
Decidability Under the Well-Founded Semantics?

Natalia Cherchago1, Pascal Hitzler2, and Steffen Hölldobler3

1 Department of Computer Science, Technische Universität Dresden, Germany
2 Institute AIFB, Universität Karlsruhe, Germany

3 International Center for Computational Logic, Technische Universität Dresden,
Germany

Abstract. The well-founded semantics (WFS) for logic programs is one
of the few major paradigms for closed-world reasoning. With the advent
of the Semantic Web, it is being used as part of rule systems for ontol-
ogy reasoning, and also investigated as to its usefulness as a semantics
for hybrid systems featuring combined open- and closed-world reason-
ing. Even in its most basic form, however, the WFS is undecidable. In
fact, it is not even semi-decidable, which means that it is a theoretical
impossibility that sound and complete reasoners for the WFS exist.

Surprisingly, however, this matter has received next to no attention in
research, although it has already been shown in 1995 by John Schlipf [1].
In this paper, we present several conditions under which query-answering
under the well-founded semantics is decidable or semi-decidable. To the
best of our knowledge, these are the very first results on such conditions.

1 Introduction

Logic programming under the well-founded semantics (WFS) [2] is one of the
most prominent paradigms for knowledge representation and reasoning. It has
recently found applications in the area of Semantic Web reasoning, in particular
in the form of the logic programming variant of F-Logic [3], on which systems
like FLORA-2, Florid, and the commercial ontobroker are based. As such, it
complements standardized ontology languages such as the description logics and
open-world based Web Ontology Language OWL4, in that it provides a rule-
based modeling paradigm under a non-monotonic closed-world semantics.

However, while decidability of the language was a major design criterion for
OWL, logic programming under the WFS is undecidable — indeed, it is not
even semi-decidable in the presence of function symbols [1], which is a rather
unpleasant fact because this means that sound and complete implementations
of the semantics are not possible in principle. Hence, existing systems like XSB

? This work is partially supported by the German Federal Ministry of Education and
Research (BMBF) under the SmartWeb project (grant 01 IMD01 B), by the Deutsche
Forschungsgemeinschaft (DFG) under the ReaSem project and by the EU in the IST
project NeOn (IST-2006-027595), http://www.neon-project.org/.

4 http://www.w3.org/2004/OWL/



Prolog [4] only realize a decidable or semi-decidable fragment of the WFS. Sur-
prisingly, however, there exists hardly any literature5 describing such decidable
or semi-decidable fragments, or literature describing in detail the fragment(s) of
the WFS actually realized in implementations in terms which are not procedural.

The issue of (semi-)decidable fragments of not semi-decidable non-monotonic
reasoning paradigms indeed has been neglected to a considerable extent, which is
a severe theoretical obstacle in trying to realize expressive practical approaches.
The only work we know which addresses this is due to Bonnatti [5] concerning
Answer Set Programming, which is not readily adaptable to our setting.

In this paper, we study conditions under which query-answering is decidable
or semi-decidable under the well-founded semantics. We obtain such conditions
by combining the notion of relevance of semantics [6] with a new characterization
of the well-founded semantics by means of stratification with level-mappings [7].

The paper is organized as follows. Section 2 introduces key notions and ter-
minology. In Section 3 we combine relevance [6] and stratification [7] to define
a new meta-level property of stratified relevance. In Section 4 we present two
classes of programs with semi-decidable query evaluation and provide examples.
The classes of programs finitely recursive on lower levels and of programs of fi-
nite level are completely new. We prove semi-decidability results in Section 5.
In Section 6 we discuss related literature and conclude.

2 Preliminaries

In this section we introduce our notation and basic definitions. We assume the
reader to be familiar with the classical theory of logic programming. Literals
are atoms or negated atoms. We denote atoms by A,B, C or D and literals
by L; all symbols may be indexed. A (normal) logic program is a finite set of
(normal) rules of the form A← B1, ..., Bl,¬C1, ...,¬Cm. As usual, by head and
body of such a rule we mean A and B1, ..., Bl,¬C1, ...,¬Cm respectively. A rule
with empty body is called a fact. A query or goal is an expression of the from
← B1, ..., Bl,¬C1, ...,¬Cm.

