
Advanced Social Features in a Recommendation

System for Process Modeling

Agnes Koschmider1, Minseok Song2, and Hajo A. Reijers2

1 Institute of Applied Informatics and Formal Description Methods
Universität Karlsruhe (TH), Germany
koschmider@aifb.uni-karlsruhe.de

2 School of Industrial Engineering
Eindhoven University of Technology, The Netherlands

{m.s.song,h.a.reijers}@tue.nl

Abstract. Social software is known to stimulate the exchange and shar-
ing of information among peers. This paper describes how an existing
system that supports process builders in completing a business process
can be enhanced with various social features. In that way, it is easier for
process modeler to become aware of new related content. They can use
that content to create, update or extend process models that they are
building themselves. The proposed way of achieving this is to allow users
to generate and modify personalized views on the social networks they are
part of. Furthermore, this paper describes mechanisms for propagating
relevant changes between peers in such social networks. The presented
work is particularly relevant in the context of enterprises that have al-
ready built large repositories of process models.

Keywords: Social Networks, Business Processes, Modeling Support,
Personalization.

1 Introduction

Social networking sites such as Flickr or Facebook enjoys great popularity
because they enable to connect and share information with each other and thus
support to build online communities of people who have similar interests, or who
are interested in exploring the interests of others [1].

An activity that may profit from a transfer of social networking features is
business process modeling. Earlier, we developed a support system for people in-
volved in this act [2]. The system takes into account a process builder’s modeling
intention and patterns observed in other users’ preferences and uses a repository
of process model parts to recommend her efficient ways to complete the model
under construction. Recently, we extended this system with some social network-
ing features [3].

Through this extension, process builders can establish who already selected
and reused specific process models. Novice process builders in particular can
profit from this, as the system encourages user trust and participation. To im-
plement these features, three kinds of social networks have been implemented

W. Abramowicz (Ed.): BIS 2009, LNBIP 21, pp. 109–120, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

110 A. Koschmider, M. Song, and H.A. Reijers

in the system: (1) a social network from a process model repository, (2) a social
network from a user history and (3) a social network from an insertion history.
The social network from the process model repository provides an organizational
view of business processes. The social network from user history shows the re-
lationship among modelers who use the recommendation system. Finally, the
social network from insertion history shows the relationship among modelers
who decided for equal recommendations.

Over the past months, we evaluated the ‘socially enhanced’ recommenda-
tion system in practice, most notably through an experiment at the University
of Karlsruhe that involved 30 novice process modelers. These modelers had to
build a fairly large process model for which they had all the features of the rec-
ommendation system at their disposal, including information on previous usage
of process model parts by people being socially close to them. We came to the
conclusion that the new social features are not sufficient to propagate trust and
thereby to influence novice modelers in their choice of process modeling parts.
The main reason we identified is that the current system does not consider per-
sonalized interests and knowledge of the modelers. In particular, a user can not
include her capabilities or working environment characteristics in her network,
which makes it difficult for other modelers to evaluate the relevance of her model-
ing actions. Additionally, we realized that process builders may have an ongoing
interest in notifications of changes in process models that are relevant in their
social network, i.e. receive and send updates on process models beyond the exact
times that they are actually busy modeling.

Against this background, this paper deals with two types of extensions of the
social features of our recommendation system:

1. The personalization of social networks will stimulate the development of
communities of process builders that share the same interests or knowledge,
and activate new ways of collaborating. An example scenario would be a
group of process modelers that work in different geographical units of a
multinational organization, but through the recommendation system work
on the modeling of similar procedures in their respective units.

2. The propagation of changes will allow users to become aware of potentially
relevant updates to the process models they are building (of have built)
themselves. Conversely, process builders can actively inform other process
builders about relevant changes in process models. In this way, enhance-
ments of process models, e.g. in response to changing legislation of market
conditions, will not need to be re-invented over and over again.

To explain how the described extensions are achieved, the following section
provides an overview of our metadata model, which lays the foundation for
personalized social networks. In Section 3, a method for personalizing the three
kinds of social networks will be presented. In Section 4 two algorithms will be
presented supporting the propagation of changes within such networks. Section 5
gives an overview on related work. Finally, our paper concludes with a discussion
of our approach and an outlook on future research.

