
Ad-hoc Invocation of Semantic Web Services

Andreas Eberhart
AIFB, University of Karlsruhe
eberhart@aifb.uni-karlsruhe.de

http://www.aifb.uni-karlsruhe.de/WBS

Abstract— We present the Web Service Description
Framework (WSDF), which provides both a representation
mechanism and a runtime system architecture for semanti-
cally enriched Web Services. We analyze existing languages
such as BPEL4WS and OWL-S before addressing their
deficiencies in our proposal. Our approach allows a client
to invoke a service based solely on a shared ontology, i.e.
without prior knowledge on the API, providing an impor-
tant building block towards a global, flexible information
infrastructure. Another main point is that WSDF can be
applied to clients and services written in a conventional
object oriented programming language. This is achieved
by lifting datastructures to an ontology level in which rich
logical statements about services can be formalized. We
also present a detailed system architecture that covers
planning, invocation, and the automatic processing of the
service results, which is accomplished using the observer
design pattern and by asserting the result in the respective
model. Furthermore, the required annotations can be
specified conveniently by placing comments in the source
code.

I. INTRODUCTION

Web Services are quickly gaining momentum in the
IT industry. A large array of tools is already available
and with the major players such as Microsoft and IBM
making peace in the DCOM vs. CORBA middleware
war, problems such as tools interoperability and com-
peting standards are solved. However, Web Services
are currently used as a mere replacement for older
remote procedure call mechanisms. This means, that they
are applied for building distributed systems within the
organizational control of a team of developers appointed
by the business partners. Companies are very rarely
using existing third party services in their applications.
The very poor quality of services offered in the global
UDDI registry support this observation. One of the main
reasons for the, in this respect, very slow adoption of
Web Services is definitely the lack of a clear business
model and the lack of an accepted payment infrastructure
for third party services.

While these are issues concerning the provider, the

requestor also faces some problems when trying to
consume a service. Currently, there are two ways in
which services are being integrated. First, one can
use services, which support an existing B2B standard
such as RosettaNet. In this case, the standards body
determines the meaning of the respective application
programming interface (API) and the messages being
exchanged. Client and server then develop their systems
accordingly. Unfortunately, not too many standards have
been successful since such undertakings very often suffer
from the dilemma of having to be concise and easy to
implement as well as being broad and general in order
to appeal to a large community. In the second scenario, a
human searches for a suitable service and incorporates it
into the system by hand. This is obviously an expensive
and very inflexible solution.

Obviously, the current language stack of SOAP,
WSDL, and UDDI is not the final picture and new
languages such as BPEL4WS, WSCI, and OWL-S are
being developed. These approaches are a step in the right
direction, but we feel that they do not solve the issue
raised above. In this paper we propose the Web Service
Description Framework (WSDF), which addresses this
problem by allowing a formal specification of the service
semantics that seamlessly integrates with the datastruc-
tures used. This allows several tasks such as the decision
whether to call a service, the actual generation of the
required parameters, as well as the proper assertion of
the result into the client’s data model to be carried
out automatically. WSDF requires client and server to
provide a mapping from the local structures to a common
domain ontology at design-time. This process is carried
out in a declarative fashion and does not require any
modifications in existing code.

The rest of the paper is organized as follows. The
next section summarizes the benefits and deficiencies
of some advanced Web Service languages. Section III
introduces the ideas underlying our approach as well as
the actual language constructs and section IV explains
how ontologies are used to mediate between different

datastructures. The system architecture of WSDF is
shown in section V before we outline our future research
and conclude the paper.

II. CURRENT LANGUAGES

Before presenting our approach, we first take a look
at existing work. Currently, several Web Service-related
languages are being discussed. They range from support-
ing sessions and transactions, quality of service issues,
to publishing and subscribing to events. Considering the
issue of actually invoking a Web Service in a more
flexible way, two approaches are closely related, which
we discuss in the following two subsections.

