18.84 36.10 0.408 12.46
ResNet50 18.90 36.54 0.406 12.44

CMEM-warp
256 VGG16 18.95 36.69 0.406 12.37

ResNet50 19.02 36.78 0.404 12.38

512 VGG16 19.10 37.80 0.396 12.26
ResNet50 19.24 38.24 0.389 12.10

CMEM-lsep
256 VGG16 19.22 38.15 0.390 12.14

ResNet50 19.30 38.84 0.382 12.09

512 VGG16 19.44 39.16 0.374 11.98
ResNet50 19.51 39.40 0.371 11.93

CMEM-plsp (ours)
256 VGG16 19.54 39.84 0.369 11.88

ResNet50 19.63 40.05 0.368 11.85

512 VGG16 19.63 40.08 0.368 11.84
ResNet50 19.68 40.26 0.366 11.79

Table 1: Connotation Label prediction Results on TwitterBrexit. R@10, ML-A@10 represent percentages (%). Bold denote best,
while underline represent second best.

Image→ Tweet Retrieval

Measures Methods 10 20 30 40 50 60 70 80 90 100

Mean Rank CCA-LDA 5371 5570 5627 5767 5779 5753 5774 5770 5752 5766
RCCA-100-LDA 4902 5083 5224 5303 5312 5309 5312 5306 5304 5315
RCCA-1000-LDA 4873 5060 5203 5260 5269 5267 5272 5262 10263 5275
CCA-charLSTM 3616 3989 4130 4347 4409 4515 4572 4627 4661 4690
RCCA-100-charLSTM 3637 3965 4125 4328 4397 4504 4565 4613 4650 4682
RCCA-1000-charLSTM 3708 3909 4181 4377 4451 4551 4615 4649 4683 4719

CMEM-pr l 2618 2986 3124 3341 3403 3509 3562 3617 3652 3688
CMEM-warp 2627 2959 3112 3318 3381 3502 3551 3603 3641 3672
CMEM-lsep 2608 2898 3101 3277 3311 3481 3515 3549 3583 3619
CMEM-plsp 2588 2908 3121 3227 3286 3496 3488 3529 3575 3596

Table 2: Mean rank (lower the better) using different percentage (%) of image queries for retrieval. RCCA-* represent different
regularization (100, 1000). Underline represents second best. All results are reported using ResNet50 as image features.

It can be seen that connotations extracted shows better intension
from the image-tweet pair when compared against using only de-
notations captured from the image.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented an approach to automatically extract
connotations as labels for images by leveraging weakly supervised
image-tweet data. We showed that the approach is scalable to many
new classes and can support large scale image recognition as re-
quired inWeb scenarios. In future, we aim to extend the approach to
varied domains and check its generalization ability. Also, we would
like to address other problems such as label inter-dependency and
sparsity.

REFERENCES
[1] GalenAndrew, RamanArora, Jeff Bilmes, and Karen Livescu. 2013. Deep canonical

correlation analysis. In International Conference on Machine Learning. 1247–1255.

9https://clarifai.com/

[2] David M Blei and Michael I Jordan. 2003. Modeling annotated data. In Proceedings
of the 26th annual international ACM SIGIR conference on Research and development
in informaion retrieval. ACM, 127–134.

[3] Kalina Bontcheva and Dominic Rout. 2014. Making sense of social media streams
through semantics: a survey. Semantic Web 5, 5 (2014), 373–403.

[4] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. ACM, 129–136.

[5] Rudolf Carnap. 1988. Meaning and necessity: a study in semantics and modal logic.
University of Chicago Press.

[6] Xinlei Chen and Abhinav Gupta. 2015. Webly supervised learning of convolu-
tional networks. In Proceedings of the IEEE International Conference on Computer
Vision. 1431–1439.

[7] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. 2013. Neil: Extracting vi-
sual knowledge from web data. In Proceedings of the IEEE International Conference
on Computer Vision. 1409–1416.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248–255.

[9] Emily Denton, Jason Weston, Manohar Paluri, Lubomir Bourdev, and Rob Fergus.
2015. User conditional hashtag prediction for images. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1731–1740.

[10] Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick, Michael Muehl, andWilliamW
Cohen. 2016. Tweet2vec: Character-based distributed representations for social

https://clarifai.com/


Denotation (Only Image): 
no person, wear

Connotations
CMEM-prl: European 
Union,Democracy
CMEM-warp: United 
Kingdom, Referendum
CMEM-lsep: United 
Kingdom, European Union
CMEM-plsp (Best): United 
Kingdom, Finance

Denotation (Only Image): 
flag, people

Connotations
CMEM-prl: European 
Union,Europe
CMEM-warp: Politics of the 
United Kingdom, 
Referendum
CMEM-lsep: United 
Kingdom,Scotland
CMEM-plsp (Best): Opinion 
poll, Scottish 
Independence

Denotation (Only Image): 
leader, people

Connotations
CMEM-prl: European 
Union,Europe
CMEM-warp: European 
Union,Euro
CMEM-lsep: Europe, 
Finance
CMEM-plsp (Best): Europe, 
Asia

(a) (b) (c)

Base (Only Image): symbol, 
illustration

Connotations
CMEM-prl: Leave.EU ,
United Kingdom
CMEM-warp: Labour Party 
(UK),United Kingdom
CMEM-lsep: Labour Party 
(UK), Conservative Party 
(UK)
CMEM-plsp (Best): UK 
Independence 
Party,Leave.EU

(d)

Figure 6: Sample qualitative results (red: False positives, Blue: True positives) attained with CMEM using different loss func-
tions. Top-2 ranked connotations obtained are presented for each case. CMEM-plsp (Best) refers to the best model obtained
from Table 1. Denotations are captured only using images with a commercial image recognition API9.

media. arXiv preprint arXiv:1605.03481 (2016).
[11] André Elisseeff and Jason Weston. 2002. A kernel method for multi-labelled

classification. In Advances in neural information processing systems. 681–687.
[12] Fangxiang Feng, Xiaojie Wang, and Ruifan Li. 2014. Cross-modal retrieval with

correspondence autoencoder. In Proceedings of the 22nd ACM international con-
ference on Multimedia. ACM, 7–16.

