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Abstract. Ontology mapping is important when working with more than one
ontology. Typically similarity considerations are the basis for this. In thiepap
an approach to integrate various similarity methods is presented. Inweefe-
termine similarity through rules which have been encoded by ontologyrtsxpe
These rules are then combined for one overall result. Several bgastiall ac-
tions are added. All this is thoroughly evaluated with very promising results.

1 Introduction

The Semantic Web community has achieved a good standininwiith last years. As
more and more people get involved, many individual ontaegire created. Interop-
erability among different ontologies becomes essentigjaio from the power of the
Semantic Web. Thus, mapping and merging of ontologies besa@ntore question. As
one can easily imagine, this can not be done manually beyarettain complexity,
size, or number of ontologies any longer. Automatic or astiegmi-automatic tech-
nigques have to be developed to reduce the burden of man@iaccrand maintenance
of mappings.

One specific application at Karlsruhe, which requires magpind merging is derived
from the SWAP project (Semantic Web and Peer-to-Peer). WaRSproject wants
to enable individuals to keep their own work views and at #mae time share knowl-
edge across a peer-to-peer network. For this reason taosravided for each peer to
easily create an own ontology. This ontology representyithe on the local file sys-
tem, emails, or bookmarks. Through the peer-to-peer n&ta@mmmunication between
the individual peers becomes possible without relying oremtral instance. Formal
queries are sent around in this network, and peers which lamoanswer reply to these
queries. (Natural language) Examples for such queriesldmul“What is the the email
address of York?” or “Which documents on Marc’s computer dreud similarity?”.
This knowledge can then be integrated into the knowledgesigpy of the original
asking peer. Additionally every peer advertises the top&efas most information on;
this expertise is saved by the other peers.

In our scenario mapping becomes necessary for differekd tddapping is required ev-
ery single time a decision is taken on which peer has knoveedmput a certain topic,
and thus will be addressed with the query. Naturally, a fprgieer can only answer
incoming queries, if it can interpret the entities with respto its own knowledge base.

! http://swap.semanticweb.org



Query rewriting is required [5]. Finally, the originally king peer receives answers.
When including this information into the own local knowledgase, the new knowl-
edge has to be linked to already existing knowledge. Equdiesnhave to be identified.

In this paper we present an approach to combine differeritasity measures to find
mapping candidates between two or more ontologissour hypothesis H we expect
better mapping results from intelligent approaches in comlining different similar-
ity identifying measures than today’s approaches can prowe.

The next section defines and explains general concepts thisissbased on: ontol-
ogy, similarity, and mapping. In section 3 the similaritytimads based on rules derived
by human experts are introduced. The section 4 presentsppuoach for combining
and integrating these various methods. In section 5 a tigbreualuation is performed
showing the strengths of our approach. Finally related witrk next steps, and a con-
clusion are given.

2 Definitions

In this section our understanding of ontologies is pregkrfer clarification we also
discuss the general meaning of similarity. Additionallyider ideas on how to bring
the two worlds together. Our notion of mapping will be preasedrat the end.

2.1 Ontologies

In philosophy an ontology ia particular theory about the nature of being or the kinds
of existentsThe following short definition describes ontologies asliseour scenario.
In the understanding of this paper they consist of both sehemd instance data.

0 :=< C,HC7Rc,HR7I7RI7A>

An ontologyO is a tuple consisting of the following. The concept®f the schema are
arranged in a subsumption hierarcHy:. RelationsR¢ exist between single concepts.
Relations (propertie$)can also be arranged in a hierardty. Instanced of a specific
concept are interconnected by property instari@esAdditionally one can define ax-
ioms A which can be used to infer knowledge from already existing. &m extended
definition can be found in [22]. Common languages to repttasaiologies are RDF(8)
or OWL*, though one should note that each language offers diffenedtelling primi-
tives and, thus, a different level of complexity.