A. BPEL4WS and WSCI

The Business Process Execution Language for Web
Services (BPEL4WS) was motivated by the need to have
engineers and business people cooperate more efficiently.
The idea is to declaratively specify a workflow or
business process using a graphical editor in very much
the same way processes are drawn on paper by domain
experts. These processes are then connected to the tech-
nical plumbing, i.e. a messaging system and services to
be invoked on the enterprise information system. The
graphical representation together with the links to the
technical world is then serialized in BPEL4WS and can
be executed by various process engines. BPEL4WS now
supersedes earlier languages like the Web Service Flow
Language (WSFL) [1] or Microsoft’s XLANG [2], which
was part of the BizTalk tools suite.

The main part of BPEL4WS is a process definition
language with terms like sequence, choices, etc. An
important aspect for the invocation is that BPEL4WS
has the notion of variables and assignments in order
to ”...extract and combine data in interesting ways to
control the behaviour of a process” [3]. Consequently,
one can think of BPEL4WS to be the glue that combines
a set of services on the top level. Additionally, powerful
mechanisms for exception handling, compensation, and
transaction support are defined.

The Web Service Choreography Interface (WSCI)
[4] has a quite similar scope compared to BPEL4WS.
Politically, it is expected that the two approaches join
forces with BPEL4WS taking the lead in the joint effort.

B. Critique of BPEL4WS and WSCI

BPEL4WS and WSCI are valuable tools compared to
having to hand-write this glue in the traditional impera-
tive way. However, they still require the process engineer
to understand the service interfaces before manually

combining them and thus they do not solve the problem
described earlier. BPEL4WS and WSCI make the life of
the process engineer a lot easier, but clearly, a deeper
semantic service annotation would be desirable.

C. OWL-S

The Semantic Web community aims at providing
machine understandable meaning to resources on the
Web [5]. Consequently, the lack of semantics in solutions
like BPEL4WS shows that one should also consider the
respective language out of the Semantic Web area. The
Web Ontology Languages for Services (OWL-S) is the
language of choice if the resources to be described are
services [6]. OWL-S supercedes and extends the DAML-
S proposal [7].

The language defines a top-level ontology for services.
This ontology aims at formalizing commonly used ser-
vice concepts such as ”effect”, ”input”, or ”process”.
The three main components are the services profile, i.e.
what the service does, the services model, i.e. how it
works, and the grounding describing how to access the
service. We pick up the stock quote example presented in
[8]. The parameter and return values are described using
the terminology ”ticker” and ”quote” from a financial
ontology. In addition to this, a precondition and effect
are specified in that the user’s account must be valid and
will be charged by the operation.

The main operation supported by this kind of tagging
is the so-called semantic matching which allows a more
specific concept to be associated with a more general
one via the subsumption hierarchy. This is used to
locate a service by matching the actual and requested
service types. Semantic matching is also applied when
comparing the service’s capabilities. A desired output,
for instance a ”quote”, is satisfied by a service yielding
a ”detailed:quote”, if a quote subsumes the detailed quote
concept.

D. Critique of OWL-S

OWL-S is definitely striving for a completely auto-
mated framework in which services can be composed
and invoked by intelligent software agents on the fly.
However, we believe there are some shortcomings. We
believe that semantic matching along class hierarchies
is not nearly enough. The key issues described in the
following points need to addressed. This list will also
serve as a set of requirements for our solution presented
in the next section.

1) Datastructure Mediation
Clearly, the datastructures of client and server need

to be aligned. This is a classical data integration
problem in which domain ontologies are an essen-
tial tool. OWL-S is currently lacking this aspect.

2) Rich Annotation
If a domain ontology is used to mediate between
client and server, such an ontology should also
be used for describing parameters, return types,
preconditions, and the effects of a service. This
needs to be done, not just by referencing a certain
concept, but also via some rule mechanism, which
allows much more flexibility.

3) Result Processing
An important point missing is what to do with
the service result. BPEL4WS allows defining the
dataflow from one service to the next. Conse-
quently, an engine processing such a workflow
knows in which way an intermediate result is
supposed to be used, i.e. as a parameter for the next
service call. In a more automated environment, an
agent would need some knowledge, not only about
the ontological concept the result refers to, but
what to actually do with it.