[13] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas
Mikolov, et al. 2013. Devise: A deep visual-semantic embedding model. In Ad-
vances in neural information processing systems. 2121–2129.

[14] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et
al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

[15] Yuyun Gong and Qi Zhang. 2016. Hashtag Recommendation Using Attention-
Based Convolutional Neural Network.. In IJCAI. 2782–2788.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[17] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2016. Character-
Aware Neural Language Models.. In AAAI. 2741–2749.

[18] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[19] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vision using crowdsourced dense
image annotations. International Journal of Computer Vision 123, 1 (2017), 32–73.

[20] Yuncheng Li, Yale Song, and Jiebo Luo. 2017. Improving Pairwise Ranking for
Multi-label Image Classification. arXiv preprint arXiv:1704.03135 (2017).

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[22] Ishan Misra, C Lawrence Zitnick, Margaret Mitchell, and Ross Girshick. 2016.
Seeing through the human reporting bias: Visual classifiers from noisy human-
centric labels. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2930–2939.

[23] Aditya Mogadala and Achim Rettinger. 2015. Multi-modal Correlated Centroid
Space for Multi-lingual Cross-Modal Retrieval. In European Conference on Infor-
mation Retrieval. Springer, 68–79.

[24] Cesc Chunseong Park, Byeongchang Kim, and Gunhee Kim. 2017. Attend to
You: Personalized Image Captioning with Context Sequence Memory Networks.
arXiv preprint arXiv:1704.06485 (2017).

[25] NN Pascu. 1979. Alpha-close-to-convex functions. In Romanian-Finnish Seminar
on Complex Analysis. Springer, 331–335.

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

2015. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision 115, 3 (2015), 211–252.

[27] Jieying She and Lei Chen. 2014. Tomoha: Topic model-based hashtag recommen-
dation on twitter. In Proceedings of the 23rd International Conference on World
Wide Web. ACM, 371–372.

[28] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[29] Nitish Srivastava and Ruslan R Salakhutdinov. 2012. Multimodal learning with
deep boltzmann machines. In Advances in neural information processing systems.
2222–2230.

[30] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni,
Douglas Poland, Damian Borth, and Li-Jia Li. 2016. YFCC100M: The new data in
multimedia research. Commun. ACM 59, 2 (2016), 64–73.

[31] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, and Serge
Belongie. 2017. Learning From Noisy Large-Scale Datasets With Minimal Super-
vision. arXiv preprint arXiv:1701.01619 (2017).

[32] Jason Weston, Samy Bengio, and Nicolas Usunier. 2010. Large scale image
annotation: learning to rankwith joint word-image embeddings.Machine learning
81, 1 (2010), 21–35.

[33] Jason Weston, Sumit Chopra, and Keith Adams. 2014. #TagSpace: Semantic
Embeddings from Hashtags. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 1822–1827.

[34] Yan Xia, Xudong Cao, Fang Wen, and Jian Sun. 2014. Well begun is half done:
Generating high-quality seeds for automatic image dataset construction from
web. In European Conference on Computer Vision. Springer, 387–400.

[35] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. 2015. Learning
from massive noisy labeled data for image classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2691–2699.

[36] Yazhou Yao, Jian Zhang, Fumin Shen, Xian-ShengHua, Jingsong Xu, and Zhenmin
Tang. 2017. Exploiting Web Images for Dataset Construction: A Domain Robust
Approach. IEEE Transactions on Multimedia (2017).

[37] Lei Zhang and Achim Rettinger. 2014. X-LiSA: cross-lingual semantic annotation.
Proceedings of the VLDB Endowment 7, 13 (2014), 1693–1696.

[38] Min-Ling Zhang and Zhi-Hua Zhou. 2006. Multilabel neural networks with
applications to functional genomics and text categorization. IEEE transactions on
Knowledge and Data Engineering 18, 10 (2006), 1338–1351.

[39] Yan-Tao Zheng, Ming Zhao, Yang Song, Hartwig Adam, Ulrich Buddemeier,
Alessandro Bissacco, Fernando Brucher, Tat-Seng Chua, and Hartmut Neven.
2009. Tour the world: building a web-scale landmark recognition engine. In
Computer vision and pattern recognition, 2009. CVPR 2009. IEEE conference on.
IEEE, 1085–1092.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Labeling Images with Webly Supervised Learning
	2.2 Cross-Modal Retrieval with Images and Text
	2.3 Hashtag Prediction

	3 Approach
	3.1 Image-Tweet Bilinear Model
	3.2 Connotation Multimodal Embedding Model

	4 Experimental Setup
	4.1 Dataset
	4.2 Evaluation Measures

	5 Experiments
	5.1 Implementation
	5.2 Results and Discussion

	6 Conclusion and Future Work
	References