Advanced Social Features in a Recommendation System 111

2 Metadata Model

To personalize the three kinds of social networks sketched above (social network
from a process model repository, social network from a user history and social net-
work from an insertion history) it is necessary to build a metadata model, which
describes the skills, and knowledge of users. Based on this metadata model the
recommendation system can suggest additional connections to process builders
on the basis of common skills. Generally, the interest or the knowledge of process
builders is driven by four properties. They are subject domain, capability, work
environment, and individual and group behavior. Note that users can select pre-
defined properties for the first three properties. Individual and group behavior
patterns can be derived from the user history. More specificly the properties are
defined as follows:

1. subject domain describes the topic the user is working on or has interest
(e.g., engineering, medicine, government or manufacture). Process models are
usually classified based on their domain and process builders usually have
their own subject domains. For example, a process builder who has some
previous experience on governmental processes can more easily understand
similar processes in government settings. Thus, when a process builder is
working on a specific domain, she can consult with the people who have an
expertise in it.

2. capabilities of process builders include general literacy and technical skills.
Also expertise or special skills of users can be described by this property. For
example, if a process builder is modeling a quality management process in a
software company, people who have deep knowledge of software engineering
can help her.

3. work environment describes the department/project the user is involved in.
The work environment is the functional department or project team to which
a process builder belongs. Such properties can normally be derived easily
from general users’ profiles. And even when a new process builder is added
into a social network, those properties can be easily derived from a past track
record.

4. individual and group behavior patterns and history describes the degree of
sociality of users. Note that this property is normally not specified when a
process builder becomes active for first time. It is based on the process model
design history in the recommendation based support system.

Table 1 shows an example of the user history generated from the modeling his-
tory of the community of users. In the table, each row refers to a user (u) and
a column corresponds to a process model (p) in the repository. Also, each cell
(cij) shows the number of use of the process model (pj) by the user (ui). From
this kind of table, we can derive individual and group behavior patterns [3]. For
example, by applying data mining techniques (e.g. K-means clustering), we can
extract several groups in which people have a similar behavior pattern or sim-
ilar preferences. Arguably, the people who have a similar pattern can provide

112 A. Koschmider, M. Song, and H.A. Reijers

Table 1. User History

P1 P2 P3 P4 P5 ... PN

user1 2 1 0 0 0 .. 2

user2 2 1 0 0 0 .. 2

: : : : : : : :

userM 0 0 1 0 0 .. 0

more useful information for a process builder. From the above definitions, the
metadata model can be defined as follows.

Definition 2.1. (Metadata) A metadata, M , is a 9-tuple (N, D, C, W, B, PD ,
PC , PW , PB) where

(i) N is a set of users,
(ii) D is a set of subject domain,
(iii) C is a set of capabilities,
(iv) W is a set of work environment,
(vi) B is a set of behavior patters,
(vii) PD, PC , PW , and PB is a set of profiles, where PD ⊆ (N×D), PC ⊆ (N×C),

PW ⊆ (N × W), PB ⊆ (N × B).

For convenience, we define an operation on profiles: πN (pD) = n, πD(pD) = d
for some profile pD = (n, d) ∈ PD. We also use πC(pC), πW (pW), πB(pB) in
the same manner. For example, there are two users (user1,user2). User1 has a
specialism in “government” processes, has a capability of “process design”, and
belongs to the “IT dept”. User2 is working on processes in a “bank”, is able to
do “programming”, and works at the “CS dept”. Their metadata is defined as
follows.

N = {“user1”, “user2”},
D = {“government”, “bank”},
C = {“process design”, “programming”},
W = {“IT dept”, “CS dept”},
PD = {(“user1”, “government”), (“user2”, “bank”)},
PC = {(“user1”, “process design”), (“user2”, “programming”)},
PW = {(“user1”, “IT dept”), (“user2”, “CS dept”)}

3 Personalized Social Networks

The metadata model builds upon the three kinds of social networks as men-
tioned above. We regard these social networks as public, in the sense that any
process builder using the recommendation system can access these networks.
However, since the potentially huge size of such networks and the risk of infor-
mation overflow it will be difficult for process builders to retrieve the proper
content. Therefore, personalized social networks are needed. In this section, we
explain how to generate such personalized social networks from the public social
networks. First of all, we define a social network as follows.

Advanced Social Features in a Recommendation System 113

Definition 3.1. (Social Network) A social network, S, is a 3-tuple (N, A, σ)
where

(i) N is a set of nodes,
(ii) A ⊆ (N × N) is a set of arcs,
(iii) σ : A → IR, is a weight function of an arc.