4) Parameter Relationships
Currently, OWL-S associates the parameters and
return types of a service with concepts of an ontol-
ogy. However, no knowledge about their relation-
ships are provided. Consider the service float
getCurrentTemp (String zip). OWL-S
would tag the parameter zip as a zip code and
the return type as a temperature value. This makes
sense and holds much more knowledge than the
primitive data types alone. However, the infor-
mation that the temperature refers to the region
specified by the zip code is not represented. This
is quite clear to a human programmer, though not
necessarily to a software agent.

5) Hidden Assumptions
Besides the relation of result and parameter, quite
often there are more hidden assumptions which
are encoded in the method name. Consider the
example above. A human will know, that the
method yields the current temperature. Again, this
needs to be made explicit for a software agent.

Summarizing the points above, OWL-S provides value
in that it supplies a standard top-level service ontol-
ogy and that various tasks such as service locations
and service capability matching are supported by class
subsumption axioms. However, we believe that this is
not enough. A semantic service description should be

allowed to make more detailed logical statements about
the service, its parameters, its results, and its side effects.
The terminology to be used must definitely be a domain
ontology, which is linked to local data structures.

E. WSMF and WSMO

Recent initiatives are the Web Service Modeling
Framework (WSMF) [9] and its successor the Web
Service Modeling Ontology (WSMO) [10]. WSMF and
WSMO base on four main components, namely ontolo-
gies, goal repositories, web services, and mediators. The
proposals differ from OWL-S in that architectural aspects
play a more prominent role. For instance, it is argued,
that client and server might expose a different invocation
pattern such as bulk vs. cursor oriented data retrieval.
WSMO also places a much bigger emphasis on using
f-logic to represent richer axioms of the ontology [11].
This viewpoint is very much in line with ours. These
frameworks are currently the basis for discussion is the
architectural committee of the Semantic Web Services
Initiative (SWSI). WSMO and WSFL are very promising
approaches but currently lack the required level of detail.

III. WEB SERVICE DESCRIPTION FRAMEWORK

After reviewing the current alternatives, evaluating
their strengths and weaknesses, and coming up with
some requirements, we will now present the Web Service
Description Framework (WSDF) with its underlying
design principles. While working though a case study,
we re-identify the requirements listed above, and show
how they are addressed by WSDF.

A. Services as State Transitions

We start with a simple example of a pure informational
weather service:

public float
getCurrentTemperature(String zip)

This service has two preconditions: there must be an
object X, which is an instance of a concept Region. The
object also needs an associated ZIP code. We formalize
these statements as follows:

Region(X) and
hasZIP(X, Z)

If the client’s fact base allows unifying instances to
the variables X and Z, then, in principle, the service can
be invoked. Section IV will show, how we use ontologies
in order to access an object-oriented model as if it was a
fact base in a classical logic sense. Once specific values

are bound to the variables, the following statement allows
the actual invocation of the service. The number one
denotes the fact that Z is the first (and in this case only)
parameter.

parameter(1, Z)

After the client calls the service, its state changes in
the sense that the client will be aware of the temperature
information at location X. This is formalized as the
following set of effects. Note that the variable R is
implicitly assigned to hold the invocation’s return value:

assert TemperatureInfo(T)
assert hasTemperature(X, T)
assert hasTime(T, now())
assert hasValue(T, R)

Thus, a successful invocation causes the client to
instantiate a new temperature info object T and set
the three relations specified. We can see that the rela-
tionship between the parameter Z and the result R of
the service are made explicit, which covers requirement
four. The explicit assertions to be performed allow the
client to automatically process the result, addressing
requirement three. Note that this formalism explicitly
states the knowledge that the service yields the current
temperature. On a syntactic level, this is only exposed
by the method name. As long as the ontology provides
suitable definitions, effects can also include side effects
such as a change in ownership caused by an e-commerce
service. This addresses requirement five, making hidden
assumptions explicit.

