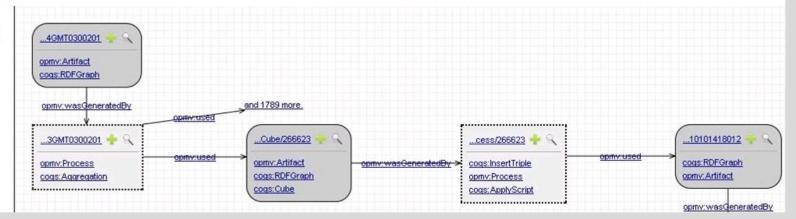


Representing Interoperable Provenance Descriptions for ETL Workflows

André Freitas, <u>Benedikt Kämpgen</u>, Joao Gabriel Oliveira, Seán O'Riain, Edward Curry The role of Semantic Web in Provenance Management, Extended Semantic Web Conference 2012 28 May 2012

Institute of Applied Informatics and Formal Description Methods (AIFB)



KPI Details & Provenance Information

KPI Name
TotalGreenhouseGasEmissionsByWei
ahtResultingFromPrintin
Context URI
http://sustainable.deri.je/resource
/report/context/context_2010
Unit
http://sustainable.deri.je
/measurementunits#kgco2e

Value
503.5122985839844
GRI KPI Compliance
EN16 - Total direct and indirect
greenhouse gas emissions by

Motivation

- Decision-support on more complex and heterogeneous data environments (dataspaces, Linked Open Data)
- Extract-Transform-Load (ETL) workflows inherent part of data analysis
- Challenges:
 - Management of complex ETL workflows
 - Information quality, trust

Problem

- 1. Lookup printer log file – 20sec
- 2. Parse to RDF -30sec
- 3. Filter for 2010 -1sec
- 4. Aggregate over people - 1sec

ETL

ETL

ETL

ETL

Sustainability report

Carbon dioxide emission by kg

	2009	2010
printing emissions	600	503
paper usage	4 165	3 968
travel emissions	534 000	429 193
commute emissions	456	391

Problem

- 1. Extract from travel form DB 20sec
- 2. Parse from CSV to RDF 30sec
- 3. Aggregate over people 1sec
- Filter for 2010 –
 1sec

2. Apply constant factor – 1sec

Sustainability report

		2009	2010
printing emissions		600	503
paper usage		4 165	3 968
travel emissions		534 000	429 193
commute emissions		456	391

ETL

ETL

Carbon dioxide emission by kg

Solution: Provenance information about ETL workflows

- Prospective provenance: representation of ETL workflow at design time
- Retrospective provenance: representation of ETL workflow after execution
- Applications of provenance information for ETL workflows
 - Documentation (reproducibility and reuse)
 - Data quality assessment (trustworthiness)
 - Management (consistency-checking, debugging and semantic reconciliation)

Outline

- Motivation & Problem
- Gap of ETL Descriptions
- Interoperable ETL Provenance Model
- Case Study
- Conclusions

Gap of ETL Descriptions (1)

Provenance models

Conceptual modelling using ontologies

Becker and Ghedini (2005)

CWM, PMML, BPMN, BPEL + ontologies

Data Mining Ontology (2009)

Conceptual modelling of ETL workflows

Provenance representation from an ETL perspective

Semantic interoperability across different ETL applications

Usability and ontological commitment

Interoperable ETL provenance model

Davidson and Buneman (1998)

Galhardas et al. (2001)

Cui and Widom (2003)

Simmhan et al. (2005)

Formal models of ETL workflows

Gap of ETL Descriptions (2)

- Common ETL applications
 - such as Kapow Software, Pentaho Data Integration, Google Refine and Yahoo Pipes
 - do not create and use provenance information or
 - do not support sharing and integrating such provenance information

Outline

- Motivation & Problem
- Gap of ETL Descriptions
- Interoperable ETL Provenance Model
- Case Study
- Conclusions

Outline

- Motivation & Problem
- Gap of ETL Descriptions
- Interoperable ETL Provenance Model
 - Requirements Analysis
 - High-level approach
 - Cogs: Linked Data vocabulary
 - Requirements Coverage Analysis
- Case Study
- Conclusions

