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ABSTRACT

A key challenge for dynamic Web service selection is that béb
vices are typically highly configurable and service reqessoften
have dynamic preferences on service configurations. Cuagen
proaches, such as WS-Agreement, describe Web servicesuby en
merating the various possible service configurations, affiéient
approach when dealing with numerous service attributdslaige
value spaces. We model Web service configurations and assdci
prices and preferences more compactly using utility fumcpoli-
cies, which also allows us to draw from multi-attribute damn the-

ory methods to develop an algorithm for optimal servicetela.

In this paper, we present an OWL ontology for the specificatio
of configurable Web serviceffers and requests, and a flexible and
extensible framework for optimal service selection thanbmes
declarative logic-based matching rules with optimizatieethods,
such as linear programming. Assuming additive ppoeference
functions, experimental results indicate that our algonitintro-
duces an overhead of only around 2 sec. compared to randem ser
vice selection, while giving optimal results. The overheasl per-
centage of total time, decreases as the numbeffefsoand config-
urations increase.

Categories and Subject DescriptorsH.3.5 [Information Systems]:
On-line Information Services Web-based servicesl.3.3 [Infor-
mation Systems]: Information Storage and Retrievé@election
process

General Terms: Algorithms, Languages, Economics.

Keywords: Web Services, Customisation, Preference-based Ser-
vice Selection.

1. INTRODUCTION

Web service discovery and selection have been extensiialy s
ied in recent years. As the set of available Web services roblyen
known a priori, may change frequently or service requesiguire-
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peting Web services andfer a better service experience to their
customers. Service requesters themselves have certénerees
on which service configurations they want to use and thefiepre
ences may change dynamically. Given their significanceetisea
strong need to support customisable services. Howevegakeef-
ficient methods for the representation and matching of cordige
services.

Current approaches to modelling Web service configuratouis
requester preferences, such as WS-Agreement [11], enteribea
various possible service configurations, which idfliegent when
dealing with multiple service attributes and their valuésar ex-
ample, a service described by five attributes, each with fogsip
ble values, already leads to 3125Fdient configurations. Given
this combinatorial increase, a functional descriptionafie at-
tributes and their associated prices or preferences waeilchdre
appropriate.

In this paper, we model service configurations and assatiate
preferences compactly using utility function policies,[2@], which
provide a declarative mechanism fdfieiently attaching price in-
formation to attribute values. This allows us to draw frora tlast
literature on @icient multi-attribute decision theory methods to de-
velop an algorithm for optimal service selection. In aduifiin
order to be able to compare service attributes correctlyneed
to describe them in a way that captures their semantics. \&e us
ontologies to describe services attributes and their gadeenanti-
cally, and extend the resulting semantic representatiandode
offers and requests. This allows us to define appropriate wtrib
value matching rules for each kind of attribute.

The contributions of this work are three-fold. First, we elep
an OWL ontology for configurable Web servicers and requests
that can represent (execution-) context-dependent usé&rpnces
for functional and non-functional (e.g. QoS) propertieshim a
standards-based specification language, thus extendingntse-
mantic Web service description frameworks, such as OWL<5 an
WSMO. Second, we present an optimal service selection mecha

ments and preferences may change, the problem of dynamic Webnism in the context of this framework and demonstrate itsifel

service selection is a fundamental one. Considerable n&sead
industry dfort has focussed on the (semantic) description of Web
services, leading to standards such as WSDL [36], WSMO [8] an
OWL-S [8]. One of the key open challenges is performing dy-
namic service selection for highly configurable Web sewiaith
dynamic user preferences. Web services are typically yighih-
figurable, with significant service customisation posgibs and

a choice of quality-of-service (QoS) properties, e.g.\dljre-
sponse times, naturally each with its own price. Custonasas
critical for them to be able to fferentiate themselves from com-
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ity by analysing its performance. For large numbers of hjigiun-
figurable dfers, given the assumption of additive functions, experi-
mental results indicate that the algorithm introduces atosad of
only 2 sec. compared to random selection, while giving ogtira-
sults. This represents a 35% slowdown at 10@€re and 1600 con-
figurations per fier, which only decreases as the number of config-
urations rises. Third, our framework enables flexible miaigioy
specifying declarative logic-based matching rules rathan hard-
coding the matching algorithm as is usual. By providing dafec
ative mechanism that integrates optimization technigeash as
linear programming, we achieve computational tractabiltile
obtaining a flexible system wherefdirent optimization and match-
ing algorithms can be seamlessly plugged in.

In the following, we first discuss the requirements for a grefice-
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Figure 1: Example for dynamic Web service binding.

based service selection framework informally through &ade in
Section 2 and discuss the state-of-the-art with respedte®et re-
quirements. We then develop an abstract model that addrésse
requirements for configurable services, preferences awefigu-
rations and service selection in Section 3. To enable thikagge

tributes. However, these approaches lack appropriateosufy
attaching prices and also preferences which are addreysest b
quirement (R2).

(R2) Context-dependent PreferencesMany of Mobifhon’s cus-
tomers have dierent preferences about the services they use, based
on their current context, location, activities, etc. Foamyle, An-
nika typically prefers to travel on highways but she is catiyeon
vacation and wants to travel through scenic country roaassiply
making several stops at attractions on the way. Mobifhoroses
route planning services, taking into account the requirgmand
preferences of the user as well as its own preferences, regpro
vice characteristics such as availability, response tisnpported
encryption methods etc. Annika’'s preferences may alsoraepa

her implicit context. For example, if she has an upcomingagp
ment in Munich the next day, she is more likely to prefer a shor
route than a long scenic route. In fact, her context-depanoief-
erences may be predefined, allowing Mobifhon to choose lef pr
erences based on her context dynamically. To enable thinpee

a way todescribe requests and preferences for particular service

of offers and requests in open heterogeneous environments,-the abconfigurations declaratively in terms of their attributes.

stract model is implemented in Section 4 using standard \Aleb |
guages. Based on this formalization, matching and optitoiza
rules for service selection are presented and evaluat@ti¢Se).
In Section 6, we present a proof-of-concept implementadfoour
optimal service selection framework within the scenarieetieped
in Section 2. We conclude the paper with thoughts on theli¢asi
ity of optimal service selection within current Web scenarand
point to future work directions.

2. REQUIREMENTS ANALYSIS

Consider Annika, a mobile phone user, who is currently in the
city of Karlsruhe in Germany and wants to know the driving di-
rections to Munich as soon as possible. Annika’s mobile ogtw
operator, Mobifhon, provides route planning services foresal
countries to its customers, dynamically outsourced fronal fharty
route planning services on the Web, as sketched in Figuréds,T
the service selection takes place at Mobifhon’s end. Thecese-
lection is therefore not constrained by the limited resesiand par-
tial connectivity of Annika’s mobile phone, while allowingob-
ifhon to aggregate demands and thus procure better discéomt
services than if each customer were to transact indivigusbb-
ifhon only sends the final route to Annika’s mobile phone. For
the sake of illustration, in the we have chosen a relativelyegal
scenario for identifying the requirements, but one coulddme
several simplifications, e.g. where the service reposi®lgcated
with Mobifhon.

(R1) Service Configurations The route planning services provide
various kinds of routes (the fastest, the shortest etcl) aritwith-

out highways, identifying dierent kinds of attractions on the way.
They also provide services affidirent levels of service quality. A
more complex route planning, for example, will cost morentha
simple route and similarly a quick response will cost month
slower one. The various route planning services need to lee ab
to describe their capabilities and configurations to Matithsuch
that it can choose the appropriate one at the desired Qo§ leve
Thus, our system must suppdhie description of various service
configurations.