N refers to a set of users, A shows the relationship between users, and σ is a
function indicating the weight of each arc.

To reduce the size of the network, a process builder can consider two kinds
of information. Firstly, she can take into account people who she already knows
well. In this case, she does not need any metadata of the people, but the name (or
ID) of the people would be sufficient to reduce the size of the network. Secondly,
she can utilize metadata of people. Based on her own interest, a user can remove
some uninteresting nodes from the network and generate a personalized network.
To do this, we define a filtering function.

Definition 3.2. (Filtering Function) A filtering function, F : (S, M, N1, PD1,
PC1, PW1, PB1) → S where N1 ⊆ N, PD1 ⊆ PD, PC1 ⊆ PC , PW1 ⊆ PW , PB1 ⊆
PB, is defined as follows: F (S, M, N1, D1, C1, W1, B1) = {(n, a, σ)|(n, a, σ) ∈
S∧(pD, pC , pW , pB) ∈ M ∧πN (pD) = n∧πN (pC) = n∧πN (pW) = n∧πN (pB) =
n∧n ∈ N1 ∧ πD(pD) ∈ PD1 ∧ πC(pC) ∈ PC1 ∧ πW (pW) ∈ PW1 ∧ πB(pB) ∈ PB1}
A public social network (S) and the original metadata (M) are given as inputs
of the filtering function. In addition, the function requires filtering options. In
the formula, N1 represents a set of process builders who will be included in
the personalized network. It enables a user to include people in whom she is
interested in. A user can also utilize metadata. PD1, PC1, PW1, and PB1 refer
to a set of subject domain, capability, work environment, and behavior pattern
respectively. They cover metadata which a user wants to contain in the personal
network. As a result, the function returns a network in which irrelevant nodes
are removed from the original network, such that it can be used as a personalized
social network.

Figure 1 shows an example of such personalization. Figure 1(a) shows a public
social network which contains 10 users. Table 2 shows a fragment of the meta-
data of the users. For example, user6 has “government” as a subject domain
and her capacity is “programming”. She works at “IT dept.” and her behavior
pattern is not specified. If a user wants to personalize the public network in-
cluding user5, user6, user9 and user10, “government” as a subject domain, and
“IT dept.” as a work environment, she can use F(SN,M,{user5, user6, user9,
user10}, {“government”},{*},{“IT dept.”}, {*}) and derive the personalized so-
cial network in Figure 1(b).

4 Propagation of Changes in Public and Personalized
Social Networks

The public and the personalized social networks in Figure 1 are subject to con-
tant dynamic modifications, for example because a user will select new process

114 A. Koschmider, M. Song, and H.A. Reijers

Fig. 1. Social networks

Table 2. Metadata of users

subject domain capability work environment behavior pattern

: : : : :

user5 {government, bank} {process design} {IT dept.} {}
user6 {government} {programming} {IT dept.} {}
user7 {bank} {accounting} {IT dept.} {}

: : : : :

user9 {government} {accounting} {IT dept.} {}
user10 {government} {process design} {IT dept.} {}

models in her job. (Note that social networks can change due to structural up-
dates, e.g., when somebody moves from Marketing to the IT department, but
these changes are rather straightforward and will not be considered in this pa-
per.) Assume user 10 starts selecting the same process models as user 6. Con-
sequently, over time user 10 will become connected to user 7 and thus emulate
recommendation patterns of user 10. In practice, we realize that process builders
want to be informed if they are affected by modifications and users want to notify
others if adaptation in their models are required.

We have implemented such change propagations with pull and push services.
Push services in the recommendation system involve actively sending (or push-
ing) information to a specific process builder that the process builder knows
to be interested in this info. This requires an active participation of users. In
contrast are the pull services, which are more passive then the push service. A
pull service involves process builders that specified that they want to receive
information if a certain process model has been changed. Pull services will be
explained in Section 4.1 and push services in Section 4.2.

4.1 Pull Service

A pull service can be implemented for the propagation of modifications in process
models, in model parts or of process elements. In order to consider these three
applications of propagation we initially differentiate the types of changes, which

Advanced Social Features in a Recommendation System 115

may occur in process models, model parts and for process elements. Changes
can be of a primitive or of high-level nature, as defined in [4]. High-level changes
in our context affect process model parts and are the following:

1. insert process model part : a completely new process model part is inserted
in a business process model, which has been created by a previous user,

2. delete process model part : a process model part has been completely deleted
in a business process model.