2.2 Similarity

We start with a short definition of similarity from Merriam \&ter's Dictionaryhaving
characteristics in common: strictly comparablerom our point of view we want to

2 |n this paper we treat the wordslation andpropertyas synonyms.
3 http://www.w3.0rg/RDFS/
4 http:/www.w3.0rg/OWL/



strictly compare two entities to find identity among themeTdefinition already gives
us a hint on how to check for similarity: two entities need coom characteristics to be
similar. We also give a formal definition of similarity hereré/ed from [3]:

sim(z,y) € [0..1]

- sim(z,y) = 1 — x = y: two objects are identical.
— sim(z,y) = 0: two objects are different and have no common charactesisti
— sim(z,y) = sim(y, x): similarity is symmetric.

2.3 Similarity for Ontologies

What is the meaning of similarity in the context of ontolo@d$e basic assumption is
that knowledge is captured in an arbitrary ontology enagdBased on the consistent
semantics the coherences modelled within the ontologyrbecanderstandable and
interpretable. From this it is possible to derive additiokowledge such as, in our
case, similarity of entities in different ontologies. Anagmple shall clarify how to get

from encoded semantics to similarity: by understanding lédzels describe entities in
natural language one can derive that entities having the $atels are similar. A formal

definition of similarity for ontologies follow:

O,: ontology, with ontology index € N

sim(x,y): similarity function

e;;. entities ofO;, with e;; € {C;, R;, I;}, entity indexj € N

sim(e;, j, , €iqj,): Similarity function between two entities, ;, ande;, ;, (i1 # i2);
as shown later this function makes use of the ontologieseéttiities compared

The paper focuses on the similarity of pairs of single ezgifrom different ontologies.

2.4 Mapping

Due to the wide range of expressions used in this area (nerglignment, integration
etc.), we want to describe our understanding of the term frima. We define mapping
as cf. [23]: “Given two ontologies A and B, mapping one ongglavith another means
that for each concept (node) in ontology A, we try to find a esponding concept
(node), which has the same or similar semantics, in ontdbayd vice verse.” We want
to stick to this definition, more specific we will demand gamesemantic meaning of
two entities
Formally an ontology mapping function can be defined thefaithg way:

— map: O, — O,

— map(e;,j,) = €iyjps If siM(€s,j,, €iyj,) > t With ¢ being the threshold
entity e;, ;, is mapped onte,, ;,; they are semantically identical, each entity;,
is mapped to at most one entiy, ;,

The central contribution of this paper is to present an appraach for defining this
mapping function. We only consider one-to-one mappings between single estiti
Neither do we cover mappings of whole ontologies or substreer complex mappings
as concatenation of literals (e.g. name corresponds toninste plus last name) or
functional transformation of attributes (e.g. currencypna@rsions).



3 Similarity Measures

Our mapping approach is based on different similarity messun this section we want
to describe how the various similarity methods have beeatede

3.1 Manual Rules

Our implemented approach is based on manually encoded ntapges. Please note
that the mappings itself are not yet encoded through ruteis (46]). We are using rules
to identify possible mappings. This manual effort is neagsd®ecause coherences in
ontologies are too complex to be directly learned by machiAa expert understand-
ing the encoded knowledge in ontologies formulates maeinitezpretable rules out of
the information. Each rule shall give a hint on whether twtitezs are identical, but
no rule for itself provides enough support to unambiguoigdyntify a mapping. Natu-
rally, evaluation of these manually created rules has todmm@element of the overall
process.

3.2 Similarity Stack
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Fig. 1. Similarity stack
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The presented general idea will now be explicitly used temheine similarity be-
tween ontologies. To get a better understanding, the ruéesagegorized in a similarity
stack as shown in graph 1. Ontologies are based on certabwui@ries which are well-
defined, well-understood, and with a generally acceptechingaThe left part shows
these aspects arranged along their complexity, which isetefrom the “layer cake”
of [2]. Special shared ontology domains e.g. SWAP-commahémmentioned SWAP
project, have their own additional vocabulary. The rightt plaerefore covers domain-
specific aspects. As this domain-specific knowledge cantbated at any level of on-
tological complexity, it is presented as a box across alhefit. In the next paragraphs
the general semantic meaning of features is describedvietldy the concrete derived
rules, being tagged with a numbds) with n € (1,..17). As many of the rules are
derived from existing literature, we give references wiegglicable.