Since WSDL lacks any support for modelling QoS character-
istics of Web services, there have been several proposas-to
tend WSDL with concrete QoS metrics, e.g. the Web servicelev
Agreement (WSLA) project [14] and Web Service Modeling Lan-
guage (WSML) [31]. By generalising beyond QoS attributeégl X
query languages, like XQuery [39], and policy languagés, WS-
Policy [38], enable the expression of constraints on abjt@at-

Requirement (R1) and (R2) are addressed by languages such
as WS-Agreement [11] and the Web Servicfeing Language
(WSOL) [34], which introducelasses of servicdhat roughly cor-
respond to what we call service configurations and attade amd
preference information to configurations. Both languagegiire
the enumeration of the set of possible configurations. Btakeiarly
inefficient for Web services whose attribute space is very large or
even infinite (contradiction to (R4)). For example, the gearfor
route plans levied by the route planning service may deerbas
early with the desired response time. To cover such reqeinésn
we useUtility Function Policies[17] to describe preferences and
prices as a function of service attribute values, and we askarh-
tive rules to model the context-sensitive nature of thequeefces.
This is similar to the approach presented in [3], where pako
ized service selection is realized by expressing prefeedeclar-
atively using SQL. However, since there is no rule supportext-
dependent preferences cannot be expressed. In additioching
algorithms required by (R3) are not supported there.

(R3) Semantic Web Service DescriptionsOne of the advantages
of using semantic description languages like OWL-S and WS$10
that one can uskegical reasoningin particular class subsumption,
to bridge diferent levels of abstraction that occur when specifying
requests andfters. Thus, if Annika has specified that she wants to
know about attractions on the route, Mobifhon can identifyte
planning services with information about historical sigéesbeing
relevant. Annika may also not want to define preferences Ifor a
attributes. She may not know which attributes are used bgehe
vices she isinterested in and even if she did, it would begdmts.
For example, she may want to say that she generally prefei@-hi
ical sites to museums without specifying which particujgues of
each she prefers and by how much. The service matching tigori
needs to match her general preference to the actual abimadti-
formation provided by individual services. By modellingrédutes
as classes in a Semantic Web language, we can classify tliem in
attribute hierarchies It would not be possible to rely on semantic
reasoning alone for service discovery and selection, as®{i8]
have also argued, since this only results in a coarse ranking
There have been previou§@rts to augment OWL-S and WSMO
with QoS extensions [15, 33]. In addition, [21, 35] propose d
namic binding for Web service compositions using semargie s
vice descriptions. However, as with the Web service desorip
languages, they cannot be used to describe complex fuattien
lations. Recent research [12, 26] has tried to express slations
declaratively, without however investigating how the penfance
of service selection isfBected by the modelling of preferences and



matching rules. Thus, these approaches often fail witheesio

[10, 4]. In this context, a common technique ti@ently encode

(R4). We use a decidable fragment of the rule language SWRL pricing information (R4) is the use of functions that remsthe

[13] to express complex functional relations declaragivahd dis-
cuss the ffects of modelling on the performance of selection.

(R4) Communication and Computational Hficiency. A lesser
requirement, yet nonetheless critical for resource-caimstd en-
vironments such as mobile services, is that the chosenseqie
tion be designed focommunication giciency and computational
tractability. |.e., the request has to be expressed infacient way
(e.g. by avoiding enumeration of all possible configuratjoand
the selection algorithm has to béieient enough to enable run-
time selection.

Policy languages are state-of-the-art for expressing \Welice
configurations. However, as already discussed, while ialieg
the problem, they cannot solve it due to the exponential sizke
attribute space. We circumvent the problem using functiceye-
sentations (as suggested in [10, 4]) by introducing UtHitnction
Policies. There is a vast amount of work in economics, and par
ticularly in operations research, addressing the comiouiait ef-
ficiency of decision making algorithms. In the context ofvées
selection, this is investigated in [5], focusing on the ctarjpy of
service selection with one time costs and e.qg. in [40, 35$éovice
compositions. Like these approaches, our work utilisésient op-
timization techniques for service selection, but also aemmithem
with the required service description and matching models.

Based on these requirements, in the next section we develop a
abstract model for representing and selecting configusssiéces.

3. ABSTRACT SELECTION MODEL

Web service selection is the problem of selecting the bfst o
made by a service provider given a request. In order to parfor
Web service selection, one requires (i) means for commtinga
service drers as well as requests to the other party and (ii) an algo-
rithm for ranking the @ers with respect to the request. Bidding lan-
guages are a well-established means for communicatingeségju
and dfers within economic literature.

Our abstract model essentially describes a Web service sérfeb

relationship between Web service configurations and théep
or utilities (as discussed in (R2)). This avoids the comtainal
explosion that results from adding price markups to eacHigen
ration.

Dermnition 1 (Wes Service Orrer). Anoffer by a provider j is
defined as a pai(C;, P;) of a set G < C of configurations and a
function B : C — R mapping each configuration € C; to a real
number that represents the prigef invoking service configuration
c. As suggested by [4], the pricing function(€) is described by
a base price p**®and an additive function that aggregates pricing
functions for individual attributes:

n n
Pi(©) = P+ > wypy(a) with > wy =1 @)
=1 I=1
where p represents the pricing function of provider j for a partic-
ular attribute A. The weights y are used to adjust the influence
of the djferent attributes on the price.

Thus an der assigns an additive pricing function to a Web ser-
vice description, mapping the configurations of tifieoto a certain
price. Analogously, we introduce a functional form for regent-
ing Web service requests. One majoffelience though is that a
requester’s willingness to pay might depend on a runtimeiipe
context (R2). Therefore, we introduce a 8et= 6; X --- X & Of
execution contextsvhere they; represent dferent context dimen-
sions, such as current location of a mobile device, time pfise
execution, history of past transactions. Ay K denotes a con-
crete execution context.

Dermnition 2 (WeB Service Request). A Web service request by
requester i is defined as a pa€;, F;) of a set ¢ ¢ C of accept-
able configurations and a function; F C; x K — R that maps
each configuration to a real number score depending on the ex-
ecution context k. Due tpayment monotonicitf10], i.e. Yz >
7 . (cn) e T/ = (c,n) € T/, we interpret {c, k) as the max-

vice dfers and requests and the Web service selection problem. Weimal price for which a customer is willing to carry out the the,

take a fairly abstract view of Web servicén our model and con-
sider it to be fully described bgroperties A..., A, ..., A,. Such
properties might comprise service input and output, behawel as-
pects of a service, QoS attributes, etc., thus coverindiegi¥veb
service description approaches as well as fulfilling (R1jctBa
general description of a Web service allows us to abstraot frar-
ious existing Web service description frameworks, whilaugia-
neously allowing us to utilise existing decision-thearetigorithms
for multi-attribute products.

During the execution of a Web service, each attribute igassi
a value. A seC of Web serviceconfigurationscomprises all pos-
sible combinations of attribute values, i@= A; X --- x A,. For
example, considering the attribut@tractions HighwaysandRe-
sponse Tima concrete configuration would be a service providing
routes including highways and information about neartnaetions
within 10 seconds. A specific value &f is denoted bya.

A Web servicecontract {; is defined as a tuple,(r), where agent
j provides a Web service with configuratiorio a customer at a
price ofr € R. Furthermore, leT; denote the set of all contracts in-
volving providerj, andT; the set of contracts involving custonier
Not all possible contracts are acceptable to an agent, aisddhly
subsetsr [CT; andT/ C T, are requested orfkered, respectively.

