
An Open Framework to Support
the Development of Commercial Cloud Offerings

based on Pre-Existing Applications

Alexander Lenk
FZI Karlsruhe

Haid-und-Neu-Str. 10-14
76131 Karlsruhe,

Germany
lenk@fzi.de

Jens Nimis
FZI Karlsruhe

Haid-und-Neu-Str. 10-14
76131 Karlsruhe,

Germany
nimis@fzi.de

Thomas Sandholm
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

thomas.e.sandholm@hp.com

Stefan Tai
FZI Karlsruhe

Haid-und-Neu-Str. 10-14
76131 Karlsruhe,

Germany
tai@fzi.de

ABSTRACT
Web-based service delivery and billing by consumption are two
defining properties of Cloud Computing. They leverage novel
business models and sales channels for yet to develop as well as
pre-existing applications. Many pre-existing applications are
already capable of running in distributed environments, but still
do not meet the requirements to run as a Cloud offering. For
example, applications built to run in cluster environments are
designed for distribution and massive scalability and from an
architectural point of view qualify to be suitable for Cloud
environments as well. However, a limitation of cluster-based
applications with respect to Cloud adoption is that many of them
initially do not support necessary Cloud service features such as
payment services or multi-tenancy. To close this gap, we propose
an open framework that helps to adapt pre-existing applications
into commercial Cloud offerings. The framework facilitates the
process to extend pre-existing applications with the respective
required web service interfaces, which ultimately allows them to
be consumed as Cloud offerings in a pay-as-you-go manner. The
framework approach is illustrated by the transformation of the two
well-known cluster applications Hadoop MapReduce and MySQL
into full-blown Cloud offerings.

Keywords
Cloud Computing, Framework, Hadoop, MySQL

1. INTRODUCTION
The pervasiveness of the Internet allows for Web-based
applications to address a virtually unlimited audience. The success
of such applications measured in page hits and unique users poses
an enormous challenge towards application design with respect to
scalability. Even an unexpected spike in the application popularity
must not lead to a degradation of service quality - to every user
the application must feel like he would have exclusive access.

In recent years a large number of cluster applications have been
developed, which have the ability to scale well for heavy
workloads but which are not necessarily suited for multiple
concurrent users or for Web access.
In this respects, such applications are not ready for the Cloud. To
facilitate and accelerate the transformation that is needed to put
them into the Cloud is the main goal of our framework presented
in this paper. The framework follows a lightweight approach that
tries to avoid invasive changes to the pre-existing applications and
instead builds a system of loosely coupled services around it.
Section 2 presents the design of the framework and shows how
payment and authentication services are integrated with pre-
existing applications via a service mashup. In Section 3 the usage
of the framework is illustrated for the Hadoop MapReduce and
MySQL applications and in doing so the suitability and reusability
are underlined. Section 4 discusses related work and Section 5
concludes the paper.

2. FRAMEWORK DESIGN
As shown in Figure 1 we choose layering as the fundamental
architectural style for our framework. The constituent layers and
their components comply with our Cloud computing stack [12].
They are described in detail in the following subsections.

Figure 1: General framework overview

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CCV Conference 2010, May 17–18, 2010, Singapore.
Copyright 2010 CCV

User Interface

Mashup

Application
service

Payment
service Database Authentication

service

2.1 Identification of main components
In order to interact with the user, the framework needs a user
interface which is located in the Application layer of the stack (see
Figure 2). The user interface provides an easy access to the
services located in the Application Services layer. Due to the fact
that several services should be combined to one higher service, an
additional component in the Composite Application Services
Layer of the stack is necessary. We call this component mashup.
The mashup uses different Basic Services such as a basic
application service (further called application service), an
authentication service, a payment service and a database.

Figure 2: Identification of the components in the

Cloud computing stack [12]

2.2 Application Service
The transformation into an application service is the first step of
turning an existing cluster application into a cloud service.
Therefore, the application service adds a payment and control
interface to the cluster application. The service that provides both
Web services is structured as a nested framework, linking the
cluster application with a billing component and billing database
(see Figure 3).The cluster application has to meet certain
preconditions, such as it must be possible to control it externally
by using the command line, RPC calls or Web service calls. It also
allows the separation of its resources on user level. This could
mean that user management is included in the application, which
provides basic authentication and authorization functionality.