Requirements Analysis

	Provenance representation from an ETL perspective	Semantic interoperability across different ETL platforms	Usability and ontological commitment
Prospective and retrospective descriptions	+	+	
Separation of concerns		+	
Common terminology	+	+	
Terminological completeness	+	+	
Lightweight ontology structure			+
Availability of different abstraction levels		+	+
Data representation independency			+
Accessibility		+	+
Decentralization		+	+

28 May 2012

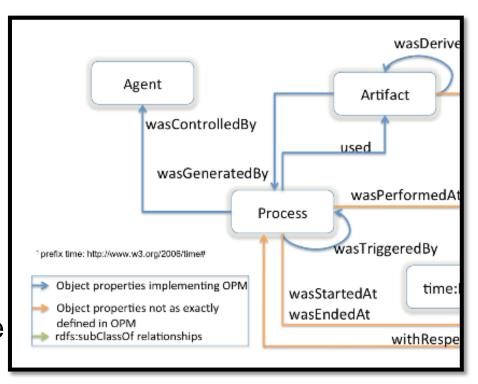
Interoperable Provenance Model for ETL Workflows

Domain Specific Model

ETL Model (Cogs)

Workflow Model (OPMV)

Three-layered Provenance Model

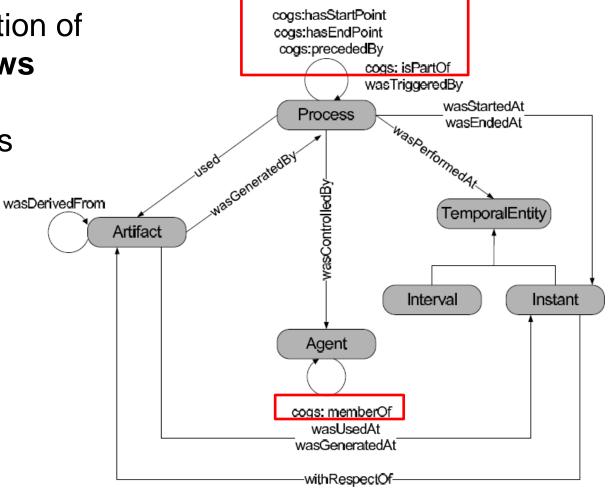

High-level approach

- reuse of the OPM Vocabulary (OPMV) workflow structure as abstract provenance model
- creation of Cogs, an RDF vocabulary for representing ETL Provenance
- can be extended by domain specific models
- use of the Linked Data principles for representing provenance descriptors

Open Provenance Model Vocabulary (OPMV)

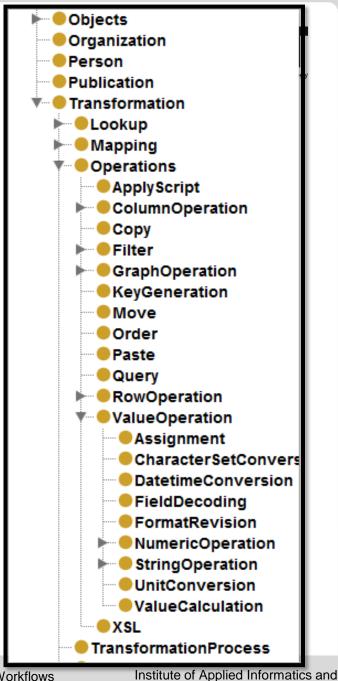
- Community-built provenance model
- Simple workflow structure (processes, artifacts, agents)
- Designed to be a minimal level of provenance interoperability
- Designed to be extensible
- ETL and provenance share workflow-level semantics

http://open-biomed.sourceforge.net/opmv/ns.html



- RDF vocabulary for representing ETL elements
- Complementary vocabulary for expressing the elements present in an ETL workflow based on
 - ETL/data transformation tools (Pentaho Data Integration, Google Refine)
 - Concepts and structures from the ETL literature.
- https://sites.google.com/site/cogsvocab/