We will assign a Herbrand universe UP and a Herbrand base BP to a program
P as usual while assuming that the underlying first-order language consists of
exactly the constants, function symbols and predicate symbols occurring in P .
The ground instantiation ground(P ) of P consists of all ground instances (w.r.t.
the Herbrand base BP ) of all rules in P . For a consistent I ⊆ BP ∪ ¬BP ,
we say that A is true in I if A ∈ I, we say that A is false in I if ¬A ∈ I,
otherwise we say that A is undefined in I. A (partial) Herbrand interpretation
I for P is a consistent subset of BP ∪ ¬BP . (Partial) Herbrand interpretations
are ordered by set-inclusion; this is usually called the knowledge ordering on
Herbrand interpretations.

Let P be a program. A > B iff there is a rule in ground(P ) with head A and
B occurring in its body. The dependency graph GP is a directed graph whose
5 In fact, we found none such literature at all, despite a considerable effort invested into

searching for it. Nevertheless, some other results carry over from other semantics.

2



vertices are the atoms from ground(P ) and there is an edge from A to B iff
A > B. We say that A depends on B, in symbols A . B iff there is a path from
A to B in GP .

By a semantics we mean a mapping S from the class of all programs into the
power set of the set of all partial Herbrand models. S assigns to every program
P a set of partial Herbrand models of P .

Given a normal program P and a partial interpretation I, we say that A ⊆
BP is an unfounded set of P w.r.t. I, if for every A ∈ A and every A ← B ∈
ground(P ) one of the following conditions holds: (i) either at least one body
literal L ∈ B is false in I, or (ii) at least one positive body literal B ∈ B is
contained in A. Under the greatest unfounded set of P w.r.t. I we understand
the union of all unfounded sets of P w.r.t. I.

Given a program P , TP (I) is the set of all A ∈ BP such that there is a clause
A← B in ground(P ) such that B is true in I. Let UP (I) is the greatest unfounded
set of P w.r.t. I. The operator WP (I) is defined by WP (I) := TP (I) ∪ ¬UP (I).
This operator is due to van Gelder et al. [2]. The least fixed point of WP (I) is
called the well-founded model of P , determining its well-founded semantics.

The property of relevance states intuitively that a goal G can be answered
w.r.t. P using only those atoms occurring in ground(P ) on which the atoms
occurring in G depend.

Definition 1. (Relevant Universe and Subprogram [5]) Let P be a pro-
gram and G a ground goal. The relevant universe for P and G is

Urel(P,G) = {B | there occurs and atom A in G such that A . B}.

The relevant subprogram of P for G is

PG = {R | R ∈ ground(P ) and head(R) ∈ Urel(P,G)}.

Definition 2. (Relevance [6]) Relevance states that for all ground literals L
we have S(P )(L) = S(PL)(L), where PL is a relevant subprogram of P w.r.t. L
(and L is understood as a query in the formation of PL).

Relevance states that for all normal logic programs P and all ground atoms
A, P entails A under semantics S iff P←A entails A under S. One should observe
that the relevant subprogram PG w.r.t. a ground goal G contains all rules that
could ever contribute to the derivation of G or to its non-derivability.

Technically, our approach rests on a new characterization of the well-founded
semantics by means of level-mappings, which is due to [7]. Level-mapping char-
acterizations expose the dependency structures between literals underlying a
given semantics. The relevance of level-mapping characterizations for decidabil-
ity analysis is obvious, but we employ them in this paper for the first time.

For an interpretation I and a program P , an I-partial level mapping for P
is a partial mapping l : BP → α with domain dom(l) = {A | A ∈ I or ¬A ∈ I},
where α is some (countable) ordinal. A total level mapping is a total mapping
l : BP → α for some (countable) ordinal α. We extend every level mapping to
literals by setting l(¬A) = l(A) for all A ∈ dom(l).

3



Definition 3. (WF-properties [7]) Let P be a normal logic program, I a
model for P , and l an I-partial level mapping for P . P satisfies WF with respect
to I and l if each A ∈ dom(l) satisfies one of the following conditions.

(WFi) A ∈ I and there is a clause A ← L1, .., Ln in ground(P ) such that
Li ∈ I and l(A) > l(Li) for all i.