3.1 Bidding Language
For our bidding language for highly configurable Web service
(R1), we draw from bidding languages for multi-attributegucts

i.e. T/ = {(c,7) € Tilr < Fi(c,K)}. Fi is an additive scoring function
composed of the attribute-specific functiogsahd their relative
weights w:

ifCECi,

Sty Wi fir(ae, k)
—o0 otherwise.

Fi(c.K) = { with Zn:wi. =1 (2
1=1

A configuration which is not requested is scored as minusityfin

Due to the additive form of the scoring functidh, we have
to assume mutual preferential independency [16] betweerath
tributes in the scoring function. This holds if the utility an at-
tribute Ay does not depend on the value of another attribute. For
example, the score for a certain guaranteed response tilineotvi
change if the type of indicated attractions changes.

3.2 Selection Mechanism

Service selection in the case of configurable services viegol
finding the best provider and her bedstes. Therefore, we have
to solve two maximization problems: first, the best contfact
a given provider has to be identified, the so-cal\dltiattribute
Matching Problen{MMP) [10]. Second, based on these results, the
best provider can be chosen. Service selection often esjtrade-
offs between the various attributes of configurable services. F
example, it can be hard to decide between a slow route plgnnin
service that provides a lot of detailed information aboutr@ute
attractions and a fast service that provides only imprecisige



information. In economic literature, multi-attribute litti theory
(e.g. [16]) uses utility functions to make such decisionapping
each alternative to a measure that can be used to rank theaalte
tives. In our case, the utility of a service configurationiigeg by
aquasi-linearfunction representing the fiérence between the re-
quester’s preference score for the configuration and iteprThe
MMP is thus defined as follows:

Dermntrion 3 (MMP). Given areques(Ci, F;), an gfer (Cj, P))

4. ONTOLOGY-BASED REPRESENTATION

Given the abstract selection model above, we now focus on im-
plementing this model using existing standards and toalghe
open and heterogenous Web environment. We use the Web Ontol-
ogy Language OWL [37] together with its rule extension SWRR][
to implement our service selection framework, which allawes
to perform sophisticated matchmaking and ranking of sesvioy
means of logical inferencing. We build on well-known nosoof
matching for Semantic Web services, such as subsumptisedba

and an execution context k, we solve the MMP by maximizing the “plugin” or “exact" matches [27] and develop a flexible anteex

requester’s utility per service configuration. The solatiof the
MMP for a given requester i and provider j is referred to asin
the following.
Uj = max Fi(c.k) - Pj(c) 3)

Our assumptions of additive pricing and scoring functiohks a
low us to simplify the MMP. In particular, we can decompose th
calculation into individual subproblems which can be sdlirede-
pendently. The following equations (4-6) use this propéstgolve
Equation 3 éiciently by reducing the number of iterations from
O(I TT, All) to O(Z IA). The binary decision variablg, is asso-
ciated with each attribute value and denotes whether theevial
part of the best configuration. Equation 5 ensures that kyxace
attribute value is selected for each attribute. Since theviing in-
teger programming formulation has a totally unimodularstaint
matrix and only integers on the constraints’ right-handesjdhe
problem can be solvediiiently using the simplex algorithm [28].

n_ Al

max IZ;Z;(Wu fiate, K) — Wit Pj(@e)) e — PP @)
=1e=
IA |

st. lee:l forO<l<n, 5)
e=1
Xe €{0,1) for 0<l<n, O<e<]|A| (6)

sible framework of declarative matching and optimizatioles.

4.1 Ontology Formalism

OWL is an ontology language standardized by the World Wide
Web Consortium (W3C) [37] and is based on the descriptioitlog
(DL) formalism [2]. Due to its close connection to DL it faitéites
logical inferencing and allows to derive conclusions frampatol-
ogy that have not been stated explicitly. We briefly reviememf
the modelling constructs of OWL using its abstract syntax.

The main elements of OWL amedividuals propertiesthat relate
individuals to each other ardasseghat group together individu-
als which share some common characteristics. Classes hasvel
properties can be put into subsumption hierarchies. Furibes,
OWL allows for describing classes in terms of compiass con-
structorsthat pose restrictions on the properties of a class. For
example, the statemetitass (BigCity partial restriction(connectedTo
someValuesFrom Highway)) describes the class of big cities, which are
connected to some Highway. The keywe@edtial means that any
big city is connected to some highway, but not any city cotettc
to a highway is also necessarily big, which would be achidwed
using the keywordomplete instead. Subclass relationship can be
expressed by a statement li@c1asso£(BigCity InterestingCity, Say-
ing that any big city is also interesting. Individuals canrbkted
to classes and assigned values by a statemeninlikei dua1 (Munich
type (BigCity) value(locatedin Germany value(population 131455%). Be-
sides introducing Munich as a big German city, this stateratso

In a second step, we have to find the best provider from the setincludes a data value for the city’s population, which ismaned

of all offers. Obviously this implies that the best contract for each
provider is known, i.e. th®IMP is solved for each pair of a request
and an @fer. We can then determine the best provider by solving
Local Allocation Problen{LAP).

DermniTion 4 (LAP). Given a single requegCi, Fi) and m of-
fers(C;, Pj), the Local Allocation Problem can be solved by iterat-
ing over all gfers and determining the maximal solution for MMP.

max Ui

max @)

Solving LAP is linear with respect to the number d¢ifays and re-

by OWL for various datatypes such as integer or string.

An OWL ontology consists of statements like the ones above,
considered logical axioms from which an agent can draw &lgic
consequences. For example, given an ontol@ggonsisting of
the above statements, it follows that Munich is an intengstity,
which is denoted by [ InterestingCity(Munich)).

For the declarative formulation of matching directives anr
of rules, we require additional modelling primitives nobpided
by OWL. We use the Semantic Web Rule Language (SWRL) [13]
which allows us to combine rule approaches with OWL. We igtstr
ourselves to a fragment of SWRL callBdl-saferules [24], which

quiresO(m) steps. However, there are several scenarios where LAP is more relevant for practical applications due to its mhiity and

is not suficient for service selection. First, if we relax the require-
ment for quasi-linearity of the utility function, e.g. byi@ving one
time costs, the problem will get considerably more compléx.
can be shown by reduction of théncapacitated Facility Location
Problemthat computing the optimal service in such scenarios is in
FP"P [5]. Second, for the problem formulation in this section, we
assume thatféered services are always available for all requesters
and that possible resource limitations are handled at tbeiger
side, e.g. by adapting the guaranteed service levels ordogasing
server capacity. LAP also needs to be extended to handleescar
resources. This is done, e.g. in [32] using a double auctiam[@]

by means of scheduling algorithms. Third, LAP could be gener
alized for entire service compositions such as in [40]. Tdwht
niques presented later in this paper can also be applieése tiew
problems, requiring only the rewrite of a single rule to ajathe
selection strategy.

support by inference engines such as KAGNRor the notation of
rules we rely on a standard first-order implication syntax.

4.2 Specification of Offers and Requests

In this section we present an ontology-based modellingaambr
for Web service fiers and requests which is in line with Defini-
tion 1 and 2 of our abstract model. For the reader’'s converien
we present the most parts of our ontological model inforynaith
UML class diagrams, where UML classes correspond to OWL con-
cepts, UML associations to object properties, UML inheta to
subconcept relations, UML attributes to OWL datatype priges
and UML dependencies to OWL class instantiation [6].

IDL-safety restricts the application of rules to individsighat are
explicitly mentioned in the ontology. However, this restion does
not dfect the suitability of DL-safe rules in our selection scémar
’http://kaon2.semanticweb. org/



Figure 2 shows a top-level view of our ontological model, ethi
can be split into two conceptual levels: the upper part ajurap
the elements of the abstract model introduced in Sectionhdew
the lower part b) exemplarily captures certain availabledio on-
tologies that are plugged in for the matchmaking of attetuatiues.