Cogs – OPMV workflow extension


The representation of nested workflows allows different abstraction levels

Cogs – Structure

- Taxonomy of ETL elements mapping to provenance processes and artifacts
- High-level classes:
 - cogs:Execution, e.g., ScheduledJob
 - cogs:State, e.g., Running
 - opmv:Process
 - cogs:Extraction, e.g., Parsing
 - cogs:Transformation, e.g., RegexFilter
 - cogs:Loading, e.g., IncrementalLoad
 - opmv:Artifact
 - cogs:Object, e.g., CSV File
 - cogs:Layer, e.g., StagingArea

Cogs: 151 classes 17 properties

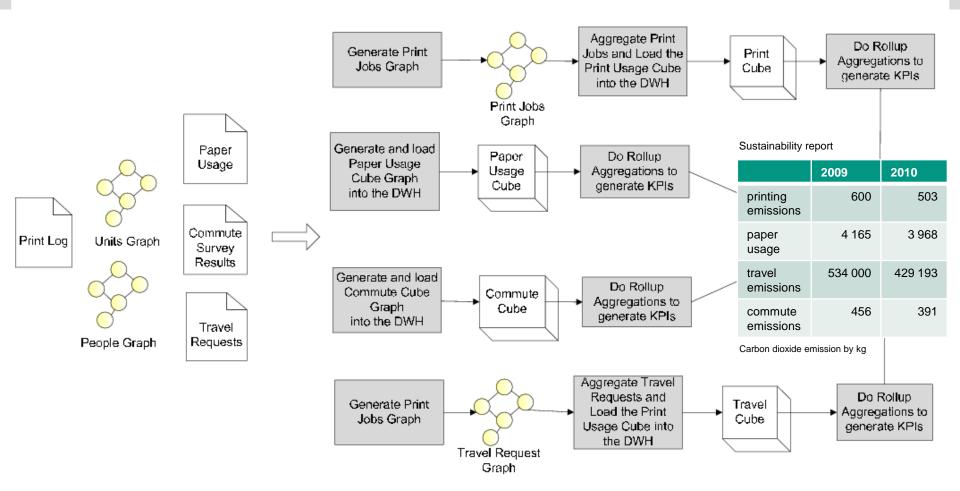
16

Requirements Coverage Analysis

	OPMV	Cogs	LD principles
Prospective and retrospective descriptions	+	+	
Separation of concerns	+	+	
Common terminology	+	+	
Terminological completeness	+	+	+
Lightweight ontology structure	+	+	
Availability of different abstraction levels		+	
Data representation independency	+	+	+
Accessibility	+		+
Decentralization			+