(WFii) ¬A ∈ I and for each clause A← A1, .., An,¬B1, ..,¬Bm in ground(P )
(at least) one of the following conditions holds:
(WFiia) There exists i with ¬Ai ∈ I and l(A) ≥ l(Ai).
(WFiib) There exists j with Bj ∈ I and l(A) > l(Bj).

If A ∈ dom(l) satisfies (WFi), then we say that A satisfies (WFi) with respect
to I and l, and similarly if A ∈ dom(l) satisfies (WFii).

Theorem 1. ([7]) Let P be a normal logic program with well-founded model
MP . Then, in the knowledge ordering, MP is the greatest model amongst all
models I for which there exists an I-partial level mapping l for P such that P
satisfies (WF) with respect to I and l.

In the following, we shall often refer to the property of the well-founded
semantics stated in Theorem 1 as the property of stratification. By slight abuse
of language, we call such a level mapping as in Theorem 1 a level mapping
characterization of P (or of the well-founded semantics of P ).

3 Stratified Relevance

Given any semantics S, it is reasonable to expect that the truth value of a
ground goal G only depends on the relevant subprogram PG for G with respect
to P . As we have seen in Section 2, this idea was formalized by Dix [6] in the
property of relevance. We can prove an even stronger property with the help of
level mappings and Theorem 1 from ([7]).

Suppose P has a well-founded model MP . Define an MP -partial level map-
ping lP as follows: lP (A) = α, where α is the least ordinal such that A is not
undefined in WP ↑ (α + 1). Let l−1(α) = Λα ⊆ MP be a set of ground literals
of level α, WP ↑ (α + 1)\WP ↑ (α) = Λα. In the following and when it is clear
from the context, we call a set of literals of some level simply a level.

If we evaluate a ground goal of the form ← A, we start from some set Λα

such that A ∈ Λα. According to the WF-properties that a model MP enjoys by
Theorem 1, every evaluation step either ”goes down” to the previous level, or
”stays” at the same level. Therefore we define a new relevant universe U∗rel(P,G)
and, likewise, the relevant subprogram P ∗G, in such a way that the levels are
limited to those ones which are less than or equal to the level of atoms occurring
in a ground goal G w.r.t the level mapping lP .

Definition 4. (Stratified Relevant Universe) Let P be a logic program and
G a ground goal. The stratified relevant universe for P and G is U∗rel(P,G) =

{B | there occurs an atom A in G such that A . B and lP (A) ≥ lP (B)}.

4



To define stratified relevant subprogram, we need the following definition:

Definition 5. Let P be a logic program and G be a ground goal. P ′G is the set
of all rules Rσ such that there exists a rule R in P and a substitution σ meeting
the following conditions:

– The head of Rσ is in U∗rel(P,G).
– At least one atom occurring in the body of Rσ is contained in U∗rel(P,G).
– Let A1, . . . , An be all atoms occurring in R, such that Aiσ ∈ U∗rel(P, F ) for

all 1 ≤ i ≤ n. Then the following must hold:
• σ is a most general unifier for the unification problem {Ai = Aiσ | i =

1, . . . , n}.
• There does not exist an atom B occurring in R, which is distinct from

all Ai (i = 1, . . . , n) such that there is a substitution ϑ with Bσϑ ∈
U∗rel(P,G).

Definition 6. (Stratified Relevant Subprogram) Let P be a program and
G a ground goal. The stratified relevant subprogram for P and G w.r.t. an I-
partial level mapping lP , denoted by P ∗G, is the set of all rules R′ defined as
follows: For any rule R in P ′G, let R′ be the rule which is obtained by removing
all non-ground literals from R. Note that by definition the head and at least one
of the body literals of R′ are never removed.

The underlying intuition is that we use rules from ground(P ) where the
head and all body atoms are contained in U∗rel(P,G), as they are those which
contribute to the well-founded semantics in the sense of condition (WFi) in
Definition 3. In order to accommodate condition (WFii) from Definition 3 it
suffices if one witness of unusability6 remains in the body or the rule, which is
the rationale behind the remaining definition of stratified relevant subprogram.

Definition 7. (Stratified Relevance) Stratified Relevance states that for all
ground queries F and all normal logic programs G we find that P entails G under
semantics S iff P ∗G entails G under S.

Proposition 1. The well-founded semantics satisfies Stratified Relevance.