Let us switch to a more complicated example. Con-
sider the typical e-commerce application, where a reg-
istered user first browses products, then selects some
of them in the shopping cart, before proceeding to the
checkout. The API might look like this:

ItemList keywordSearch(String keyword)
SID createSession()
void addToCart(SID s, Item i)
bool authenticate(SID s, Passport p)
void checkout(SID s)

This example obviously requires sessions. We assume
these sessions to be explicitly managed via session
ID parameters passed along as the first argument. In
principle, HTTP cookies or other session mechanisms
do the same, only in a way that is transparent to the
programmer. We are currently working on a built-in
mechanism for tagging methods that implicitly propagate
session IDs. The method addToCart does not return a

Ontology

Client datamodel

Server datamodel

Fig. 1. The service specification is done entirely using terms from
the ontology.

result but obviously causes a side effect on the server
side in that the item is now associated with the shopping
cart. The respective precondition asks for a session with
the e-commerce site to be present:

Session(S) and
Cart(C) and
withServer(S, "my e-shopping")
has(S, C)

The effect of the service is that the item will be in
the cart. This effect tells the client how to update its
model of the world after the service is called. Similar
statements are possible about one’s bank account being
charged and a shipment being sent upon checkout.

assert cartElement(C, I)

B. Datastructure Mediation

Finally, we want to elaborate on the mediation of
datastructures. The temperature example only dealt with
primitive types. The second scenario uses the notion of
an item. Note that item is neither a structures of the
client nor the server. It is merely a concept specified in
the ontology. All statements made about preconditions,
parameter bindings, and effects are always specified in
ontological terms. Figure 1 illustrates this approach. The
next section explains how this seamless mapping works
in detail.

IV. OBJECTS, CLASSES AND ONTOLOGIES

Ontologies are a formal, shared representation of do-
main concepts. Consequently, they have been a hot topic
in the area of Enterprise Application Integration (EAI),
since they allow to bridge between various schemata
used by business partners [12]. Therefore, Ontologies
can also be used to mediate between the datastructures
used by the service provider and the client.

At this point we are facing a key question. On the
one hand, the previous section showed how logical
statements using terms of the ontology can help to better
describe a service. On the other hand, systems are usually
not implemented using a knowledge base that conforms

to the domain ontology. The question is how the world
of logical expressions can be married with the actual
implementation platform on both the client and the server
side.

A. RDF for Data Integration

For this purpose, we are using the Resource Descrip-
tion Framework (RDF), the most basic language in the
Semantic Web language stack. Note that WSDF is also
a mixture of WS and (R)DF. The following properties
make RDF an ideal solution in this setting:

• RDF uses a directed labeled graph as its data
model. A graph is the most general datastructure
possible and consequently, just about anything can
be represented as a graph.

• A major problem in any kind of data integration
project is the fact that globally unique primary keys
are usually not used. The primary key of a local
database is completely meaningless and ambiguous
outside of the respective peer. RDF uses URIs for
addressing the nodes and therefore is well suited in
that respect as well.

• Another frequent data integration problem is that
attribute or column names need to be matched
up. RDF also uses URIs here. A property la-
beled ”http://www.sap.com/hr/employee/name” is
definitely easier to identify than a database column
called ”emp name”.

• Since the labeled arcs of the RDF graph can be
interpreted as binary relationships, RDF lends itself
for being used with rules and logical expressions.

• RDF graphs can be supported by an RDF Schema or
better an OWL ontology which basically provides
a type system and axioms for the graph.

B. An RDF Model for Objects

An RDF graph is made up of a set of so-called triples
or statements. These statements consist of the source
or subject, the predicate or label, and the object or
destination. This set of statements is also referred to as
the model. Any kind of RDF API like Jena21 or KAON2

uses this notion and offers a respective interface for it.
Two of the main methods are listed below:

interface Model {
void add (Statement s)
Statement[] query(Selector s)

}

1http://jena.sourceforge.net
2http://kaon.semanticweb.org

Line
name: L1

a:
b:

RDF Model

Point
x: 2
y: 5

Point
x: 7
y: -1

add(Statement s)Statement []
query(Selector s)

int getX()

setX(int x)

...

