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Abstract. While the stable model semantics, in the form of Answer Set
Programming, has become a successful semantics for disjunctive logic
programs, a corresponding satisfactory extension of the well-founded se-
mantics to disjunctive programs remains to be found. The many current
proposals for such an extension are so diverse, that even a systematic
comparison between them is a challenging task. This is mainly caused
by the completely different mechanisms applied in the approaches. In or-
der to aid the quest for suitable disjunctive well-founded semantics, we
present a systematic approach to a comparison based on level mappings,
a recently introduced framework for characterizing logic programming
semantics, which was quite successfully used for comparing the major
semantics for normal logic programs. We extend this framework to dis-
junctive logic programs and present alternative characterizations for the
strong well-founded semantics (SWFS), the generalized disjunctive well-
founded semantics (GDWFS), and the disjunctive well-founded seman-
tics (D-WFS). This will allow us to gain comparative insights into their
different handling of negation.

1 Introduction

Two semantics are nowadays considered to be the most important ones for nor-
mal logic programs. Stable model semantics [7] is the main two-valued approach
(allowing for truth-values true and false) whereas the major three-valued se-
mantics (adding the value undefined) is the well-founded semantics [19]. These
two semantics are closely related as shown e.g. in [18]. However, enriching nor-
mal logic programs with indefinite information by allowing disjunctions in the
head3 of the clauses separates these two approaches. While disjunctive stable
models [15] are a straightforward extension of the stable model semantics, the
issue of disjunctive well-founded semantics remains unresolved, although several
proposals exist.

3 For an overview of semantics for disjunctive logic programs we refer to [11] and [13].



Even a comparison of existing proposals is difficult due to the large vari-
ety of completely different constructions on which these semantics are based. In
[17], Ross introduced the strong well-founded semantics (SWFS) based on a top-
down procedure using derivation trees. The generalized disjunctive well-founded
semantics (GDWFS) was defined by Baral, Lobo, and Minker in [2], built on sev-
eral bottom-up operators and the extended generalized closed world assumption
[21]. Brass and Dix proposed the disjunctive well-founded semantics (D-WFS)
in [4] based on two operators iterating over conditional facts, respectively some
general program transformations.

In order to allow for easier comparison of different semantics, a methodology
has recently been proposed for uniformly characterizing semantics by means of
level mappings, which allow for describing syntactic and semantic dependencies
in logic programs [9]. This results in characterizations providing easy compar-
isons of the corresponding semantics. With the introduction of the framework,
normal logic programs have been studied and compared in [9] and [8].

In this paper, we attempt to utilize this approach and present level map-
ping characterizations for three of the previously mentioned semantics, namely
SWFS, GDWFS and D-WFS. The obtained uniform characterizations will allow
us to compare the semantics in a new and more structured way. It turns out,
however, that even under the uniform level-mapping characterizations the dif-
ferent semantics differ widely, such that there is simply not enough resemblance
between the approaches to obtain a coherent picture. We can thus, basically,
only confirm in a more formal way what has been known beforehand, namely
that the issue of a good definition of well-founded semantics for disjunctive logic
programs remains widely open. We still believe that our structured approach
delivers structural insights which can help to guide the quest.

The paper is structured as follows. In Section 2, basic notions are presented
and we recall shortly the well-founded semantics. Then we devote one section
to each of the three semantics recalling the approach itself and presenting the
level mapping characterization. We start with SWFS in Section 3, continue with
GDWFS in Section 4 and end with D-WFS in Section 5. After that, in Section 6
we compare the characterizations looking for common conditions which might be
properties for an appropriate well-founded semantics for disjunctive programs.
We conclude with Section 7 and point out further work.
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2 General Notions and Preliminaries

A disjunctive logic program Π consists of finitely many universally quantified
clauses of the form H1 ∨ · · · ∨ Hl ← A1, . . . , An,¬B1, . . . ,¬Bm where Hk, Ai,
and Bj , for k = 1, . . . , l, i = 1, . . . , n, and j = 1, . . . ,m, are atoms of a given



first order language, consisting of predicate symbols, function symbols, constants
and variables. The symbol ¬ is representing default negation. A clause c can be
divided into the head H1 ∨ · · · ∨Hl and the body A1, . . . , An, ¬B1, · · · ,¬Bm. If
the body is empty then c is called a fact. We also abbreviate c by H ← A,¬B,
where H, A and B are sets of pairwise distinct atoms and, likewise, we handle
disjunctions D and conjunctions C. A normal (definite) clause contains exactly
one atom in H (no atom in B) and we call a program consisting only of normal
(definite) clauses a normal (definite) logic program. We denote normal programs
by P to distinguish from disjunctive ones represented by Π. Any expression is
called ground if it contains no variables. The Herbrand base BΠ is the set of
all ground atoms that can be formed by using the given language from Π. A
literal is either a positive literal, respectively an atom, or a negative literal, a
negated atom, and usually we denote by A,B, . . . atoms and by L,M, . . . literals.
Moreover, a disjunction literal is a disjunction or a negated disjunction. The
extended Herbrand base EBΠ (conjunctive Herbrand base CBΠ) is the set of
all disjunctions (conjunctions) that can be formed using pairwise distinct atoms
from BΠ . Finally, ground(Π) is the set of all ground instances of clauses in Π
with respect to BΠ .
We continue by recalling three-valued semantics based on the truth values true
(t), undefined (u), and false (f). A (partial) three-valued interpretation I of a
normal program P is a set A∪¬B, for A,B ⊆ BP and A∩B = ∅, where elements
in A, B respectively, are t, f , and the remaining wrt. BP are u. The set of three-
valued interpretations is denoted by IP,3. Given a three-valued interpretation I,
the body of a ground clause H ← L1, . . . , Ln is true in I if and only if Li ∈ I,
1 ≤ i ≤ n, or false in I if and only if Li 6∈ I for some i, 1 ≤ i ≤ n. Otherwise
the body is undefined. The ground clause H ← body is true in I if and only
if the head H is true in I or body is false in I or body is undefined and H
is not false in I. Moreover, I is a three-valued model for P if and only if all
clauses in ground(P ) are true in I. The knowledge ordering [6] is recalled which,
given two three-valued interpretations I1 and I2, is defined as I1 ≤k I2 if and
only if I1 ⊆ I2. For a program P and a three-valued interpretation I ∈ IP,3

an I-partial level mapping for P is a partial mapping l : BP → α with domain
dom(l) = {A | A ∈ I or ¬A ∈ I}, where α is some (countable) ordinal. Every
such mapping is extended to literals by setting l(¬A) = l(A) for all A ∈ dom(l).
Any ordinal α is identified with the set of ordinals β such that α > β. Thus, any
mapping f : X → {β | β < α} is represented by f : X → α. Given two ordinals
α, β, the lexicographic order (α × β) is also an ordinal with (a, b) ≥ (a′, b′) if
and only if a > a′ or a = a′ and b ≥ b′ for all (a, b), (a′, b′) ∈ α × β. This order
can be split into its components, namely (a, b) >1 (a′, b′) if and only if a > a′

for all (a, b), (a′, b′) ∈ α× β and (a, b) ≥2 (a′, b′) if and only if a = a′ and b ≥ b′

for all (a, b), (a′, b′) ∈ α × β. Additionally we allow the order � which given an
ordinal (α × β) is defined as (a, b) � (a′, b′) if and only if b > b′ for all (a, b),
(a′, b′) ∈ (α× β).
We shortly recall the level mapping characterization of the well-founded seman-
tics and refer for the original bottom-up operator to [19].



Definition 2.1. ([9]) Let P be a normal logic program, let I be a model for P ,
and let l be an I-partial level mapping for P . We say that P satisfies (WF) with
respect to I and l if each A ∈ dom(l) satisfies one of the following conditions.

(WFi) A ∈ I and there is a clause A ← L1, . . . , Ln in ground(P ) such that
Li ∈ I and l(A) > l(Li) for all i.
(WFii) ¬A ∈ I and for each clause A ← A1, . . . , An,¬B1, . . . ,¬Bm in
ground(P ) one (at least) of the following conditions holds:

(WFiia) There exists i with ¬Ai ∈ I and l(A) ≥ l(Ai).
(WFiib) There exists j with Bj ∈ I and l(A) > l(Bj).

If A ∈ dom(l) satisfies (WFi), then we say that A satisfies (WFi) with respect to
I and l, and similarly if A ∈ dom(l) satisfies (WFii).

Theorem 2.1. ([9]) Let P be a normal logic program with well-founded model
M . Then, in the knowledge ordering, M is the greatest model amongst all models
I for which there exists an I-partial level mapping l for P such that P satisfies
(WF) with respect to I and l.

Example 2.1. Consider the program P = {p ← ¬q; q ← q; r ← ¬p}. We obtain
the well-founded model M = {p,¬q,¬r} with l(p) = 1, l(q) = 0 and l(r) = 2.
Note that, for I = ∅ and arbitrary l, P satisfies (WF) wrt. I and l as well but I
is not the greatest such model wrt. ≤k and thus not the well-founded model.

We continue extending some of the previous notions to the disjunctive case. Let
I be a set of disjunction literals. The closure of I, cl(I), is the least set I ′ with
I ⊆ I ′ satisfying the following conditions: if D ∈ I ′ then D′ ∈ I ′ for all D′ with
D ⊆ D′, and for all disjunctions D1 and D2, ¬D1 ∈ I ′ and ¬D2 ∈ I ′ if and
only if ¬(D1 ∨D2) ∈ I ′. I is consistent if there is no D ∈ cl(I) with ¬D ∈ cl(I)
as well4. A disjunctive three-valued interpretation I of a disjunctive program Π
is a consistent set A ∪ ¬B, A,B ⊆ EBΠ , where elements in A are t, elements
in B are f , and the remaining wrt. EBΠ are u. The body of a ground clause
H ← A,¬B is true in I if and only if all literals in the body are true in I, or false
in I if and only if there is a D such that either D ⊆ A with ¬D ∈ I or D ⊆ B
with D ∈ I5. Otherwise the body is undefined. The truth of a ground clause
H ← body is identical to normal programs and I is a disjunctive three-valued
model of Π if every clause in ground(Π) is true in I. The disjunctive knowledge
ordering �k is defined as I1 �k I2 if and only if I1 ⊆ I2. Then the corresponding
mapping is extended as follows.

Definition 2.2. For a disjunctive program Π and a disjunctive interpretation
I a disjunctive I-partial level mapping for Π is a partial mapping l : EBΠ → α
with domain dom(l) = {D | D ∈ I or ¬D ∈ I}, where α is some (count-
able) ordinal. Every such mapping is extended to negated disjunctions by setting
l(¬D) = l(D) for all D ∈ EBΠ .
4 Here, a consistent set is not automatically closed, in contrast with the assumption

made in [17].
5 The extension is necessary since we might e.g. know the truth of some disjunction

without knowing which particular disjunct is true.



Another way of representing disjunctive information are state-pairs A ∪ ¬B,
where A is a subset of EBΠ such that for all D′ if D ∈ A and D ⊆ D′ then
D′ ∈ A, and B is a subset of CBΠ such that for all C ′ if C ∈ B and C ⊆ C ′

then C ′ ∈ B. Disjunctions in A are t, conjunctions in B are f , and all remaining
are u. A state-pair is consistent if whenever D ∈ A then there is at least one
disjunct D′ in D such that D′ 6∈ B and whenever C ∈ B then there is at
least one conjunct C ′ in C such that C ′ 6∈ A. The notions of models and the
disjunctive knowledge ordering can easily be adopted. Note that a state-pair is
not necessarily consistent and that it contains indefinite positive and negative
information in opposite to disjunctive interpretations where negative information
will be precise. Level mappings are adjusted to state-pairs in the following and
now we do not extend the mapping to identify l(D) = l(¬D) since in a state-pair
D is a disjunction and ¬D a negated conjunction.

Definition 2.3. For a disjunctive program Π and a state-pair I a disjunctive
I-partial level mapping for Π is a partial mapping l : (EBΠ ∪ CBΠ) → α with
domain dom(l) = {D | D ∈ I or ¬C ∈ I}, where α is some (countable) ordinal.

3 Strong Well-founded Semantics

We start with SWFS which was introduced by Ross [17] and based on disjunctive
interpretations. The derivation rules of the applied top-down procedure are the
following. Given a set of disjunction literals I and a disjunctive program Π the
derivate I ′ is strongly derived from I (I ⇐ I ′) if I contains a disjunction D and
ground(Π) a clause H ← A1, . . . , An,¬B such that either

(S1) H ⊆ D and I ′ = (I \ {D}) ∪ {A1 ∨D, . . . , An ∨D} ∪ ¬B or
(S2) H 6⊆ D, H ∩D 6= ∅, C = H \D, and I ′ = (I \ {D}) ∪A ∪ ¬B ∪ ¬C.

Consider a ground disjunction D, let I0 = {D} and suppose that I0 ⇐ I1 ⇐
I2 . . ., then I0, I1, I2 . . . is a (strong) derivation sequence for D. An active (strong)
derivation sequence for D is a finite derivation sequence for D whose last element,
also called a basis of D, is either empty or contains only negative literals. A basis
I = {¬l1, . . . ,¬ln} is turned into a disjunction Ī = l1 ∨ · · · ∨ ln and if I is empty,
denoting t, then Ī denotes f . Thus, a strong global tree ΓS

D for a given disjunction
D ∈ EBΠ contains the root D and its children are all disjunctions of the form
Ī, where I ranges over all bases for D. The strong well-founded model of a
disjunctive program Π is called MS

WF (Π) and D ∈ MS
WF (Π), i.e. D is true, if

some child of D is false and ¬D ∈ MS
WF (Π), i.e. D is false, if every child of D

is true. Otherwise, D is undefined and neither D nor ¬D occur in MS
WF (Π).

In [17], it was shown that MS
WF (Π) is a consistent interpretation and that, for

normal programs, SWFS coincides with the well-founded semantics6.

Example 3.1. The following program Π will be used to demonstrate the behavior
of the three semantics.
6 More precisely, the disjunctive model has to be restricted to (non-disjunctive) literals.



p ∨ q ← ¬q c ← ¬l,¬r
q ← ¬q e ← ¬f, c

b ∨ l ← ¬r f ← ¬e
l ∨ r ← g ← e

We obtain a sequence {l∨r} ⇐ {} and l∨r is true as expected. Furthermore, there
is a finite sequence in ΓS

e , namely {e} ⇐ {¬f, e∨c} ⇐ {¬f,¬l,¬c} with the only
(true) child and e is false. Thus, we have that MS

WF (Π) = {l∨r, f,¬b,¬c,¬e,¬g}.
Literally, this is only a small part of the model and we might close the model (e.g.
¬(e∨g) ∈MS

WF ) for this example, but the strong well-founded is not necessarily
closed which does not allow us to add this implicit information in general.

The level mapping framework is based on bottom-up operators and SWFS is a
top-down-procedure so we introduced a bottom-up operator on derivation trees
defined on Γ S

Π which is the power set of ΓS
Π , i.e. the set of all strong global trees

with respect to Π.

Definition 3.1. Let Π be a disjunctive logic program, MS
WF (Π) the strong well-

founded model, and Γ ∈ Γ S
Π . We define:

– T ′S
Π(Γ ) = {ΓS

D ∈ ΓS
Π | ΓS

D contains an active strong derivation sequence
with child C where ¬C ∈MS

WF (Π) and ΓS
C ∈ Γ if C 6= {}}

– US
Π(Γ ) = {ΓS

D ∈ ΓS
Π | for all active strong derivation sequences in ΓS

D the
corresponding child C is true in MS

WF (Π) and ΓS
C ∈ Γ}

– W ′S
Π(Γ ) = T ′S

Π(Γ ) ∪ US
Π(Γ )

– W ′S
Π ↑ 0 = ∅, W ′S

Π ↑ n+1 = W ′S
Π(W ′S

Π ↑ n) and W ′S
Π ↑ α =

⋃
β<α W ′S

Π ↑ β
for limit ordinal α

This operator yields the assignment of the stage which slightly differs from re-
cursive definition introduced in [17] and we use only as the stage to avoid ambi-
guities.

Definition 3.2. Let Π be a disjunctive logic program and the stage s be a partial
function s : EBΠ → α for some ordinal α. Let D ∈MS

WF or ¬D ∈MS
WF . Then

s(D) = α where α is the least ordinal such that ΓS
D ∈ (W ′S

Π ↑ (α + 1)).