Proof. (Proof Sketch) Given a normal program P and its well-founded model
M , we have that by Theorem 1, there exists an M -partial level mapping l for P
such that P satisfies (WF ) with respect to M and l. Let this level mapping be
lP as defined above. The proof follows by induction on the evaluation of L under
the well-founded semantics. We have to consider two cases: L = A is a positive
literal and L = ¬A is a negative literal. Let A ∈ dom(lP ), suppose lP (A) = α
and let M(L) = M∗(L)(induction hypothesis).

Case i. A ∈M . By (WFi) we have that there is at least one rule R = A←
L1, .., Ln in ground(P ) such that Li ∈M and lP (A) ≥ lP (Li) for all i. We have
that A ∈ TP (WP ↑ α) and all Li ∈ body(R) are true in WP ↑ α. We see that A
refers to all these literals or, in other words, A > Li, i = 1, .., n.
6 These are literals satisfying one of the unfoundedness conditions [2].

5



Induction step: prove that Li ∈M∗ for all i. By definition of P ∗←L, R ∈ P ∗←L

and by induction hypothesis we have that A ∈M∗. By definition of WP and by
relevance, from R ∈ P ∗←L and A ∈M∗, it follows that Li ∈M∗ for all i.

Case ii is similar to Case i. ut

The proposition shows that P ∗←L by its definition contains all the necessary
information for L’s derivation or non-derivability.

The next proposition concerns computability of the stratified relevant sub-
program and is also crucial for our decidability results.

Proposition 2. Let P be a program with a level mapping characterization l and
let G be a goal such that U∗rel(P,G) is finite. Then P ∗G is finite and computable
in finite time.

Proof. P consists of finitely many rules, so it suffices to show the proposition
for a program consisting of a single rule R. Let n be the number of body literals
occurring in R, and let A be the head of R. A finite computation of P ∗G is possible
by means of the following algorithm:

1. For all selections of m atoms A1, . . . , Am occurring in the body of P , where
1 < m ≤ n, do the following.
(a) For all selections of m + 1 elements B,B1, . . . , Bm from U∗rel(P,G) do

the following
i. If the unification problem {A = B} ∪ {Ai = Bi | i = 1, . . . ,m} is

solvable with most general unifier σ, then do the following.
A. If m = n then add Rσ to P ′.
B. If m < n then for all selections of a body literal C from R which

is distinct from A1, . . . , Am and for all selections of an element
D from U∗rel(P,G), check whether there is a substitution ϑ such
that Cσθ = D. If such a ϑ does not exist, then add rσ to P ′.

2. For every rule R in P ′, add to P ∗G the rule R′ obtained from R by removing
all non-ground literals.

It is straightforward to check that all selections made in the algorithm are selec-
tions from finite sets. Furthermore, the computation of the most general unifiers
is terminating by well-known algorithms. So the algorithm terminates after finite
time. The reader will also have no difficulties verifying that the program result-
ing from the algorithm is indeed the desired stratified relevant subprogram. ut

4 Program Classes with Semi-Decidable Query
Evaluation

4.1 Programs Finitely Recursive on Lower Levels

In this subsection we define a class of normal logic programs whose consequences
under the well-founded semantics are semi-decidable, even though they admit
function symbols (and, hence, infinite domains) and recursion. The idea is to

6



restrict recursion to prevent infinite sequences of recursive calls without repeats.
This follows the ideas presented in [5] by Bonatti, where a class of finitary
programs under the stable model semantics was defined. The intuition behind it
is the following: a literal is brought into the well-founded model M in two ways:
either by TP or UP . But in both cases there must exist a dependency between the
consequence atom and the precedence atoms in the dependency graph. With the
help of stratified relevance from Section 3 we can define the relevant subprogram
in such a way that it contains only rules with literals of the same or lower level
than that of query atoms.

The following definition captures the desired restriction on recursion.

Definition 8. (Programs Finitely Recursive On Lower Levels) A pro-
gram P is finitely recursive on lower levels w.r.t a ground query G iff there ex-
ists a level mapping characterization l of the well-founded model of P such that
each ground atom A depends on finitely many ground atoms of level less then or
equal to the level of G. In other words, the cardinality of the set {B | A . B and
l(B) ≤ l(G)} is finite for all A.

Now, given a program which is finitely recursive on lower levels, we can prove
finiteness of the stratified relevant universe and subprogram.