Web Service Description OntologRecalling definitions 1
and 2, dfers and requests specify a €bf supported configura-
tions in our abstract model, which they map to prices andes;or
respectively. This is captured in the ontological modelvahnan
Figure 2 a) by the classes in the two boxes for description elp W
services and policies. The clas$gfger andRequesare introduced
as subclasses of the more gend&ial, by which they are connected
to the policies used to define their pricing and scoring fiomst
They represent the ses andC; of configurations for a provider or
requester. Instead of relatingfers and requests to configurations
directly, as done in the abstract model, we introduce thernme-
diary concepServiceto capture technical service-specific aspects.
Offers and requests are then related to a service which in tpen su
ports various configurations. Referring to pairs of attiés, and
their valuesa,, the clasonfigurationrepresents the combinations
of attribute values that a provider or customer supports Tipiper
part of our ontology can be seen as extensions of existingd&keb
vice description ontologies such as OWL-S or WSMO by using
these ontologies to define the typeAdtributes For instance, by
introducing the conceptimput, Output Resulf etc. as specialisa-
tion of Attribute our ontology can be aligned to the OWL-S profile.
To give an example, recall our mobile phone scenario, where o
user Annika requests route planning from Karlsruhe to Muriic
at most 30 seconds while she wants nearby castles to betiedlica
along the route. For convenience, we illustrate the ingfon of
elements for service description, suchGenfiguration by an in-
tuitive notation of pairs of attributes and their valuesjle/fve use
OWL abstract syntax for details concerning the attributeesin
domain ontologies. Colon-separated namespace prefixesiad
the origin of an entity in a domain ontology. An example of p-su
ported configuratiort; for a service that Mobifhon launches as a
request based on the above parameters could look as follows.

ServiceType= scl: RoutePlanningService
StartPoint= geo: Karlsruhe

EndPoint= geo: Munich

Attractions= tourism: Castle
ResponseTime 30 sec )

On the other hand, an example for a configuratipsupported
by an appropriate provider could look like this.

G =

ServiceType= ServiceSupportingNavigation
StartPoint= geo: Germany

EndPoint= geo: Germany

Attractions= tourism: CulturalAttraction
ResponseTime 1 min )

¢ =(

equivalentClasses(ServiceSupportingNavigatiointersection0f (
scl: Servicerestriction(scl: supports someValuesFrom(scl: Navigation)))

Definition 1 and 2 introduce a compact functional form for ex-
pressing pricing and scoring information. This avoidsadtrc-
ing a separate clag®rice to model the tertiary relation between
Price, Configurationand Offer/Requesexplicitly. Although such
an approach would be most natural, it would result in a signifi
cant modelling overhead and does hardly scale up, as shoaur in
previous work [19]. For modelling functions we introduce tho-
tion of Policies Generally policies are declarative rules that guide
the decision making of an agent. We use a specific class of poli
cies, called utility-function policies [17], which allowf represent-
ing trade-df's between dferent Web service attributes by mapping
their values to a comparable quantitative measure. Appesaon
how such policies are expressed via an ontology are disglusse

[20]. Namely there are three modelling techniqu@sint Based
Functions Piecewise Linear Functionand Pattern-based Func-
tions To illustrate the idea, the concepoint Based Functiois
introduced in more detail.

A Point Based Functioran be used for discrete attributes and
is modeled by specifying sets Bbintsthat explicitly map attribute
valuesa, referred to in arAttribute Value Pairto aprice fi(ae) or
pji(ae). To indicate theAttribute for which a certairPolicy is ap-
plicable, theisAssignedToelation is introduced that points to one
of the Attributesin the Web service description. Coming back to
our example, assume Annika generally prefers culturahetitins
to sports events with the only exception that she hates mseu
We can model such a preference structure by instantiatirgirg-p
based policy function assigned to the attribéigractions Map-
ping a utility of 1, 05 and 0 to the three alternatives results in the
following specification of the function’s componefytfor this par-

ticular attribute.
Ae | fir (&)
CultureV\ﬁthoutMuseurr[ 1

tourism: SportsEvent| 0.5

tourism: Museum| O

equivalentClasses(CultureWithoutMuseunintersectionOf(
tourism: CulturalAttraction complementOf (tourismMuseum))
The table maps alternative values for the attribAtizactionsto
the utility values that specify Annika’s preferences.

Domain Ontologies for Attribute ValueShe attributes
Ay, ..., A inthe abstract model represent generic characteristics of
a service and can potentially originate from a given domdas,
pending on the kinds of services to be described. In our frame
work, we support this by plugging in various domain ontoésgi-
depicted in Figure 2 b) — that describe attribute valuesh sisca
classification of service types or geographic or tourismvwkadge
for attributes likeStartPointor Attractions During the matchmak-
ing process, this knowledge is, for example, used to debedta
service supporting navigation is equivalent to a route mlan ser-
vice, that Munich is in Germany, or that a castle is a histsitie.

Assuming appropriate domain ontologies are available grekal
by providers and customers, they are linked to our ontolggéir
elements, such as the clasgormationServiceor the individual
Munich being instances of the classtributeValue The value for
the attributeEndPointwould be a URI likehttp://geo.owl#Munich
that points to a location in a geographic ontoldgy

In our example, the notions of “route planning service" aser~
vice that supports navigation" are captured in the sentassdica-
tion ontologyOs that states them to be equivalent.

Ontology( Osg
Class(RoutePlanningServiceomplete intersectionOf(
Servicerestriction(supportssomeValuesFrom(Navigation)))

Also the values “Karlsruhe", “Munich" and “Germany" are eosd
in a domain ontology, namely in the geographical ontol@yy,,
where the two cities are stated to be located in Germany.

Ontology( Ogeo
Individual (Karlsruhe type(City) value(locatedin Germany)
Individual (Munich type(City) value(locatedin Germany)
)

Moreover, the values “cultural attraction" and “castlel the at-
tribute Attractionsare related by subsumption in the ontol@&@y,rism
that describes notions of leisure.

Ontology( Otour\gm o .
subClassOf (HistoricSite CulturalAttraction
subClassOf(Castle HistoricSitg ...)

3Notice, that the OWL-Full language variant supports mei@mo
elling, i.e. an URI can denote a class and an individual at the
same time. Although metamodelling is outside the DL forsrali
KAON2 can handle such URIs to a certain extend [22].
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Figure 2: Ontology for representing Web service ffers and requests

5. SERVICE SELECTION

Having shown how descriptions of configurable Web servi¢es o
fers and requests are captured by an ontological model, welao
scribe how the actual selection of a service is carried osoying
LAP using logical inferencing on the ontological elementsa-
duced above.

In order to derive a ranked list of thefer instances from the
knowledge base, we formulate a query that refers Requestn-
stancer containing preferences and to an instakaepresenting
the currenContext In addition, to reduce the number dfers that
have to be ranked we can add mandatory conditions directlyeto
query using the SPARQL FILTER element. This is exemplified in
Query 8, where only services that provide a guaranteed msspo
time of less than 20 sec. are retrieved.

PREFIX ex:< httpy/example.ors#>

SELECT 20, ?U WHERE

?0 ex:provides ?S?S ex:supports ?C?C ex:refersTo ?A

?A ex:hasAttribute ex:ResponseTimex:hasValue ?V .

FILTER @V < 20) . EVALUATE mmp(r, ?0, ¢, ?U) .