Entities The first level describes entities as is. No ontological @erstions are needed
for these features. Labels are human identifiers (nameshtdres, normally shared by
a community of humans speaking a common language. We caefeherinfer that

if labels are the same, the entities are probably also thees@®i, see example 1).
Several ideas have already been created to compare laliplthes edit distance[12].
Dictionaries (e.g. WordNet) can further be used for congmen$ even across languages,
although some restrictions apply. Another feature of disjean be an identifier such
as URIs, which are unique for every entity. Therefore we kitioatif two entities have
the same identifier they are identiqit2).

<owl : Cass rdf:ID=""idl"’" >

<rdf s: | abel >t el ephone nunber </ | abel >
</ow : d ass>
<ow :Class rdf:ID=""id2"’ >

<rdfs: | abel >phone nunber </ | abel >
</ow : Cl ass>

Example 1.Two entities id1 and id2 with similar labels.

Semantic Nets The second level is the level of Semantic Nets as e.g. intedily
[18]. A concept is a general class of objects. They are irtioglao others through
attributes or propertiesf the properties of two concepts are equal, the concepts are
also equal(R3). The same is true for propertidéthe domain and range (the original
and the result concept) of two properties are equal, the prigs are alsqR4).

Description Logics The third level described here covers ontologies which thge
complexity as provided by Description Logics [1]. A taxonprran be created over
concepts, in which a concept inherits all the relations ®fsitper-concepts. Another
rule is that if concepts are the same, they will probably Hheesame super-concepts.
We turn the rule aroundf super-concepts are the same, the actual concepts aréasimi
to each other(R5). In practice we calculate the degree of overlap of the twmesu
concept sets, which provides a number between 0% and 100%ri@8]finally the sub-
concepts of two equal classes will also be the sdfrmib-concepts are the same, the
compared concepts are similédR6) [13]. Also, if concepts have similar siblings (i.e.
children of parents), they are also similéiR7). It is also possible to group properties
into a taxonomy, with the corresponding rules resultsygper-propertie$R8) andsub-
properties(R9). The next piece of information which can be added are in&snAn
instance is a specific entity of a general class from whichhefits all the relations. A
concept on the other hand can also be defined as a repregeftath set of instances.
We can therefore infer thabncepts that have the same instances are the $R1@
[10]. Vice versa,nstances that have the same mother concept are sir(ilad). It

is also interesting to have a look at the possible distritoutif instances on concepts.
If concepts have a similar low/high fraction of the instasicéhe concepts are similar
(R12). Like concepts are interconnected via properties, ingamare also regarded to
be interconnected via properties instances. This meah# tha instances are linked
to another instance via the same property, the two originalances are similafR13).

To a certain degree we can also turn this arolfrteio properties connect the same two
instances, the properties can be simi(&14).



Restrictions We continue with ontologies using restrictions. This isered by e.g. the
ontology language OWL. In OWL there are properties such as ésaalividualAs” or
“sameClassAs"They explicitly state that two entities are the safRé&5). A number
of further features from OWL could be used, but are discarde¢higtime, as they do
not have any wide distribution yet: property charactergsstis symmetry, restrictions of
values, equivalence, set operators, enumeration, arardiggss. From all of them new
rules to determine similarity can be derived.

Rules Higher levels of the ontology “layer cake” [2] can also beeoimteresting for
similarity considerations. Especially if similar rulesween entities exist, these entities
will be regarded as similar. For this one would have to predegher-order relation-
ships. Unfortunately there has not been sufficient researdipractical support for the
rule layer in the Semantic Web in general, not at all for sanity considerations.

Application-Specific Vocabulary One can also exploit clearly defined application-
specific vocabulary for similarity considerations. As aamyple we take the ontology
used within the SWAP project, in which every file has a unigashhcode assigneH.
the hash-codes of two files are the same, one can infer thatafeethe sam€R16).
Additionally, files with the same MIME-type are similaat least in their format17).

Similarity Paths In a bigger environment one can expect to have to do more empl
mapping e.g. of elements of multiple ontologies. In thisecas can use the notion of
similarity itself to receive information on other mappingmilarity as defined here
has transitive characteristics if A is similar to B, and Biisitar to C, A is similar to C.
Some relaxation has to be added when the paths become too long

4 Integrated Approach

4.1 Combination

According to our hypothesis, a combination of the so far gmésd rules leads to bet-
ter mapping results compared to using only one at a time.ri@leat all introduced
similarity methods have to be used for each aggregatiorecédly as some methods
have a high correlation. We present both manual and autorappiroaches to learn
how to combine the methods. Even though quite some methdstsex research paper
focused on the combination and integration of these methets

Summarizing A general formula for this integration task can be given hymarizing
over then weighted similarity methods.

