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Abstract. Reiter’s default logic suffers the triviality, that is, a single contradic-
tion in the premise of a default theory leads to the only trivial extension which
everything follows from. In this paper, we propose a default logic based on four-
valued semantics, which endows default logic with the ability of handling incon-
sistency without leading to triviality. We define four-valued models for default
theory such that the default logic has the ability of nonmonotonic paraconsistent
reasoning. By transforming default rules in propositional language £ into lan-
guage Z+, a one-to-one relation between the four-valued models in £ and the
extensions in £ is proved, whereby the proof theory of Reiter’s default logic is
remained.

1 Introduction

Reiter’s default logic [1] is an important nonmonotonic logic. It has been studied widely
for its clarity in syntax as well as strong power in reasoning. In the default logic, a set
of formulae W and a set of default rules D form a default theory (W, D). Reiter’s
default logic is supposed to reason in consistent knowledge: even a single contradiction
presented in W will lead to the unique trivial extension which includes everything.

One way to make default logic handle inconsistent knowledge is to resolve the con-
tradictions in the premise of a default theory. The signed system [2] decomposes the
connection between positive atoms and negative ones by formulae transformation and
then restores a consistent set of formulae by default logic. The set of formulae trans-
formed from the original one is consistent and it is used as W in a default theory. It
follows that all extensions are nontrivial. Roughly speaking, the signed system does not
aim at handling inconsistencies in a nonmonotonic logic, since the default rules are not
used in knowledge representation. In the bi-default logic [3], all parts of default rules
are transformed in a same way, and then default theories are transformed into bi-default
theories. Because of the differences between its proof theory and that of default logic,
it will take much effort to implement the bi-default logic.

The systems listed above have a similar character, that is they provide procedures
of two steps: transforming and then computing. However, they lack semantics. Also it
is hard to point out the direct connections between the inconsistent default theory and
its conclusions.

Some nonmonotonic paraconsistent logics (see [4, 5] among others) have been pro-
posed by directly introducing nonmonotonicity into paraconsistent logics, especially
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Belnap’s four-valued logic [6, 7]. However, in the computing level, there are challenges
in implementing effective theorem provers for them.

Our main contribution in this paper is to provide four-valued semantics for default
logic whereby we gain a nonmonotonic paraconsistent logic, named four-valued default
logic, in which we can reason under a nice semantics but by a classical proof theory. So
the semantics works as an interface of nonmonotonic paraconsistent reasoning, and the
procedure of transforming and computing just serves as a tool to compute the models
of default theories. This novel reasoning method makes the four-valued default logic
applicable in commonsense reasoning. Inheriting the proof theory of Reiter’s default
logic and equipped with semantics of Belnap’s four-valued logic, our four-valued de-
fault logic is a paraconsistent version of the former and a nonmonotonic extension of
the latter.

We develop our work in the following steps. First of all, four-valued models are
defined as semantics of default logic. As we know, an extension of a default theory is a
minimal set satisfying both W and D in the context expressed by the extension itself.
We adopt the similar approach. A four-valued model of a default theory is minimal in
the sense of “information” and satisfies both W and D in the context expressed by the
model itself. Similarly, our method can be extended to any other minimalities.

Secondly, we propose a uniform procedure to compute four-valued models in the
context of Reiter’s default logic. A transformation of default rules is provided with

. .. . . =+ .
which default theories in £ are transformed into those in £ , and then the computation
of models is converted to that of extensions. Why we can do so is that we have gotten

the one-to-one relation between the four-valued models in £ and the extensions in Z .
Consequently, the four-valued semantics for default logic can be easily implemented by
classical reasoning systems for the original default logic [8].

The logic DL3 presented in [9] also combines default logic with a multi-valued
logic, Lukasiewicz three-valued logic. But DL3 also suffers the triviality. On the other
hand, the proof theory of Reiter’s default logic is modified in DL3 unlike that of the
four-valued default logic. Comparison details appear in section 6.

By briefly reviewing Reiter’s default logic and Belnap’s four valued logic in section
2 and 3 respectively, we focus on the k-minimal model in section 4, its computation and
the transformation of default theories in section 5. Finally, we compare our work with
some others in section 6 and conclude this paper in Section 7.