3. move process model part : a process model part has been moved in a business
process model.

Primitive changes affect process elements and process models, and pertain to
the following: 1)insert completely new node and 2)delete, 3)rename or 4)move a
node in a certain process model, which is already stored in a process repository.

Primitive and high-level changes affect public and personalized social net-
works if process builders prefer process models of other and thus emulate their
recommendation patterns. The consequence of this amalgamation is that users
will be connected to other process builders and thus the social network struc-
ture will change. To notify process builders of changes in process models that
are relevant in their social network the recommendation system incorporates two
algorithms for the calculation of primitive and high-level changes.

To calculate the number of primitive changes in a process model we use the
following data structure. We define a class Node1 with the following five at-
tributes, that describe the state of a node: (1) bInitial of type boolean. If bInitial
is false then a node has been newly inserted. Else no change has been performed,
(2) static final MOVED of type int. This state is valid, if a node has been moved,
(3) static final RENAMED of type int. This state is valid, if a node has been
renamed, (4) static final DELETED of type int. This state is valid, if a node has
been deleted.

To query the state of a node we use the variable iState of type int. The variable
iCounter of type int is used to count the number of states of a node. The list
nodeList is used to store all nodes of a business process model. With this data
structure we can define an algorithm calculating the number of primitive changes
as described in algorithm 1.

This algorithm differentiates between three cases. Case 1 (line 4) is valid, if all
elements of a process model stored by a process builder in the repository have
been reused by another user without any change. Case 2 (line 7) is valid, if the
state of a process model stored in the process repository has been modified by
moving, renaming or deleting process elements. In case 3 (line 10) the algorithm
counts the number of newly inserted elements and the number of movements,
renamings, and deletions of initial available process elements. If the user is inter-
ested in the modification of nodes of a specific process model then we prepend
to line 1 an if-clause that checks a certain process model name.

1 The business processes and parts stored in the repository have been modeled with
Petri nets. Thus, in this context a node can be a place or a transition.

116 A. Koschmider, M. Song, and H.A. Reijers

Algorithm 1. Algorithm to calculate the number of primitive changes
1. int iCounter;
2. int iState;
3. for all Node n in nodeList do
4. if ((n.bInitial) && (n.iState & Node.MOVED == 0) && (n.iState &

Node.RENAMED == 0)&& (n.iState & Node.DELETED == 0)) then
5. iCounter++;
6. end if
7. if ((n.bInitial) && ((n.iState & Node.MOVED == Node.MOVED) ‖ (n.iState

& Node.RENAMED == Node.RENAMED) ‖ (n.iState & Node.DELETED ==
Node.DELETED))) then

8. iCounter++;
9. end if

10. if ((n.bInitial == false) && ((n.iState & Node.MOVED == Node.MOVED)
‖ (n.iState & Node.RENAMED == Node.RENAMED) ‖ (n.iState &
Node.DELETED == Node.DELETED))) then

11. iCounter++;
12. end if
13. end for

Analogous, we can calculate the number of high-level changes. For this, we de-
fine a class ProcessPart with attributes that describe the state of a process model
part (bInitialPart of type boolean, DELETEDPart of type int and MOVEDPart
of type int). For instance, if bInitialPart is false then a new process model part
has been inserted in the process model. Else no change has been performed.

To query the state of a process model part one can use the variable iStatePart
of type int. The list processpartList is used to store all process model parts of a
business process model. The algorithm for process model parts can be structured
in the same way as in Algorithm 1. In the algorithm for calculating the number
of high-level changes, case 1 would be valid, if a whole business process model has
been reused by another user without any change. Case 2 would be valid, if the
state of a process model part stored in the process repository has been modified
by moving or deleting a whole process model part. In Case 3 the algorithm (to
calculate the number of high-level changes) counts the number of newly inserted
process model parts and the number of movements or deletions of whole process
model part being initiate available in the process model.

Based on these two algorithms for primitive and high-level changes we can
provide process builders with an alert function. The capability of this function is
to inform users when specific changes have been performed. If a process builder
subscribes to the alert function then she will receive reliable information about
primitive, high-level changes and newly stored process models.