Figure 3: Application service overview

 Because the application is not yet an application service
(according to our definition) it has most likely no native payment
or control Web service interface. The billing component is used to
provide the functionality of the payment interface. It tracks the
usage of the application and thereby deducts the budgets of the
user and saves all the information in a billing database inside the
application service. The algorithm which is used to deduct the
budget could be a simple time based, or a complex one like a
market based algorithm. The billing component is accessed by a
Web service interface and can control the application if a certain
event occurs (e.g. the user run out of funds the component makes
sure the user can't perform any further actions on the application).
We call the interfaces of the application service Billing Interface
and Control Interface.

2.2.1 Billing Interface
The payment interface is used for all monetary transactions with
the application service. The methods for the payment interface are
config, spending (for market [18] or service level [4] based
mechanisms), deposit, budget, invoice, and info.
Billing/config requires no input and outputs the current

configuration. A configuration could, for example, contain
information like the minimum amount the user has to pay, or
what service level is guaranteed. Based on this information,
the user can decide whether to use the service and how much
to pay. This function is public and thereby also visible
through the mashup.

Billing/spending is used by the user to set his willingness to pay.
Based on this value a market mechanism could decide, what
resource share has to be reserved for the user. The spending
rate is also used by the budget tool to determine how much
money will be deducted from the account. The input of this
public method is the identification of the user and his new
spending rate.

Billing/deposit can be used by the payment module to change the
available budget on the application service. It has to be
ensured that the user of the cloud service can't access this
method. The input of the function is the identification of the
user and the amount which is added to the budget (negative
amounts get deducted).

Billing/budget is used to return the available budget on the
application service.

Billing/invoice requires the dates for the invoice and returns the
billing information for the given time.

Billing/info can output information like the actual share the user
has in a market driven approach.

2.2.2 Control Interface
The control interface provides an interface to the cluster
application's core functionality. E.g. for a database application a
method for executing queries on the database is available. If the
application is a file storage solution one method is to show the
user all the files located on the storage. It is important to make
sure that only the currently authenticated user is able to see his
private data. This is done by passing the user identification to the
control interface in every method call.

Cluster
Application

Billing
Component

Billing DB

 Billing Interface Control Interface

Web server

2.3 Payment Service
We propose to use an external, well-established payment provider
to handle the payment process. It is also possible to implement the
whole payment process in the payment module but there are
plenty different payment providers, which are well known and
have the trust of many users (e.g. Paypal [17]). Using an existing
one lowers the barrier for new users and reduces the
implementation effort.

2.4 Authentication Service
To lower the barrier for new users to use the service we
recommend to provide a login using an external Shared Sign-On
provider such as OpenID [11]. In the example of OpenID every
customer who has already an OpenID identifier (e.g. a Yahoo [23]
email address) can use the service without going through a
complex registration process. If necessary only some additional
information can be asked when the ID is used the first time. Some
Shared Sign-On providers have the handicap that a browser has to
be used to sign in. In that case we recommend having an
additional provider allowing authentication without the use of a
browser. Otherwise is it not possible to access the Web services
interfaces from inside other programs.

2.5 Database
The database saves the state of the mashup. Its primarily used by
the user module to save the identification of the user and his
additional information. Other modules are also able to save data in
the database. For instance the payment module to log the
transactions or the authentication module can save access
statistics. The database could be a conventional database like
MySQL [7] or a cloud based one such as Amazons SimpleDB [1].

2.6 Mashup
The mashup is the central component of the framework
connecting the underlying services and providing their
functionality to the layers above. The mashup and the services are
loosely coupled and can run on different machines, so for each
underlying service there must be at least one module that
communicates with the service. The mashup consists of the
following modules: application module, payment module,
authentication module, user module, and database module (see
Figure 4).

Figure 4: Detailed framework overview

2.6.1 Application Module
The application module is responsible for handling all the
communication with the application service. This means it
provides interfaces to the application service, the user, and other
modules. The module gives the user access to public methods and
hides the private ones. An example for an private method is the
deposit method. Only the payment module is allowed to access
this method directly so it is located in the internal, private
interface. Otherwise every user could deposit money for free. The
application module also takes care of passing the correct
authentication token to the application service ensuring the user
has only access to his data. Figure 5 shows a sample call on a
storage application service.

Figure 5: Forwarding a Web service call

to the application service

Considering the case that the user wants to access the method ls at
the storage application service. The application module gets the
information about the currently authenticated user from the
authentication module and adds the user id to the path before
forwarding the request to the Web service of the application
service. This ensures that a certain user has only access to his
personal folder.