2 Default Logic

Let £ be a propositional language. A theory is a set of formulae, and T'h(-) denotes the
consequence operator on propositional logic.

A default theory is a pair (W, D), where W is a theory of £ and D is a set of default
rules of the form: O‘Tﬁ The formulae «, 3, of L are called prerequisite, justification
and conclusion respectively. For the sake of simplicity, we assume that there is one and
only one justification in a default rule, and this restriction is not essential (see [10]).
We denote the prerequisite, justification and conclusion of a default rule § as Preq(9),
Jus(0) and Cons(8) respectively. A default theory may have none, a single or multiple
extensions defined by a fixed point:



Definition 1 ([1]). Let T = (W, D) be a default theory. For any set S of formulae, let
I'(S) be the minimal set that satisfies:

(D1) I'(S) = Th(I'(S));
(D2) W C I'(S);
D3) if 2 € D,a € I'(S) and —B ¢ S, then y € I'(S).

A set E is an extension of T iff I'(E) = E.

Any extension represents a possible belief set expressed by the default theory.
Reiter’s default logic can not deal with inconsistencies:

Proposition 1 ([1]). A default theory T = (W, D) has an inconsistent extension iff W
is inconsistent, and it is the only extension of T.

3 Four-Valued Logic

As four truth-values in Belnap’s logic [6,7,5], FOUR = {t, f, T, L} (also written
as (1,0),(0,1),(1,1) and (0, 0) respectively) intuitively represent truth, falsity, incon-
sistency and lack of information respectively. The four truth-values form a bilattice
(FOUR, <, <j) named FOUR , where the partial orders are defined as the follow-
ing rules: for every x1, x2, y1,y2 € {0,1},

(w1,91) <t (w2, y2) iff 21 <20 and y1 > yo;
(@1,y1) <k (x2,92) iff 1 < 29 andyr < yo.

Intuitively, the partial order <, reflects differences in the amount of truth, while <y,
reflects differences in the amount of information. The first element x of the truth-value
pair (z,y) stands for a formula and the second against it.

It follows the operators of FOUR : —(z,y) = (y,x), (z1,y1) A (z2,y2) = (1 A
T2, y1 vV y2), (T1,y1) V (x2,2) = (21 V 22,51 Ay2), (x1,51) D (@2,92) = (m21 V
T2, 21 A Y2), and (21,y1) — (22,y2) =ar ~(21,91) V (22,92).

In four-valued logic, internal implication is interpreted as operator D and material
implication is interpreted as operator — in F OUR . We use the same symbols to denote
connectives in £ and operators on FOUR .

A four-valued valuation v is a function that assigns a truth value from FOUR to
each atom in £. Any valuation is extended to complex formulae in the obvious way. A
valuation v is a four-valued model of (or satisfies) a formula ¢ if v(¢)) € {¢, T }.

Definition 2 ([5]). Let X be a set of formulae and 1) a formula in L. Denote X |=* 1),
if every four-valued model of X is a four-valued model of ).

Let v and u be four-valued valuations, denote v < u if v(p) <j u(p) for every
atom p. Given a formulae set X in £, the minimal elements w.r.t. < in all models of
2 are called the k-minimal models of 3.

Definition 3 ([S]). Let X be a set of formulae and 1 a formula in L, Denote X |:i P
if every k-minimal model of X is a model of 1.



4 Four-Valued Default Logic

Let £ be a propositional language that does not contain constants ¢, f, T and L. All
logic connectives in £ are —, V, A, — and D, where — is defined by — and V in the usual
way. Suppose A is a set of models, we denote A(¢p) € truthSet if VM € A, M(¢) €
truthSet, where truthSet is a subset of FOU R and ¢ is a formula in L.

In Reiter’s default logic, a single (classical) model cannot represent beliefs. One
of the reasons is that a single model cannot differentiate “being false” and “not being
true”. By deductive closed theory, which is equal to a set of (classical) models, we can
say that ¢ is false if —¢ is in that theory, and that ¢ is not known (i.e. “not being true”
and “not being false”) if both ¢ and —¢ are not in the theory. In the case of four-valued
logics, we can distinguish them by non-classical truth values. So, we can use one single
four-valued model to represent beliefs expressed by default theories.