Figure 2a shows the interface of the alert function of the social networks en-
hanced recommendation system. The process builder can decide if she is inter-
ested in an alert on high-level or primitive changes or on newly inserted process
model (parts) in the repository. The user can apply the alert function for all
process models, respectively parts. Process models and model parts are listed

Advanced Social Features in a Recommendation System 117

Fig. 2. Table of Contents of Pull Services

alphabetically, or in case that process builders are working in organizational
boundaries they can be listed by departments, projects or subject domains.

The alert function on new process model (parts) can be activated when filling
in keywords in a text field or when browsing by the project, the department or
the subject domain. Then the system will automatically send a notice without
a specific request from the subscriber if process builders with specific metadata
have inserted a process model matching the user’s keywords. In Figure 2a the user
wants to be informed if process models and parts regarding order or insurance
have been stored in the repository.

To determine relevant process models and parts we use the keyword respec-
tively tag extraction method explained in [2]. Initially, we extract the words
and remove common stop words, which yields the set traw. The remaining tag
candidates traw are then expanded with their related synonym sets, which are
determined via WordNet2, resulting in the set tquery . The relevant process mod-
els and parts are then determined by querying an index, where the query term is
the concatenation of all tags in the set tquery . Whenever new models are stored in
the repository the system poses the query tquery and notifies the process builder
if a new process model matching the process builder’s criteria has been stored.

If process builders decide to be informed about primitive changes in process
models then they have to specify a threshold, i.e., a value that indicates a degree
of significant changes in a process model. In Figure 2b the user indicated a
threshold of 0.3., that means that primitive changes should be considered if 30%
of elements in the process model Process for checking orders have been deleted
or renamed. A threshold of 0.3 tends to be coherent. If a process builder wants to
be informed about high-level changes, a threshold like this will not be necessary
but the rest of the interface will be similar.

2 http://wordnet.princeton.edu/

118 A. Koschmider, M. Song, and H.A. Reijers

4.2 Push Service

The push service of the recommendation system allows process builders to notify
other process builders when changes have been performed or relevant content has
been stored in the repository. Figure 3 shows the interface for the push service.
The process builder can either push the information to her public social networks,
to process builders belonging to a subject domain, a work environment or even
to specific process builders (e.g., friends). We assume that the number of possible

Fig. 3. Table of Contents of the Push Service

domains and work environments is usually fixed within a company and hence we
can provide the process builder with an interface where she can choose from a
list of subject domains and work environments to whom the information should
be forwarded. Whenever the process builder stores her model in the repository
she can activate the push service for this model.

5 Related Work

The initial idea of a recommendation-based process modeling support system has
been described in [2]. An extension of the system is presented in [5], which con-
siders the modeling perspective when suggesting appropriate recommendations.
This paper extend the previous works in the perspective of social networks.

In the field of social network, privacy has been studied in several approaches
[6,7]. [6] proposes a model of privacy for reconstructing a graph privately; the
approach does focus more on security aspects and uses a completely different
metamodel than the one presented in this paper. The approach in [7] could be
used in our scenario in order to join two (related) personalized social networks.
Such a join could be regarded as an extension of our approach, which would
provide synergy effects for process builders. Regarding the searching of expertise

Advanced Social Features in a Recommendation System 119

in social networks, the set of approaches found in the literature [8,9] follow a
different metamodel and use different kinds of social networks. E.g., [9] retrieves
the expertise through out semi-structured content. [8] e.g., uses organization’s
email data set. The work in [10] is the first approach to apply social networks
in the BPM area. However, their focus is not on process modeling, but on the
analysis of interpersonal relationships in an organization.

Push service and pull service are related to alert service and propagation. Alert
services are particularly known for digital libraries [11] where users want to be
notified whenever a new publication in a specific research area is published. In
our context, we use the alert service to notify process builders about changes in
process models and thus we use a different basis for our algorithms. Propagation
in networks have been suggested for innovations [12] or effects of a change in
technology [13]. These approaches have a different focus than the one presented
in this paper. Approaches presented for pull and push technologies on the web
[14] or for mobile devices [15] can not be applied in our context.

6 Conclusion and Reflection

The contribution of this paper is that it presents new social features of a rec-
ommendation system for process builders. Specifically, user-specific information
can be added to member profiles so that modelers can build personalized views
on their social networks. Furthermore, facilities are described to propagate rele-
vant changes through such social networks. Both types of facilities are expected
to increase the ‘sociability’ of that recommendation system, such that process
builders can more easily leverage the modeling efforts by their peers.