It is obvious, by Definition 3.2, that any disjunction D with assigned stage occurs
in MS

WF . The contrary will be shown by means of Definition 3.1.

Lemma 3.1. Let Π be a disjunctive logic program and D ∈ EBΠ . If D is true
or false in MS

WF then D ∈ dom(s).

Proof. We have to show that whenever D is true or false in MS
WF then ΓS

D ∈
(W ′S

Π ↑ α) for some α. Assume without loss of generality that there is a D ∈
MS

WF with ΓS
D 6∈ (W ′S

Π ↑ α) for all α. Since D ∈ MS
WF , we know that there

is an active strong derivation sequence in ΓS
D with child C and ¬C ∈ MS

WF .
By Definition of T ′S

Π and since ΓS
D 6∈ (W ′S

Π ↑ α) for any α we know that



ΓS
C 6∈ WS

WF ↑ α for any α. The same holds for any child of D we choose one
of these, i.e. C. Since ¬C ∈ MS

WF , we know that all active strong derivation
sequences in ΓS

D have a true child. By Definition of US
Π and since ΓS

C 6∈ (W ′S
Π ↑ α)

for any α we know that there is at least one true child C1 with ΓS
C1
6∈ W ′S

Π ↑ α
for any α. We can now apply the argument from D also to C1 and obtain again
a false child like C beforehand. In this manner we obtain a transfinite sequence
of children and none of their corresponding trees are in W ′S

Π ↑ α for some α. But
then, by means of the recursive definition of truth in derivation trees the truth
values are not defined in this transfinite sequence of children which contradicts
our initial assumption. �

Even though the stage is defined for all disjunctions which are true or false in
the strong well-founded model, it is not the desired result for the alternative
characterization.

Example 3.2.

p←
q ← p

r ← r

s← ¬r

t← ¬s

ΓS
p has only one empty child, i.e. ΓS

p ∈ W ′S
Π ↑ 1 and s(p) = 0. Obviously, ΓS

q

also only has that child and s(q) = 0 as well. ΓS
r has no children and we set

the stage of r to 0. Then, ΓS
s has only one false child, r, i.e. is of stage 1 and

similarly ΓS
t has only one true child s, thus s(t) = 2.

Since this program is normal, we may also apply the level mapping character-
ization of the well-founded semantics and obtain also l(r) = 0, l(s) = 1, and
l(t) = 2. But l(p) = 0 and l(q) = 1 by Theorem 2.1 and (WFi) of Definition
2.1 and we obtain the dependency between p and q given by the second clause
which is lost in the stage assignment.

We thus prefer to have a characterization which for normal programs also coin-
cides with the characterization of the well-founded semantics. Nevertheless, the
stage can be used to prove certain properties of the strong well-founded model
starting with the following lemma.

Lemma 3.2. Let Π be a disjunctive logic program and D,D′ ∈ EBΠ with D′ ⊆
D and D′′ = D \D′. If ΓS

D′ contains an active strong derivation sequence with
child D′

1 then ΓS
D also contains an active strong derivation sequence with child

D1 such that D1 ⊆ D′
1.

Proof. Consider the active strong derivation sequence {D′}, I ′1, . . . , I ′r where
H ← A1, . . . An,¬B1, . . . ,¬Bm is the clause c in ground(Π) which is used for
the first derivation {D′} ⇐ I ′1 of that sequence. We consider two cases.



We apply (S1). Then H ⊆ D′ and I ′1 = {A1∨D′, . . . , An∨D′,¬B1, . . . ,¬Bm}.
But then we also have a derivation {D} ⇐ I1 with I1 = {A1 ∨ D, . . . , An ∨
D,¬B1, . . . ,¬Bm} by (S1) since H ⊆ D′ ⊆ D. If there is no atom Ai, 1 ≤ i ≤ n,
occurring in c then we already obtained the basis and in both cases the child
is B1 ∨ . . . ∨ Bm, i.e. D1 = D′

1, and thus D1 ⊆ D′
1. Otherwise, there is at

least one atom Ai in c such that we have Ai ∨D′ in I ′1 and Ai ∨D in I1 with
({Ai} ∪D′) ⊆ ({Ai} ∪D). Nevertheless, the sets of negative atoms obtained in
the first derivation step are identical, i.e. B1 = B′

1 and the sets of additional
negated atoms C1 and C ′

1 are empty since we applied (S1) where the index, in
this case 1, represents the derivation step.

Alternatively, we apply (S2). Then H 6⊆ D′, H ∩D′ 6= ∅, C ′ = H \D′, and
I ′1 = {A1, . . . , An,¬B1, . . . ,¬Bm}∪¬C ′. Since D′ ⊆ D we also have H ∩D 6= ∅.
(1) If H 6⊆ D then by (S2) we also have a derivation {D} ⇐ I1 with C = H \D
and I1 = {A1, . . . , An, ¬B1, . . . ,¬Bm} ∪ ¬C. If D′′ ∩ H = ∅ then C ′ = C. If
D′′ ∩H 6= ∅ then C ′ = C ∪ (D′′ ∩H).
(2) Otherwise, H ⊆ D and we can apply (S1) instead, yielding {D} ⇐ I1 with
I1 = {A1 ∨D, . . . , An ∨D,¬B1, . . . ,¬Bm}.
Again, if c does not contain any Ai, 1 ≤ i ≤ n, then I ′1 is a basis and B ∪ C ′ is
a child in ΓS

D′ , and thus B ∪ C, respectively B in case of (S1), is a child in ΓS
D.

Then B(∪C) ⊆ B ∪ C ′. Otherwise, there is at least one Ai in c such that we
have Ai in I ′1 and Ai in I1, respectively Ai ∨D in I1 (depending on whether we
applied (S1) or (S2)), with {Ai} ⊆ {Ai}, respectively {Ai} ⊆ ({Ai} ∪D), where
B1(∪C1) ⊆ B1 ∪ C ′

1. Note that the now introduced additional indices refer to
the derivation step.
As we have seen, no matter whether we apply (S1) or (S2), for each resulting
positive disjunction in I ′1 there is also a positive disjunction in I1 which subsumes
the one from I ′1 which allows us to apply the same argument also to the following
derivation steps of the active strong derivation sequence I ′1, . . . , I

′
r. We obtain

the active strong derivation sequence {D}, I1, . . . , Ir in ΓS
D and that Bq(∪Cq) ⊆

Bq ∪C ′
q holds for each 1 ≤ q ≤ r. But then

⋃
q=1...r Bq(∪Cq) ⊆

⋃
q=1...r Bq ∪C ′

q

which corresponds to D1 ⊆ D′
1. �

We use this lemma to show that whenever we know that a disjunction D is true
with a certain stage then all disjunctions containing D are also true with at most
the same stage, respectively whenever we know that a disjunction D is false with
a stage s(D) then all subdisjunctions of D are also false with a stage smaller or
equal to s(D).

Lemma 3.3. Let D ∈ EBΠ with s(D) = α.

1. If D ∈ MS
WF then D′ ∈ MS

WF and s(D′) ≤ α for all disjunctions D′ with
D ⊆ D′.

2. If ¬D ∈MS
WF then ¬D′ ∈MS

WF and s(D′) ≤ α for all disjunctions D′ with
D′ ⊆ D.

Proof. We are going to prove the two statements by one transfinite induction on
the stage of D.



Let s(D) = 0. If D ∈ MS
WF then there is at least one child in ΓS

D which is
false. By Definition 3.2, ΓS

D ∈ W ′S
Π ↑ 1 and thus, by Definition 3.1, this child is

empty. Then, by Lemma 3.2, for any D′ with D ⊆ D′ there is an active strong
derivation sequence in ΓS

D′ with child C ′ where C ′ ⊆ C, i.e. C ′ = {}. Therefore,
D′ also has an empty (false) child and ΓS

D′ ∈ W ′S
Π ↑ 1, i.e. s(D′) = 0 and

s(D′) ≤ s(D).
Alternatively ¬D ∈MS

WF and all children in ΓS
D are true. Since, by Definition

3.2, ΓS
D ∈W ′S

Π ↑ 1 we know that there are no children at all in ΓS
D. Assume that

there is an active strong derivation sequence in ΓS
D′ with child D′

1 for any D′ with
D′ ⊆ D. By Lemma 3.2, we then have that ΓS

D also contains an active strong
derivation sequence with child D1 which contradicts the assumption. Hence, ΓS

D′

has no children, ¬D′ ∈MS
WF , and s(D′) = 0.

Suppose that the lemma holds for all disjunctions C with s(C) = β, β < α,
i.e. if C ∈ MS

WF then C ′ ∈ MS
WF and s(C ′) ≤ β for all disjunctions C ′ with

C ⊆ C ′, and if ¬C ∈MS
WF then ¬C ′ ∈MS

WF and s(C ′) ≤ β for all disjunctions
C ′ with C ′ ⊆ C. Let s(D) = α. We have to consider two cases.
(1) If D ∈MS

WF then there is at least one child in ΓS
D which is false. By Definition

3.2, we know that ΓS
D ∈W ′S

Π ↑ (α+1). Consider the corresponding active strong
derivation sequence of a false child C with ΓS

C ∈ W ′S
Π ↑ α, i.e. s(C) < α say

s(C) = β. By Lemma 3.2, for any D′ with D ⊆ D′ we know that there also is an
active strong derivation sequence with child C ′ such that C ′ ⊆ C. By induction
hypothesis we have ¬C ′ ∈MS

WF and s(C ′) ≤ β. Thus ΓS
C′ ∈W ′S

Π ↑ (β + 1) and
β + 1 ≤ α. Hence, ΓS

C′ ∈W ′S
Π ↑ (α + 1) s(D′) ≤ α by Definition 3.2.

(2) If ¬D ∈ MS
WF then all children in ΓS

D are true. Consider any disjunction
D′ with D′ ⊆ D. If ΓS

D′ does not contain any active derivation sequences then
s(D′) = 0, 0 ≤ α and ¬D′ ∈ MS

WF . Thus consider alternatively any active
strong derivation sequence with child C ′. Then, by Lemma 3.2, ΓS

D also contains
an active strong derivation sequence with child C such that C ⊆ C ′. We know
that ΓS

D ∈ W ′S
Π ↑ (α + 1) by Definition 3.2. Thus, by Definition 3.1, for child

C we have ΓS
C ∈ W ′S

Π ↑ α, i.e. s(C) < α say s(C) = β. Thus, by induction
hypothesis and C ⊆ C ′, C ′ ∈ MS

WF and s(C ′) ≤ β. Since we have shown for
any arbitrary child C ′ that it is true with stage less than or equal to β, we know
that the trees of all children of D′ are contained in W ′S

Π ↑ β +1 with β +1 ≤ α.
Then, by Definition 3.1, ΓS

D′ ∈W ′S
Π ↑ (α + 1) and s(D′) ≤ α. �

Example 3.3. We demonstrate this with the given program Π.

p← p

q ← ¬s,¬t

s ∨ t←

We know that p ∨ q only has one child s ∨ t which is true with stage 0. Thus
p ∨ q is false with s(p ∨ q) = 1. For the same reason, q is false with s(q) = 1.
The stage of a subdisjunction does not have to be equal: ΓS

p does not have any
children and thus p is false but with stage 0.



Lemma 3.3 shows that the strong well-founded model satisfies the first and one
direction of the second condition of the closure of a set of disjunction literals.
However, for showing that it is in fact closed we also need to show the other
direction of the second condition of this definition, which appears to be rather
difficult.
Table 1 shows our current knowledge about the assignment of truth values in
the strong well-founded semantics for a disjunction (p ∨ q) given the values of
its two disjuncts p and q, respectively the truth value of a disjunct s given the
truth value of the disjunction (r ∨ s) and the other disjunct r. The three entries
’n.a.’ stand for ’not allowed’ because if we e.g. already know that r is true then
(r∨ s) cannot be undefined by Lemma 3.3. The truth values in parentheses with
question mark are not intended but we did not prove yet that they cannot occur.

Table 1. Truth values in the strong well-founded semantics

p q (p ∨ q) r (r ∨ s) s

f f f (/u?a) f f f

f u u (/t?d) f u u
(/f?c)

f t t f t t
(/u?b)

u f u (/t?d) u f n.a.
u u u/t u u f/u
u t t u t u/t

(/f?e)
t f t t f n.a.
t u t t u n.a.
t t t t t f/u/t

The first thing we see is that the assignment of the truth value to a disjunction
is not functional. Given two undefined disjuncts the disjunction may be true or
undefined. As an example consider the program just consisting of p∨ q ←. Since
p has q as the only child and q has only one child p and this alternates forever,
both, p and q, are undefined. Nevertheless, (p ∨ q) has one empty child and is
thus true. Alternatively, consider the program with the two clauses p← ¬p and
q ← ¬q. Then p and q are both undefined again but now (p∨q) is also undefined
since it has now only the two children p and q. This example also shows that q
may be undefined if we know that p and (p ∨ q) are undefined, and if we drop
the second clause then q may also be false in this case.

Let us now consider the cases where not intended results remain to be re-
moved. If p and q are false then (p ∨ q) cannot be true by consistency of the
strong well-founded model but it may be undefined (a). If we can show that



(p ∨ q) has to be false then s cannot be false (c) knowing that r is false and
(r ∨ s) is undefined. If r is false and (r ∨ s) is true then s cannot be false by
consistency however it may be undefined (b). But if we can show that it has to
be true in general then (p ∨ q) cannot be true given a false and an undefined
disjunct (d) and likewise given a true disjunction (r ∨ s) and r undefined then s
cannot be false (e).
Showing one of these properties is most likely done by an transfinite induction
over the stage similar to Lemma 3.3. Since undefined disjunctions cannot have
a value for the stage it is most reasonable trying to prove that the cases (a) and
(b) cannot occur because all assumptions in both cases have a defined stage.
However, the following example will show that even that is rather complicated.

Example 3.4. Let Π be a disjunctive logic program and let the following clauses
be all clauses in ground(Π) which contain p, q, a, or b in the head.

p ∨ q ← a,¬s

p ∨ q ← b,¬t

a ∨ b← ¬r

The disjunction (p∨ q) has three different children. We may apply (S1) with the
first clause and (S2) with the third clause and obtain {p∨q} ⇐ {p∨q∨a,¬s} ⇐
{¬b,¬r,¬s}. Or we apply (S1) with the second clause and (S2) with the third
clause and obtain {p ∨ q} ⇐ {p ∨ q ∨ b,¬t} ⇐ {¬a,¬r,¬t}. Alternatively, we
can also apply (S1) with the first and the second clause (in arbitrary order) and
then (S1) with the third clause and obtain e.g. {p ∨ q} ⇐ {p ∨ q ∨ a,¬t} ⇐
{p ∨ q ∨ a ∨ b,¬t,¬s} ⇐ {¬r,¬s,¬t}. Thus the three children are (b ∨ r ∨ s),
(a ∨ r ∨ t), and (r ∨ s ∨ t).
For p, and symmetrically for q, we only have two children. We may apply
(S2) with the first clause and (S2) with the third clause and obtain {p} ⇐
{a,¬s,¬q} ⇐ {¬b,¬r,¬s,¬q}. Or we apply (S2) with the second clause and
(S2) with the third clause and obtain {p} ⇐ {b,¬t,¬q} ⇐ {¬a,¬r,¬t,¬q}. So
we have two children (b ∨ r ∨ s ∨ q) and (a ∨ r ∨ t ∨ q) for p and two children
(b ∨ r ∨ s ∨ p) and (a ∨ r ∨ t ∨ p) for q.

Assume we want to show in general that if p and q are false then also (p∨ q)
is false using an inductive argument over the stage and assume that we have
shown that if p′ ∨ q′ is true and p′ is false then q′ has to be true. Since p and q
are false, all children of them are true. Since q is false and (b∨ r∨ s∨ q) is a true
child of p we know that (b∨ r ∨ s) has to be true by our additional assumption.
This allows us to derive that two of the children of (p ∨ q) have to be true.
Unfortunately, this argument cannot be applied to the third child (r∨ s∨ t) and
it is not clear at all how it could be proven that (r ∨ s ∨ t) is true. One attempt
could be to show that a or b is false as well. Then (r∨s) or (r∨ t) had to be true
by our assumption and thus also (r∨s∨t) by Lemma 3.3. But there is no evident
argument stating that a or b should be false, both may also be undefined.