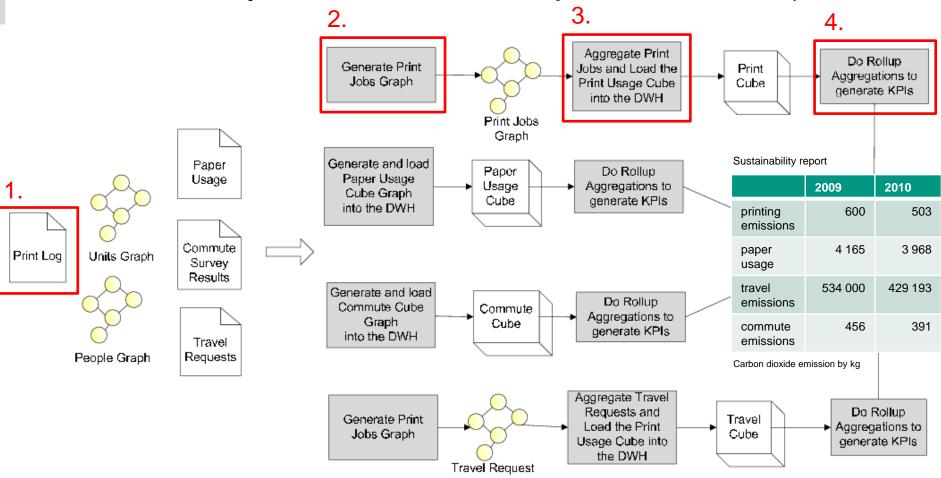
28 May 2012

Outline

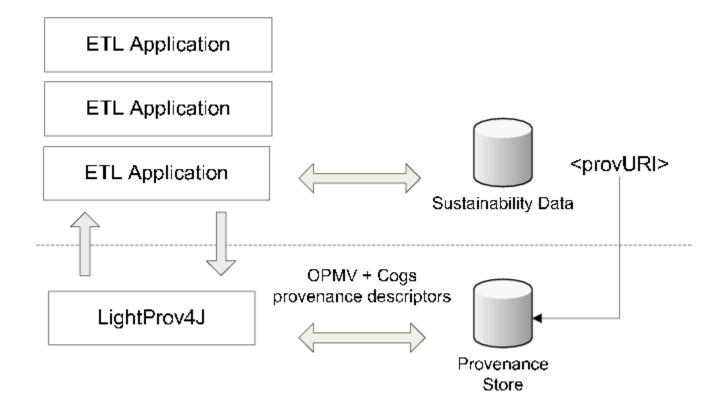


- Motivation & Problem
- Gap of ETL Descriptions
- Interoperable ETL Provenance Model
- Case Study
- Conclusions

Case Study – Sustainability Reporting


 ETL over heterogeneous data sources (e.g., log files, survey results, travel request DB, RDF)

Case Study – Sustainability Reporting


 ETL over heterogeneous data sources (e.g., log files, survey results, travel request DB, RDF)

Graph

Case Study – Architecture with Provenance-aware ETL Applications

Case Study – Sustainability Report Values

Report Context

http://sustainable.deri.ie/resource/report/context/context_2010

TotalGreenhouseGasEmissionsByWeightResultingFromCommute in kgco2e	44399.86058376993	<u>Detail</u>
AveragePerFTEPaperUsageResultingFromPrinting in sheetPerFTE	269.0551817965995	<u>Detail</u>
AveragePerFTEDistanceResultingFromCommute in kmPerFTE	1675.12573821098	<u>Detail</u>
AveragePerFTEEnergyConsumption in kwhPerFTE	4517.979663268757	Detail
AveragePerFTEGreenhouseGasEmissionsByWeightResultingFromTravel in kgCO2ePerFTE	3784.130755108943	<u>Detail</u>
TotalDistanceResultingFromTravel in km	682896.375	<u>Detail</u>
TotalGreenhouseGasEmissionsByWeightResultingFromEnergyConsumption in kgco2e	266461.2808	<u>Detail</u>
TotalEnergyConsumption in kwh	512425.54	<u>Detail</u>
AveragePerFTEPaperUsage in sheetPerFTE	2120.452678873376	<u>Detail</u>
AveragePerFTEGreenhouseGasEmissionsByWeightResultingFromPaperUsage in kgCO2ePerFTE	34.9874692014107	Detail

TotalGreenhouseGasEmissionsByWeightResultingFromPrinting in kgco2e

503.5122985839844

	~	
TotalDistanceResultingFromCommute in km	189991.3844122141	<u> Dettan</u>
TotalGreenhouseGasEmissionsByWeightResultingFromPaperUsage in kgco2e	3968.25	<u>Detail</u>
TotalGreenhouseGasEmissionsByWeightResultingFromTravel in kgco2e	429193	<u>Detail</u>
AveragePerFTEGreenhouseGasEmissionsByWeightResultingFromPrinting in kgCO2ePerFTE	4.439392941281084	<u>Detail</u>
AveragePerFTEGreenhouseGasEmissionsByWeightResultingFromEnergyConsumption in kgCO2ePerFTE	2349.349424899754	Detail
TotalPaperUsage in sheet	240500	<u>Detail</u>
AveragePerFTEGreenhouseGasEmissionsByWeightResultingFromCommute in kgCO2ePerFTE	391.4669576567956	Detail