Currently, we are implementing the described features into our recommen-
dation system and plan to initiate a new round of practical evaluations under
realistic process modeling conditions. It is our belief, cf. [16], that only through
integrating both design and evaluation activities it is possible to develop our
ideas towards a truly supportive recommendation system for process builders.

There is notable increase of enterprises that possess large repositories of pro-
cess models which they manage and extend as valuable assets, see e.g. [17]. While
much of the current research on process modeling focuses on issues with a single
process model, the demand will rise for insights on how to extend, maintain, and
disclose such large sets of process models. We hope that our work will contribute
to the development of systems that can deal with these needs.

References

1. Wasserman, S., Faust, K., Iacobucci, D., Granovetter, M.: Social Network Analysis:
Methods and Applications. Cambridge University Press, Cambridge (1994)

2. Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process model-
ing support: Method and user experience. In: Li, Q., Spaccapietra, S., Yu, E., Olivé,
A. (eds.) ER 2008. LNCS, vol. 5231, pp. 265–278. Springer, Heidelberg (2008)

120 A. Koschmider, M. Song, and H.A. Reijers

3. Koschmider, A., Song, M., Reijers, H.A.: Social Software for Modeling Business
Processes. In: BPM 2009 Workshops. LNBIB, vol. 17, pp. 642–653. Springer, Hei-
delberg (1974)

4. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support fea-
tures - enhancing flexibility in process-aware information systems. Data & Knowl-
edge Engineering 66, 438–466 (2008)

5. Koschmider, A., Habryn, F., Gottschalk, F.: Real support for perspective-
compliant business process design. In: BPM 2008 Workshops. LNBIB, vol. 17,
pp. 30–41. Springer, Heidelberg (1974)

6. Frikken, K.B., Golle, P.: Private social network analysis: how to assemble pieces
of a graph privately. In: Proceedings of the 5th ACM workshop on Privacy in
electronic society, pp. 89–98. ACM, New York (2006)

7. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-
honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252.
Springer, Heidelberg (2005)

8. Zhang, J., Ackerman, M.S.: Searching for expertise in social networks: a simulation
of potential strategies. In: Proceedings of the 2005 international ACM SIGGROUP
conference on Supporting group work, pp. 71–80. ACM, New York (2005)

9. Tsai, T.M., Shih, S., Stu, J., Wang, W.N., Chou, S.C.T.: Beyond web-log: Trans-
form blog into personal expertise and social network via myfoaf support. In: Work-
shop on Social Web Search and Mining (2008)

10. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from
event logs. Computer Supported Cooperative Work 14, 549–593 (2005)

11. Faensen, D., Faulstich, L., Schweppe, H., Hinze, A., Steidinger, A.: Hermes: A
notification service for digital libraries. In: Proceedings of the 1st ACM/IEEE-CS
joint conference on Digital libraries, pp. 373–380 (2001)

12. Mason, W.A., Jones, A., Goldstone, R.L.: Propagation of innovations in networked
groups. Journal of Experimental Psychology 137, 233–422 (2008)

13. Burkhardt, M.E., Brass, D.J.: Changing patterns or patterns of change: The effect
of a change in technology on social network structure and power. Administrative
Science Quarterly 35, 104–127 (1990)

14. Kendall, J.E., Kendall, K.E.: Information delivery systems: an exploration of web
pull and push technologies. Communications of the Association for Information
Systems 1 (1999)

15. Qaddour, J.: Wap and push technology integrated into mobile commerce applica-
tions. In: Proceedings of the IEEE International Conference on Computer Systems
and Applications, Washington, DC, USA, pp. 779–785. IEEE Computer Society,
Los Alamitos (2006)

16. Hevner, A., March, S., Park, J., Ram, S.: Design Science in Information Systems
Research. Management Information Systems Quarterly 28, 75–106 (2004)

17. Reijers, H., Mans, R., van der Toorn, R.: Improved Model Management with Ag-
gregated Business Process Models. Data & Knowledge Engineering 68, 221–243
(2009)

	Advanced Social Features in a Recommendation System for Process Modeling
	Introduction
	Metadata Model
	Personalized Social Networks
	Propagation of Changes in Public and Personalized Social Networks
	Pull Service
	Push Service

	Related Work
	Conclusion and Reflection

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