If we want to prove that q is true given that (p∨ q) is true and p is false the
problem is the very same. One of the children of (p ∨ q) has to be false and we



assume that if p′ and q′ are false that (p′ ∨ q′) is false as well. If (b ∨ r ∨ s) or
(a∨ r∨ t) is the false child then by our assumption (b∨ r∨ s∨p) or (a∨ r∨ t∨p)
is also false since p is false. Otherwise (r ∨ s ∨ t) is the false child and thus all
disjuncts are false by Lemma 3.3. Then in this case we need to show that a or b
is false for showing that there is a false child for q but it also is not clear at all
how this could be done.

The example displays that a general proof that the intended properties from
Table 1 hold can be expected to be rather difficult. So far, we have not been
able to come up with either a proof nor a counterexample, and so we leave this
as an open problem. This will not influence the subsequent discussion, but we
will make sure that we remark whenever this open problem comes into play.

Even though we could not prove that all desired properties hold for the strong
well-founded semantics, we may use the results from Lemma 3.3 to represent the
strong well-founded model by a minimal set: whenever a disjunction is contained
in the strong well-founded model then any superset of that disjunction is con-
tained implicitly as well and, likewise, whenever a negated disjunction occurs
then implicitly any subset of the disjunction occurs negated as well.

We already have seen that the stage is not a desired result for an alternative
characterization of the strong well-founded semantics. In the following we modify
the operator given in Definition 3.1.

Definition 3.3. Let Π be a disjunctive logic program, MS
WF (Π) the strong well-

founded model, and Γ ∈ Γ S
Π . We define:

– TS
Π(Γ ) = {ΓS

D ∈ ΓS
Π | ΓS

D contains an active strong derivation sequence
{D}, I1, . . . , Ir with child C = Īr and I1 = {D1, . . . , Dn,¬Dn+1, . . . ,¬Dm}
where ¬C ∈ MS

WF (Π), ΓS
C ∈ Γ if C 6= {}, ΓS

Di
∈ Γ , Di ∈ MS

WF , ΓS
Dj
∈ Γ ,

¬Dj ∈MS
WF for all i = 1, . . . , n and j = n + 1, . . . ,m}

– US
Π(Γ ) = {ΓS

D ∈ ΓS
Π | for all active strong derivation sequences in ΓS

D the
corresponding child C is true in MS

WF (Π) and ΓS
C ∈ Γ}

The information is joined by WS
Π(Γ ) = TS

Π(Γ )∪US
Π(Γ ) and iterated: WS

Π ↑ 0 = ∅,
WS

Π ↑ n + 1 = WS
Π(WS

Π ↑ n) and WS
Π ↑ α =

⋃
β<α WS

Π ↑ β for limit ordinal α.
If we could have shown that all the not intended properties given in Table 1 do
not hold then it should not be necessary to mention the child C in case of TS

Π

and the additional conditions related to it. It should be possible to show that
all the true elements in the first derivate already imply that.

Example 3.5. Reconsider the program Π from Example 3.2

p←
q ← p

r ← r

s← ¬r

t← ¬s



Using the minimal set representation, the strong well-founded model MS
WF is

{p, q, s,¬(r ∨ t)}. We have WS
Π ↑ 0 = ∅ and then WS

Π ↑ 1 = WS
Π(∅) = TS

Π(∅) ∪
US

Π(∅) and TS
Π(∅) = {ΓS

p } because ΓS
p has only one empty child and the first

derivate in the corresponding sequence is empty. We also use here the minimal
representation because any tree ΓS

p∨D for some disjunction D contains the very
same active strong derivation sequence. US

Π(∅) = {ΓS
r } because there is no active

strong derivation sequence in ΓS
r and WS

Π ↑ 1 = {ΓS
p , ΓS

r }. Then we have WS
Π ↑

2 = {ΓS
p , ΓS

r , ΓS
q , ΓS

s } and finally WS
Π ↑ 3 = {ΓS

p , ΓS
r , ΓS

q , ΓS
s , ΓS

t , ΓS
(r∨t)} which

also is the least fixed point for this example. We can see that this also includes
implicitly all trees whose roots are disjunctions containing at least one element
from the minimal set representation of MS

WF , i.e. in this case the least fixed
point is in fact ΓS

Π . Moreover, we now keep the dependency between p and q
since ΓS

q only appears in WS
Π ↑ 2 after we know that ΓS

p , respectively ΓS
p∨q, is

contained in WS
Π ↑ 1.

We will now show that this operator is monotonic.

Proposition 3.1. Given a logic program Π and the strong well-founded model
MS

WF (Π), the operator WS
Π is monotonic.

Proof. Let Γ1, Γ2 ∈ Γ S
Π , Γ1 ⊆ Γ2, and ΓS

D ∈ WS
Π(Γ1). We have to show that

ΓS
D ∈WS

Π(Γ2) as well.
(1) Consider ΓS

D ∈ TS
Π(Γ1). Then ΓS

D contains an active strong derivation se-
quence {D}, I1, . . . , Ir with child C = Īr and I1 = {D1, . . . , Dn,¬D1, . . . ,¬Dm}
where ¬C ∈ MS

WF (Π), ΓS
C ∈ Γ if C 6= {}, ΓS

Di
∈ Γ , Di ∈ MS

WF , ΓS
Dj
∈ Γ ,

¬Dj ∈ MS
WF , for all i = 1, . . . , n and j = 1, . . . ,m}. Since Γ1 ⊆ Γ2 we know

that also ΓS
C ∈ Γ2 if C 6= {}, ΓS

Di
∈ Γ2, and ΓS

Dj
∈ Γ2 for all i = 1, . . . , n and

j = 1, . . . ,m. Hence ΓS
D ∈ TS

Π(Γ2) and thus ΓS
D ∈WS

Π(Γ2).
(2) Alternatively, suppose that ΓS

D ∈ US
Π(Γ1). Then for all active strong deriva-

tion sequences in ΓS
D the corresponding child C is true in MS

WF (Π) and ΓS
C ∈ Γ1.

Again, since Γ1 ⊆ Γ2, for all children C, we have ΓS
C ∈ Γ2. Hence ΓS

D ∈ US
Π(Γ2)

and thus ΓS
D ∈WS

Π(Γ2). �

Thus we can apply the Tarski fixed-point theorem which yields that the operator
WS

Π always has a least fixed point. This least fixed point coincides with MS
WF

in so far that whenever a tree ΓS
D is contained in the least fixed point then D

or ¬D is contained in the strong well-founded model which is a straightforward
consequence of the definition of WS

Π . Before we show the other direction we
present a property necessary for that.

Lemma 3.4. Let Π be a disjunctive logic program and {D}, I1, . . . , Ir be an
active strong derivation sequence in ΓS

D with child C = Īr such that ¬C ∈MS
WF .

For all q, 1 ≤ q ≤ r, if D′ ∈ Iq then D′ ∈ MS
WF and if ¬D′ ∈ Iq then

¬D′ ∈MS
WF .



Proof. We are going to prove that lemma for each derivate starting with the
basis Ir. The basis does not contain any positive disjunctions so we only consider
¬D′ ∈ Ir. Then D′ ∈ C. We know that ¬C ∈ MS

WF and thus, by Lemma 3.3,
that ¬D′ ∈MS

WF .
Assume we have shown for Iq, q ≤ r, that if D′ ∈ Iq then D′ ∈ MS

WF and if
¬D′ ∈ Iq then ¬D′ ∈ MS

WF . We show that the claim holds for the derivate
Iq−1. Let ¬D′ be in Iq−1 where D′ is an arbitrary atom. No rule is applicable
to ¬D′ and thus it occurs unchanged in Iq. Then ¬D′ ∈ MS

WF by assumption.
Alternatively, let D′ be in Iq−1 where D′ is an arbitrary disjunction. If D′ is not
the disjunction used in the derivation step Iq−1 ⇐ Iq then it occurs unchanged
in Iq which by assumption means D′ ∈MS

WF . So let D′ be the disjunction used
for the derivation step Iq−1 ⇐ Iq. But then we can construct an active strong
derivation sequence in ΓS

D′ with a false child by choosing the very same clause
and application rule like in Iq−1 ⇐ Iq for the first derivation step {D′} ⇐ I ′1.
All elements of I ′1 occur also in Iq and we thus construct the remaining sequence
by applying to each positive disjunction in I ′1 the same rule and clause as in
the sequence {D}, I1, . . . , Ir, and likewise for each thereby obtained positive
disjunction in any Iq′ , q′ > 1. We obtain the sequence {D′}, I ′1, . . . , I ′r′ and
I ′r′ ⊆ Ir since any negative literal obtained in any derivation step also occurs
in Ir by construction. Then ¬Ī ′r′ ∈ MS

WF , ΓS
D′ contains a false child and thus

D′ ∈MS
WF . �

Unfortunately, there is no similar property for active strong derivation sequences
with true children. Recall Example 3.3. We have shown that q is false because
there is an active strong derivation sequence with true child (s ∨ t). But e.g.
the basis contains ¬s and ¬t and both are undefined in the strong well-founded
model.

We now show that whenever a disjunction is true or false in the strong well-
founded model then its tree is also contained in the least fixed point of WS

Π .

Proposition 3.2. Let Π be a disjunctive logic program. If D ∈MS
WF or ¬D ∈

MS
WF then ΓS

D is contained in lfp(WS
Π).

Proof. Suppose that D ∈ MS
WF or ¬D ∈ MS

WF . By Lemma 3.1, we know that
the stage s(D) is defined, thus we are going to prove by transfinite induction on
s(D) that ΓS

D is contained in lfp(WS
Π).

Let s(D) be 0. By Definition 3.2, ΓS
D ∈W ′S

Π ↑ 1 and we consider two cases.
(1) If D ∈ MS

WF then ΓS
D contains at least one false child and, in fact, by

Definition 3.1, there is an empty child. Thus, ΓS
D ∈ WS

Π(∅), i.e. ΓS
D ∈ WS

Π ↑ 1
and therefore ΓS

D ∈ lfp(WS
Π).

(2) If ¬D ∈ MS
WF then, by Definition 3.1, there are no children at all in ΓS

D.
Then ΓS

D ∈ US
Π(∅), ΓS

D ∈WS
Π(∅) and ΓS

D ∈ lfp(WS
Π).

Suppose for all C with s(C) < α that ΓS
C ∈ lfp(WS

Π). Let s(D) = α. We have
to consider two cases.
(1) Let ¬D ∈ MS

WF . We know that for each active strong derivation sequence
in ΓS

D the corresponding child C is true. By Definition 3.1, the stage of any C



has to be smaller than s(D), thus s(C) < α. Then, by induction hypothesis,
ΓS

C ∈ lfp(WS
Π) for all children C, and hence, by Definition of US

Π , ΓS
D ∈ lfp(WS

Π).
(2) Let D ∈ MS

WF . We know that there is at least one active strong deriva-
tion sequence where the corresponding child C is false. By Definition 3.1, the
stage of the child C has to be smaller than s(D), i.e.s(C) < α. Then, by in-
duction hypothesis, ΓS

C ∈ lfp(WS
Π) for all false children C with minimal stage.

Let {D}, I1, . . . , Ir be an active strong strong derivation sequence with child C
of minimal stage where Ir is the basis. We are going to prove for all D′ ∈ Iq,
respectively ¬D′ ∈ Iq, 0 ≤ q ≤ r where I0 = {D}, that ΓS

D′ ∈ lfp(WS
Π). This will

finish the proof, because D is the only disjunction occurring in I0.
Let q = r. Since Ir is the basis there is no positive disjunction in Ir we only

have to consider ¬D′ ∈ Ir. Since D′ ∈ C and ¬C ∈ MS
WF , by Lemma 3.3,

we know that ¬D′ ∈ MS
WF and s(D′) ≤ β. Then ΓS

D′ ∈ lfp(WS
Π) by induction

hypothesis.
Suppose we have shown the claim for q, i.e. for all D′ ∈ Iq, respectively

¬D′ ∈ Iq, q ≤ r, that ΓS
D′ ∈ lfp(WS

Π) and consider Iq−1.
Let ¬D′ ∈ Iq−1. No rule is applicable to ¬D′ and it occurs unchanged in Iq,
thus ΓS

D′ ∈ lfp(WS
Π).

Let D′ ∈ Iq−1. If D′ is not used for the derivation Iq−1 ⇐ Iq then it occurs
unchanged in Iq, thus ΓS

D′ ∈ lfp(WS
Π) as well. So let D′ be the disjunction which

is used for the derivation Iq−1 ⇐ Iq. Analogous to the proof of Lemma 3.4, we can
construct an active strong derivation sequence {D′}, I ′1, . . . , I ′r′ where C ′ = Ī ′r′

is a subdisjunction of C and thus, by Lemma 3.3, ¬C ′ ∈ MS
WF and s(C ′) ≤ β.

Then by induction hypothesis ΓS
C′ ∈ lfp(WS

Π). All elements of I ′1 also occur in
Iq, so by assumption for all D′′ ∈ I ′1, respectively ¬D′′ ∈ I ′1, ΓS

D′′ ∈ lfp(WS
Π).

Additionally, by Lemma 3.4, if D′′ ∈ I ′1 then D′′ ∈ MS
WF and if ¬D′′ ∈ I ′1 then

¬D′′ ∈MS
WF . But then, by definition of TS

Π , we have that ΓS
D′ ∈ lfp(WS

Π). �

We now lift Lemma 3.3 to the operator WS
Π .

Lemma 3.5. Let Π be a disjunctive logic program and ΓS
D ∈ (WS

Π ↑ α).

1. If D ∈MS
WF then ΓS

D′ ∈ (WS
Π ↑ α) for all D ⊆ D′.

2. If ¬D ∈MS
WF then ΓS

D′ ∈ (WS
Π ↑ α) for all D′ ⊆ D.

Proof. We proof the statements by transfinite induction on α.
Let α = 0. WS

Π ↑ 0 = ∅, by Definition 3.3, and the claim holds automatically.
Suppose the two properties hold for all ordinals β with β < α and that ΓS

D ∈
(WS

Π ↑ α).
Let α be a successor ordinal, i.e. α = β + 1. We then have that ΓS

D ∈
WS

Π(WS
Π ↑ β) and ΓS

D ∈ (TS
Π(WS

Π ↑ β) ∪ US
Π(WS

Π ↑ β)) by Definition 3.3 and
consider two cases.
(1) If D ∈MS

WF then ΓS
D has a false child and thus ΓS

D ∈ TS
Π(WS

Π ↑ β). Then ΓS
D

contains an active strong derivation sequence {D}, I1, . . . , Ir with child C = Īr,
I1 = {D1, . . . , Dn,¬D1, . . . ,¬Dm} where ¬C ∈ MS

WF (Π), ΓS
C ∈ (WS

Π ↑ β) if
C 6= {}, ΓS

Di
∈ (WS

Π ↑ β), Di ∈ MS
WF , ΓS

Dj
∈ (WS

Π ↑ β), ¬Dj ∈ MS
WF , for



all i = 1, . . . , n and j = 1, . . . ,m. Consider any disjunction D′ with D ⊆ D′.
By Lemma 3.2, ΓS

D′ also contains an active strong derivation sequence with
child C ′ such that C ′ ⊆ C. Since ¬C ∈ MS

WF , by Lemma 3.3, ¬C ′ ∈ MS
WF .

Furthermore, by induction hypothesis, we have that ΓC′ ∈ (WS
Π ↑ β). Let

{D′} ⇐ I ′1 be the first derivation of that active strong derivation sequence
where I ′1 = {D′

1, . . . , D
′
n′ ,¬D′

1, . . . ,¬D′
m′}. We reconsider the way we obtained

the corresponding child C ′ in the proof of Lemma 3.2 and have to consider two
cases:
(a) If (S1) is applied for {D} ⇐ I1 then H ⊆ D. Since D ⊆ D′, we also have
H ⊆ D′ and (S1) is applied for {D′} ⇐ I ′1. Then, for each D′

i′ ∈ I ′1, there is
a Di ∈ I1 such that Di ⊆ D′

i′ where 1 ≤ i ≤ n and 1 ≤ i′ ≤ n′. Since all Di

are true in MS
WF , we know by Lemma 3.3 that each D′

i′ ∈MS
WF . Moreover, by

induction hypothesis, we have that ΓD′
i′
∈ (WS

Π ↑ β). The sets of negated atoms
obtained in I1 and I ′1 are identical, i.e. ¬D′

j′ ∈ MS
WF and ΓS

D′
j′
∈ (WS

Π ↑ β) for

all j′ = 1, . . . ,m′. But then ΓS
D′ ∈ TS

Π(WS
Π ↑ β).

