
Integration of heterogeneous BPM Schemas:
The Case of XPDL and BPEL

Thomas Hornung1, Agnes Koschmider2, and Jan Mendling3

1 Institute of Computer Science, Albert-Ludwigs University Freiburg, Germany
hornungt@informatik.uni-freiburg.de

2 Institute of Applied Informatics and Formal Description Methods
University of Karlsruhe (TH), Germany
koschmider@aifb.uni-karlsruhe.de

3 Institute of Information Systems and New Media, WU Vienna, Austria
jan.mendling@wu-wien.ac.at

Abstract Heterogeneous Business Process Modeling (BPM) schemas
have been a problem for business process management throughout the
last couple of years. Methodological guidance is needed in order to con-
solidate concurrent schema proposals especially in the BPM area. This
paper discusses the applicability of schema integration for this purpose.
We use the case of integrating XPDL 2.0 and BPEL 2.0 to highlight that
schema integration is not able to cope with heterogeneous control flow
representation of BPM schemas. We introduce a schema refactoring step
that leads to integrated BPM schemas with less constructs.

1 Introduction

Heterogeneity of schemas for business process modeling (BPM) is a major prob-
lem for business process management [1] and triggered several academic efforts
to compare BPM languages (e.g. [2]) or to identify patterns (e.g. [3]). There
is doubt whether standards proposed by industry consortia can provide the
required integration of BPM languages; at least the way this consolidation is
achieved is questionable from a methodological, more academic point of view
(see e.g. [4]). Therefore we propose a more theoretical approach to the integra-
tion of BPM metamodels which is based on schema integration and includes
extensions to address the specifics of BPM languages. Our contribution in this
context is twofold. First, we present an integration methodology that can be
used to integrate heterogeneous BPM metamodels (Section 2). From a schema
integration point of view, we identify conflicts of heterogeneous control flow rep-
resentation which are specific to the intention of BPM metamodels. Second, we
apply this methodology to the integration of XPDL 2.0 [5] and BPEL 2.0 [6]
and sketch the result in Section 3. For details refer to the long version of this
paper4. Section 4 concludes the paper and gives an outlook on future research.

4 http://wi.wu-wien.ac.at/˜mendling/publications/TR-Caise06.pdf



2 BPM Metamodel Integration Process

Schema integration refers to the construction of a global schema from a set of
local schemas. In general, the local schemas are heterogeneous, i.e. semantically
related concepts are captured by different local schemas in a different way, e.g.
using different names or different structure (cf. e.g. [7]). The global schema is
expected to be complete in capturing all concepts of the local schemas, minimal
by including semantically related concepts only once, and understandable [8]. In
the following, we adopt and extend integration processes such as reported in [9],
relying on semantic relationships defined on the intensional domains similar to
[10]. Our BPM metamodel integration process includes (1) schema preparation,
(2) schema matching, (3) schema merging, and (4) schema refactoring.

2.1 Schema Preparation

As a first step the two input schemas are transformed to a common data model.
For our discussion of BPM metamodel integration, we map the BPM languages
defined by an XML Schema to an object model using only a subset of elements
offered by UML class diagrams. Yet, the relational model or models especially
tailored for integration such as HDM [10] could be used as well.

2.2 Schema Matching

In the schema matching step the two input schemas and the semantics of the
schema constructs are compared in order to identify semantic relationships. In
the following A refers to a construct of the first and B of the second schema.
We consider semantic relationships that are defined on the intentional domains
Di(A), i.e. the real world objects captured by the schema constructs. We adopt
the definitions from [10]. As we assume names to be unique and significant only
within each schema, we do not address homonyms. Therefore, disjointness only
covers two non-overlapping constructs sharing a common super construct.

– equivalence: two schema constructs A and B are equivalent, if and only if
Di(A) = Di(B). We write A

s= B.
– subsumption: schema construct A subsumes B, if and only if Di(B) ⊂ Di(A).

We write B
s⊂ A.

– intersection: two schema constructs A and B are intersecting, if and only if
Di(A) ∩Di(B) 6= ∅,∃C : Di(A) ∩Di(B) = Di(C). We write A

s∩ B.
– disjointness: two schema constructs A and B are disjoint, if and only if

Di(A) ∩Di(B) = ∅,∃C : Di(A) ∪Di(B) ⊆ Di(C). We write A
s

6∩ B.