Fig. 2. The RDF model interface is provided on top of regular
objects.

The method ”add” asserts a new statement on the
model, whereas ”query” allows the caller to retrieve
statements. For instance, one might ask for all informa-
tion known about Microsoft:

res = query(new Selector(
new URI("http://www.microsoft.com"),
null, null))

To assert the fact that Microsoft has its headquarters
in Redmond, one would write:

add(new Statement(
new URI("http://www.microsoft.com"),
new URI("http://comp.com/hasHQ"),
"Redmond"))

Note that the statement’s object can be another re-
source identified by a URI or a literal value, like ”Red-
mond” in this case.

The RDF model interface can be implemented in
various ways. Jena for instance, allows storing the
triples in main memory or a relational database. An
implementation, however, does not necessarily have to
contain triples. Figure 2 shows that we access regular
objects of an object oriented programming language via
an RDF view implemented as an RDF model. For this
view to be operational, some associations need to be
defined a priori. We outline the algorithm for mapping
between objects and RDF triples and explain what role
the information provided by the user plays in the process.

1) Object Identity: Object instances obviously corre-
spond to resources in the RDF graph. Using the rdf:type
property, resources can be made instances of a certain

class3. Object identity is an important issue here. Lo-
cally, objects are identified by their address in memory,
whereas resources are identified by their URI. We need
to distinguish two different situations in which a) the
object has a (possibly composite) primary key variable,
or b) the object needs to use an artificial identifier.

In the first case, the user simply specifies a prefix such
as http://comp.com/emp/. Assume the object contains
a variable ”emp id” which is the primary key of the,
then employee 7 gets the URI http://comp.com/emp/7.
Besides the prefix, the user needs to specify the variable,
which is uniquely identifying the object. In the second
case, the primary key remains unspecified and defaults
to the object’s memory address.

2) Class Instances: While the object identity can be
quite tricky, the association of classes to concepts in the
ontology is very straightforward. Every class is simply
tagged with the respective concept URI. This yields the
following mapping functions:

URI object2uri(Object o)
Object uri2object(URI u)
URI class2concept(Class c)
Class concept2class(URI u)

If a statement (URI a, rdf:type, URI b) was to
be added to the model, then the RDF view would
first check if uri2object(URI a) already exists in the
model. If not, a new instance of concept2class(URI b)
is be added. At this point we must assume, that a
no argument constructor is available. The other way
around, if the user would query for the rdf:type
of http://www.microsoft.com, the answer would be
class2concept(uri2object(”http://www.microsoft.com”
).getClass())

3) Statements: From an RDF point of view, being an
instance of a class is just another statement. From a ob-
ject oriented point of view, those statements have special
semantics. Consequently, the normal statements need to
be associated with respective actions, i.e. methods. We
simply associate an RDF property to a class variable and
get two more conversion functions:

URI variable2property(Variable v)
Variable property2variable (URI u)

3Note that in the Semantic Web context, multiple inheritance is
allowed. Resources can also be instances of several classes at the
same time. See [13] for a discussion of this in an object oriented
context. We can safely omit these cases if RDF is merely used as an
exchange format between peers using structured datatypes.

If a statement (URI a, URI b, c) was to be
added to the model, then we would perform
uri2object(URI a).uri2variable(URI b) = literal2java(c,
URI b). In this case, the RDF object is a literal.
Consider figure 2. The statement (urn:point a, urn:x,
”0”) would then cause the assignment p.x = 0.

The last two mapping functions convert RDF literals to
the respective programming language types4. We assume
RDF literals to be represented as strings. Consequently,
literal2java needs to be provided with the information
which data type is the desired result of the conversion.
This information can be derived from the RDF predicate,
which can be associated with the target variable. Note
that we require the target variable to be an object type.
This is necessary, since ”do not know” information can
only be modeled via objects, since in this case the
reference to the value can be null. Primitive data types
do not offer this feature5.