(b) If (S2) is applied for {D} ⇐ I1 then H 6⊆ D, H ∩D 6= ∅, C = H \D. Since
D ⊆ D′, we have H ∩ D′ 6= ∅ as well and either (S1) or (S2) is applied in the
derivation step {D′} ⇐ I ′1. In both cases, for each D′

i′ ∈ I ′1, there is a Di ∈ I1

such that Di ⊆ D′
i′ where 1 ≤ i ≤ n and 1 ≤ i′ ≤ n′. Again, since all Di are

true in MS
WF , we know by Lemma 3.3 that each D′

i′ ∈MS
WF and, by induction

hypothesis, that ΓD′
i′
∈ (WS

Π ↑ β). If we applied (S1) for {D′} ⇐ I ′1 then for
each ¬D′

j′ ∈ I ′1 there is a ¬Dj ∈ I1 such that Dj = D′
j′ where 1 ≤ j ≤ m and

1 ≤ j′ ≤ m′. In case of (S2) we have H \ D′ ⊆ H \ D, so for each ¬D′
j′ ∈ I ′1

there is a ¬Dj ∈ I1 with Dj = D′
j′ , 1 ≤ j ≤ m and 1 ≤ j′ ≤ m′. Thus in

both cases, for all j′ = 1, . . . ,m′, ¬D′
j′ ∈ MS

WF and ΓS
D′

j′
∈ (WS

Π ↑ β) and thus

ΓS
D′ ∈ TS

Π(WS
Π ↑ β) as well. Altogether, ΓS

D′ ∈WS
Π(WS

Π ↑ β), no matter whether
(S1) or (S2) is applied in the first derivation step and thus ΓS

D′ ∈WS
Π ↑ α.

(2) If ¬D ∈ MS
WF then all children C in ΓS

D are true and ΓS
D ∈ US

Π(WS
Π ↑ β).

Then for each active strong derivation sequence in ΓS
D with true child C we

have ΓS
C ∈ (WS

Π ↑ β). Consider any D′ with D′ ⊆ D. If ΓS
D′ does not contain

any active derivation sequences then ΓS
D′ ∈ (WS

Π ↑ 1) and the claim holds by
monotonicity. Thus consider alternatively any active strong derivation sequence
with child C ′. Then, by Lemma 3.2, ΓS

D also contains an active strong derivation
sequence with child C such that C ⊆ C ′. Since C is true in MS

WF , by Lemma
3.3, C ′ ∈ MS

WF as well. Furthermore, by induction hypothesis, we have that
ΓC′ ∈ (WS

Π ↑ β). Since this holds for each child in ΓS
D′ we know by definition of

US
Π that ΓS

D′ ∈ US
Π(WS

Π ↑ β) and thus ΓS
D′ ∈WS

Π(WS
Π ↑ β), hence ΓS

D′ ∈WS
Π ↑ α.

Alternatively, let α be a limit ordinal. Then WS
Π ↑ α =

⋃
β<α WS

Π ↑ β. If
ΓS

D ∈
⋃

β<α(WS
Π ↑ β) then there is a least ordinal β such that ΓS

D ∈ (WS
Π ↑ β)

with α > β. Assume that β is itself a limit ordinal. Then ΓS
D ∈

⋃
γ<β WS

Π ↑ γ

and β is not the least ordinal such that ΓS
D ∈WS

Π ↑ β. So β has to be a successor
ordinal. In this case we can apply the very same argument we used in case that
α is a successor ordinal since β < α. �



In the following, we present the alternative level mapping characterization.

Definition 3.4. Let Π be a disjunctive logic program, let I be a model for Π,
and let l be a disjunctive partial level mapping for Π. We say that Π satisfies
(SWF) with respect to I and l if each D ∈ dom(l) satisfies one of the following
conditions:

(SWFi) D ∈ I and ΓS
D contains an active strong derivation sequence with

child C, ¬C ∈ I and l(D) > l(C) if C 6= {}, and there is a clause H ←
A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) which is used for the first derivation
of that sequence such that ¬Bj ∈ I and l(D) > l(Bj), 1 ≤ j ≤ m, and one
of the following conditions holds:

(SWFia) H ⊆ D such that there is Di ⊆ D with (Di ∨ Ai) ∈ I and
l(D) > l(Di ∨Ai), 1 ≤ i ≤ n.
(SWFib) H 6⊆ D, H ∩ D 6= ∅, {C1, . . . , Cl} = H \ D, Ai ∈ I and
l(D) > l(Ai), 1 ≤ i ≤ n, and ¬Ck ∈ I and l(D) > l(Ck), 1 ≤ k ≤ l.

(SWFii) ¬D ∈ I and for each active strong derivation sequence in ΓS
D with

child C ∈ I there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
which is used for the first derivation of that sequence such that (at least) one
of the following conditions holds:

(SWFiia’) H ⊆ D and there exists i, 1 ≤ i ≤ n, with ¬(Ai ∨ D) ∈ I,
l(D) ≥ l(Ai ∨D).
(SWFiia”) H 6⊆ D, H ∩D 6= ∅, and there exists i with ¬Ai ∈ I, l(D) ≥
l(Ai), 1 ≤ i ≤ n.
(SWFiib’) H ⊆ D and there exists D′ with D′ ⊆ B, D′ ∈ I and l(D) >
l(D′).
(SWFiib”) H 6⊆ D, H ∩D 6= ∅, C = (H \D), and there exists D′ with
D′ ⊆ (B ∪ C), D′ ∈ I and l(D) > l(D′).
(SWFiic) l(D) > l(C).

Theorem 3.1. Let Π be a disjunctive program with strong well-founded model
M . Then, in the disjunctive knowledge ordering, M is the greatest model amongst
all models I for which there exists a disjunctive I-partial level mapping l for Π
such that Π satisfies (SWF) with respect to I and l.

Proof. Let M be the strong well-founded model of Π. We define the disjunctive
M -partial level mapping l in the following way: l(D) = α, where α is the least
ordinal such that ΓS

D ∈ (WS
Π ↑ (α + 1)) = WS

Π(WS
Π ↑ α). This mapping is well

defined since we have shown in Lemma 3.2 that the tree of each disjunctive
literal which occurs in M is contained in the least fixed point of WS

Π . We show
that Π satisfies (SWF) with respect to M and l. Let D ∈ dom(l) and l(D) = α.
We have to consider two cases:
(1) If D ∈ M then there is an active strong derivation sequence in ΓS

D with
false child. Since ΓS

D ∈ WS
Π(WS

Π ↑ α) = TS
Π(WS

Π ↑ α) ∪ US
Π(WS

Π ↑ α), we know
that ΓS

D ∈ TS
Π(WS

Π ↑ α) by definition of TS
Π and US

Π . By Definition 3.3, ΓS
D

contains an active strong derivation sequence {D}, I1, . . . , Ir with child C = Īr

and I1 = {D1, . . . , Dn,¬D1, . . . ,¬Dm} where ¬C ∈ M , ΓS
C ∈ (WS

Π ↑ α) if C 6=



{}, ΓS
Di
∈ (WS

Π ↑ α), Di ∈ M , ΓS
Dj
∈ (WS

Π ↑ α), ¬Dj ∈ M for all i = 1, . . . , n
and j = 1, . . . ,m. Let H ← A1, . . . , An,¬B1, . . . ,¬Bm′ be the clause used in
the first derivation step {D} ⇐ I1. If we use (S1) for that derivation step then
H ⊆ D and I1 = {A1 ∨D, . . . , An ∨D,¬B1, . . . ,¬Bm′}. We already know that
all positive disjunctions and all negative literals occurring in I1 are contained in
M . Moreover, since all these disjunctions, negative literals and the child C occur
in (WS

Π ↑ α) we know that l(Ai ∨D) < α, l(Bj) < α, and l(C) < α if C 6= {}.
Then D satisfies (SWFia) with respect to M and l where Di = D for each Di

in (SWFia). If we use (S2) for the first derivation step {D} ⇐ I1 then H 6⊆ D,
{C1, . . . , Cl} = H \ D, and I1 = {A1, . . . , An,¬B1, . . . ,¬Bm′ ,¬C1, . . . ,¬Cl}.
Again, all the positive disjunctions and all negative literals occurring in I1 are
contained in M . Likewise, all these disjunctions, negative literals, and the child
C occur in (WS

Π ↑ α) and l(Ai) < α, l(Bj) < α, l(Ck) < α and l(C) < α. Then
D satisfies (SWFib) with respect to M and l.
(2) If ¬D ∈M then each child C of an active strong derivation sequence in ΓS

D

is true, thus ΓS
D ∈ US

Π(WS
Π ↑ α) since ΓS

D ∈ WS
Π(WS

Π ↑ α) = TS
Π(WS

Π ↑ α) ∪
US

Π(WS
Π ↑ α). Then by Definition 3.3, for all active strong derivation sequences in

ΓS
D the corresponding child C is true in M and ΓS

C ∈ (WS
Π ↑ α). Then lS(C) < α

and, for all derivation sequences with child C, D satisfies (SWFiic).
Alternatively, we show that if I is a model of Π and l a disjunctive I-partial

level mapping such that Π satisfies (SWF ) with respect to I and l then I ⊆
MS

WF . We show via transfinite induction on α = l(D), that whenever D ∈ I,
respectively ¬D ∈ I, then ΓS

D ∈ (WS
Π ↑ (α + 1)), i.e. ΓS

D ∈ WS
Π(WS

Π ↑ α) =
TS

Π(WS
Π ↑ α) ∪ US

Π(WS
Π ↑ α) and thus ΓS

D ∈ lfp(WS
Π). Then D, respectively ¬D,

occurs in MS
WF .

Let l(D) = 0. If D ∈ I then by (SWFi) ΓS
D contains an active strong derivation

sequence with child C, ¬C ∈ I and l(D) > l(C) if C 6= {}, and there is a
clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) which is used for the first
derivation of that sequence such that ¬Bj ∈ I and l(D) > l(Bj), 1 ≤ j ≤ m, and
either (SWFia) or (SWFib) holds. If (SWFia) holds then H ⊆ D such that there
is Di ⊆ D with (Di ∨ Ai) ∈ I and l(D) > l(Di ∨ Ai), 1 ≤ i ≤ n. But there is
no ordinal smaller than 0, i.e. the clause is a fact. Thus there is an active strong
derivation sequence {D} ⇐ {} with false child and ΓS

D ∈ (WS
Π ↑ 1) by definition

of TS
Π . If (SWFib) holds then H 6⊆ D, H ∩D 6= ∅, {C1, . . . , Cl} = H \D, Ai ∈ I

and l(D) > l(Ai), 1 ≤ i ≤ n, and ¬Ck ∈ I and l(D) > l(Ck), 1 ≤ k ≤ l. There
is no ordinal smaller than 0, so there can be no Ck in I1 and (SWFib) cannot
hold.
If ¬D ∈ I then by (SWFii) for each active strong derivation in ΓS

D with child
C ∈ I there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) which is
used for the first derivation of that sequence such that at least one of (SWFiia’),
(SWFiia”), (SWFiib’), (SWFiib”), and (SWFiic) holds. If (SWFiia’) holds then
H ⊆ D and there exists i, 1 ≤ i ≤ n, with ¬(Ai ∨D) ∈ I, l(D) ≥ l(Ai ∨D). If
(SWFiia”) is satisfied then H 6⊆ D, H ∩D 6= ∅, and there exists i with ¬Ai ∈ I,
l(D) ≥ l(Ai), 1 ≤ i ≤ n. If (SWFiib’) holds then H ⊆ D and there exists D′

with D′ ⊆ B, D′ ∈ I and l(D) > l(D′). If (SWFiib”) is satisfied then H 6⊆ D,



H ∩D 6= ∅, C = (H \D), and there exists D′ with D′ ⊆ (B ∪ C), D′ ∈ I and
l(D) > l(D′) and if (SWFiic) holds then l(D) > l(C). Since there is no ordinal
smaller than 0, (SWFiib’), (SWFiib”), and (SWFiic) cannot hold. For the same
reason, in case of (SWFiia’) and (SWFiia”) we can only have l(D) = l(Ai ∨D),
l(D) = l(Ai) respectively. Since (Ai ∨D), respectively Ai, is false in I, it has to
satisfy (SWF) and the only possibility is again (SWFiia’) or (SWFiia”) with a
positive disjunction of the same level which is false in I. Then this disjunction
also has to satisfy (SWF) and the argument can be applied infinitely often. But
the considered derivation sequence is active, thus we know that it is finite, so
neither (SWFiia’) nor (SWFiia”) can hold. Hence, ΓS

D does not have any children
and thus ΓS

D ∈ (US
Π ↑ 1) and ΓS

D ∈ (WS
Π ↑ 1).

Assume for all D′ ∈ EBΠ with l(D′) < α that if D′ ∈ I, respectively
¬D′ ∈ I, then ΓS

D′ ∈ WS
Π ↑ α and let l(D) = α. We have to consider two cases

again.
If D ∈ I then, by (SWFi), ΓS

D contains an active strong derivation sequence
with child C, ¬C ∈ I and l(D) > l(C) if C 6= ∅, and there is a clause H ←
A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) which is used for the first derivation of
that sequence such that ¬Bj ∈ I and l(D) > l(Bj), 1 ≤ j ≤ m, and either
(SWFia) or (SWFib) holds. If (SWFia) holds then H ⊆ D such that there is
Di ⊆ D with (Di ∨ Ai) ∈ I and l(D) > l(Di ∨ Ai), 1 ≤ i ≤ n. By Lemma
3.3, we know that also (Ai ∨ D) ∈ I and l(Ai ∨ D) ≤ l(Di ∨ Ai) for all i.
Then I1 = {A1 ∨ D, . . . , An ∨ D,¬B1, . . . ,¬Bm} is the derivate of the first
derivation of that sequence. By induction hypothesis, the trees of all elements
contained in I1 and ΓS

C occur in WS
Π ↑ α and thus in the least fixed point

of WS
Π . Then all elements of I1 and ¬C are contained in MS

WF . Hence ΓS
D ∈

TS
Π ↑ (α + 1), by Definition 3.3, and ΓS

D ∈ WS
Π ↑ (α + 1). If (SWFib) holds

then H 6⊆ D, H ∩ D 6= ∅, {C1, . . . , Cl} = H \ D, Ai ∈ I, Ai ∈ I and l(D) >
l(Ai), 1 ≤ i ≤ n, and ¬Ck ∈ I and l(D) > l(Ck), 1 ≤ k ≤ l. Then I1 =
{A1, . . . , An,¬B1, . . . ,¬Bm,¬C1, . . . ,¬Cl} is the derivate of the first derivation
of that sequence. By induction hypothesis, the trees of all elements contained
in I1 and ΓS

C occur in WS
Π ↑ α and thus, again, all elements of I1 and ¬C

are contained in MS
WF . Hence ΓS

D ∈ TS
Π ↑ (α + 1), by Definition 3.3, and thus

ΓS
D ∈WS

Π ↑ (α + 1).
If ¬D ∈ I then, by (SWFii), for each active strong derivation in ΓS

D with
child C ∈ I there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
which is used for the first derivation of that sequence such that at least one
of (SWFiia’), (SWFiia”), (SWFiib’), (SWFiib”), and (SWFiic) holds. Consider
such an arbitrary active strong derivation. We show that l(D) > l(C) holds in
all these cases.

– If (SWFiic) holds then l(D) > l(C) is satisfied automatically.
– If (SWFiib’) holds then H ⊆ D and there exists D′ with D′ ⊆ B, D′ ∈ I

and l(D) > l(D′). We have that all ¬Bj , j = 1 . . . , m, occur in I1, the first
derivate of that sequence. No more rule is applicable to any ¬Bj and it also
occurs in the basis, thus Bj ∈ C and so D′ ⊆ C. By induction hypothesis,



ΓS
D′ ∈ (WS

Π ↑ α). Then, by Lemma 3.5, ΓC ∈ (WS
Π ↑ α) as well and l(C) < α

and thus l(D) > l(C).
– If (SWFiib”) is satisfied then H 6⊆ D, H ∩D 6= ∅, C ′ = (H \D), and there

exists D′ with D′ ⊆ (B ∪ C ′), D′ ∈ I and l(D) > l(D′). All elements in
B ∪ C ′ occur negated in I1, the first derivate of that sequence. No more
rule is applicable to any negated atom and it also occurs in the basis, thus
D′ ⊆ C. By induction hypothesis, ΓS

D′ ∈ (WS
Π ↑ α). Then, by Lemma 3.5,

ΓC ∈ (WS
Π ↑ α) as well and l(C) < α and thus l(D) > l(C).