2.6.2 Payment Module
The user can use the payment module to deposit money on the
application service account. The application service uses the
deposit money then to determine how much resources the user can
consume. The whole billing process is handled in the application
service: the payment module just adds money to the account. Due
to the fact that the payment process is performed by an external
entity, the payment module is responsible for the transactions
between the payment service and the application service. It
ensures the payment process with the external service provider is
complete before passing all the necessary payment data to the
application module. The communication with the payment service
could work in two different ways: the Cloud Service could check
in constant periods if there were new payments (pull strategy) or
the payment service could notify the cloud module if a transaction
is done (push strategy). We propose that the push strategy is used
if the payment provider supports it. Figure 6 shows the sequence
of the payment process with a push strategy.

User Interface

Application
service

Payment
service Database Authentication

service

Authenti-
cation

module
User

module
Payment
module

Application
module

Database
module

Application Module

Fs/ls(/home/user1/data)

Application Service

Fs/ls(/data)

Figure 6: Sequence of the payment process

The user first requests all available payment services and the
necessary data to perform the payment (reqPayData). After
receiving this information he chooses one provider and uses the
provided information to perform the payment (makePayment). He
receives a confirmation from the payment provider and the
provider also notifies the payment module that the payment was
successful (retPayDetails). The payment module passes the
payment details to the application module which deposits the
payment to the user account in the application service.

2.6.3 Authentication Module
The framework supports several different types of authentication
systems. The authentication module gives access to the various
systems. The system could be an external authentication service,
like OpenID, which needs a Web browser to perform the
authentication task; the system could also be an internal
authentication algorithm, like signing the query with a secret key.
The data which is used for the authentication methods are stored
in the database. The authentication module provides the method
request authentication types to the user. The method is used to
request all the information from the module for every single
authentication system. For a shared authentication system, like
OpenID, the method returns the login URL for OpenID. Another
method, provided by the module, is check validity. This method
checks if the authentication data is still valid, returning a Boolean
which indicates the current status of the authentication. The
authentication module is the core module of the mashup. Every
request to the mashup must pass the authentication layer, ensuring
no unauthenticated users have access to the other modules. Figure
7 shows the authentication process when accessing the application
module.
Before communicating with the application module the user
requests all available authentication types from the authentication
module (reqAuthTypes). After choosing a certain type he uses the
information provided by the module to contact the authentication
service and process the authentication process with this external
provider (doAuth). Finally the user accesses the application
module providing the authentication data as well as the data
necessary by the application module. The authentication module
preprocesses the request filtering the authentication data out and
checking the provided information with the authentication service.
If the data is valid it forwards the request to the application
module.

Figure 7: Sequence of the authentication process with

an external authentication provider

2.6.4 User Module
To make sure the user can be identified in the case of a fraud, an
accounting system is required. The user module implements this
accounting system. When a new user is added to the framework,
the user module assigns an unique ID and saves information such
as first name, mailing address, or email address. The information
provided by the user could be checked using external providers to
verify their validity.

2.6.5 Database Module
The database module is used to give other modules access to the
persistent storage, the database. Every module is able to store data
in the database but no interface is provided to the user directly.

2.7 User Interface
The user could use all the functionality of the service through the
Web service interface of the mashup. The mashup uses standard
Web service technologies like REST [16] or implements a HTTP
GET Web service interface and could be accessed using a
browser. To make the interface more usable for an inexperienced
user, a graphical interface or command line interface is proposed.
The user interface connects to the Web service interfaces of the
mashup to provide its functionality. The UI is nothing else than
just a other way of accessing the functions provided by the
mashup. The UI can run on a different machine than the mashup.
It could be another Web server in case of an HTML/AJAX [10]
frontend or the user’s home machine in case of a command line
interface.

retPayData
makePayment

retConfirmation
retPayDetails

sendPayDetails
X

: Payment
module

:Payment
service : User :Application

module
:Application

service

deposit

reqPayData

reqAuthTypes

retAuthTypes
doAuth

retAuthData

X
retCloudData

checkAuthData

retAuthStatus

reqCloudData

reqCloudData

:Authenti-
cation

module

:Authenti-
cation

service
:User :Application

module

3. PROOF OF CONCEPT
To proof the concept the usage of the framework is demonstrated
with the cluster applications Hadoop MapReduce and MySQL.