Case Study – Provenance Descriptor Visualization

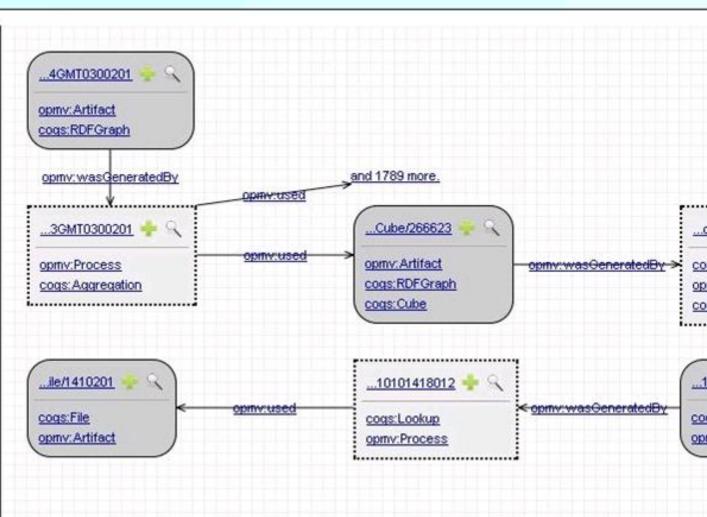
KPI Details & Provenance Information

KPI Name

TotalGreenhouseGasEmissionsByWei qhtResultingFromPrintin

Context URI

http://sustainable.deri.ie/resource /report/context/context 2010


Unit

http://sustainable.deri.ie /measurementunits#kgco2e

Value 503,5122985839844

GRI KPI Compliance

EN16 - Total direct and indirect greenhouse gas emissions by weight.

Case Study – Provenance Descriptor Visualization

KPI Details & Provenance Information

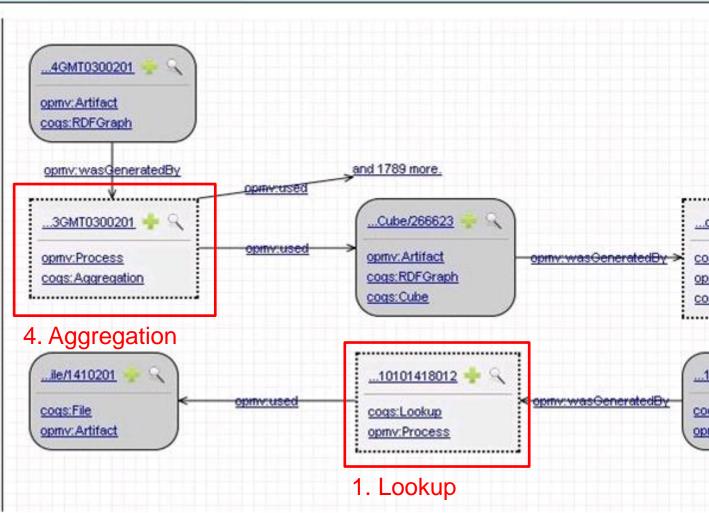
KPI Name

TotalGreenhouseGasEmissionsByWei qhtResultingFromPrintin

and promise

Context URI

http://sustainable.deri.ie/resource /report/context/context_2010


Unit

http://sustainable.deri.ie /measurementunits#kgco2e

Value 503 5122985839844

GRI KPI Compliance EN16 - Total direct and indirect

greenhouse gas emissions by weight.

Case Study – Possible Queries

OPMV

- What are the data artifacts, processes and agents behind this data value?
- When and how long were the processes executed?
- OPMV + Cogs
 - How long did all lookups take?
 - What scripts have been used to transform the data into RDF?
 - To which values constant factors have been applied?
 - Which aggregation functions were used to calculate this indicator?

Outline

- Motivation & Problem
- Gap of ETL Descriptions
- Interoperable ETL Provenance Model
- Case Study
- Conclusions

Conclusions

Provenance representation from an ETL perspective

Semantic interoperability across different ETL applications

Usability and ontological commitment

- Evaluation in small case study
- For a full evaluation of interoperability benefits model needs to be adopted in provenance-aware ETL applications.
- Starting point: Provenance-aware Google Refine using Cogs.

Conclusions

Provenance representation from an ETL perspective

Semantic interoperability across different ETL applications

Usability and ontological commitment

Thanks!