ORDER BY DESC(?U) (8)
Conceptually answering such a query can be broken down into

two highly connected parts: (i) determining matches betwafe

fers and requests by comparing the respective servicéats,

and (ii) ranking the various configurations provided in tiieoac-

cording to the preferences in the request. In the following first

discuss how matching of attribute values is realized anavstaw

these matching rules are applied to define variants of opéitiain

predicatemmpused in Query 8. Subsequently, we evaluate these

algorithms in terms of performance and discuss their agbility

for service selection.

5.1 Matching

OWL classes is to use DL inferencing, distinguishing betwsey-
eral notions of match based on subsumption or concept saiisfi
ity. For two OWL classe€r andCg that represent attribute values
of a request or anfter, the degrees of match proposed in [27] are:
exactif Cg andCo are equivalentpluginif Cg is a subclass d€o,
subsume# Co is a subclass oFr, intersectif the conjunction of
Cr andCo is satisfiable, anéhil if the conjunction ofCg andCg is
unsatisfiable.

We support these notions of match in our framework, and dlso a
low for others by including customisable matching predisanto
the service selection algorithm. In fact, since we use aadative
formalism to describe how attribute values are matchedenasn
bring in arbitrarily complex matchmaking behaviour exgets in
rules which facilitates the adaption of the selection congu to
changing service descriptions (e.g. with new attribut€gntrarily,
other approaches use hard-coded algorithms to proceseshksr
of attribute matching that are specific to e.g. ifiputput matching,
as done in [27]. Since we keep attributes in Web service config
urations rather generic, the way in which two attribute galare
compared strongly depends on the domain of interest thginate
from and on the way in which they are represented in there.

In our example, the values of the attributsrvice Typendindi-
catedAttractionsire concepts in an ontology, and thus, the formerly
described degrees of match apply to them and can be useckfor th
comparison. The following rule definition specifies the rhatg
predicate for service types, requiring them to yield an eraatch.

match?P1, ?P,) « hasAttribut¢?P,, ServiceTypg
hasValu¢?Py, V1), hasAttributé?P,, ServiceTypg
hasValu¢?P,, 2V5), exac{NVy, V) 9)
In our example, thecl: RoutePlanningServidadeed yields an
exact match with the provideSlerviceSupportingNavigatiosince
Osq entails their equivalence. The attribuBervice Typéitself is

The comparison between a requested attribute value and-an of an instance of the clagsttribute in the model shown in Figure 2.

fered attribute value is fundamental. In the context of mataking

in the Semantic Web, various techniques have been proposed f
comparing the characteristics of two semantically anedtater-
vices. The most widely used approach for descriptions based

Analogously, values of the attribugtractionscould be matched
using the predicatelugin(x,y) instead ofexactx,y), and again
the provided attribute value would match the requested sineg

Otourism |E subClass0f(Castle CulturalAttraction.



The values of the attributeStartPointand EndPointfrom the
example represent individual locations in a geographiology
and require a dierent treatment. Here the modeller specifies the
customised matching behavior for location attributes hisoifuc-
ing a clasd_ocationas a subclass dttribute of which StartPoint
and EndPointare instances. The appropriate matching behaviour
is then captured by the following rule.
match?P1, ?P,) < hasAttribut§?P1, ?A;), hasValu€?Py, Vi),
hasAttribut€?P,, ?A), hasValu¢?P,, V,), Location(?A;),

Location(?A), matchLocatiofVy, 2Vy) (20)
. _ ftrue  Qyeo = locatedlr(x, y)
matchLocatiofx. y) = {false otherwise (1)

The predicatenatchLocatioris realized as a builtin using a sep-
arate call to a description logic reasoner, just asxac{x,y) or
plugin(x, y) before. In the example, thefered value would again
match the request, since Karlsruhe and Munich are bothdddat
Germany according tQgyeo.

Finally, there are attributes which do require a complexcmat
ing in terms of logical reasoning, but where a simple afiitient
string comparison or arithmetic calculations aréisient. In this
case, the modeler of a matching rule can include predefindtthbu
predicates defined in SWRL. From our example, the QoS at&ibu
ResponseTiméalls into this category, and is processed according
to the following rule specification.

match?P1, ?P,) < hasAttribut§?P1, ?A;), hasValu€?Py, Vy),
hasAttributé?P,, ?A,), hasValu¢?P,, V), QoS Attribut?A; ),
QoS Attribug?A;), equal§?Vq, V)

Also here a subclass éfttribute, namelyQoSAttributeis intro-
duced to enable the specification of the matching behavioalfo
QoS attributes, such @&esponseTimey a single rule.

(12

Based on definitions above, we can define a shortcut for match-

ing two arbitrary configurations as follows:
comparg¢?Cy, 2Cy) «— /\ attrComparéA, ?Cy, 2C;)
I=1..n
attrComparé?A, 7Cy, 2C,) « refersTd?Cy, ?P1), refersT q?C,, 7P,),
hasAttributg¢?P;, ?A), hasAttributg€?P,, ?A), matcH?P1, 2P,)

5.2 Ranking

In the following, we show how the matching predicates intro-
duced in the previous section can be used within the optimiza
rule mmpin order to determine the utility measure for the indi-
vidual attribute values. We define three alternative vasiar the
mmppredicate, which considerablyftér in their underlying as-
sumptions, applicability and performance charactesstidVhile
the fist variant [V1] implements the ranking based on enutirega
the configurations (Equation 3), [V2] solves MMP on per htité
basis using Equation 4-6. [V3] goes a step beyond [V2] byzirid)
the linear program formulation.

[V1] This variant implements Equation 3, where a ranking of all
offers and configurations is derived by evaluating all possibte
figurations for eachffer according to a request. We can model the
problem purely based on DL-safe rules using some standaRLSW
builtin functions. Rule 15 calculates theffdrence between score
and price of eaclConfigurationthat is supported by a@®fer as
well as asked for in thRequestThecomparepredicate defined in
Rule 14 is used to match two configurations.
mm?R, ?0, 7K, 2U) « provideg?0, ?S1), support§?S1, 2C1),
requesté?R, ?S2), provide$?S2, 2C2), comparg¢?C1l, 2C2),
price(?0, ?C1, ?P), scorg?R, 7C2, 7K, ?S), sul(?S, 7P, 2U) (15)

Since pricing and scoring information are not explicitlyes,
the two predicateprice andscoreare used to calculate this infor-
mation based on theoliciesdefined in the fier or request, respec-
tively. Rule 16 calculates thecore F(c, k) by evaluatingf; (a,) for

(13)

(14)

Algorithm 1 Determine optimal attribute value for two policies

function oprFxT(Policy f1, Policy f;)
SELECT ?U WHERE {
f1 constitutedBy ?P1 f, constitutedBy ?P2 .
?P1 attributeValue ?V1 ; price ?X .
?P2 attributeValue ?V2 ; price ?Y .
?V1 match ?V2 . EVALUATE ?U= dif(?X,?Y) .
} ORDER BY DESC(?V)
return first element of result set

all a, provided in a configuration. Attribute values are matched
by means of the matching predicate defined in the previoumsec
The price-relation is defined analogously, but without the context-
dependency represented by the relat&alidin.