3.1 Hadoop MapReduce
The MapReduce module of the Apache project Hadoop is a
software framework to make it easier to develop and run
applications that process vast amounts of data (multi-terabyte
data-sets) in parallel on large clusters. Even if the clusters are
comprised of thousands of nodes of unreliable hardware, Hadoop
processes the data in a reliable, fault tolerant manner. The
MapReduce software splits the input data into independent chunks
and processes them in the map phase completely in parallel. Each
map job processes one chunk of the input data. In the reduce
phase the output of the map jobs are processed by one or more
reduce jobs. Both the map and the reduce algorithms are written
by the user of the cluster. Together the map and reduce algorithms
are called a MapReduce program. [22]
Our goal is to design a Cloud service of Hadoop MapReduce that
can be accessed by humans as well as machines (e.g. scripts). It
should be possible to quickly gain access to resources for a
limited amount of time. The barrier for using the service should be
as low as possible, thus the payment and authentication services
have to be well known and trusted.

3.1.1 General Setup
MapReduce has two main nodes that control the whole cluster: the
Jobtracker and the Namenode. The Jobtracker controls the map
and reduce processes and the Namenode the distributed Hadoop
file system (HDFS). Within the Jobtracker the scheduler is
responsible for allocating the different map and reduce jobs to the
working nodes. Failed and incomplete jobs are also handled by
the Jobtracker. In order to mash the Hadoop MapReduce cluster
application with the other services and thereby transform it to the
final Cloud service, Hadoop MapReduce has first to be
transformed into an application service. In the second step it has
to be decided what authentication and payment methods should be
used. So in the third step the mashup and the user interface can be
implemented.

3.1.2 Application Service
MapReduce has no native billing or control interface in order to
achieve the needed functionality, so both interfaces have to be
added. The MapReduce software already has a native Web server
(Servlet) functionality built in that can be used from a scheduler
plug-in .
The key enabler of running Hadoop as a service is the Dynamic
Priority Scheduler, which was added in Hadoop 0.21. It enforces
cluster shares in real-time based on bids from users, and allocates
shares based on spending rates and budgets.
In this work the scheduler was extended to use an external
database to get information on how much the users are willing to
pay and to thereby determine the resource capacity share of each
user. By default the scheduler uses simple file storage to persist
budgets and relies on a REST interface to control the budgets and
spending rates.
In figure 8 the architecture of the application service is shown.

Figure 8: The Hadoop MapReduce application service

While the implementation of the control interface is straight
forward and everything can be implemented in servlets running on
the Namenode and Jobtracker, the billing component providing
the billing interface is more complex.

3.1.2.1 Control Interface
MapReduce usually has two discrete nodes for controlling the
jobs and controlling the file system. So there will be two different
endpoints: the Job Web service and the Filesystem Web service.
Functions of the file system interface are delete, list, create,
upload, and download. All functions require a HDFS URI [22] as
parameter and return XML or binary data.
Filesystem/delete deletes a file or folder
Filesystem /list lists the content of a folder
Filesystem /create creates a folder
Filesystem /upload loads a file to the file system
Filesystem/download gets a file as binary data from the file

system

The functions of the job Web service are info, start, and stop.
Each function requires the queue name as user id as parameter and
returns XML data.
Job/info returns the configuration of the Jobtracker, all the jobs

and the share of the user.
Job/start creates a new Hadoop MapReduce job. As additional

parameters it requires the job configuration as XML, the URI
to the MapReduce program, and the HDFS URI to both input
and output.

Job/stop requires the job id as input and stops the corresponding
job on the cluster.

3.1.2.2 Billing Interface
The billing component is a standalone java tool running on the
Jobtracker and deducting the budget of each user with active jobs
after a certain amount of time. The deduction algorithm is by
default included in the scheduler, but in this work an external
component was used to minimize the overhead of the internal
scheduler. Due to the fact that the priority scheduler is using an
external database it is easy to modify the data the scheduler
accesses.

Jobtracker Web server Namenode Web server

HDFS

 Filesystem Job

Billing
component

Billing DB

 Billing

Priority
Scheduler

The billing interface implements the functions config, deposit,
spending, budget, invoice, and info. Each function requires the
queue name of the user.
Billing/config information about the billing interval (the time the

spending rate gets deducted from the budget), the available
nodes and the SLA of the cluster.

Billing/deposit adds or reduces the amount of available funds on
the users account. It requires the amount to be added or
reduced (positive values get added, negative values get
reduced).

Billing/spending sets the new spending rate of the user.
Billing/budget is used to return the available budget on the

application service.
Billing/invoice requires the dates for the invoice and returns the

billing information for the given time.
Billing/info outputs the current spending rate and share of

resources that are reserved for the user with his current
spending rate.