Object literal2java(String lit, URI u)
String java2literal(Object o)

In case URI c is given, instead of c, the we
perform uri2object(URI a).uri2variable(URI b) =
uri2object(URI c). An example from figure 2 would be
(urn:line L1, urn:b, urn:point a) would then cause l.b
= p, with l being the line object and p being point a.
Queries work in an analogous way.

4) Transformation: Transformation is be a process
as shown in figure 1, where an object is converted
from schema A to schema B. This process can easily
be mapped to the operations defined earlier. Given an
object, we simply query all its properties recursively,
until the respective sub graph is extracted. This set of
statements is then asserted into an empty model yielding
the transformed object.

5) Reflection: Note that modern programming lan-
guages such as Java and C# are interpreted. This allows
the RDF view to be implemented in a completely generic
way via the so-called reflection mechanism. Reflection
enables to dynamically determine the method to call at
runtime. It is very important to note that the objects can
still be accessed via their normal methods such as ”setX”
in the example. The data is only stored in one place, thus
there is no need to synchronize between the RDF view

4According to the revised RDF specification, RDF literals can
now also be complex XML fragments. We do not yet consider this
case, since it would require us to also incorporate XML schema type
information in order to process a nested XML structure.

5Starting from JDK 1.5, Java will support auto boxing of primitive
types in objects. This feature is already available in C#.

and the normal object view.

C. Observer

”Observer” is a well known design pattern, which al-
lows several listeners to be informed about state changes
in a central data model via a publish subscribe mecha-
nism [14]. For instance, the observer pattern is applied
in the model view controller paradigm, which allows
several views on a graphical user interface to be based
on the same data source. A big advantage of the observer
pattern is the clean separation of concerns, for instance
between the data model and the front end.

This design pattern fits very nicely to WSDF, since it
identifies a central place in which information is stored.
Separate issues that need to be taken into account when
updating the data are implemented in the listeners. This
very decoupled architecture is very suitable to the logic-
based approach described in the previous section, since
new information can be asserted in the central model.
Furthermore, our RDF view solution shown in figure 2
can be very nicely applied to a system which is written
using the observer pattern. The idea is that the various
subjects being observed are collected in the object pool
underlying the RDF view.

interface RDFView extends Model {
void register(Object o);
void unregister(Object o);

}

This interface provides to methods to register and
unregister observer subjects or other objects that do not
actively notify listeners. Once an object is registered,
it can be queried and modified via the RDF model
interface.

V. ARCHITECTURE

This section presents the technical architecture un-
derlying WSDF. Figure 3 shows the architecture of our
framework and serves as a reference for the following
detailed descriptions. The architecture is currently under
development using Java.

A. RDF Model

Both the client’s and the server’s datastructures need
to be tagged property, in order to allow the data to
be exposed as RDF. This tagging is performed in the
JavaDoc style, which allows to parse and process the
annotations using the popular XDoclet tool6. Table I

6http://xdoclet.sourceforge.net/

shows the XDoclet vocabulary concerned with the data
mediation.

/**
* @wsdf:concept concept-uri
* @wsdf:uriprefix prefix
*/

class Coord {
/**
* @wsdf:property concept-uri
* @wsdf:primarykey
*/

Integer id;
}

B. java2wsdf

Besides the datastructure tagging, the only add-on
on the server side is the java2wsdf tool, works very
much the same way. The service implementation is
tagged with the precondition, the parameter assignment,
and the effects. Table II shows the XDoclet vocabulary
concerned with the semantic service description.