SCOrd?R %C, K, ) « [\ (refersT¢?C,2AVR),

hasAttribut¢?AV R, ?A)), de fine¢?R, 7F), isAssigned T@F, A),
isValidIn(?F;, 7K), constituted B{?F,, ?P;), price(?P;, Vi),
attributeValug?P|, ?2AV)), matc{?AV R, ?AV))),

SuM(Vy, ..., Vp, 2U) (16)

Advantages of this approach are that one can get a full rank-
ing of all configurations, which might be required in somelapp
cations. Furthermore, it can be modelled purely based onlatd
modelling primitives provided by OWL-DL and SWRL. However,
the disadvantages are also evident. Since the approacked ba
enumerating all configurations, a finite number of configaret is
required and thus the approach is not suitable in the presehc
continuous attributes. As already discussed in Sectiom@thar
fundamental problem is the complexity with respect to theber
of required utility calculations.

[V2] The second variant of themppredicate implements the de-
composed optimization algorithm described in Equatio®)44n
this context we utilize the additive structure of the pregcims well
as scoring functions: the optimal value for each attribatddter-
mined separately and the overall pygmore is calculated based on
these measures. Equation 17 determines the utility offien ac-
cording to request in a specific execution context.

mmE?R, 2?0, K, 2U) « RequegPR), Offer(?0)
/\ (define$?R, ?F), isValidIn(?F, 7K), isAssigned T@F, ?A;),

I=1,...n
defineg?0, ?P)), isAssignedT@P;, ?A;), optFki{(?F|, ?P;, 2U))),
sum(?Us, ..., 7 ) (7)

Since the calculation of the optimal value for a certainitaiite
requires iterating over an unknown number of attribute esl(in-
stances), the calculation cannot be directly expressedRIS We
thus use a builtin function, callezptFkt to determine the attribute
valueae maximizing the utilityfy — g; of attributel. Algorithm 1
shows the implementation of the builtin-predicate spealificfor
Point-based Functions. In the predicaigtFkt for each attribute
the requester and provider policies are queried from thavletdge
base and the attribute value leading to the maximal utititge-
termined. A major advantage of the approach is that thisyquer
uses thamatchpredicate defined in the ontology. Thus, the correct
matching algorithm is used for each attribute automaticatid the
implementation of the builtin is domain independent.

[V3] The third variant of the algorithm implements also the de-
composed ranking algorithm described in Equation (4-6{) vt
some additional optimizations.

mm?R, 70?2, 7C,U) « RequegfR), Offer(?0),

optLA(?R, 20, 2C, 2U) (18)

This time we use a linear programm to calculate the optimal at
tribute value. The calculation is encapsulated within thétin
optLP (Algorithm 2). The builtin performs a query to get the rele-
vant utilities for the attribute values. This is done agajrutilising



Algorithm 2 Optimization built-in using Linear Programming

function orrLP(Request, Offer o, Contextk, Utility u)

resultList:= SELECT ?A, ?V1, ?U WHERE {
o defines ?F1r defines ?F2 .
?F1 constitutedBy ?P1 ; isAssignedTo ?A .
?F2 constitutedBy ?P2 ; isValidky isAssignedTo ?A .
?P1 attributeValue ?V1 ; price ?X.
?P2 attributeValue ?V2 ; price ?Y .
?V1 match ?V2 . EVALUATE ?U= dif(?X,?Y) .}

Initialize U = (Uie)i=1...ne=1.. max || With (A, &e, Uie) € resultList

determineu = max{{(U, X)|Vl € {1,..., nj: 2‘:‘:'1 Xe = 1,x€{0,1}}
return u for given Ofero and Request

the matchpredicate from the ontology. The optimization problem
is constructed and solved using a standard optimizatiaarlty
This approach has the advantage that we can useffibget im-
plementations for solving integer linear programs prositg stan-
dard tools.

In contrast to the first optimization algorithm, variant [Méhd
[V3] can be easily adapted to handle continuous attribugesb
troducing appropriate builtins faptFktandoptLP. However, it is
not possible to get a ranked list enumerating &kis and configu-
rations, as it is possible using the first approach. Nevksisefor
most applications determining the ranked list Geos is stficient.

In the next section we compare théfdrent modelling approaches
with respect to their performance in the selection process.

5.3 Performance Evaluation

Having introduced an approach for preference-based smieait
configurable Web services, the question arises how thigased
expressivity influences the performance of the selectiongss. In
particular, we are interested in the trad@tmetween performance
and optimality. Therefore, the three selection variantaduced
in Section 5.2 are compared to an algorithm that randombgcsel
an dfer and configuration. All algorithms are evaluated for vary-

random algorithm, while [V1] requires about 17 seconds. As d
picted in Figures 3(b) and 3(c), the gap increases furthemfare
demanding settings. However, the random approach leadsoie-a
siderable loss in utility for the requester. Assuming a amif dis-
tribution of the prices and scoring values in [0,1] and aceable
number of dfers ¢ 50) an optimal algorithm leads to a utility of al-
most 1 while the random algorithm results only in a averadiyut
of 0.

Can we improve the performance of optimal selection by cainst

ing the bidding language? How does the performance of thie opt
mal selection variants gier? Variants [V2] and [V3] of thenmp
predicate assume an additive structure of the pricing andrer
function. As discussed above, this allows a mafecient imple-
mentation. [V2] reduces the runtime compared to [V1] from 17
to 11 seconds in the first setting and from 477 to 41 in the sec-
ond setting (both with 2000fters). [V3] further reduces the run-
time to 5 and 13 seconds, respectively. If we now compare this
improved performance to the random algorithm, the cost ¢f op
mality is rather moderate. In particular, consideringisgt8 with
1000 dtfers and 1600 configurations peffer, there is only a slow-
down by 35% when moving from random selection to [V3] (Figure
3(c)). Comparing this number to smaller settings we canrgbse
much greater slowdowns which, at first glance, seems caotrad
tory. However, this observation can be explained by the tfzat

for large-scale scenarios (more that 1000 configurationsfper)
query answering becomes the predominant factor comparie to
optimization in [V3]. Since query answering is required Bmth
algorithms, variant [V3] and random selection converge.

5.4 Discussion

In this section, we presented an flexible approach for assign
ing syntactic as well as semantic matching predicates tiatits.
These predicates are automatically applied for matchitrgpate
values in the optimization process. In general, the resflthe
performance evaluation are promising since the fastestoapp

ing number of dfers in the knowledge base and varying numbers jiows ranking up to 2000fters with a reasonable number of con-
of configurations perféer. Each of these settings is evaluated by  figyrations below 15 seconds. Considering the fact thaetBes0

means of a simulation. Only settings with string matchinkgsu
have been used. Performance evaluations of query answeitimg
more complex matching rules is a complementary questiormmasd
already been elaborated in [23] for KAON2. For each setting,

offers all fulfill the mandatory conditions defined in the FILTER
condition of Query 8, this can already be seen as a very lage s
nario. Moreover, we analysed the worst-case scenario wdlere
offers provide all possible configurations and all attributesdis-

stances of fiers, requests and contexts are randomly generated Us-crete, Optimization on discrete attributes is more timesconing

ing a uniform distribution and stored in the knowledge badeen
SPARQL-queries are generated according to Equation 8 dguiith
any FILTER condition) referring to a specific execution @xtt

compared to the continuous case because techniques flikesdr
tiation are not applicable. Therefore, we expect betteiopeance
in a real-world use case. In our mobile scenario, only up to 20

and request in the knowledge base. The time between serfing t gigerent route planning providers might be available, wheteas

query and receiving the result is measured. In order to gvosd
sible network delays the simulation is done on a single nmechi
For each setting the average query time is determined bas2d o
simulation runs. Using this simulation setup the followisgues
are addressed:

How does the performance change when moving towards pnefere
and context-aware selection strategies? How expensivgtisal-
ity? To investigate the additional time required for evaluating
offers and configurations according to preferences, we contipare
most general optimal variant [V1] with a baseline algorittimat
randomly selects anfier and corresponding configuration from the
knowledge base. Figure 3 shows the interrelation betweenum-

number of possible configurations may easily exceed 1008v-Ho
ever, it is unlikely that all of them arefi@red by all providers.