3.1.2.3 Billing component
The billing component takes care of deducting the current
spending of the user accounts. It checks if there are running jobs
on the cluster and in that case reduces the amount according to the
current spending rate. It also recalculates the share each user has
which is used by the scheduler to reserve the resources for the
different queues. If the user is running out of funds it sets the
spending rate and the users share to null.

3.1.3 Authentication Service
To achieve the goal that each user has an easy way of
authenticating against the service the service provider OpenID is
used as an external authentication provider. Unfortunately
OpenID requires a Web browser to work, so for an authentication
using a direct Web services access another authentication
mechanism is needed.

3.1.3.1 Browser Authentication
OpenID is a decentralized network of providers that are able to
create accounts. The providers are responsible for ensuring that
the provided data of each user is valid. In the authentication
process the user authenticates himself against the OpenID
provider, telling him which website he wants to visit. The
provider redirects the user to the provided web site and gives the
web site an authentication token that authenticates the user.
Usually this token is stored as a cookie in the user’s browser.

3.1.3.2 Direct Authentication
After creating a user account and logging in the first time using a
browser a secret key is generated and provided to the user. The
user can sign the calls to the cloud service with this secret key and
can thereby authenticate herself against the service.

3.1.4 Payment Service
The external payment service could be any service available on
the internet that provides a Web service API. For the Hadoop
MapReduce cloud service the provider Paypal is chosen because it
is widely known, available in many countries, trusted, and
provides the functionality needed to use the push strategy. The
sequence of a call on the payment service is described in
subsection 2.6.2.

3.1.5 Database
The purpose of the database is to store information of the users,
like their authentication information and billing information. It
could be any existing database which is supported by the language
the mashup uses. We chose MySQL here because many libraries
in many programming languages support this type of database.
Further, it can be used as a cluster application and thereby be
transformed into a Cloud service as well (see 3.2).

3.1.6 Mashup
As the core unit of the cloud service, the mashup hides and
connects all the interfaces of the underlying services and
applications and provides public interfaces to the user. It can be
written in any programming language. The language must only
provide the opportunity to access Web services and needs to have
native database support. Possible programming languages would
be Java, Python or even scripting languages like PHP. In our
proof-of-concept implementation Python is used, so the mashup
can not just run on a dedicated server but also on platforms such
as Google’s App Engine [19].

3.1.6.1 Application Module
To ensure that only the authenticated user has access to the cluster
all calls to the job or filesystem Web service are preprocessed by
the application module. Information about the current
authenticated user is given to the application service, so that it can
ensure that the user only has access to her data.
When accessing the file system Web service the application
module alters the requested path and adds the home directory of
the user on the HDFS. If the user requests to list the contents of
folder /data, for example the application module changes the
request to /home/<userid>/data.
The priority scheduler uses the queue name of Hadoop
MapReduce to separate the different users. In order to separate the
users from each other the application module automatically adds
the correct queue name to each call to the job interface of the
application service. The corresponding queue name is stored in
the database.
Note: Separating the users using a home folder and the queue
name is not very secure. The users could design their MapReduce
programs in a way that they can access the files of the whole
cluster. In a production environment additional security on the
Hadoop MapReduce cluster has to be installed.

3.1.6.2 Payment Module
The payment module implements an endpoint for the payment
service. When the payment process is over, the payment service
notifies the mashup at this endpoint and the payment module can
deposit the money on the application service using the application
module.

3.1.6.3 Authentication Module
The Web service of the authentication module is the endpoint for
the user to authenticate herself against the mashup. The
authentication module provides two different authentication
methods: OpenID and signed URL.

The function types returns to the user all available types of
authentication mechanisms that can be used for authentication
purposes against the mashup. If the user chooses OpenID she gets
redirected to the OpenID provider according to the process
described in subsection 2.6.3. If she chooses the signed URL
mechanism he uses the private key available from the user
module.

3.1.6.4 User Module
The user module provides information about the currently logged
in user. Information includes: billing information, the SSH public
key for uploading data and MapReduce program to the cluster,
and the private key for authentication perposes.

3.1.6.5 Database Module
The database module serves as a façade to the database. All
persistent data, is given to the database module so that it can store
the data in the database. The module provides no interface to the
user but only to other modules.