– If (SWFiia’) holds then H ⊆ D and there exists i, 1 ≤ i ≤ n, with ¬(Ai∨D) ∈
I, l(D) ≥ l(Ai∨D) and if (SWFiia”) is satisfied then H 6⊆ D, H∩D 6= ∅, and
there exists i with ¬Ai ∈ I, l(D) ≥ l(Ai), 1 ≤ i ≤ n. We join these two cases
since the argument is exactly the same and prove for all positive disjunctions
D′ occurring in the active strong derivation sequence {D}, I1, . . . , Ir with
¬D′ ∈ MS

WF , l(D′) ≤ l(D), and D′ satisfies (SWFiia’) or (SWFiia”) that
l(C) < l(D). Then the claim also holds for D itself.
Since Ir is the basis, D′ cannot occur in Ir. The same holds for Ir−1 because
Ir cannot contain any Ai ∨D′ or Ai which would be necessary for D′ ∈ Ir−1

satisfying (SWFiia’) or (SWFiia”). So let D′ ∈ Ir−2. Then Ir−1 contains (at
least) one disjunction D′′ with D′′ = Ai ∨D′ or D′′ = Ai but in both cases
D′′ cannot satisfy (SWFiia’) or (SWFiia”) as already mentioned. Since D′′

occurs in Ir−1, the clause which is used for Ir−1 ⇐ Ir cannot contain positive
literals in the body because Ir is the basis. Thus there is also an active strong
derivation sequence in ΓS

D′′ using this clause with child C ′. Since ¬D′′ ∈ I we
know that D′′ satisfies (SWFii) and it cannot satisfy (SWFiia’) or (SWFiia”)
so l(C ′) < l(D′′) as we have already shown for the other cases. We know
l(D) ≥ l(D′) and l(D′) ≥ l(D′′) so we can apply the induction hypothesis
and C ′ ∈ (WS

Π ↑ α) and thus C ′ ∈MS
WF . By construction, C ′ is a subset of

the child C for the considered sequence in ΓS
D and, by Lemma 3.5, we know

that C ∈ (WS
Π ↑ α). Thus l(C) < l(D).

Finally, consider for all positive disjunctions occurring in Iq with ¬D′ ∈
MS

WF , l(D′) ≤ l(D), and D′ satisfies (SWFiia’) or (SWFiia”) that l(C) <
l(D) has been shown. We show that it also holds for all these D′ in Iq−1. If D′

is not used in the derivation step Iq−1 ⇐ Iq then it occurs unchanged in Iq

and the claim holds by assumption. So let D′ be the disjunction used for that
derivation step such that there is either Ai∨D′ or Ai with l(D′) ≥ l(Ai∨D′),
respectively l(D′) ≥ l(Ai). If Ai ∨D, respectively Ai, satisfies (SWFiia’) or
(SWFiia”) then the claim has already been proven. If not, then we can apply
the very same argument for Iq−1 which we used for Ir−2 above, and the claim
holds as well.

Thus, for all derivation sequences with child C, we have l(D) > l(C) and
ΓS

C ∈ (WS
Π ↑ α). Then ΓS

D ∈ US
Π(WS

Π ↑ α) by definition of UΠ and ΓS
D ∈ WS

Π ↑
(α + 1) by Definition 3.3. �

The characterization contains obviously much more complicated conditions than
Definition 2.1. We postpone a comparison and continue instead the example.



Example 3.6. (Example 3.1 continued) Considering the assignments of the levels,
we have l(l∨r) = 0 by (SWFia) and l(e) = 1 by (SWFiia’) and therefore l(f) = 2
by (SWFia). Moreover, l(b) = 1 by (SWFiib’) whereas l(c) = 1 by (SWFiib”).

Once more we mention that without the problems shown in Table 1 the condition
(SWFi) would not contain the case (SWFib) and even the reference to the active
derivation sequence and the child would not appear. It is only necessary for
proving the statement which we cannot do in a better way without solving the
mentioned problems.

In case of (SWFii) we only used (SWFiic) for the proof, respectively reduced
all the other cases to (SWFiic). Thus the following corollary is straightforward.

Corollary 3.1. Let Π be a disjunctive program with strong well-founded model
M . Then, in the disjunctive knowledge ordering, M is the greatest model amongst
all models I for which there exists a disjunctive I-partial level mapping l for Π
such that Π satisfies (SWF’) with respect to I and l where (SWF’) is (SWF)
substituting (SWFii) by (SWFii’).

(SWFii’) ¬D ∈ I and for each active strong derivation in ΓS
D with child

C ∈ I we have l(D) > l(C).

This is apparently much shorter then Definition 3.4. We just prefer the more
detailed version because it allows to compare the result in a better way to other
characterizations.
Moreover, (SWFiic) does not only cover the four other conditions but also com-
bines knowledge derived from several clauses.

Example 3.7. Let Π be the following program.

p ∨ q ← r

r ← ¬s

q ∨ s←

We have {p} ⇐ {r,¬q} ⇐ {¬q,¬s} as the only active derivation sequence in
ΓS

p . Since q ∨ s, the child, is true, p has to be false. However neither ¬q, nor r,
nor ¬s are false in the strong well-founded model. Thus (SWF) only holds in
this case because of (SWFiic).

4 Generalized Disjunctive Well-founded Semantics

Baral, Lobo, and Minker introduced GDWFS ([2]) based on state-pairs. They
applied various operators for calculating the semantics and we recall at first T D

S

and FD
S for disjunctive programs.

Definition 4.1. Let S be a state-pair and Π be a disjunctive program. Let T ⊆
EBΠ and F ⊆ CBΠ .



T D
S (T ) = {D ∈ EBΠ | D undefined in S, H ← A1, . . . , An, ¬B1, . . . ,¬Bm

in ground(Π) such that for all i, 1 ≤ i ≤ n, (Ai ∨Di) ∈ S or (Ai ∨Di) ∈ T , Di

might be empty, ¬Bj ∈ S for all j, 1 ≤ j ≤ m, and (H ∪
⋃

i Di) ⊆ D.}
FD

S (F ) = {C ∈ CBΠ | C is undefined in S, A ∈ C, and for all clauses
H ← A1, . . . , An, ¬B1, . . . ,¬Bm in ground(Π), with A ∈ H, at least one of
the following three cases holds: (B1 ∨ · · · ∨ Bm) ∈ S, ¬(A1 ∧ · · · ∧ An) ∈ S, or
¬(A1 ∧ · · · ∧An) ∈ F}

TD
S is bottom-up and FD

S is top-down: T D
S ↑ 0 = ∅, T D

S ↑ (n+1) = T D
S (T D

S ↑ n),
T D

S =
⋃

n<ω T D
S ↑ n, and FD

S ↓ 0 = CBΠ , FD
S ↓ (n + 1) = FD

S (FD
S ↓ n),

FD
S =

⋂
n<ω FD

S ↓ n.
There are two more operators defined for definite programs which necessitates
the following program transformations. Given a disjunctive program Π and a
state-pair S, DIS(Π) is obtained by transferring all negated atoms in the body
of each clause of Π as atoms to its head. Then, Dis(Π,S) results from DIS(Π)
by reducing the clauses in DIS(Π) as follows: remove atoms from the body
of a clause if they are true in S, remove a clause if its head is true in S, and
remove atoms from the head of a clause if they are false in S. This is similar to
the construction used for stable models and we recall TD

Π (T ), a simplification of
T D

S (T ). Given a definite (disjunctive) program Π and T , a subset of EBΠ , we
have that TD

Π (T ) = {D ∈ EBΠ | H ← A1, . . . , An in ground(Π) such that for
all i, 1 ≤ i ≤ n, (Ai ∨Di) ∈ T , Di might be empty, and (H ∪

⋃
i Di) ⊆ D.} We

then iterate TD
Π ↑ 0 = ∅, TD

Π ↑ (n + 1) = TD
Π (TD

Π ↑ n), TD
Π =

⋃
n<ω TD

Π ↑ n.
For deriving indefinite false conjunctions the Extended Generalized Closed World
Assumption (EGCWA) ([21]) is applied. It intuitively says that a conjunction
can be inferred to be false from Π if and only if it is false in all minimal models
of Π where a minimal model [12] is a two-valued model M of Π such that no
subset of it is a model as well.
The previous two constructions yield the operators TED

S = {D | D ∈ TD
Dis(Π,S)

and D 6∈ S} and FED
S = {C | C ∈ EGCWA(Dis(Π,S)∪S) and C 6∈ S}. Now we

can combine all the operators and obtain SED(S) = S∪T D
S ∪¬FD

S ∪TED
S ∪¬FED

S .
The iteration is done via M0 = ∅, Mα+1 = SED(Mα), and Mα =

⋃
β<α Mβ , for

limit ordinal α and has a fixed point ([2]). The fixed point corresponds to the
generalized disjunctive well-founded model MED

Π which is consistent ([2]).

Example 4.1. Recall the program from Example 3.1. We have MED
Π = {l ∨

r, q, f,¬p,¬b,¬c,¬e,¬g,¬(l ∧ r)}. Note that MED
Π is closed in so far that any

superset of a true disjunction (false conjunction) is true (false) as well.

We continue with the level mapping characterization of GDWFS.

Definition 4.2. Let Π be a disjunctive logic program, let the state-pair I be a
model for Π, and let l1, l2 be disjunctive I-partial level mappings for Π. We say
that Π satisfies (GDWF) with respect to I, l1, and l2 if each D ∈ dom(l1) and
each ¬C ∈ dom(l1) satisfies one of the following conditions:

(GDWFi) D ∈ I and there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in
ground(Π) with H ⊆ D such that ¬Bj ∈ I and l1(D) >1 lt(¬Bj), t ∈ {1, 2},



for all j = 1, . . . ,m and, for all i = 1, . . . , n, there is Di ⊆ D with (Di∨Ai) ∈
I where l1(D) > l1(Di ∨Ai) or l1(D) >1 l2(Di ∨Ai).
(GDWFii) ¬C ∈ I with atom A ∈ C and for each clause H ← A1, . . . , An,
¬B1, . . . ,¬Bm in ground(Π) with A ∈ H (at least) one of the following
conditions holds:

(GDWFiia) ¬(A1 ∧ . . . ∧An) ∈ I and l1(¬C) ≥ l1(¬(A1 ∧ . . . ∧An)).
(GDWFiia’) ¬(A1 ∧ . . . ∧An) ∈ I and l1(¬C) >1 l2(¬(A1 ∧ . . . ∧An)).
(GDWFiib) (B1 ∨ . . . ∨ Bm) ∈ I and l1(¬C) >1 lt(B1 ∨ . . . ∨ Bm) for
t ∈ {1, 2}.

and each D,¬C ∈ dom(l2) satisfies one of the following conditions:

(GDWFi’) D ∈ I and there is a clause H1 ∨ · · · ∨Hl ← A1, . . . , An,¬B1,
. . . ,¬Bm in ground(Π) such that ∅ 6= ((H ∪B) \D′) ⊆ D, Hk ∈ D′ for each
¬Hk ∈ I with l2(D) >1 lt(¬Hk), t ∈ {1, 2}, Bj ∈ D′ for each ¬Bj ∈ I with
l2(D) >1 lt(¬Bj), t ∈ {1, 2}, for all k = 1, . . . , l and all j = 1, . . . ,m, and,
for all i = 1, . . . , n, there is Di ⊆ D with (Di ∨ Ai) ∈ I where l2(D) >2

l2(Di ∨Ai) or Ai ∈ I where l2(D) >1 ls(Ai), s ∈ {1, 2}.
(GDWFii’) ¬C ∈ I and C ∈ EGCWA(Dis(Π,S)∪S), C 6∈ S and l2(¬C) >1

lt(L), t ∈ {1, 2}, if and only if L ∈ S.

The reason for introducing two mappings is to extrapolate exactly the simulta-
neous iteration of the two operators dealing with positive, negative respectively,
information. The theorem stating the equivalence is given in the following.

Theorem 4.1. Let Π be a disjunctive program with generalized disjunctive well-
founded model M . Then, in the disjunctive knowledge ordering, M is the greatest
model amongst all models I for which there exist disjunctive I-partial level map-
pings l1 and l2 for Π such that Π satisfies (GDWF) with respect to I, l1, and
l2.

Proof. Let M be the generalized disjunctive well-founded model of Π. We define
the disjunctive M -partial level mappings l1 and l2 in the following way: If D ∈
T D

Mα
then β is the least ordinal such that D ∈ T D

Mα
↑ (β +1) and l1(D) = (α, β).

If D ∈ TED
Mα

then β is the least ordinal such that D ∈ TD
Dis(Π,Mα) ↑ (β + 1) and

l2(D) = (α, β). If C ∈ FD
Mα

then l1(¬C) = (α, 0). If C ∈ FED
Mα

then l2(¬C) =
(α, 0). All other values remain undefined. By Definition of M , we know that
any D ∈ M , respectively ¬C ∈ M , is at least contained in one of T D

Mα
, ¬FD

Mα
,

TED
Mα

, and ¬FED
Mα

for some α and thus in the domain of l1 or l2. We show that Π
satisfies (GDWF) with respect to M , l1, and l2 and consider the following four
cases:
(1) Let D ∈ dom(l1) with l1(D) = (α, β). By definition of l1 we have that
D ∈ T D

Mα
. We know that β is the least ordinal such that D ∈ T D

Mα
↑ (β + 1) and

thus D ∈ T D
Mα

(T D
Mα
↑ β). Then, by Definition 4.1, D is undefined in Mα and

H ← A1, . . . , An, ¬B1, . . . ,¬Bm in ground(Π) such that for all i, 1 ≤ i ≤ n,
(Ai ∨ Di) ∈ Mα or (Ai ∨ Di) ∈ (T D

Mα
↑ β), Di might be empty, ¬Bj ∈ Mα

for all j, 1 ≤ j ≤ m, and (H ∪
⋃

i Di) ⊆ D. If (Ai ∨ Di) ∈ (T D
Mα
↑ β) then



(Ai ∨ Di) ∈ T D
Mα

. Thus (Ai ∨ Di) ∈ Mα+1 and l1(Ai ∨ Di) = (α, β′) with
β′ < β. Then (Ai ∨ Di) ∈ M and l1(D) > l1(Ai ∨ Di). If (Ai ∨ Di) ∈ Mα

then (Ai ∨ Di) ∈ M and l1(D) >1 lt(Ai ∨ Di), t ∈ {1, 2} and, likewise, for all
¬Bj ∈Mα, we have ¬Bj ∈M and l1(D) >1 lt(¬Bj), t ∈ {1, 2}. Then D satisfies
(GDWFi).
(2) Let ¬C ∈ dom(l1) with l1(¬C) = (α, 0). By definition of l1 we have that
C ∈ FD

Mα
. We know that FD

Mα
=

⋂
n<ω FD

Mα
↓ n and thus, for all n, C ∈ FD

Mα
↓ n.

Consider any n = n′ + 1. We have FD
Mα
↓ (n′ + 1) = FD

Mα
(FD

Mα
↓ n′). By

Definition 4.1, C is undefined in Mα, A ∈ C, and for all clauses H ← A1, . . . , An,
¬B1, . . . ,¬Bm in ground(Π), with A ∈ H, at least one of the following three cases
holds:

– We have (B1 ∨ · · · ∨Bm) ∈Mα. Then (B1 ∨ · · · ∨Bm) ∈M , and l1(¬C) >1

lt(B1 ∨ · · · ∨Bm), t ∈ {1, 2}, and ¬C satisfies (GDWFiib).
– Or ¬(A1∧ · · ·∧An) ∈Mα holds. Then ¬(A1∧ · · ·∧An) ∈M and l1(¬C) >1

l1(¬(A1 ∧ · · · ∧ An)) and ¬C satisfies (GDWFiia) or l1(¬C) >1 l2(¬(A1 ∧
· · · ∧An))and ¬C satisfies (GDWFiia’).