A default theory may have none, a single or multiple £-minimal models defined by:

Definition 4. Let T' = (W, D) be a default theory in L. For any four-valued valuation
N on L, let I',(N) be the biggest set of four-valued valuations on L satisfying that:

(Ax) If N’ € I'y(N) then N' is a four-valued model of W.
(K-min) If N’ € I}.(N) then N’ <, N.
(Def) If <2 € D, I}(N)(a) € {t, T} and N(B) € {t, L}, then Ty(N)(v) € {t, T}.

A valuation M is a k-minimal model of T iff I';(M) = {M}.

A singleton is required in the condition Iy (M) = {M}, because any other model
in the set I (M) includes less information than the context M does and it should be
eliminated when reconstructing the context. The condition K-min indicates that all in-
formation achieved should be restricted by the context.

Definition 5. We say a model M’ satisfies a default theory T in the context of M, if

— M’ is a four-valued model of W, and
— Iif<2 € D, M'(a) € {t, T} and M(B) € {t, L}, then M'(y) € {t, T}.

It is easy to show that M satisfies 7" in the context of M itself, if M is a k-minimal
model of T' = (W, D), and what’s more, M is the <;-minimal one:

Theorem 1. If M is a k-minimal model of a default theory T = (W, D), then M is a
<w-minimal model that satisfies T in the context of M.

Example 1. Let W = {p,—p}, D = {%} T = (W, D). W has four models that
assign r the value L: Mi(q) = t, Ma(q) = f, M3(q) = T, My4(q) = L and they
all assign p the value T.If N is a model of W and N(r) # L, there exists a model
Mi S Fk(N),]. é ) S 4. Since Fk(Ml) = {Ml}, Fk(Mz) = Fk(M4) = @, and
I, (M3) = {M;, My, M3, My}, My is the only one k-minimal model of 7.

Example 2. Let W = {p, —-p}, D1 = {W;M}. T, = (W, Dy) has only one k-minimal

model My s.t. My(p) = T, M1(q) = L, My(r) = L.
Let Dy = %, %}. Ty = (W, D3) has only one k-minimal model Ms s.t.
MQ(p) = TvMQ(Q) = T7M2(T) =1



Notice that, when we replace W by the set {p}, each default theory in the above
examples has only one k-minimal model M s.t. M (p) = ¢, M(q) =t,M(r) = L.
Some contradictions introduced by default rules can also be handled “properly”:

Example 3. Let T = (0, {2, 2}). T lacks extensions, while 7" has one k-minimal
model: M(p) = L, M(q) =T.

Example 4 (Tweety dilemma). A representation in four-valued logic is given as follow-
ing (see [5]):
bird_ Tweety — fly_ Tweety
Wo = < penguin_Tweety D bird_Tweety
penguin_Tweety D — fly Tweety

W = Wy U {bird_Tweety}, W' = Wy U {penguin_Tweety}.
The k-minimal four-valued models of W and W' are shown in Table 1.

Table 1. k-minimal models of W and W'

bird_Tweety| fly_Tweety|penguin_Tweety
W || M t t €
Moy T 1 1
W'l M3 T f t
My t T t

When all we know about Tweety is that it is a bird, we can not draw the reasonable
conclusion that Tweety can fly by four-valued logic (in its k-minimal reasoning). When
knowing more about Tweety that Tweety is a penguin, we are confused with whether
Tweety is a bird (for we have the negative knowledge that Tweety is not a bird).

In the four-valued default logic, we can get an alternative representation:

PAD

penguin_Tweety D bird_Tweety
penguin_Tweety D — fly Tweety

bird Tweety : fly Tweety/ fly Tweety

T, =

where (p A —p) stands for any contradiction. Denote Ty = (W1, D), Wy = W7 U
{bird_Tweety}, T = (Ws, D) and W' = Wy U {penguin_Tweety}, T = (W', D).
The k-minimal models of 7" and 7" are shown in Table 2.