3.1.7 User Interface
The user should have two different opportunities to submit his
jobs: a web site using a browser and a command line script which
can be used in other applications.
For accessing the service with a browser an AJAX based web site
is used. All the services of the mashup can be accessed by
asynchronous Web service calls. When using a browser the
standard authentication method is OpenID but the user can also
sign his query with his private key and thereby bypassing
OpenID.
The command line interface translates all the method calls to
XML and sends it to the mashup: the XML data received is passed
to the standard out of the command line interface. The interface is
written in Python and uses the httplib2 library [9] for the
communication with the mashup. The authentication data can be
passed to the command line interface in every call using the -key
parameter or can be stored in a configuration files stored in the
users home directory.

3.2 MySQL
MySQL comes in different versions while the basic version is
installed on a single server, the MySQL Cluster [6] version is
designed to run in a distributed environment. The cluster consists
of one or more MySQL hosts and several network data bases
(NDB). The NDBs are the data nodes of the cluster and the
MySQL hosts serve as access point to the cluster.

3.2.1 General Setup
The cluster consists of one MySQL hosts and several NDBs
where the data is stored. Depending on the load of the server
additional MySQL hosts and NDBs can be added.

3.2.2 Application Service
Like Hadoop MapReduce MySQL has also no native billing or
control Web service interfaces. Fortunately there are many
projects available that makes it easy to add such interfaces. In a
small setup the control and billing interface can run on the same
machine. If the load of the cluster increases it is proposed to have
the billing component on a separate host that provides no control
interface. Also depending on the load more than one MySQL
Node is necessary. In this case every MySQL node running a
mysqld server [6] is providing the control interface, and the
servers have to be load balanced [5].

3.2.2.1 Control Interface
The control interface could be added by using either PHP REST
SQL [14] or DBSlayer [21]. DBSlayer allows native SQL queries
and PHP REST SQL adds a RESTful Web service to the database.
Unfortunately DBSlayer doesn't support multiple users in the
current version so it is not usable at the moment and PHP REST
SQL does not support SQL query so the usage is very limited.
Thus a control interface may have to be written completely from
scratch.
To implement the interface, in our proof-of-concept
implementation Python is used. The Web service provides only
one function: the function query to execute a SQL query. The
function takes the query string and the SQL username as input.
The Web service uses the username to access the MySQL cluster,
executes the query and returns the result as an XML document. It
is important that the Web service uses different usernames,
otherwise no billing and no security could be ensured.

3.2.2.2 Billing Interface
To add a billing interface the UserTableMonitoring of the Google
MySQL Tools [8] can be used. The SQL command SHOW
USER_STATISTICS shows the used resources like traffic,
storage and other, per user. Based on this data the budget
component can deduct money from the budget database
frequently. If the user is running out of funds it sets the MySQL
user to inactive and thereby ensures that no one can use the
service without paying.
The billing interface implements the functions config, deposit,
budget, info, and invoice. Each function requires the queue name
of the user.
Billing/config information about the billing interval (the time the

spending rate gets deducted from the budget), the available
nodes and the SLA of the cluster.

Billing/deposit adds or reduces the amount of available funds on
the users account. It requires the amount to be added or
reduced (positive values get added, negative values get
reduced).

Billing/budget is used to return the available budget on the
application service.

Billing/invoice requires the dates for the invoice and returns the
billing information for the given time.

3.2.3 Authentication Service, Payment Service and
Database
For the MySQL cloud service the same services and database are
used as in the Hadoop MapReduce scenario (see 3.1.3 - 3.1.5).

3.2.4 Mashup
The mashup of the Hadoop scenario can be reused to implement
the MySQL mashup. Only the application module has to be
changed to match the new application service.

3.2.4.1 Application Module
The application module provides the function query of the
application service directly to the user but only has the SQL query
string as input. When forwarding the data to the control Web
service of the application service, it adds the current logged-in
user.

3.2.4.2 Other modules
Since the other services are unchanged (see 3.2.3) the
implementation of the corresponding modules are the same as in
the Hadoop MapReduce scenario (see 3.1.6.2-3.1.6.5).

3.2.5 User Interface
Major parts of the user interface of the Hadoop MapReduce
service can be reused (see 3.1.7). Only the Web page for the
AJAX interface has to be modified to fit the changed application
module Web service interface. Since we want the user to browse
the database and field where he can specify his query is offered. If
the result is returned another text field gets updated with the XML
result.