Sim(eiljl ) eizjz) = ZZ:I wkSimk(ei1j1 ) eizjz)
with wy, being the weight for a specific methetin; andn € N



Please note our assumption that similarities can be aggegmd are increasing
strictly. The weights could be assigned manually or leamgdthrough maximization

of the f-measure (see section 5) of a training set. In ouraaagr we are basically look-
ing for similarity values supporting the thesis that twoitkes are equal. If a measure
doesn’t support the thesis, it still doesn’t mean that ifpasing it. These consider-
ations are directly derived from the open world assumptidrictv we respect in this

paper.

Sigmoid Function A more sophisticated approach doesn't only weight the sirityl
methods but performs a functional computation on each ahthe the given case the
most promising function would be the sigmoid function, whitas to be shifted to fit
our input range of [0 ... 1] (see figure 2).
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Fig. 2. Sigmoid function

Sim(eiljl ’ eizjz) = ZZ:l Wk X Sigk(Simk(eiljl7ei2j2) - 0'5)

with sig(z) = m%aw anda being a parameter for the slope

The idea behind using a sigmoid function is quite simpleghlsimilarity value should
be weighted over-proportionally whereas a low value peadlif can be abandoned. An
example shall make this clear. When comparing two labels tlamae of having the
same entity if only one or two letters are different is vergthiOn the other hand if
only three or four letters match there is no information irs thimilarity at all. The
parameters of the sigmoid function can be regarded as anstateof the similarity
methods, as they have to be adjusted according to the methpdte applied to.

Machine Learning with Neural Networks A very convenient way of determining
how to combine the methods is to use a machine learning agpréa we have contin-
uous inputs, only some machine learning approaches make.darour work we focus
on neural networks [11], as they represent an appropriagdavi@arn non-linear func-
tions. Specifically we choose a three layer fully connectagral network consisting of
a linear input layer, a hidden layer with a tanh-functiond arsigmoid output function.
A lot of literature discusses how to choose the number ofrlgy®des, and edges. We



will stick to a simple approach, as we focus on similaritysiderations rather than effi-
cient machine learning. Support vector machines are anattegnative. Unfortunately
one needs a large number of examples for training, whichrigently difficult to obtain.

4.2 Cut-off

After the just described steps we have a list which consistiseomost similar entities
of two ontologies plus the corresponding similarity valtdew remains the question
which level of similarity is appropriate to indicate eqiglior the mapping and which
strongly indicates inequality? It is important to make tleeidion where to put the cut-
off. We use the thresholds as cf. [9]. Every similarity vafumve the cut-off indicates
a match; everything below the cut-off is dismissed.

Constant Similarity Value For this method a fixed constanis taken as cut-off.
b = ¢, with b being the cut-off

The difficulty is to determine this value. Possible appraschre to take an average
which maximizes the f-measure in several test runs. Altaralg it might make
sense to let experts determine the value, which only workiseifsimilarity value
can be interpreted completely (e.g. with the sigmoid sunmaton).

Delta Method For this method the cut-off value for similarity is definedtaking the
highest similarity value of all and subtracting a fixed vaitfeom it.

b= maw(Sim(eiljl ) eizjz)lveiljl € Oil ) Cizgy € Olz) —C

N Percent This method is closely related to the former one. Here we tagéighest
similarity value and subtract a fixed percentageom it.

b= max(Sim(eiljl ’ e’i2j2)|ve’i1j1 € Oi1 ) Cigjy € 012)(1 - p)

The latter two approaches are motivated from the idea thatssity is also dependent
on the domain. The calculated maximum similarity can be dicator for this and is
fed back into the algorithm.

Our approach focuses on classifying the found mappingstimbogroups: equal
or not equal. As a potential extension in future we forestreee layer semi-automatic
approach having: correct mappings, mappings to be confimagdially, and dismissed
mappings.