/**
* @wsdf:onto ontology-url
*/

class Service {
/**
* @wsdf:precondition expr
* @wsdf:parameter expr
* @wsdf:effect expr
*/

void addToCart(SID s, Item i)
}

After the logical expressions are extracted, we run our
prolog2ruleml7 converter, since RuleML [15] being a
web based markup for rules, lends itself for this purpose.
Furthermore, RuleML is currently being combined with
OWL ontologies in the SWRL proposal [16]. Obviously
the actual WSDF language document is quite verbose
and we restrict the discussion in this paper to the con-
cise representation used in the Xdoclet comments. The
WSDF document contains all of the logical expressions,
which use ”urified” concept and property names as well
as the data type mappings and a link to the underlying
ontology.

C. Client Runtime

As mentioned before, we assume a client to be pro-
grammed using the observer design pattern. The RDF

7http://www.aifb.uni-karlsruhe.de/WBS/aeb/prolog2ruleml/

Service Consumer translation

Application
using MVC

Service Provider

Ontology

Source Code +
Annotations

(ds2onto, preconditions,
postconditions)

WSDLWSDF

java2wsdf java2wsdl

RDF Model

precondition
unification

goal
evaluation

invocation
result

assertion

Fig. 3. System architecture

model interface described in the previous section lies on
top of the client’s core datastructures. Initially, the client
downloads the WSDF description along with the WSDL
file that is necessary to generate the stub.

There are four major components in the client run-
time environment. First, the service’s preconditions are
unified against the local RDF model. The goal evaluation
component determines if the effects contains the desired
information, e.g. the temperature at location X. This
component is still work in progress. We plan to use a
breadth-first search algorithm during the planning phase
[17] in which the algorithm simulates possible state
transitions from service invocations. Finally, the method
is invoked using, in our case, Java reflection along
with the information which unified data serves as which
parameter. Finally, the result is transformed to RDF as
specified in the effects, and asserted via the RDF to
object mapping. Note that at this point the transformation
explained in section IV-B.4 is applied in order to ”cast”
an ontological concept back to the expected parameter
structure, and on the way back to mediate between return
value and ontology again.

VI. FUTURE WORK

Our future work can be mainly divided in three
aspects. The first one is concerned with the relationship
of WSDF to other languages. Obviously WSDF can
nicely complement a process description language, since

Name Scope Description
uriprefix Class prefix to be attached when object ID

is translated to URI
primarykey Variable marks the variable as (part of the

composite) primary key
concept Class associates a class with a concept

of the ontology
property Variable associates a variable with a property

of the ontology

TABLE I

XDOCLET VOCABULARY FOR DATA MEDIATION

Name Description
precondition conditions to be true before the invocation

parameter parameter assignments based on
precondition variable unification

effect service effects based on
precondition variable unification

onto physical URL where the ontology
can be accessed

TABLE II

XDOCLET VOCABULARY FOR THE SEMANTIC SERVICE

ANNOTATION

the focus is clearly on a single invocation. The planning
component described in the architecture section might
be augmented with the information of what the process
and the invocation sequence usually look like. Also, our
rules syntax and semantics needs to be kept in line with
the emerging work on rules and ontologies in the form
of the Semantic Web Rule Language (SWRL) [16].

The second issue addresses issues such as the repre-
sentation and handling of sessions, transactions, excep-
tions, and lists. We are in the process of defining the
necessary extensions here.

Finally, we are investigating the use of transaction
logic [18] in order to describe the state changes more
cleanly. Currently, the transactional semantics are more
or less hard-coded in the planning algorithm. We are
also working on incorporating more results from the
planning community, which will definitely provide a
much better solution than our current approach using a
simple breadth-first search algorithm.

VII. CONCLUSION

We presented WSDF both on a conceptual and an
implementation level. WSDF provides semantic annota-
tions to Web Services allowing the ad-hoc invocation of
a service without prior knowledge of the API; a feature
that is missing in current approaches such as OWL-S
or BPEL4WS. WSDF is layered nicely on top of the

well-established WSDL standard and, in contrast to our
previous version [19], has been extended to fit clients
programmed in an object-oriented language. The only
prerequisites are that the observer design pattern is used
in the client and that the object properties can be set in
a uniform manner, as is the case with Java Beans for
instance.