As a further result of our performance study, it becomesrclea
that providing expressive means for modelling preferemasagone
in [12, 26] is not sHicient without ensuring that the way they
are used allows for the implementation dfi@ent selection algo-
rithms. Comparing the results for [V2] and [V3], we can iden-
tify the absence of the additivity assumption as the majara®of
complexity (improvement from [V1] to [V2]). Using anflecient
implementation for solving the optimization problem pes a
relatively minor improvement (improvement from [V2] to [JJ3n
performance. Therefore, in many cases, especially if cesélec-

ber of dfers in the knowledge base, the number of configurations tion has to be done at runtime, restricting the expressasoéthe
in an afer and the resulting query time. In the first setting (Figure bidding language is a viable way to considerably increastope

3(a)) each hid contains exactly 100 configurations. Sersétec-
tion can be done in less than a second for 20@6rse using the

“For our implementation we currently use the LP sol\ersolve
5.5(http://1psolve.sourceforge.net/5.5/).

mance. Even if preferential independency does not holdtkyxac
additive functions often provide a good approximation [36this
simplification is not possible, other methods for improvihg per-
formance of [V1] can be introduced, e.g. a caching mechafism
prices and scores that reduces the number of rule evalsdtidh
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Figure 3: Performance of service selection.

A further conclusion is that in some very demanding settings
ducing the set of relevantiers is crucial. This can be realized by
adding additional mandatory conditions through FILTERresp
sions.

6. PROTOTYPE

As a proof of concept, we implemented the algorithms present
in this paper in a framework consisting of two componéniEhe
firstis a server component that provides a repository foriseof-
fers and requests that can be queried via a Web servicedogsshd
the DL reasoner KAON2. KAONZ2 is chosen because it supports
the logical fragment required for ouffer and request descriptions,
while being optimized for large-scale query answering [ZBhis
component corresponds to the service repository in Figure 1

The second component is a client tool that facilitates tleeisp
fication of Web servicefiers and requests by providing a GUI for
specifying SPARQL-queries and utility function policie&ener-

ally, offers are transferred to the server, whereas for requests the

user decides whether they should also be stored as policidso
server to enable further reuse (cf. (R4)) or formulatedatliyeas a
query. The client is supplemented by a WS-BPEL engine [2&] th
allows the specification of service compositions. For eXentpe

second component could be used by the network operator in our

initial example to implement its application.

In order to implement dynamic binding of services, we wilise
distinction between ports and port types in WS-BPEL. Thagufee
allows us to dynamically re-assign end points as long asdhéce
candidates have an identical interface, i.e. port type. ufipsrt
this, the client tool allows extending the process as falobefore
each dynamic service invocation, a WS-BPRLokeoperation for
the selection service is introduced that provides the hipdn-
formation for the following service. We realize thginding by
Constraint paradigm [29] by specifying a SPARQL query (such
as Query 8) that is passed to the selection service. In tlsis, ca
SPARQL provides a standardized language for identifyiritable
services without referring to a concrete name or identiRarts of
the query are generated at development time of the procésie, w
others can be added dynamically at runtime. To illustraiedp-
proach, Listing 1 shows an excerpt form the WS-BPEL procéss o
the route planning scenario introduced in Section 2. Irslia the
user’s request is received, the contaicientldis passed to the lo-
cation service, where the current country of the user israeted
(lines 8-10). Then the SPARQL query, which statically refeerre-
questns1l:RequestOperatorontaining the providers preferences,
is extended by the conteldcation (lines 12-15) and passed to the
selection service which is invoked in lines 18-20. Afteraietg
the address of the best service, the corresponding porsigresl

SMore information about the implementation can be found at
http://km.aifb.uni-karlsruhe.de/projects/kaonws/.

. 1
<receivename="receiveRoutepartnerLink="customer" 2
portType="client:Process"operatior"initiate" 3
variable="routeRequesttreatelnstance'yes’/> 4
<assignname="Assign_Query* 5
<copy> <from variable="routeRequestpart="user'/> 6
<to variable="clientID"/> 7
<invoke name="LocationCheck'partnerLink="LocationServicePLT" 8
portType="ns1l:LocationServicebperatior"executeQuery" 9
inputVariable="clientID" outputVariable-"location"/> 10
<assignname="Assign_Query> 11
<copy> <from expressior’"concat(string("SELECT ?0 , ?U WHERE { 12
EVALUATE mmp(ns1:RequestOperatorX, 30, 13
bpws:getVariableData(’location’,’Country’),string(,?U ) . \"))""/> 14
<to variable="requestQuery'part="queryMessage¢> 15
</copy> 16
</assign> 17
<invoke name="ServicelnvokepartnerLink="SelectionServicePLT" 18
portType="ns1:SelectionServicedperatios"executeQuery" 19
inputVariable="requestQuerybutputVariable-"responseQuery* 20
<assignname="Assign_Port% 21
<copy> <from variable="responseQuerypart"queryResul{’> 22
<to partnerLink="RoutePlanner> 23
</copy> 24
</assign> 25
<invoke name="RoutePlanninginvokepartnerLink="RoutePlanner" 26
portType="ns1:RoutePlanningServiceperatior-"requestRoute" 27
inputVariable="routeRequestbutputVariable-"responseRoutg> 28
29

Listing 1: Flexible binding in WS-BPEL

to the port type of the following partner link (lines 21-25)cathe
route planning service is invoked by passing the originaf ue-
quest containing the start and end point (lines 26-28).

In case service candidates havé&atient interfaces, dynamic se-
lection requires complex interface mappings. [29] presenap-
proach for dynamic binding of services using reflection. ldeer,
this cannot be used directly for WS-BPEL.

7. CONCLUSION

In this paper, we have provided a formal and standards-based
representation of Web service configurations and user neretes
over these configurations meeting the requirements (R1)Ray
introduced in Section 2. Our approach avoids enumerating of
feredrequested configurations and thus significantly reduces sto
age requirements and increases communicatigciency (R4). In
addition, we have presented a service selection algoritltrseam-
lessly integrates syntactic as well as semantic matchidy (®h
efficient optimization techniques. In contrast to other worlhiis
area, we do not restrict ourselves to logical /andimilarity-based
matching approaches, but allow customisable matching qatss
that can be declaratively assigned to service attributes viery
flexible way. In order to quantify the overhead introducedtiosy
additional expressivity and the optimality requiremeng evalu-



ated the performance of thefiirent ranking algorithms, showing

that an algorithm that implements the linear programmingnie
lation of the optimization problem introduces only a smaike

head compared to random selection. This holds particufarly

large-scale scenarios with a high number of configurati@iop
fer. Another important finding is that the performance dejsesru-

cially on the way @fers and request are modelled. According to our

evaluation, additive preference and price functions ageired to
dynamically select services in large-scale scenarios ionapaita-
tionally tractable manner (R4). Finally, as a proof of cqtoee

applied our framework for dynamic Web service selection i8-W

BPEL.

As future work, we plan to move from selecting single sersice

to service selection for an entire process. This can bezezhbim-
ply by adding rules and builtin predicates implementing riiere
complex optimization algorithms (e.g. [40]). In additiome plan
to integrate behavioral matching rules as presented inwWhijch
would allow defining preferences over temporal propertfesser-

vice. For example, Annika might prefer services which pdevi

the route information before paying. In terms of impleméntg

we plan to address the problem of dynamic binding in WS-BPEL

beyond simple port re-assignments.