4. RELATED WORK
Two general kinds of related work can be distinguished for this
paper. On one hand, there is related work regarding the
framework itself as the papers’ core contribution. This kind of
related work is comparable to the framework from a provider
perspective as it describes other approaches to put applications
into the Cloud as commercial offerings. On the other hand, there
is related work with respect to the both proof of concept
implementations presented in Section 3. The discussion of this
kind of related work gives insight to system properties resulting
from framework usage.
The Google App Engine is the most prominent Platform-as-a-
Service offering. Like our framework, it supports providers with
basic application services and the means to connect them to a
Cloud offering [19]. Unlike our framework, it is not dedicated to
pre-existing applications in general, but the functionality to be
offered is usually implemented in one of the programming
languages supported by the framework (currently Java and
Python). Similar constraints apply to the platform functionality of
Microsoft Azure [15], which is limited to the support of .NET-
programs. While in principle one could integrate pre-existing
applications using a PaaS for example via Web Services, it is
important to note that this is not their intended usage. At the same
time, most PaaS offerings bring with them certain proprietary
services for billing, authentication etc.. In this sense such
platforms are not open towards third party services. Other
available PaaS offerings like Skytap [20] or LongJump [13] are
less restrictive with respect to the implementation of the pre-
existing applications, but have other drawbacks in our setting.
Skytap for example helps to build private Clouds for hosting
enterprise applications. The resulting Cloud offerings are
primarily specialized for inhouse use and not as commercial
offerings for third parties. LongJump, in contrast to Skytap, is
better suited for commercial offerings but has the above
mentioned openness constraints towards third party services.
Another interesting approach to integrate pre-existing service-
based systems are mashup engines [9] which allow to combine
several basic services to new composite Services using simple
operators. Typically, mashups are used for short-lived
applications constructed by their end users. This focus on end user
programming requires simplicity of the connecting operators, and
the resulting restrictions disqualify mashup engines for the
construction of complex commercial Cloud offerings.
Amazon MapReduce [2] and Amazon RDS [3] are Amazon’s
corresponding offerings to the both proof of concept
implementations and thus belong to the second category of related

work. Both are built on top of Amazon’s IaaS computation
offering EC2 and use Amazon’s authentication and billing
functionality. This results in the fact that they are not billed fine-
grained by actual resource consumption but that they are billed by
usage of EC2 instance hours with an additional fee for
MapReduce management in the first case. However, the
application of our framework allows for developing arbitrary
billing schemes for the pre-existing applications MapReduce and
MySQL respectively.

5. CONCLUSIONS
Cloud Computing allows for novel business models and sales
channels for yet to develop as well as pre-existing applications.
Many pre-existing applications that are capable of running in
distributed environments already fulfill important prerequisites to
run as cloud offerings, e.g. from scalability point-of-view.
However, some of them are still missing other important features
such as payment services or multi-tenancy, which are necessary to
consume them in a Cloud-like fashion via public Web Services
and billed by consumption.
In this paper we have presented an open framework that allows
for pre-existing applications to be enhanced into commercial
Cloud offerings. The current version of the framework already
simplifies and accelerates the process to extend pre-existing
applications with the respective required Web Service interfaces.
More sophisticated services such as monitoring and logging
services which are reusable generically will be added to the
framework as future work and can evolve it into the nucleus of an
open Platform as a Service.

REFERENCES
[1] Amazon Inc. Amazon webservices homepage.
http://aws.amazon.com (Last seen: 2009-09-12), 2009.
[2] Amazon Inc. Elastic mapreduce homepage.
http://aws.amazon.com/elasticmapreduce (Last seen: 2010-03-18),
2010.
[3] Amazon Inc. Relational database service homepage.
http://aws.amazon.com/rds (Last seen: 2010-03-18), 2010.
[4] P. Balakrishnan, S. Thamarai Selvi, and
G. Rajesh Britto. Service level agreement based grid scheduling.
pages 203 –210, sept. 2008. doi: 10.1109/ICWS.2008.62.
[5] K. A. L. Coar and R. C. Bowen. Apache cookbook.
Second edition, 2007. ISBN 0-596-52994-5 (paperback). URL
http://www.oreilly.com/catalog/9780596529949.
[6] A. Davies and H. Fisk. MySQL Clustering. MySQL
Press, 2006. ISBN 0672328550.
[7] R. J. T. Dyer. MySQL in a Nutshell (In a Nutshell
(O’Reilly)). O’Reilly Media, Inc., 2005. ISBN 0596007892.
[8] Google MySQL Tools. Usertablemonitoring.
http://code.google.com/p/google-mysqltools (Last seen: 2010-03-
01), 2010.
[9] V. Hoyer and M. Fischer. Market overview of enterprise
mashup tools. In ICSOC ’08: Proceedings of the 6th International
Conference on Service-Oriented Computing, pages 708–721,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-
89647-0. doi: http://dx.doi.org/10.1007/978-3-540-89652-4_62.
[10] D. Johnson, A. White, and A. Charland. Enterprise
AJAX: Strategies for Building High Performance Web
Applications. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2007. ISBN 0132242060.