2.3 Schema Merging

This step takes the input schemas and merges them according to the seman-
tic relationships identified in the Schema Matching step. We adopt the generic
schema merging rules formalized in [10] without considering restructuring here.



– equivalence: if A
s= B then merge A and B to one construct in the integrated

schema including all relationships of A and B.
– subsumption: if A

s⊂ B, then include A and B in the integrated schema with
a subclass relationship between B and A.

– intersection: if A
s∩ B, then include A and B in the integrated schema and

add a new construct C to represent the common intentional domain with C
being a superclass of both A and B.

– disjointness: if A
s

6∩ B, then include A and B in the integrated schema and
add a new construct C that is a superclass of both A and B.

2.4 Schema Refactoring

Applying the schema merging rules results in the integrated model as defined in
Figure 1. The problem of this model is that there are still redundancies is con-
trol flow representation that cannot be expressed as equivalence, subsumption,
intersection, or disjointness semantic relationships. We address this problem by
introducing a transformation function t : P(S) → S such that S denotes the
set of all constructs of the integrated schema. We say that for R ⊂ S there is
a transformation t(R) = T with T ∈ S if and only if the intentional semantics
of T can be represented by the constructs included in R. In the example, the
intentional semantics of a BPEL sequence can be expressed by a set of control
flow arcs (link or Transition). We write t(link) = sequence. Each schema con-
struct T that can be represented by other schema constructs R, i.e. if t(R) = T
exists, we exclude T from the integrated schema. This implies that the sequence
structured activity would not be included in the final schema.

link
Transition

activity
Activity

UML Representation

sequence

Figure 1. Result of schema merging of BPEL and XPDL control flow

3 Integrated Metamodel of BPEL 2.0 and XPDL 2.0

Figure 2 shows a part of the refactored integrated metamodel of BPEL and
XPDL. We have identified among others the following transformation function:
All structured activities can be expressed by control flow arcs (Transition/link).
That implies that t({link, route}) = structured activity. Accordingly, struc-
tured activities can be excluded from the integrated schema. The schema refac-
toring operations yield a much simpler schema with less schema constructs. Con-
trol flow is represented in a graph-oriented way using Transitions/links. This im-
proves the integrated metamodel in terms of minimality and understandability.



Task/Tool

Subflow

Transition
link

basic 
activity

BPEL 
process

ws activity

receive

reply

invoke

handler 
activity

rethrow

compensate

throw

assign

wait

Route 
empty

validate

Data Field
variable

*

inputoutput

partnerLink
*

handler
*

correlation set*

exit

Figure 2. Part of the refactored integrated metamodel BPEL and XPDL

4 Conclusion and Future Work

In this paper we have presented a BPM metamodel integration process that is
able to cope with heterogeneous control flow representation of BPM schemas.
The process extends the work on conceptual model transformations as presented
in [10]. We have introduced a novel step for schema refactoring that is guided by
transformation functions between redundant schema constructs. We have demon-
strated the applicability of the process by integrating XPDL 2.0 and BPEL 2.0.
The refactoring step leads to a much simpler schema with less constructs that
classical schema integration would yield. In future research, we aim to provide
tool support for the BPM metamodel integration process defined in this paper.

References

1. Delphi Group: BPM 2003 – Market Milestone Report, White Paper. (2003)
2. Mendling, J., Nüttgens, M., Neumann, G.: A Comparison of XML Interchange

Formats for Business Process Modelling. In Feltz, F., Oberweis, A., Otjacques, B.,
eds.: EMISA 2004, Proceedings. LNI 56 (2004) 129–140

3. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14 (2003) 5–51

4. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing Web Services Chore-
ography Standards - The Case of REST vs. SOAP. Dec. Sup. Sys. 40 (2005) 9–29

5. Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K.,
Thatte, S., Yendluri, P., Yiu, A.: Web Services Business Process Execution Lan-
guage Version 2.0. wsbpel-specification-draft-01, OASIS (2005)

6. Workflow Management Coalition: Workflow Process Definition Interface – XML
Process Definition Language. WFMC-TC-1025, Oct. 3, Version 2.00, WfMC (2005)

7. Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase
systems. IEEE Computer 24 (1991) 12–18

8. Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys 18 (1986) 323–364

9. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comp. Surv. 22 (1990) 183–236

10. Rizopoulos, N., McBrien, P.: A general approach to the generation of conceptual
model transformations. In Pastor, O., e Cunha, J.F., eds.: CAiSE 2005, Proceed-
ings. LNCS 3520, Springer (2005) 326–341