4.3 Additional Actions

Using small additional actions can lead to significantlytdratesults.

Multiple Rounds For calculating the similarity of one entity pair many of ttescribed
methods rely on the similarity input of other entity pairs€Tfirst round always has to
be a general method like the comparison based on labelshwlioies not rely on any
other pairs. By doing the calculation in several rounds @arethen access the already
calculated pairs and receive a better similarity. Seveoakibilities when to stop the
calculations have been described in the literature: a fixmaoer of rounds, no changes
in the mappings, changes below a certain threshold, or dipadlgndepending on how
much time and calculation power can be provided.



Best Mappings Only When having more than one round of calculation the question
arises if the results of each round should be converteddtadjibefore they are fed back
for the next round. One approach is to reuse only the sirylafithe best mappings
found. A possible way could be to give the best match a weifjhf the second best of

%, and the third o%. Potentially correct mappings are kept with a high proligtiiut
leave a path for second best mappings to replace them. Tigedaihaving the system
being diverted by low similarity values is minimized.

Deletion of Doubles The goal of the current approach is to gain a single mapping
between two entities from the best similarity values. Ag¢hean be only ondest
match, every other match is a potential mistake, which shbaldropped. Practically
we do cleansing in the mapping table by removing entries alittady mapped entities.

4.4 Process

All the ideas presented so far describe how two entities easompared to one another
and determine a mapping measure between them. We use thwifgl methodology

(see figure 3):
m
Simple All Single Method Additional
Methods Methods Combination Actions

1) N 8

Ontologies | Similarity Final
Mappings

Fig. 3. Mapping Process

1. Starting point are two ontologies which have to be mappédwill therefore cal-
culate the similarities between any valid pair of entities.

2. In a first round basic similarities are set via measureshvhire independent of
other similarities. In our case we rely on the label similarequal URIs, or the
sameAs relationR1, R2, andR15). The complete similarity matrix is calculated
from this.

3. In a second step the overall similarities between theiestare calculated based
on all the introduced similarity measurd®l(throughR17), always using the now
existing previous similarities of other entities if requdi

4. Following the presented additional actions steps two thneke are repeated for
multiple rounds (either a fixed number of times, or until thenber of changes
per round drops below a threshold value). In a last step ésude deleted and
similarities which are too little (i.e. below the cut-offlue and therefore not worth
to mention) are removed and only the best similarities asplayed.



5. These will then be used as the final mapping table. Theybsikvaluated as ex-
plained in the next section.

5 Evaluation

The problem of mapping between ontologies already prodgoede interesting ap-
proaches. A thorough evaluation of our new approach is ptedéere.

5.1 Evaluation Scenario

Our evaluation is based on the introductory example givesettion 1. We have pre-
sented an application scenario for mappings at the begjrofithis paper.

We basically take two ontologies and create mappings betteseentities based on
a given strategy. These mappings are validated againsbthect mappings which had
been created in beforehand. Our goal was to reach the bestemaihmappings, which
is quantified in the f-measure (see next section). As thelatesquality of mappings
is highly dependent of the complexity of the ontologies tkelves, we focus on the
relative performance of different mapping strategies.

The implementation itself was done in Java using the KAGaxrework for ontol-
ogy access and maintenance. All the tests were run on a stamok@book.

5.2 Metrics

To allow for comparability not only between our own test sgyibut also with existent
literature we will focus on using standard information imtal metrics. The definitions
of precision and recall is adapted by us to fit the given etelnacenario [8].

_ #Hcorrect_found_mappings
Recall r = F#possible_existing_mappings
[ __ #correct_found_mappings
Precision b= #all_found_mappings
F-Measure combines the two mentioned measures.

f= (b;;_lk)f’” with b = 1 being a factor to weight precision and recall.

11-Point Measure is the 11-point interpolated average precision at the TRE®
adjusted it to the similarity scenario: eleven points aneadly distributed between
the best match and the least match. This way we can gain aagaverecision,
recall, or f-measure.

Measures at Cut-Off takes into account how well the algorithm can determine twvhic

mappings are still valid and which should be dismissed.

5.3 Data Sets

Four data sets each consisting of at least two ontologies w&zd for evaluation pur-
poses. From the differences of them we expect a represenethluation.