– Otherwise ¬(A1∧· · ·∧An) ∈ (FD
Mα
↓ n′). Since C ∈ (FD

Mα
↓ n′) for all n′, we

know that ¬(A1 ∧ · · · ∧ An) ∈ (FD
Mα
↓ n′) for all n′, otherwise there had to

be another reason for C occurring in all iterations of FD
Mα

. Thus ¬(A1∧· · ·∧
An) ∈ FD

Mα
and ¬(A1 ∧ · · · ∧An) ∈Mα+1 and l1(¬(A1 ∧ · · · ∧An)) = (α, 0)

Therefore l1(¬C) = l1(¬(A1 ∧ · · · ∧An)) and ¬(A1 ∧ · · · ∧An) ∈M . Hence,
C satisfies (GDWFiia), as well.

(3) Alternatively, let D ∈ dom(l2) and l2(D) = (α, β). By definition of l2 we have
that D ∈ TED

Mα
. We know that β is the least ordinal such that D ∈ TD

Dis(Π,Mα) ↑
(β + 1) and thus D ∈ TD

Dis(Π,Mα)(T
D
Dis(Π,Mα) ↑ β). Then H ← A1, . . . , An in

ground(Dis(Π,Mα)) such that for all i, 1 ≤ i ≤ n, (Ai ∨Di) ∈ TD
Dis(Π,Mα) ↑ β,

Di might be empty, and (H ∪
⋃

i Di) ⊆ D. If (Ai ∨Di) ∈ (TD
Dis(Π,Mα) ↑ β) then

(Ai ∨ Di) ∈ TD
Dis(Π,Mα) and thus (Ai ∨ Di) ∈ TED

Mα
. Then (Ai ∨ Di) ∈ Mα+1

and l2(Ai ∨Di) = (α, β′) with β′ < β, so (Ai ∨Di) ∈ M and l2(D) >2 l2(Ai ∨
Di). Furthermore, we also have a clause H ∨D′ ← A1, . . . , An, An+1, . . . , Ar in
ground(Dis(Π)). By definition of Dis(Π,Mα), all Aq, q = n + 1, . . . , r, occur in
Mα and thus Aq ∈M and l2(D) >1 lt(Aq), t ∈ {1, 2}. Likewise, for all elements
E ∈ D′ we have ¬E ∈ Mα. Then ¬E ∈ M and l2(D) >1 lt(¬E), t ∈ {1, 2}. We
also have a clause H ′ ← A1, . . . , An, An+1, . . . , Ar,¬B1, . . . ,¬Bm in ground(Π)
with H ′ ∪ {B1, . . . , Bm} = H ∪D′. Then ((H ′ ∪B) \D′) ⊆ D and (GDWFi’) is
satisfied.
(4) Finally, let C ∈ dom(l2) with l2(¬C) = (α, 0). By definition of l2 we have that
C ∈ FED

Mα
. Then C ∈ EGCWA(Dis(Π,Mα) ∪Mα) and C 6∈ Mα. By definition

of l1 and l2, for all L ∈ Mα we have l2(C) >1 lt(L), t ∈ {1, 2}. Thus, for all L
with l2(C) >1 lt(L), t ∈ {1, 2}, we have L ∈Mα. Hence, C satisfies (GDWFii’).

Conversely, we show that if I is a model of Π and l1 and l2 are disjunctive
I-partial level mappings such that Π satisfies (GDWF) with respect to I, l1, and



l2 then I ⊆MED
Π . We show via transfinite induction on α that whenever D ∈ I

with l1(D) = (α, β) or l2(D) = (α, β) then D ∈ Mα+1 and whenever ¬C ∈ I
with l1(¬C) = (α, β) or l2(¬C) = (α, β) then ¬C ∈Mα+1. This suffices to show
that D ∈MED

Π and ¬C ∈MED
Π .

Let α = 0. We consider four cases.
(1) If D ∈ I and D ∈ dom(l1) then D satisfies (GDWFi) and there is a clause
H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) with H ⊆ D such that ¬Bj ∈ I
and l1(D) >1 lt(¬Bj), t ∈ {1, 2}, for all j = 1, . . . ,m, and, for all i = 1, . . . , n,
there is Di ⊆ D with (Di ∨ Ai) ∈ I where l1(D) > l1(Di ∨ Ai) or l1(D) >1

l2(Di∨Ai). Since there is no ordinal smaller than 0, we know that all conditions
including >1 cannot be satisfied. Thus (GDWFi) simplifies to that there is a
clause H ← A1, . . . , An in ground(Π) with H ⊆ D such that there is Di ⊆ D with
(Di ∨Ai) ∈ I and l1(D) > l1(Di ∨Ai) for all i = 1, . . . , n. We show by induction
on β that D ∈ T D

M0
↑ (β +1), thus D ∈ T D

M0
and D ∈M1. Let β = 0. Since there

is no ordinal smaller than 0, the considered clause is a fact. Then D ∈ (T D
M0
↑ 1).

Suppose the property holds for all D with β′ < β and let l(D) = (0, β). We know
that D satisfies the simplified (GDWFi) and, by assumption, for all (Di∨Ai) ∈ I
with l1(D) > l1(Di ∨ Ai) we have (Di ∨ Ai) ∈ (T D

M0
↑ β). Then, by Definition

4.1, D ∈ T D
M0
↑ (β + 1).

(2) If ¬C ∈ I and ¬C ∈ dom(l1) then C satisfies (GDWFii) and there is an atom
A ∈ D such that for each clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
with A ∈ H (at least) one of the conditions (GDWFiia), (GDWFiia’), or (GDW-
Fiib) holds. Since there is no ordinal smaller than 0, (GDWFiia’) and (GDWFiib)
cannot hold by definition of >1. Thus (GDWFiia) holds for all clauses and there
is ¬(A1 ∧ . . . ∧ An) ∈ I, l1(¬D) ≥ l1(¬(A1 ∧ . . . ∧ An)), and for the same rea-
son l1(¬(A1 ∧ . . . ∧ An)) = (0, β′) with β′ ≤ β. Thus ¬(A1 ∧ . . . ∧ An) satisfies
(GDWFiia) as well. We can apply the argument again and obtain eventually that
each ¬C which satisfies (GDWFiia) does this by means of a negated conjunc-
tion which satisfies also (GDWFiia). But then, for all clauses H ← A1, . . . , An,
¬B1, . . . ,¬Bm in ground(Π) with A ∈ H, ¬(A1 ∧ · · · ∧An) ∈ FD

M0
↓ n′ for all n′

and thus C ∈
⋂

n′<ω FD
M0
↓ n′ and C ∈ FD

M0
. Hence, ¬C ∈M1.

(3) If D ∈ I and D ∈ dom(l2) then D satisfies (GDWFi’) and there is a clause
H1 ∨ · · · ∨ Hl ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) such that ∅ 6= ((H ∪
B) \ D′) ⊆ D, Hk ∈ D′ for each ¬Hk ∈ I with l2(D) >1 lt(¬Hk), t ∈ {1, 2},
Bj ∈ D′ for each ¬Bj ∈ I with l2(D) >1 lt(¬Bj), t ∈ {1, 2}, for all k = 1, . . . , l
and all j = 1, . . . ,m, and, for all i = 1, . . . , n, there is Di ⊆ D with (Di∨Ai) ∈ I
where l2(D) >2 l2(Di ∨ Ai) or Ai ∈ I where l2(D) >1 ls(Ai), s ∈ {1, 2}. Since
there is no ordinal smaller than 0 we know that all conditions including >1

cannot be satisfied. Thus (GDWFi’) simplifies to that there is a clause H1∨· · ·∨
Hl ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) such that there is Di ⊆ D with
(Di ∨ Ai) ∈ I and l2(D) >2 l2(Di ∨ Ai) for all i = 1, . . . , n, (H ∪B) ⊆ D. Note
in particular that the set D′ has to be empty and that ((H ∪B) \D′) 6= ∅ holds
automatically. Then there is also a clause H ′ ← A1, . . . , An with H ′ = H ∪ B
in DIS(Π) and, since M0 is empty, also in Dis(Π,M0). We show by induction
on β that D ∈ TD

Dis(Π,M0)
↑ (β + 1), thus D ∈ TED

M0
and therefore D ∈ M1.



Let β = 0. Since there is no ordinal smaller than 0, the considered clause is
a fact and D ∈ (TD

Dis(Π,M0)
↑ 1). Suppose the property holds for all D with

β′ < β and let l(D) = (0, β). We know that D satisfies the simplified (GDWFi’)
and by assumption for all (Di ∨ Ai) ∈ I with l2(D) >2 l2(Di ∨ Ai) we have
(Di ∨Ai) ∈ (TD

Dis(Π,M0)
↑ β). Then D ∈ TD

Dis(Π,M0)
↑ (β + 1).

(4) If ¬C ∈ I and ¬C ∈ dom(l2) then C satisfies (GDWFii’) so that we have
C ∈ EGCWA(Dis(Π,S) ∪ S), C 6∈ S and l2(¬C) >1 lt(L), t ∈ {1, 2}, if and
only if L ∈ S. Since there is no ordinal smaller than 0, we know that S is empty.
Then C ∈ EGCWA(Dis(Π,M0) ∪M0), C 6∈M0 and C ∈ FED

M0
, i.e. ¬C ∈M1.

So suppose for all α′ < α that if D ∈ I with l1(D) = (α′, β) or l2(D) = (α′, β)
then D ∈ Mα′+1 and if ¬C ∈ I with l1(¬C) = (α′, β) or l2(¬C) = (α′, β)
then ¬C ∈ Mα′+1. We show that the property also holds for all D ∈ I with
l1(D) = (α, β) or l2(D) = (α, β) and all ¬C ∈ I with l1(¬C) = (α, β) or
l2(¬C) = (α, β) and consider again four cases.
(1) If D ∈ I and D ∈ dom(l1) then D satisfies (GDWFi) and there is a clause
H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) with H ⊆ D such that ¬Bj ∈ I
and l1(D) >1 lt(¬Bj), t ∈ {1, 2}, for all j = 1, . . . ,m, and, for all i = 1, . . . , n,
there is Di ⊆ D with (Di ∨ Ai) ∈ I where l1(D) > l1(Di ∨ Ai) or l1(D) >1

l2(Di ∨ Ai). We show by induction on β that D ∈ T D
Mα
↑ (β + 1) and thus

D ∈ T D
Mα

. Then we have D ∈ Mα+1 which finishes this case. Let β = 0. Since
there is no ordinal smaller than 0, we know that l1(D) > l1(Di ∨ Ai) can only
hold if l1(D) >1 l1(Di ∨ Ai). Then all (Ai ∨Di) ∈ Mα and all ¬Bj ∈ Mα and
thus D ∈ (T D

Mα
↑ 1), by Definition 4.1. Suppose the property holds for all D

with l(D) = (α, β′), β′ < β, and let l(D) = (α, β). We know that D satisfies
(GDWFi) and, by assumption, for all (Di ∨Ai) ∈ I with l1(D) > l1(Di ∨Ai) we
have (Di ∨ Ai) ∈ (T D

Mα
↑ β) or (Ai ∨Di) ∈ Mα. Together with (Ai ∨Di) ∈ Mα

if l1(D) >1 l2(Di ∨Ai) and ¬Bj ∈Mα, for all i = 1, . . . , n and all j = 1, . . . ,m,
we conclude that D ∈ T D

Mα
↑ (β + 1).

(2) If ¬C ∈ I and ¬C ∈ dom(l1) then C satisfies (GDWFii) and there is an atom
A ∈ D such that for each clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
with A ∈ H one of the conditions (GDWFiia), (GDWFiia’), or (GDWFiib)
holds. Consider such a clause. If (GDWFiib) holds then (B1 ∨ . . .∨Bm) ∈ I and
l1(¬C) >1 lt(B1∨. . .∨Bm), t ∈ {1, 2}. Then (B1∨. . .∨Bm) ∈Mα. If (GDWFiia’)
holds then ¬(A1 ∧ . . . ∧An) ∈ I and l1(¬D) >1 l2(¬(A1 ∧ . . . ∧An)). Then also
¬(A1 ∧ . . . ∧ An) ∈Mα. If (GDWFiia) holds then there is ¬(A1 ∧ . . . ∧ An) ∈ I
and l1(¬D) ≥ l1(¬(A1 ∧ . . . ∧ An)). If even l1(¬D) >1 l1(¬(A1 ∧ . . . ∧ An))
then ¬(A1 ∧ . . . ∧ An) ∈ Mα as well. Otherwise l1(¬(A1 ∧ . . . ∧ An)) = (α, β′)
with β′ ≤ β. Then ¬(A1 ∧ . . . ∧ An) satisfies (GDWFii) as well. We can apply
the argument again and obtain for each clause that we either have eventually
a dependence on an element contained in Mα or an infinite chain of negated
conjunctions satisfying (GDWFiia). But then in both cases, by Definition 4.1,
C ∈ FD

Mα
=

⋂
n<ω FD

Mα
↓ n and thus ¬C ∈Mα+1.

(3) If D ∈ I and D ∈ dom(l2) then D satisfies (GDWFi’) and there is a clause
H1∨· · ·∨Hl ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) such that ∅ 6= ((H∪B)\
D′) ⊆ D, Hk ∈ D′ for each ¬Hk ∈ I with l2(D) >1 lt(¬Hk), t ∈ {1, 2}, Bj ∈ D′



for each ¬Bj ∈ I with l2(D) >1 lt(¬Bj), t ∈ {1, 2}, for all k = 1, . . . , l and all
j = 1, . . . ,m, and, for all i = 1, . . . , n, there is Di ⊆ D with (Di ∨Ai) ∈ I where
l2(D) >2 l2(Di ∨ Ai) or Ai ∈ I where l2(D) >1 ls(Ai), s ∈ {1, 2}. Then there
is also a clause H ′ ← A1, . . . , An with H ′ = H ∪ B in DIS(Π) by definition of
DIS(Π). We obtain a clause H ′′ ← A1, . . . , An′ in ground(Dis(Π,Mα)) where
all Ai ∈Mα are removed from the body and we only have l(D) >2 l2(Di′∨Ai′) =
(α, β′) with β′ < β for i′ = 1, . . . , n′ and non-empty H ′′ = H ′ \D′. We cannot
have removed the clause by definition of Dis(Π,Mα) since otherwise D would
already occur in Mα in contradiction to our initial assumption. We show by
induction on β that D ∈ TD

Dis(Π,M0)
↑ (β + 1), thus D ∈ TED

M0
and therefore

D ∈ M1. Let β = 0. Since there is no ordinal smaller than 0 the considered
clause is a fact. Then D ∈ (TD

Dis(Π,M0)
↑ 1). Suppose the property holds for all

D with l(D) = (α, β′), β′ < β, and let l(D) = (α, β). We know by assumption
for all (Di∨Ai) ∈ I with l2(D) >2 l2(Di∨Ai) that (Di∨Ai) ∈ (TD

Dis(Π,Mα) ↑ β).
Then D ∈ TD

Dis(Π,Mα) ↑ (β + 1).
(4) If ¬C ∈ I and ¬C ∈ dom(l2) then C satisfies (GDWFii’) so that ¬C ∈ I
and C ∈ EGCWA(Dis(Π,S) ∪ S), C 6∈ S and l2(¬C) >1 lt(L), t ∈ {1, 2}, if
and only if L ∈ S. Thus by definition of >1, lt(L) = (α′, β′) with α′ < α and
some β′. If L ∈ S with lt(L) = (α′, β′), by induction hypothesis, we know that
L ∈ Mα. If L ∈ Mα then lt(L) = (α′, β′) with α′ < α and L ∈ S. So we have
S = Mα. Then C ∈ EGCWA(Dis(Π,Mα) ∪Mα) and C 6∈ Mα. Thus C ∈ FED

Mα

and ¬C ∈Mα+1. �

Example 4.2. (Example 4.1 continued) In the previous proof we presented how
to obtain the levels in general. Thus, we have e.g. l1(l ∨ r) = l2(l ∨ r) = (0, 0)
by (GDWFi) and (GDWFi’), l1(f) = (2, 0) by (GDWFi), l2(¬p) = (0, 0) by
(GDWFii’), l1(¬e) = (1, 0) by (GDWFiia’) and l1(¬g) = (1, 0) by (GDWFiia).

The condition (GDWFii’) directly refers to EGCWA due to problems with min-
imal models in the level mapping framework (see Appendix A). We finish this
section with a small example dealing with EGCWA.