REFERENCES

[1] F. Leymann, “Web Services Flow Language (WSFL 1.0),”
http://www.ibm.com/software/solutions/webservices/pdf/
WSFL.pdf, May 2001.

[2] S. Thatte, “XLANG - web services for business process
design,” http://www.gotdotnet.com/team/xml wsspecs/xlang-
c/default.htm, 2001.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic,
and S. Weerawarana, “Business process execution language for
web services version 1.1,” May 2003.

[4] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi,
D. Orchard, S. Pogliani, K. Riemer, S. Struble, P. Takacsi-Nagy,
I. Trickovic, and S. Zimek, “Web service choreography interface
(wsci) 1.0,” http://www.w3.org/TR/wsci/, August 2002.

[5] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American, pp. 28–37, May 2001.

[6] T. O. S. Coalition, “Owl-s: Semantic markup for web services,”
http://www.daml.org/services/owl-s/1.0/, November 2003.

[7] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Mar-
tin, D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci,
T. Payne, and K. Sycara, “DAML-S: Web Service description
for the Semantic Web,” in Proceedings of the First Interna-
tional Semantic Web Conference (ISWC 2002), I. Horrocks and
J. Hendler, Eds. Chia, Sardinia, Italy: Springer, June 2002, pp.
348–363.

[8] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Au-
tomated discovery, interaction and composition of semantic web
services,” Journal of Web Semantics, vol. 1, no. 1, December
2003.

[9] D. Fensel and C. Bussler, “The web service modeling frame-
work wsmf,” Electronic Commerce: Research and Applications,
no. 1, pp. 113–137, 2002.

[10] U. Keller, H. Lausen, D. Roman, J. Gomez,
R. Lara, A. Polleres, C. Bussler, and D. Fensel,
“Web service modeling ontology, working draft,”
http://nextwebgeneration.com/projects/wsmo/2004/d2/,
February 2004.

[11] M. Kifer, G. Lausen, and J. Wu, “Logical foundations of object
oriented and frame-based languages,” Journal of the ACM,
vol. 42, pp. 741–843, 1995.

[12] J. Pollock, “The Web Services scandal,”
EAI Journal, August 2002. [Online]. Available:
http://www.eaijournal.com/PDF/AugustCoverStory.pdf

[13] A. Eberhart, “Automatic generation of Java/SQL based infer-
ence engines from RDF Schema and RuleML,” in Proceedings
of the First International Semantic Web Conference (ISWC
2002), I. Horrocks and J. Hendler, Eds. Chia, Sardinia, Italy:
Springer, June 2002, pp. 102–116.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Redwood City, CA, USA: Addison-Wesley, 1995.

[15] H. Boley, S. Tabet, and G. Wagner, “Design
rationale of RuleML: A markup language for
Semantic Web rules,” in Semantic Web Working
Symposium, Stanford University, CA, USA, July 2001,
http://www.semanticweb.org/SWWS/program/full/paper20.pdf.

[16] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean, “Swrl: A semantic web rule language combining
owl and ruleml,” http://www.daml.org/2003/11/swrl/, November
2003.

[17] A. Eberhart and S. Agarwal, “Smartapi - associating ontologies
and apis for rapid application development,” submitted to the
workshop: Ontologien in der und fr die Softwaretechnik at
Modellierung 2004, March 25th 2004 Marburg, Germany.

[18] A. J. Bonner and M. Kifer, “Transaction logic
programming,” in International Conference on Logic
Programming, 1993, pp. 257–279. [Online]. Available:
citeseer.nj.nec.com/bonner93transaction.html

[19] A. Eberhart, “Towards universal Web Service clients,”
in Proceedings of the Euroweb 2002: The Web and
the GRID: from e-science to e-business, B. Hopgood,
B. Matthews, and M. Wilson, Eds., Oxford, UK, Decem-
ber 2002, http://www1.bcs.org.uk/DocsRepository/03700/3780/
eberhart.htm.