Acknowledgmentsthis research was partially supported by
the German Research Foundation (DFG) in scope of the Résearc
Training Group “Information Management and Market Enginee
ing”, by the European Commission under FP6-027595 “NEON?”,
FP6-507482 “KnowledgeWeb”, and FP6-507483 “DIP”, and &y th
German BMBF project “SmartWeb”. The expressed contentds th
view of the authors but not necessarily the view of any of tlegm

tioned projects as a whole.

8. REFERENCES

[1] S. Agarwal and R. Studer. Automatic matchmaking of wetvises.
In 5th Int. Conf. on Web Servic€hicago,USA, 2006.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F
Patel-Schneider, editor§he Description Logic Handbook: Theory

Implemenation and Application€ambridge University Press, 2003.

[3] W.-T. Balke and M. Wagner. Towards personalized sebectif web
services. In2th Int. WWW ConfBudapest, Hungary, 2003.

[4] M. Bichler and J. Kalagnanam. Configurabl&ess and winner
determination in multi-attribute auction&uropean Journal of
Operational Researgi60(2):380-394, 2005.

[5] P. A.Bonatti and P. Festa. On optimal service selectiofroc. of
the 14th Int. WWW ConfNew York, USA, 2005.

[6] S.Brockmans, R. Volz, A. Eberhart, and P.fliér. Visual modeling
of OWL DL ontologies using UML. IrProc. of the 3rd Int. Semantic
Web Conf.Hiroshima, Japan, 2004.

[7] P. Bruckner and S. Knus€omplex Schedulingpringer, 2006.

[8] DAML Services Coalition. DAML-S: Web service descripii for the
semantic web. Iist Int. Semantic Web CopSardinia, Italy, 2002.

[9] R. Dumitru, U. Keller, H. Lausen, J. de Bruijn, R. Lara, Btollberg,
A. Polleres, C. Feier, C. Bussler, and D. Fensel:. Web servic
modeling ontologyApplied Ontology1(1):77 — 106, 2005.

[10] Y. Engel, M. P. Wellman, and K. M. Lochner. Bid expregsiess and
clearing algorithms in multiattribute double auctionsPloc. of the
7th ACM Conf. on e-Commerciew York, USA, 2006.

[11] Global Grid Forum. Grid Resource Allocation AgreemBnbtocol.
Web Services Specification. Available from
http://www.ogf.org/Public_Comment_Docs/Documents/
Oct-2006/WS-AgreementSpecificationDraftFinal_sp_tn_
jpver_v2.pdf, October 2006.

[12] B. Grosof and T. Poon. SweetDeal: Representing agentaiis
with exceptions using XML rules, ontologies, and process
descriptions. IrL2th Int. WWW ConfBudapest, Hungary, 2003.

[13] 1. Horrocks, P. F. Patel-Schneider, H. Boley, S. TaBeGrosof, and
M. Dean. SWRL: A semantic web rule language combining OWL
and RuleML, 2004. W3C Submission.

[14] 1BM Corporation. WSLA language specification, versib@.

http://www.research.ibm.com/wsla, 2003.

[15] L. Kagal, T. Finin, and A. Joshi. Declarative Policies Describing
Web Service Capabilities and ConstraintsW8C Workshop on
Constraints and Capabilities for Web Servic€A\, USA, 2004.

[16] R. L. Keeney and H. R&&. Decisions with Multiple Objectives:
Preferences and Value Traggo J. Wiley, New York, 1976.

[17] J. O. Kephart and W. E. Walsh. An artificial intelligengerspective
on autonomic computing policies. bth IEEE Int. Workshop on
Policies for Distributed Systems and Network¥, USA, 2004.

[18] M. Klusch, B. Fries, M. Khalid, and K. Sycara. OWLS-MXyHrid
Semantic Web Service Retrieval. 18t Int. AAAI Fall Symposium on
Agents and the Semantic Welslington, USA, 2005.

[19] S. Lamparter and A. Ankolekar. Automated selectionaffigurable
web services. 118. Int. Tagung Wirtschaftsinformatikarlsruhe,
Germany, 2007.

[20] S. Lamparter, A. Ankolekar, D. Oberle, R. Studer, and\@inhardt.
A policy framework for trading configurable goods and sezsin
open electronic markets. Bth Int. Conf. on Electronic Commerce
New Brunswick, Canada, 2006.

[21] D.J. Mandell and S. Mcllraith. Adapting BPEL4WS for the
Semantic Web: The Bottom-Up Approach to Web Service
Interoperation. Ir2nd Int. Semantic Web ConFL, USA, 2003.

[22] B. Motik. On the properties of metamodeling in OWL.4th Int.
Semantic Web Conf. (ISWC 2006glway, Ireland, 2005.

[23] B. Motik and U. Sattler. A comparison of reasoning teiges for
querying large description logic aboxes.Rroc. of the 13th Int.
Conf. on Logic for Programming Atrtificial Intelligence and
ReasoningPhnom Penh, Cambodia, 2006.

[24] B. Motik, U. Sattler, and R. Studer. Query answering@wL-DL

N
e}

with rules.Journal of Web Semantics: Science, Services and Agents

on the WWW3(1):41-60, 2005.

[25] OASIS. Web Services Business Process Execution Lajggua
(WS-BPEL).http://www.oasis-open.org/committees/tc_
home . php?wg_abbrev=wsbpel, 2007. Version 2.0.

[26] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Senzanti
WS-Agreement Partner Selection.16th Int. WWW Conf.
Edinburgh, UK, 2006.

[27] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycaem&htic
matching of web services capabilities. 1st Int. Semantic Web
Conferencepages 333-347, Sardinia, Italy, 2002.

[28] C. H. Papadimitriou and K. Steiglit€ ombinatorial Optimization
Englewood Clifs, N.J.: Prentice Hall, 1982.

[29] C. Pautasso and G. Alonso. Flexible binding for reusabl
composition of web services. Proc. of the 4th Workshop on
Software CompositiqrEdinburgh, Scotland, 2005.

[30] S. Russel and P. Norvidrtificial Intelligence - A Modern Approach
Prentice Hall, 2nd edition, 2003.

[31] A. Sahai, V. Machiraju, M. Saya, A. v. Moorsel, and F. &as
Automated SLA monitoring for web services. Broc. of 13th Int.
Workshop on Distributed SystenMontreal, Canada, 2002.

[32] B. Schnizler, D. Neumann, D. Veit, and C. Weinhardt.ding grid
services - a multi-attribute combinatorial approahropean
Journal of Operational Researcforthcoming.

[33] I. Toma, D. Foxvog, and M. C. Jaeger. Modeling QoS charéstics
in WSMO. In 1st Workshop on Middleware for Service-oriented
Computing New York, USA, 2006.

[34] V. Tosic, K. Patel, and B. Pagurek. WSOL - web servifferings

language. IrCAISE Workshop on Web Services, E-Business, and the

Semantic WebToronto, Canada, 2002.

[35] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, and J. Lea O
accommodating inter service dependencies in web process flo
composition. INAAAI Spring Symposium on SWSA, USA, 2004.

[36] W3C. Web Services Definition Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001.

[37] W3C. Web Ontology Language (OWL).
http://www.w3.org/2004/0WL/, 2004.

[38] W3C. Web Services Policy Framework 1.5.
http://www.w3.0rg/2002/ws/policy/, July 2006.

[39] W3C. W3C XML Query (XQuery 1.0).
http://www.w3.org/XML/Query/, January 2007.

[40] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanand
H. Chang. QoS-aware middleware for web services compasitio
IEEE Transactions on Software Engineerid®(5):311-327, 2004.