Example 4.3. Consider the program Π:

q ∨ r ←
q ∨ p←
r ∨ s←

We compute MED
Π . We have T D

M0
= {q∨r, q∨p, r∨s} and FD

M0
= ∅. Furthermore,

TED
M0

= T D
M0

. The minimal models of Π = DIS(Π) are {q, r}, {q, s}, and {r, p}.
Then FED

M0
= {p ∧ q, r ∧ s, p ∧ s}. We could try to derive the same directly from

the clauses but it is not obvious how this could be done. One attempt could
be to take the disjunctive consequences like p ∨ q and to conclude that then
one should be true and the other one false even though we do not know which
one. Then p ∧ q should be false. But this argument does not hold for q ∨ r in



the example. Additionally, we obtain p ∧ s to be false and there is no evident
argument given in the program, at least not in a single clause which allows to
draw this conclusion.

5 Disjunctive Well-founded Semantics

The third approach we study is the disjunctive well-founded semantics presented
by Brass and Dix in [4]. We use again disjunctive interpretations for representing
information even though in [4] a syntactically different method is applied. D-
WFS is only defined for (disjunctive) DATALOG programs which are programs
whose corresponding language does not have any function symbols apart from
(nullary) constants. Thus they correspond to propositional programs and we use
the notation Φ from [4] for DATALOG programs.
We recall the operators defining D-WFS. Both map sets of conditional facts
which are disjunctive clauses without any positive atoms in the body and we
start with TΦ. Given Φ and a set of conditional facts Γ , we have that TΦ(Γ ) =
{(H∪

⋃
i(Hi\{Ai}))← ¬(B∪

⋃
i Bi) | there is H ← A1, . . . , An,¬B in ground(Φ)

and conditional facts Hi ← ¬Bi ∈ Γ with Ai ∈ Hi for all i = 1, . . . , n.} The
iteration of TΦ is given as TΦ ↑ 0 = ∅, TΦ ↑ (n + 1) = TΦ(TΦ ↑ n), and
TΦ =

⋃
n<ω TΦ ↑ n and yields a fixed point.

The next operator is top-down starting with the previous fixed point also apply-
ing the notion of heads(S) which is the set of all atoms occurring in some head of
a clause contained in a given set of ground clauses S: given a set of conditional
facts Γ we define R(Γ ) = {H ← ¬(B ∩ heads(Γ )) | H ← ¬B ∈ Γ , and there
is no H ′ ← in Γ with H ′ ⊆ B or there is no H ′ ← ¬B′ in Γ with H ′ ⊆ H
and B′ ⊆ B where at least one ⊆ is proper.} Note that the second condition
forcing one ⊆ to be proper is necessary since otherwise we could remove each
conditional fact by means of itself. The iteration of this operator is defined as
R ↑ 0 = TΦ, R ↑ (n+1) = R(R ↑ n) and the fixed point of this operator is called
the residual program of Φ.
Given the residual program res(Φ), the disjunctive well-founded model MΦ is
MΦ = {D ∈ EBΦ | there is H ← in res(Φ) with H ⊆ D} ∪ {¬D | D ∈ EBΦ

and ∀D′ ∈ D : D′ 6∈ heads(res(Φ))}. Though TΦ is monotonic, R is not and we
cannot generalize the following results to all disjunctive logic programs.

Example 5.1. Recall Π from Example 3.1. It is obvious that Π is also a DATA-
LOG program and we obtain MΠ = {l ∨ r, f,¬p,¬c,¬e,¬g}. Note that MΠ is
closed by definition of the model.

In the following, we present the alternative characterization of D-WFS.

Definition 5.1. Let Φ be a DATALOG program, let I be a model for Φ, and let
l be a disjunctive I-partial level mapping for Φ. We say that Φ satisfies (DWF)
with respect to I and l if each D ∈ dom(l) satisfies one of the following conditions:

(DWFi) D ∈ I and there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in
ground(Φ) with H ⊆ D such that there is Di ⊆ D with (Di ∨ Ai) ∈ I,



l(D) > l(Di ∨ Ai), and l(D) � l(Di ∨ Ai) if l(D) >1 l(Di ∨ Ai), for all
i = 1, . . . , n, and ¬Bj ∈ I and l(D) >1 l(Bj) for all j = 1, . . . ,m.
(DWFii) ¬D ∈ I and for each clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in
ground(Φ) with A ∈ H and A ∈ D (at least) one of the following conditions
holds:

(DWFiia) ¬Ai ∈ I and l(D) ≥ l(Ai).
(DWFiib) D′ ∈ I with D′ ⊆ B and l(D) >1 l(D′).

(DWFii’) ¬D ∈ I and for each conditional fact H ← ¬B in TΦ with A ∈ H
and A ∈ D (at least) one of the following conditions holds:

(DWFiia’) there is H ′ ← ¬B′ in R ↑ α with H ′ ⊂ H and B′ ⊆ (B \D′)
where A 6∈ H ′, Bj ∈ B, ¬Bj ∈ I, and l(D) >1 (l(Bj) + 1) for all
Bj ∈ D′, and l(D) >1 (α, β) for some β.
(DWFiib’) D′ ∈ I with D′ ⊆ B and l(D) >1 l(D′).

Theorem 5.1. Let Φ be a (disjunctive) DATALOG program with disjunctive
well-founded model M . Then, in the disjunctive knowledge ordering, M is the
greatest model amongst all models I for which there exists a disjunctive I-partial
level mapping l for Φ such that Φ satisfies (DWF) with respect to I and l.

Proof. Let M be the disjunctive well-founded model of Φ. We define the disjunc-
tive M -partial level mapping l in the following way: If D ∈M then l(D) = (α, β)
where α is the least ordinal such that H ← in R ↑ α with H ⊆ D and β is the least
ordinal such that the corresponding conditional fact H ← ¬B in TΦ ↑ (β + 1).
If ¬D ∈ M then l(D) = (α, 0) where α is the least ordinal such that for each
A ∈ D there is no conditional fact H ← ¬B in R ↑ α with A ∈ H. All other val-
ues remain undefined. Note that we do not assign any limit ordinals apart from
0 by means of the definitions of the operators and the restriction to DATALOG
programs. By definition of TΦ and R, we conclude that l is well-defined, i.e. if
D ∈ M or ¬D ∈ M then D ∈ dom(l). We show that Φ satisfies (DWF) with
respect to M and l and consider two cases:
(1) Let D be in M and l(D) = (α, β). We have H ← in R ↑ α and H ← ¬B in
TΦ ↑ (β + 1) with H ⊆ D by definition of l. By definition of R, for all Bj ∈ B,
l(Bj) = (α′, 0) with α′ < α and ¬Bj ∈M . By definition of TΦ, we can unfold the
derivation of the conditional fact, so there are H ′ ← A1, . . . , An,¬B1, . . . ,¬Bm

in ground(Φ) and conditional facts Hi ← ¬B′
i in (TΦ ↑ β) with Ai ∈ Hi, for all

i = 1, . . . , n, and B = (
⋃

i B′
i ∪ {B1, . . . , Bm}). We know that l(D) >1 l(Bj) for

all j = 1, . . . ,m since all Bj ∈ B. Furthermore, Hi = Di ∨ Ai for some Di and
since Hi ← ¬B′

i in (TΦ ↑ β), we have Hi ∈ M and thus (Di ∨ Ai) ∈ M and
l(D) � l(Di ∨Ai). Since l(D) >1 l(B′) for all B′ ∈ B′

i, i = 1, . . . , n, we conclude
that also l(D) > l(Di ∨Ai) which shows that (DWFi) is satisfied.
(2) Alternatively, ¬D ∈ M and l(D) = (α, 0). By definition of l, α is the least
ordinal such that for each A ∈ D there is no conditional fact H ← ¬B in R ↑ α
with A ∈ H. Thus consider any conditional fact H ← ¬B in TΦ with A ∈ H
and A ∈ D. Then this conditional fact also occurs in R ↑ 0 by definition of R
and is thus removed by an iteration step R ↑ α′, α′ < α. By definition of R, a
conditional fact H ← ¬B is removed from a set Γ if there is H ′ ← in Γ with



H ⊆ B, or there is H ′ ← ¬B′ in Γ with H ′ ⊆ H and B′ ⊆ B where at least one
⊆ is proper.
(a) Suppose that H ← ¬B is removed in the iteration step R ↑ α′ because there
is H ′ ← in R ↑ (α′ − 1) with H ′ ⊆ B. Then H ′ ∈ M . By definition of l, we
have l(H ′) = (α′′, β′) for some β′ and α′′ < α′ and thus l(D) >1 l(H ′). Hence
(DWFiib’) is satisfied.
(b) Otherwise, if H ← ¬B is removed in the iteration step R ↑ α′, because there
is H ′ ← ¬B′ in R ↑ (α′ − 1) with H ′ ⊆ H and B′ ⊆ B where at least one ⊆
is proper, then we also have a conditional fact H ← ¬(B ∪ D′) in R ↑ 0 with
¬B′

j ∈ I and l(B′
j) = (α′′, β′′), α′′ < α′, for all B′

j ∈ D′. Then l(D) >1 (l(B′
j)+1)

and l(D) >1 (α′, β′) for some β′. Without loss of generality we assume that
A 6∈ H ′, otherwise there still would be a conditional fact contained in R ↑ α′ with
A in the head which is also eliminated by one of the conditions in the definition of
R, and in both cases this implies that either (DWFiia’) or (DWFiib’) is satisfied.
We conclude that (DWFiia’) is satisfied.

Conversely, we show that if I is a model of Φ and l a disjunctive I-partial
level mapping such that Φ satisfies (DWF) with respect to I and l then I ⊆MΦ.
We show via induction on α for l(D) = (α, β) that whenever D ∈ I then H ←
in R ↑ α with H ⊆ D and whenever ¬D ∈ I then for all A ∈ D there is no
conditional fact H ← ¬B in R ↑ α with A ∈ H. This suffices to show that
D ∈MΦ, ¬D ∈MΦ respectively.

Let α = 0. We have to consider three cases.
(1) Let D ∈ I. By (DWFi) there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm

in ground(Φ) with H ⊆ D such that there is Di ⊆ D with (Di ∨ Ai) ∈ I,
l(D) > l(Di∨Ai), and l(D) � l(Di∨Ai) if l(D) >1 l(Di∨Ai), for all i = 1, . . . , n,
and ¬Bj ∈ I and l(D) >1 l(Bj) for all j = 1, . . . ,m. Since there is no ordinal
smaller than 0, we know that >1 cannot hold and (DWFi) simplifies to that
there is a clause H ← A1, . . . , An in ground(Φ) with H ⊆ D such that there is
Di ⊆ D with (Di ∨Ai) ∈ I and l(D) >2 l(Di ∨Ai) for all i = 1, . . . , n. We show
by induction on β that (H ∪

⋃
i Di)← in TΦ ↑ (β + 1) and thus (H ∪

⋃
i Di)←

in R ↑ 0. This suffices since (H ∪
⋃

i Di) ⊆ D.
Let β be 0. Since there is no ordinal smaller than 0, the considered clause is

a fact, H ← in TΦ ↑ 1 and all Di are empty.
Suppose that the claim holds for all D ∈ I with l(D) = (0, β′), β′ ≤ β and let

D ∈ I with l(D) = (0, β + 1). We know that D satisfies the simplified (DWFi).
By assumption, for all Ai ∨Di we have a conditional fact H ′

i ← in TΦ ↑ (β + 1)
with H ′

i ⊆ (Di ∪ {Ai}). If Ai 6∈ H ′
i for one i then we have H ′

i ⊆ Di and since
Di ⊆ D we obtain that H ′

i ← in TΦ ↑ (β + 1) and thus also in TΦ ↑ (β + 2).
Otherwise Ai ∈ Hi for all i = 1, . . . , n and H ′

i = (D′
i ∪ {Ai}) with D′

i ⊆ Di.
By definition of TΦ we then have a fact (H ∪

⋃
i Di) ← in TΦ ↑ (β + 2) with

(H ∪
⋃

i Di) ⊆ D which finishes this case.
(2) Let ¬D ∈ I and D satisfies (DWFii’). Then for each conditional fact H ← ¬B
in TΦ with A ∈ H and A ∈ D we have that (DWFiia’) or (DWFiib’) holds. Since
there is no ordinal smaller than 0, neither (DWFiia’) nor (DWFiib’) can hold
and there cannot be any such conditional fact in TΦ which finishes this case.



(3) Let ¬D ∈ I and D satisfies (DWFii). Since we know that there is no ordinal
smaller than 0, (DWFiib) cannot hold and by (DWFiia) for each clause H ←
A1, . . . , An,¬B1, . . . ,¬Bm in ground(Φ) with A ∈ H and A ∈ D we have ¬Ai ∈ I
and l(D) >2 l(Ai). Consider such a clause. By definition of l, we know that Ai

also satisfies either (DWFii) or (DWFii’) but we already know that (DWFii’)
can only be satisfied if there is no particular conditional fact and the same holds
for any clause and (DWFiib). Thus, Ai satisfies (DWFii) and (DWFiia) holds
for each occurring particular clause. If there is no such clause (conditional fact)
with Ai in the head at all then the initially considered clause could not have been
applied for calculating a conditional fact wrt. D. So there is at least one clause
with satisfies (DWFiia) and we can re-apply the argument. Thus we derive an
infinite chain of atoms which are false in I and satisfy (DWFiia) which is not
possible since we are dealing with DATALOG programs. Hence, there cannot be
any clause in ground(Φ) with A ∈ H and A ∈ D and thus no such conditional
fact either.

Assume for all D with l(D) = (α′, β′), for arbitrary β′ and α′ ≤ α, that
whenever D ∈ I then H ← in R ↑ α′ with H ⊆ D and whenever ¬D ∈ I then
for all A ∈ D there is no conditional fact H ← ¬B in R ↑ α′. We are going to
show this property for D with l(D) = (α + 1, β) for some β, and we consider
again three cases.
(1) Let D ∈ I. By (DWFi) there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm

in ground(Φ) with H ⊆ D such that there is Di ⊆ D with (Di ∨ Ai) ∈ I,
l(D) > l(Di∨Ai), and l(D) � l(Di∨Ai) if l(D) >1 l(Di∨Ai), for all i = 1, . . . , n,
and ¬Bj ∈ I and l(D) >1 l(Bj) for all j = 1, . . . ,m. We show by induction on
β that (H ∪

⋃
i Di) ← ¬B1, . . . ,¬Bm,¬Bm+1, . . . ,¬Br in TΦ ↑ (β + 1) with

(H ∪
⋃

i Di) ⊆ D and ¬Bj ∈ MΦ and l(D) >1 l(¬Bj) for all j = 1, . . . , r. Then
(H ∪

⋃
i Di) ← ¬B1, . . . ,¬Bm,¬Bm+1, . . . ,¬Br in TΦ. Since l(D) >1 l(¬Bj),

for all j = 1, . . . , r, we know by induction hypothesis that all Bj 6∈ heads(R ↑ α)
and thus none of these appear in the body of the conditional fact occurring in
R ↑ (α+1). Then (H ∪

⋃
i Di)← in R ↑ (α+1) which finishes this case because

(H ∪
⋃

i Di) ⊆ D.
Let β be 0. Consider there are positive atoms in the body of the clause.

Since there is no ordinal smaller than 0, we know that l(D) > l(Di ∨ Ai) for
all i = 1, . . . , n, can only be satisfied by l(D) >1 l(Di ∨ Ai). Thus for all these
atoms the additional condition l(D) � l(Di ∨ Ai) from (DWFi) has to hold
which is not possible and there cannot be any positive atoms in the body. Then
H ← ¬B1, . . . ,¬Bm in ground(Φ) and also in TΦ ↑ 1.