Proposition 3. Given a program P , a (partial) interpretation I and an I-
partial level mapping lP . The following condition holds: if P is finitely recursive
on lower levels, then for all ground queries G, U∗rel(P,G) and P ∗G are finite.

Example 1. (Programs Finitely Recursive On Lower Levels)
P : {p(f(X))← p(X), q(X),

q(a)← s(f(X)), r(X),
r(a)← r(a).} G :← p(f(a)).

Both Urel(P,G) and PG are infinite for this program. It happens because of
the second rule: q(a) depends on an infinite sequence of atoms of the form
s(fm(X)),m > 0 and r(fn(X)), n ≥ 0. However, given a level mapping charac-
terization lP (as defined above), we have lP (p(f(a))) = 3 and lP (r(a)) = 1, and
at the same time {s(fm(a)), r(fn(a))|m > 1, n > 0} * dom(l). It leaves all the
rules q(a)← s(fm(a)), r(fn(a)) with m > 1, n > 0 out of our P ∗G:

P
′

G : {p(f(a))← p(X), q(a), P ∗G : {p(f(a))← q(a),
q(a)← s(f(X)), r(a), q(a)← r(a),
r(a)← r(a)} r(a)← r(a)}

4.2 Programs of Finite Level

In this subsection we define another class of programs with semi-decidable query
evaluation: programs of finite level. The property of stratified relevance is also
central for their definition, but instead of limiting certain dependency paths to
be finite, we now require finiteness of every level in the level mapping character-
ization of the well-founded model. Indeed, if we drop the ”finite recursiveness”
condition, we have to use other means that would guarantee semi-decidability.

7



To provide ”safe” query evaluation, we have to take care of two aspects. First,
when we ”stay” within the same level, then a dependency path which we might
take must be finite. Second, there is only a finite number of levels to look at.
The first condition given above can be solved by introducing a class of programs
with finite levels, the second by restricting the level of query atoms.

Definition 9. (Programs of Finite Level) A logic program P is called of
finite level if there exists a level mapping characterization of the well-founded
model of P with a level mapping l such that l−1(α) is finite for all ordinals α.

In other words, in programs of finite level, the number of atoms of level α,
denoted as Λα, is finite for all α.

Definition 10. (ω-Restricted Query or Goal) A query or goal G is ω-
restricted (w.r.t. some I-partial level mapping l) iff all its atoms are of level
less than ω.

Suppose P is a program and G a ground ω-restricted query. Due to the
stratification of the well-founded semantics, we can use the stratified relevant
universe, viz. the relevant universe restricted to the levels less than or equal to
those of query atoms.

Proposition 4. Given a program P , a (partial) interpretation I and an I-
partial level mapping lP . If P is a program of finite level and G an ω-restricted
ground query, then U∗rel(P,G) and P ∗G are finite.

Example 2. (Programs Of Finite Level)
P : {p(a),

p(f(X))← p(X),
q(a)← ¬p(X),
q(f(X))← q(X),
r(a)← ¬p(a), q(X).} G :← r(a).

An example level mapping characterization of the well-founded model of P is
given by lP (as defined in Section 3):

lP l−1
P

: :
n p(fn−1(a)),¬q(fn−2(a))
: :
2 p(f(a)),¬r(a),¬q(a)
1 p(a)
0 ∅

The level mapping lP for this program has finite levels, even though its depen-
dency graph contains infinite dependency chains of atoms with predicates q and
p. We see that it leaves us with a finite stratified relevant subprogram, P ∗G:

U∗rel(P,G) : {r(a), p(a), q(a), p(f(a))}
P ∗G : {p(a); p(f(a))← p(a); q(a)← ¬p(a);

q(a)← ¬p(f(a)); r(a)← ¬p(a), q(a)}

8



5 Decidability Results

Due to finiteness of U∗rel(P,G) and P ∗G shown for both classes of programs in
Propositions 3 and 4, we prove that query evaluation for programs is decidable.

Theorem 2. Given a program P and a level mapping characterization lP of the
well-founded model of P , the following conditions hold:

i if P is finitely recursive on lower levels, then for all ground queries G, the
truth value of G under the well-founded model of P is decidable.

ii if P is a program of finite level and G a ground ω-restricted query, then the
truth value of G under the well-founded model of P is decidable.