5 http:/kaon.semanticweb.org/
8 http://trec.nist.gov/



Russia 1 In this first set we have two ontologies describing Russia dhtologies
were created by students with the task to represent the ritootdwo indepen-
dent travel websites about Russia. These ontologies hgrexmately 400 enti-
ties, including concepts, relations, and instances. Ttad tmmber of theoretical
mappings is at 280, which have been assigned manually. Taigso is an easy
scenario, with which many individual methods can be tested.

Russia 2 The second set again covers Russia. This time the two on¢slbgve been
additionally altered by deleting entities and changinggtracture as well as the
labels at random. Each ontology has about 300 entities WBlpdssible mappings,
which were captured during the generation. Many of thesepigp can not even
be identified by humans any longer.

Tourism Two ontologies which were created separately by differeotigs of people
describe the tourism domain. Both ontologies consist e&etibout 500 concepts
and relations, but no instances though. 300 manual mappiegscreated.

SWRC The SWRC (Semantic Web Research Community) ontology desctite do-
main of universities and research. Its size is about 30Giesitiwith very little
instances. For this setting three more very small ontofo@bout 20 entities each)
were created. In total we have 20 possible mappings (mandetérmined) against
the SWRC ontology. This scenario was derived from the SWAIR vdsere small
queries (plus additional context) are sent to an existirtglogy for validation.

5.4 Strategies

For the tests we chose to use five similarity strategies:

Label (S1) For this strategy only the labels of entities were regard®l).(This strat-
egy can be regarded as the baseline against which we needltmtevthe other
strategies with more advanced measures.

All (S2) As a next step all described similarity method&l(throughR15) are inte-
grated through simple addition.

Weighted (S3) All similarity methods are integrated including differentights for
each method. The weights were calculated by maximizing veeadl f-measure in

the four test data sets. Additionally five rounds of similadalculation are done
and doubles are removed.

Sigmoid (S4) Again all methodsR1 to R15) are taken, but they are weighted with the
sigmoid function. The parameters of the sigmoid functioeserassigned manually
with respect to the underlying similarity method. In the freeinds only the best
results were fed back into the next round. Finally doubleswemoved. A constant
was used to determine the cut-off.

Neural Nets (S5) The results of the methods are fed into a neural network. étitva
(20%) of the evaluation examples was taken for training pseg. The rest was

then used for evaluation. A constant value for cut-off wasdeined from the
same training set manually.



5.5 Results

For space purposes we will only present an excerpt of thereeesults as to be
published in an upcoming technical regoke will focus on the averaged table for the
discussion, which already covers the complete results.

In figure 4 we present the results of the first data set with wee dtrategies S1
Labels and S4 Sigmoid. All mappings are arranged by theilaiity value - with the
left side of the graph showing the highest value and the sSigte showing the lowest
value. With each new mapping we recalculate the other messtihe graphs show the
respective precision, recall, and f-measure values. Th&adgoints show the cut-off
border. This is the point we have to measure if we are lookangekactly one value.
Alternatively we also measured the 11-point average to g&iew of the whole curve.

We will now compare the two strategies with respect to thendeffevaluation mea-
sures. The highest mappings are all correct, what one cafnsaehe precision value
of 1 for both strategies. But what one can also see is that §h@d keeps the pre-
cision value high for many more mappings than S1 Label (97%80%6 at cut-off).
Recall only reaches a medium level for S1 Label; the finalllsvenuch higher for S4
Sigmoid: 0.75 vs. 0.5. A consequence of these two measutbatithe f-measure is
also higher for the advanced approach in comparison to tkre approach.

A word about the other strategies: all lie in between the tvasented approaches.
However, determining the cut-off point was much more diffién those strategies.
They often missed the highest f-measure value considerabfeneral comparison
graph is plotted in figure 4. This comparison graph shows Weeage results over all
four data sets, each with the different strategies. Pagisecall, and f-measure reach
their highest values with S4 Sigmoid. In general one can lsaythere is an increase
with the rise of strategy complexity. For S1 to S3 we plotteel two results from dif-
ferent cut-offs. We will now discuss these results in moraitle

5.6 Discussion
Our original hypothesis H is widely fulfilled:

Semantics can help to determine better mappings (S1 vs. S4).