Suppose that the property holds for all D with l(D) = (α, β′), β′ ≤ β.
We show that it holds for D with l(D) = (α, β + 1). For all Di ∨ Ai we know
l(D) > l(Di ∨ Ai). If l(D) >1 l(Di ∨ Ai) then l(D) � l(Di ∨ Ai). Otherwise
l(D) >2 l(Di ∨ Ai) and, by assumption, respectively by induction hypothesis
in the former case, there is a conditional fact H ′

i ← ¬B′
i in TΦ ↑ (β + 1) with

H ′
i ⊆ (Di ∪ {Ai}). If Ai 6∈ H ′

i for one i then we have H ′
i ⊆ Di. Since Di ⊆ D we

obtain that H ′
i ← ¬B′

i in TΦ ↑ (β + 1) and thus also in TΦ ↑ (β + 2). Otherwise
Ai ∈ Hi for all i = 1, . . . , n and H ′

i = (D′
i ∪ {Ai}) with D′

i ⊆ Di. By definition



of TΦ, we then have a conditional fact (H ∪
⋃

i Di)← ¬(
⋃

i B′
i ∪ {B1, . . . , Bm})

in TΦ ↑ (β + 2) with (H ∪
⋃

i Di) ⊆ D.
(2) Let ¬D ∈ I and D satisfies (DWFii’). Then for each conditional fact H ← ¬B
in TΦ with A ∈ H and A ∈ D we know that (DWFiia’) or (DWFiib’) holds.
Consider such a conditional fact. If (DWFiia’) holds then there is H ′ ← ¬B′ in
R ↑ α′ with H ′ ⊂ H and B′ ⊆ (B \D′) where A 6∈ H ′, Bj ∈ B, ¬Bj ∈ I, and
l(D) >1 (l(Bj) + 1) for all Bj ∈ D′, and l(D) >1 (α′, β′) for some β′. Then for
all Bj ∈ D′, Bj 6∈ heads(R ↑ (α − 1)). Thus H ← ¬(B \D′) in R ↑ α. Then by
definition of R, H ← ¬(B \D′) is not contained in R ↑ (α + 1) since Ai 6∈ H ′.
If (DWFiib’) holds then D′ ∈ I with D′ ⊆ B and l(D) >1 l(D′). By induction
hypothesis, we know that H ← in R ↑ α′ with H ⊆ D′ and α′ ≤ α and therefore
also in R ↑ α. Then by definition of R, H ← ¬B is not contained in R ↑ (α + 1)
as well. Thus there is no conditional fact H ← ¬B with A ∈ H and A ∈ D in
R ↑ (α + 1) which finishes this case.
(3) Let ¬D ∈ I and D satisfies (DWFii). Then for each clause H ← A1, . . . , An,
¬B1, . . . ,¬Bm in ground(Φ) with A ∈ H and A ∈ D we have that (DWFiia) or
(DWFiib) holds. Consider such a clause:
(a) If (DWFiib) holds then D′ ∈ I with D′ ⊆ B and l(D) >1 l(D′). If this clause
is used to add a conditional fact to TΦ then this conditional fact contains still
all ¬Bj , j = 1, . . . ,m. By induction hypothesis, we know that there is H ← in
R ↑ α′, α′ ≤ α, with H ⊆ D′ and thus also in R ↑ α. Then this conditional fact
with A in the head does not occur in R ↑ (α + 1) by definition of R. Otherwise
this clause is not used to add a conditional fact to TΦ and there is no resulting
conditional fact in R ↑ (α + 1) either.
(b) If (DWFiia) holds then ¬Ai ∈ I and l(D) ≥ l(Ai). We consider two cases.
Ai satisfies (DWFii’). Then for each conditional fact H ← ¬B in TΦ with Ai ∈
H we know that (DWFiia’) or (DWFiib’) holds. Consider such a conditional
fact. If (DWFiia’) holds then there is H ′ ← ¬B′ in R ↑ α′ with H ′ ⊂ H and
B′ ⊆ (B \D′) where A 6∈ H ′, Bj ∈ B, ¬Bj ∈ I, and l(D) >1 (l(Bj) + 1) for all
Bj ∈ D′, and l(D) >1 (α′, β′) for some β′. If we apply this conditional fact in
one step of TΦ to the clause mentioned above then the resulting conditional fact
in TΦ has to contain H \ {Ai} as a subset of the head and ¬B as a subset of the
negative literals in the resulting body. But then this resulting conditional fact is
removed by H ′ ← ¬B′ in R ↑ α and thus does not occur in R ↑ (α+1). We derive
that in this case (DWFiia’) is also satisfied for A. If (DWFiib’) holds for Ai then
D′ ∈ I with D′ ⊆ B and l(Ai) >1 l(D′). If we use this conditional fact H ← ¬B
in TΦ with Ai ∈ H to derive a conditional fact then, by means of TΦ, the clause
mentioned above, and by substituting Ai, ¬B is a subset of the body of the
resulting conditional fact. But since D′ ∈ I with D′ ⊆ B and l(Ai) >1 l(D′)
we know by induction hypothesis that there is H ′ ← in R ↑ α with H ′ ⊆ D′

and thus the resulting conditional fact does not occur R ↑ (α + 1) and therefore
A satisfies also (DWFiib’). Alternatively, Ai satisfies (DWFii). Then for each
clause H ← A′

1, . . . , A
′
n,¬B′

1, . . . ,¬B′
m in ground(Φ) with Ai ∈ H we have that

(DWFiia) or (DWFiib) holds. Consider such a clause. If (DWFiib) holds then
D′ ∈ I with D′ ⊆ B′ and l(Ai) >1 l(D′). If this clause is used to derive a



conditional fact in TΦ then we can apply the very same argument as in case of
(DWFiib’) and obtain that A also satisfies (DWFiib’). Alternatively, (DWFiia)
holds and ¬A′

i′ ∈ I and l(Ai) ≥ l(A′
i′). Then we can re-apply the argument

and for each clause we derive either eventually a dependency on (DWFii’) or we
have an infinite chain of atoms which are false in I and satisfy (DWFiia). But an
infinite chain is impossible by means of our restriction to DATALOG programs.
Thus, also in this case we do not have a conditional fact in R ↑ (α + 1) with A
in the head which finishes the case and the induction step. �

Example 5.2. (Example 5.1 continued) In one direction of the previous proof we
have seen how to calculate the level mapping. We obtain e.g. l(f) = (2, 0) by
(DWFi), l(p) = (1, 0) by (DWFiia’), l(c) = (1, 0) by (DWFiib) and l(e) = (1, 0)
by (DWFiia).

We demonstrate the reasons for some of the conditions with the examples below.

Example 5.3. We start with the following program Φ.

p← r,¬q

r ← ¬s
q ∨ s←

We obtain TΦ = {p ∨ q ← ¬s,¬q, r ← ¬s, q ∨ s ←}. Then R ↑ 1 = {r ←
¬s, q ∨ s ←} which is also the fixed point and we have MΦ = {q ∨ s,¬p}. The
situation is similar to that of the strong well-founded semantics. We derive p to
be false but both, q and r, remain undefined and (DWFii) alone is not sufficient
for the characterization. Instead, we need a more general case which is (DWFiib’)
covering the combination of the negative literals from several clauses.

Finally, we will present arguments for the introduction of � as additional rela-
tion.

Example 5.4. Let Φ be the following.

a←
b← a

c← b,¬d

We have TΦ = {a ←, b ←, c ← ¬d} and R ↑ 1 = {a ←, b ←, c ←}. Then
MΦ = {a, b, c,¬d} and we obtain l(a) = (0, 0), l(b) = (0, 1), l(c) = (1, 2), and
l(d) = (0, 0). Obviously, c is true and satisfies (DWFi). However, we could set
l(c) = (1, 0) and remove the part of the condition referring to � and this would
hold as well. But then the mapping does no longer correspond to the construction
used to define it in the first part of the proof of Theorem 5.1 and it would not
be possible to show the other direction of the equivalence which is based on this
construction.



6 Discussions

It was already shown in [4] that D-WFS and GDWFS satisfy five program trans-
formation rules while SWFS does not, and that GDWFS always derives more or
equal knowledge than D-WFS [5]. However, there is no similar result for D-WFS
and SWFS since they are incomparable with respect to the derived knowledge
(cf. our main example: SWFS derives ¬b while D-WFS concludes ¬p).

We will now further compare the semantics on the basis of our characteriza-
tions. We will in particular attempt to obtain some insights into good general
criteria for a well-founded semantics for disjunctive programs.

A main advantage of level mapping characterizations is the separation of
positive and negative information. One key insight which can be drawn from our
investigations is that any characterization basically states that a true disjunction
D satisfies the following scheme with respect to the model I and the program
Π.

D ∈ I and there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
with H ⊆ D such that there is Di ⊆ D with (Di∨Ai) ∈ I, l(D) > l(Di∨Ai),
for all i = 1, . . . , n, and ¬Bj ∈ I and l(D) > l(Bj) for all j = 1, . . . ,m.

We can see that this corresponds in general to (SWFia) from Definition
3.4, to (GDWFi) from Definition 4.2, and to (DWFi) from Definition 5.1. We
only have to consider that the relation > is technically not sufficient and that
we sometimes apply a more precise order. Nevertheless, in all cases we obtain
levels such that l(D) is greater with respect to the specific ordering. There are
further differing details. For (SWF), we have to abstract additionally from the
notion of derivation sequences and their children, and there is also (SWFib)
which arises from proof-theoretical treatments. In case of (GDWF) we have
additionally a condition (GDWFi’) but that is the part (corresponding to TD

Π )
which derives more knowledge than the well-founded semantics and should thus
not be an intended result for a well-founded semantics for disjunctive programs.
We claim that the condition given above is the ’disjunctive’ version of (WFi)
from Definition 2.1 and we propose it to be a condition for any semantics aiming
to extend the well-founded semantics to disjunctive programs.

If we look for adequate extensions of (WFii) to disjunctive programs then
we see that the conditions for negative information differ more. A straightfor-
ward extension to disjunctive programs is given in Definition 5.1 with (DWFii)
containing appropriate cases (DWFiia) and (DWFiib). In case of (DWFiia), for
SWFS we have (SWFiia’) which somehow approximates it, ignoring derivation
sequences, but we also have (SWFiia) which refers to Ai ∨D being false instead
of just Ai. Moreover, we have (GDWFiia) and (GDWFiia’) corresponding to
(DWFiia) but possibly being based on indefinite information. We only have two
cases because of the construction applied for GDWFS, and more generally, one
statement suffices to guarantee that ≥ holds wrt. some order. For (DWFiib) the
situation appears to be simpler, because we have (SWFiib’) and (GDWFiib)
as corresponding statements, abstracting from minor technical details. Unfortu-
nately, since positive information may be indefinite, it is also possible to obtain



a correspondence to (WFiib) which results from several clauses (consider the
program Π = {p ∨ q ←; r ← s,¬p; s ← ¬q} where ¬r is derivable). This is
covered by (SWFiic), (GDWFii’), and (DWFiib’). Still, this does not cover the
whole characterization for any of the semantics. (SWFiib”) extends (SWFiib’)
to include particular atoms from the head. (GDWFii’) is in fact much more
powerful by means of the EGCWA and allows for deriving more knowledge diffi-
cult to characterize in a clause-based approach. In case of D-WFS we also have
(DWFiia’) which resolves the elimination of non-minimal clauses, a feature not
contained in SWFS and also covered by (GDWFii’) for GDWFS.

Summarising, it is obvious (and certainly expected) that it is in the derivation
of negative information where the semantics differ wildly. All characterizations
contain extensions of (WFii), but contain also additional non-trivial conditions
some of which are difficult to capture within level mapping characterizations.
The obtained uniform characterizations thus display in a very explicit manner
the very different natures of the different well-founded semantics – there is simply
not enough resemblance between the approaches to obtain a coherent picture.
We can thus, basically, only confirm in a more formal way what has been known
beforehand, namely that the issue of a good definition of well-founded semantics
for disjunctive logic programs remains widely open. We still believe, though, that
our structured approach delivers structural insights which can help to guide the
quest.

7 Conclusions and Further Work

We have characterized three of the extensions of the well-founded semantics to
disjunctive logic programs. It has been revealed that these characterizations are
non-trivial and we have seen that they share a common derivability for true dis-
junctions. The conditions for deriving negative information however vary a lot.
Some parts of the characterizations are common extensions of conditions used for
the well-founded semantics while others cover specific deduction mechanisms oc-
curring only in one semantics. We have obtained some structural insights into the
differences and similarities of proposals for disjunctive well-founded semantics,
but the main conclusion we can draw is a negative one: Even under our for-
mal approach which provides uniform characterizations of different semantics,
the different proposals turn out to be too diverse for a meaningful comparison.
The quest for disjunctive well-founded semantics thus remains widely open. Our
uniform characterizations may provide arguments for approaching the quest in
a more systematic way.

In this paper, we covered only those of the well-founded semantics which a
priory appeared to be the most important and promising ones. Obviously, further
insights could be obtained from considering also the well-founded disjunctive se-
mantics WFDS [20] and the well-founded semantics with disjunction WFSd [1].
Such a treatment would also include the stationary semantics [14] and the static
semantics [16] where the latter is closely related to D-WFS, and also WF 3 [3],
an extension to GDWFS. The semantics we considered interpret disjunctions



exclusively whenever possible, but there are also some semantics employing in-
clusive disjunctions (see [5]) including variants of the semantics presented here.
These could also be taken into consideration.
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A Minimal Model Semantics

In this appendix we discuss some difficulties we encountered with the level map-
ping characterization of the minimal model semantics [12], which is in fact needed
implicitly for the EGCWA in case of the GDWFS. Indeed, Definition 4.2 contains
a rather unspecific condition referring directly to EGCWA and not to clauses.
We recall in the following the characterization of minimal models from [10].

Theorem A.1. ([10]) Let Π be a definite disjunctive program. Then a model M
of Π is a minimal model of Π if and only if there exists a total level mapping l :
BΠ → α such that for each A ∈M exists a clause A∨H1∨· · ·∨Hl ← A1, . . . , An

in ground(Π) with Ai ∈ M , Hk 6∈ M , and l(A) > l(Ai) for all i = 1, . . . , n and
all k = 1, . . . , l.

Unfortunately, as it turned out, this characterization is too strong, meaning that
there are programs with a minimal model that does not satisfy this condition.

Example A.1.

a ∨ b←
a← b

b← a

This program has only one minimal model {a, b}, so according to the condition
above, the first clause cannot be used since both atoms in the head are true.
With the remaining two clauses we cannot have a level mapping satisfying the
given condition since we must have l(a) > l(b) and l(b) > l(a) which is not
possible.

A first idea to fix the problem was to modify the condition to let all atoms in
the head of the specific clause for A either to be false or of level strictly greater
than A. But this condition is too weak.

Example A.2.

a ∨ b←
a ∨ c←

This program has two minimal models: {a} and {b, c}. But {a, b} is also a model
and with l(a) = 0 and l(b) = 1 we have a mapping satisfying the modified
condition, even though {a, b} is not minimal.

The next attempt contains additionally a further clause for each A ∈M with A
being the only true atom in the head but without any restrictions regarding the
level.



Example A.3. We show with the following program Π that this does not work
either.

p(0)←
p(s(X)) ∨ p(X)←

p(X)← p(s(s(X)))

A minimal model is e.g. {p(s2n(0)) | n ≥ 0} with l(p(sn(0))) = 0. However, BΠ

is also a model and, by l(p(sn(0))) = n, satisfies this further modified condition
which is therefore also too weak.

Since the levels for the minimal model are smaller than for the Herbrand basis we
finally try to allow instead only minimal mappings which is natural in so far that
the assignments given in the proofs of all characterizations presented up to now
are minimal. Then the Herbrand basis cannot be a model satisfying the condition
in the example above. But in the following we also present a counterexample to
this idea.

Example A.4.

b ∨ c←
c← b

d← c

e←
f ← e

d← f

Given that program Π, we have a model {b, c, d, e, f} with l(b) = 0, l(c) = 1,
l(d) = 1, l(e) = 0, and l(f) = 1 and there is no model with a mapping such that
all values are smaller or equal with one value being strictly smaller. However, we
have a minimal model {c, d, e, f} with l1(b) = 0, l1(c) = 0, l1(d) = 2, l1(e) = 0,
and l1(f) = 1 even though l(c) > l1(c) and l(d) < l1(d) and the mapping is not
smaller.

Thus, the best possible result we may get is the following.

Corollary A.1. Let Π be a definite disjunctive program. If there exists a total
level mapping l : BΠ → α such that for each A ∈ M exists a clause A ∨ H1 ∨
· · · ∨ Hl ← A1, . . . , An in ground(Π) with Ai ∈ M , Hk 6∈ M or l(Hk) > l(A),
and l(A) > l(Ai), for all i = 1, . . . , n and all k = 1, . . . , l, then M is a minimal
model of Π.

This is of course no equivalent characterization. It just states that minimal mod-
els induce a level mapping which does not help us to simplify a characterization
involving minimal models. The same problem occurs for disjunctive stable mod-
els ([15]), the extension of minimal model semantics to non-definite programs.
Summing up, it seems that level mapping characterizations are not easy to ex-
tend to disjunctive programs in general.