It follows immediately that existentially quantified goals are semi-decidable.
The existential closure of G is denoted by ∃G.

Corollary 1. Given a program P and a level mapping characterization lP of
the well-founded model of P , the following conditions hold:

i if P is finitely recursive on lower levels, then for all ground queries of the
form ∃G, the truth value of ∃G under the well-founded model of P is semi-
decidable.

ii if P is of finite level, then for all ω-restricted queries ∃G, the truth value of
∃G under the well-founded model of P is semi-decidable.

6 Related Work and Conclusions

The work on programs finitely recursive on lower levels and of finite level was
inspired by the paper of Bonatti [5] on finitary programs. Work in a similar
direction comprises papers on acyclic programs [8], acceptable programs [9], Φ-
accessible programs [10, 11], and (locally) stratified programs [12, 13]. This work
concerns Prolog or semantics other than the well-founded semantics. Neverthe-
less, some results carry over directly to the well-founded semantics by means of
well-known relationships between different semantics.

Methods for top-down computation of queries under the WFS are presented
in [14, 4], lacking, however, a satisfactory non-procedural characterization of the
fragment of the well-founded semantics which is being computed.

We presented (semi-)decidable fragments of the well-founded semantics. The
corresponding program classes constitute expressive fragments of logic program-
ming under the well-founded semantics. Our results show how queries can be
answered by using only a strict subprogram of the ground instantiation of the
program, that is, the (stratified) relevant subprogram.

While our results are–to the best of our knowledge–the very first ones which
address decidability under the well-founded semantics, we also notice a major
drawback of the initial results presented in this paper: Decidability under the
described fragments rests on the knowledge of a suitable level mapping charac-
terization, the computation of which is in general itself undecidable. However,

9



our results simplify the matter considerably, as programmers usually keep track
of the syntactic and semantic dependencies between literals occurring in their
programs, which essentially boils down to keeping track of a suitable level map-
ping. We therefore believe that this restriction of our results–albeit not entirely
satisfactory from a theoretical perspective–is much less severe in practice. This
issue, however, will need to be investigated in future work.

References

1. Schlipf, J.S.: The expressive powers of the logic programming semantics. In:
Selected papers of the 9th annual ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, Orlando, FL, USA, Academic Press, Inc. (1995)
64–86

2. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3) (1991) 620–650

3. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42 (1995) 741–843

4. Rao, P., Sagonas, K., Swift, T., Warren, D., Freire, J.: XSB: A system for effciently
computing WFS. In: Logic Programming and Non-monotonic Reasoning. (1997)
431–441

5. Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1)
(2004) 75–111

6. Dix, J.: A classification theory of semantics of normal logic programs: II. Weak
Properties. Fundamenta Informaticae 22(3) (1995) 257–288

7. Hitzler, P., Wendt, M.: A uniform approach to logic programming semantics.
Theory and Practice of Logic Programming 5(1–2) (2005) 123–159

8. Apt, K.R., Bezem, M.: Acyclic programs. New Generation Computing 9(3-4)
(1991) 335–365

9. Apt, K., Pedreschi, D.: Reasoning about termination of pure prolog programs.
Information and Computation 106 (1993) 109–157

10. Hitzler, P., Seda, A.K.: Generalized metrics and uniquely determined logic pro-
grams. Theoretical Computer Science 305(1–3) (2003) 187–219

11. Hitzler, P., Seda, A.K.: Characterizations of classes of programs by three-valued
operators. In Gelfond, M., Leone, N., Pfeifer, G., eds.: Proceedings of the 5th
International Conference on Logic Programming and Non-Monotonic Reasoning,
LPNMR’99, El Paso, Texas, USA. Volume 1730 of Lecture Notes in Artificial
Intelligence., Springer (1999) 357–371

12. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge.
In Minker, J., ed.: Foundations of Deductive Databases and Logic Programming.
Morgan Kaufmann, Los Altos, CA, USA (1988) 89–148

13. Przymusinski, T.: On the declarative semantics of deductive databases and logic
programs. In Minker, J., ed.: Foundations of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann, Los Altos, CA, USA (1988) 193–216

14. Chen, W., Swift, T., Warren, D.: Efficient top-down computation of queries under
the well-founded semantics. Journal of Logic Programming 24(3) (1995) 161–199

10