Precision is considerably higher for the more advanced combinatiothaus. Espe-
cially interesting is the fact that precision generally ighter for these methods,
no matter where the cut-off is placed in the mapping tablés iBimportant when
thinking of full-automatic solutions, where we want to kebp wrong mappings
as low as possible.

Recall also rises along the richness of methods.

F-measure as our core evaluation measure reaches the highest valtleef@4 Sig-
moid strategy for every data set.

Average Increase of 20%in precision, recall and f-measure.

Naive Combinations of mapping methods often do not make the results better, but
worse (S2 All, and even S3 Weighted) . The effort for advancaefully deter-
mined methods is therefore very important.

" We refer to http://www.aifb.uni-karlsruhe.de/WBS/meh/publications/ESW3He complete
graphs as well as the used ontologies.
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Machine Learning might help (S5). The problems we encountered are generht pro
lems of machine learning such as over-fitting. We also fabedbtoblem that the
additional actions could not be completely integrated itt® machine learning
approach, which lead to lower results.

6 Outlook

6.1 Related Work

Most of the ideas for measuring similarity are derived frasmenon sense and can be
easily understood. To our knowledge existing approachassfon specific methods to
determine similarity rather than using an overall inteiggatipproach.

Some authors have tried to find a general description of aiityilwith several of
them being based on knowledge networks. [20] give a gengga/iew of similarity.
As the basic ontology mapping problem has been around foesgars first tools
have already been developed to address this. The tools PR@KIPANchorPROMPT
[17] use labels and to a certain extent the structure of ogies. Their focus lies on
ontology merging i.e. how to create one ontology out of @] lready used a general



approach of relaxation labelling in their tool GLUE. Mosttbéir work is based on the
similarity of instances only. [15] created a tool for magpaalled Chimaera. Potential
matches are presented to the user in all mentioned toolofdirmation. In their tool
ONION [16] the authors take up the idea of using rules andrémfeing for mapping,
but the inferencing is based on manually assigned mappingsmple heuristics (as
e.g. label comparisons). Besides equality first steps kemta the direction of complex
matches. These could also include concatenation of twesfldh as “first name” and
“last name” to “name”[9]. [4] further present an approachdemantic mappings based
on SAT. Despite the large number of related work, there arg Nifle approaches on
how to combine the many methods as we do. The other mentiooésido not raise the
issue, they presumably use only naive summarization apbesa

[19] express their insights from a database view. Many ide@® the database
community, especially concerning efficiency [14], shoulsbabe regarded. Another
community involved in similarity and mapping are objecieoted representations in
which little work seems to has been done, [21] for UML beingeaoeption. Agent
communication greatly benefits from mapping as shown in.[24]

6.2 Problems and Future Steps

Even though the shown approach retrieves good resultsesiudts do not reach 100%
correctness. Unfortunately, if full-automatic mappingdne, and inferencing builds
on top of it, wrong results can bring down the value of the wehwlapping process.
Implications of fuzzy inferencing[7] will have to be undtrsd well when using it.
Semi-automatic processing is a common approach to circonthvis problem. Another
problem is a general problem when doing comparisons. Ealheuiith big ontologies
complexity of similarity calculations can grow dramatigaln our approach one can
expect a complexity o (log?(n) x n?). Itis derived fromO(log(n)) for entity access,
O(log(n)) for the method complexity, and(n?) for the full comparison of all possible
pairs. Approaches to reduce complexity from other domairgs (latabases) might be a
good start. As data in ontologies expresses certain sersahg calculations might be
channelled using these semantics e.g. starting with casgues of top-level elements
in the hierarchy. Both problem areas have potential forrfutuork.

6.3 Conclusion

The mapping problem arises in many scenarios. We have shawettzodology for
identifying mappings between two ontologies based on ttedligent combination of
manually encoded rules. Evaluation proved our initial ttipsis, i.e. the combination
of our presented similarity measures leaded to considgbaiter results than the usage
of one at a time. One can summarize that precision, recallf-ameasure increase by
20% compared to label-based approaches. Semantics hielgggrthe mapping gap.
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