http://dx.doi.org/10.1109/ICWS.2008.62�
http://www.oreilly.com/catalog/9780596529949�
http://dx.doi.org/http:/dx.doi.org/10.1007/978-3-540-89652-4_62�

[11] I. Jrstad, T. Johansen, E. Bakken, C. Eliasson,
M. Fiedler, and D. van Thanh. Releasing the potential of openid &
sim. pages 1 –6, oct. 2009. doi: 10.1109/ICIN.2009.5357063.
[12] A. Lenk, T. Sandholm, M. Klems, J. Nimis, and S. Tai.
Whats inside the cloud? an architectural map of the cloud
landscape. In Workshop on Software Engineering Challenges in
Cloud Computing @ International Conference on Software
Engineering, 2009.
[13] LongJump. Longjump homepage. http://longjump.com
(Last seen: 2010-03-18), 2010.
[14] PHPRESTSQL. Phprestsql homepage.
http://phprestsql.sourceforge.net (Last seen: 2010-03-01), 2010.
[15] T. Redkar. Windows Azure Platform. Apress, Berkely,
CA, USA, 2010. ISBN 1430224797, 9781430224792.
[16] L. Richardson and S. Ruby. Restful web services.
O’Reilly, 2007. ISBN 9780596529260.
[17] J.-M. Sahut. Security and adoption of internet payment.
pages 218 –223, aug. 2008. doi: 10.1109/SECURWARE.2008.74.
[18] T. Sandholm and K. Lai. Dynamic proportional share
scheduling in hadoop. In 15th Workshop on Job Scheduling
Strategies for Parallel Processing @ 24th IEEE International
Parallel and Distributed Processing Symposium, 2010.
[19] C. Severance. Using Google App Engine. O’Reilly
Media, Inc., 2009. ISBN 059680069X, 9780596800697.
[20] Skytap. Skytap homepage. http://www.skytap.com (Last
seen: 2010-03-18), 2010.
[21] The New York Times. Dbslyer homepage.
http://code.nytimes.com/projects/dbslayer (Last seen: 2010-03-
02), 2010.
[22] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 2009. ISBN 0596521979, 9780596521974.
[23] Yahoo Inc. Yahoo homepage. http://www.yahoo.com
(Last seen: 2010-02-11), 2010.

http://dx.doi.org/10.1109/ICIN.2009.5357063�
http://dx.doi.org/10.1109/SECURWARE.2008.74�

	1. INTRODUCTION
	2. FRAMEWORK DESIGN
	2.1 Identification of main components
	2.2 Application Service
	2.2.1 Billing Interface
	2.2.2 Control Interface

	2.3 Payment Service
	2.4 Authentication Service
	2.5 Database
	2.6 Mashup
	2.6.1 Application Module
	2.6.2 Payment Module
	2.6.3 Authentication Module
	2.6.4 User Module
	2.6.5 Database Module

	2.7 User Interface

	3. PROOF OF CONCEPT
	3.1 Hadoop MapReduce
	3.1.1 General Setup
	3.1.2 Application Service
	3.1.2.1 Control Interface
	3.1.2.2 Billing Interface
	3.1.2.3 Billing component

	3.1.3 Authentication Service
	3.1.3.1 Browser Authentication
	3.1.3.2 Direct Authentication

	3.1.4 Payment Service
	3.1.5 Database
	3.1.6 Mashup
	3.1.6.1 Application Module
	3.1.6.2 Payment Module
	3.1.6.3 Authentication Module
	3.1.6.4 User Module
	3.1.6.5 Database Module

	3.1.7 User Interface

	3.2 MySQL
	3.2.1 General Setup
	3.2.2 Application Service
	3.2.2.1 Control Interface
	3.2.2.2 Billing Interface

	3.2.3 Authentication Service, Payment Service and Database
	3.2.4 Mashup
	3.2.4.1 Application Module
	3.2.4.2 Other modules

	3.2.5 User Interface

	4. RELATED WORK
	5. CONCLUSIONS