Table 2. k-minimal models of 7" and T’

bird Tweety| fly-Tweety|penguin_Tweety
T || My t t 1
T'(| M5 t f t

==




Just as expected, when what we know about Tweety is only that it is a bird, we think
it can fly. After knowing that Tweety is a special bird: a penguin, we revise our beliefs
and claim that it can’t fly without being confused.

In example 4, because of the presence of contradictions in p, Reiter’s default logic
will collapse, but in the four-valued default logic, the inconsistencies are successfully
localized and do not do any harm to reason about Tweety.

Definition 6. Let T' = (W, D) be a default theory and ¢ be a formula in L. Denote
T EF ¢, if for any k-minimal model M of T, M (¢) € {t, T} holds.

Theorem 2. W =1 ¢ iff (W, 0) =~ ¢.

Theorem 2 shows that the four-valued default logic in its £-minimal reasoning pat-
tern can be viewed as an extension of four-valued logic in k-minimal reasoning. And
as a consequence, only the skeptical consequence relation (defined in definition 6) is
suitable for the four-valued default logic.

The next theorem provides a more intutive characterization of k-minimal models of
a default theory.

Theorem 3. If T' = (W, D) is a default theory in L, then a four-valued valuation M
is a k-minimal four-valued model of T iff (\;~q M; = {M?}, where
My = {N < M | N is a four-valued model of W'}
Mo = (N e | N0 € (6T}, 2 e D,

where M;(a) € {t, T} and M(B) € {t, L}}

The four-valued default logic has some nice properties shown in the followings.
Definition 7. Suppose T = (W, D) is a default theory and M is a k-minimal model of
T. The set of generating defaults for M w.r.t. T is defined to be GD(M,T) = {“Tﬁ €
D M(a) e {t, T}, M(B) € {t, L}}.

Theorem 4. Suppose T = (W, D) is a default theory. If M is a k-minimal model of T
then M is a k-minimal model of (W U Cons(GD(M,T))).

Theorem 5 (k-minimality). Suppose that M and N are k-minimal models of a default
theory T = (W, D), where Jus(D) does not include the internal implication D. If
M < N then M and N are identical.

Theorem 5 indicates that sometimes we need restrict the occurrences of internal
implication in Jus(D) to achieve nice properties, but we also need internal implication
in W, Preq(D), and Cons(D) to strengthen the expressive power.

5 Computing k-Minimal Models of Default Theories

Let £ be the objective language of formulae transformation satisfying that LN = 0
and A(Z+) = {pT,p~ | p € A(L)}, where operator A(L) denotes all atoms in £. And

—+ . . . . . . .
L only includes logic connectives: —, V, A and —. Notice that the internal implication
and the material implication coincide in the classical logic.



5.1 Transformation of Formulae

In [11,12,2,3], the technique of transformation has been proved very useful. In this
subsection, we show this method in a convenient way.

Definition 8. For every formula ¢ in L, 6+ inL isa transformation of ¢ if:

$+ = pt, where p = p,p € A(L)

$+ =p~, where ¢ = —p,p € A(L)

) =¢+\/E+, where ¢ = o \V

5+ =p" AE—F, where ¢ = p AN

$+ =-p" \/@ﬁ where ¢ = ¢ D

$+ = @—F, where ¢ = =)

¢ ==t AU, where ¢ = =(p V ¢)
¢ ==t VU, where ¢ = ~(p A1)

. $+ =" /\@—F, where ¢ = —(p D 1)

+
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In the rest of the paper, we denote T = {64_ | p € X}

Theorem 6. T is (classical) consistent for any theory W.

We call a theory E' complete if it contains p or —p for every atom p € A(E).
Definition 9. Let E* be a theory in Z+,deﬁne amap vy on Lwrt. ET as:

) ¢ € EY, =g e BT
() = ) ¢ e B¢ e Bt
eI ) ~¢' € Et,~¢ e EY
) ¢ € Et,-—¢ € E*

o O = =
O = O =

T
t
f=
L
Obviously, the map vg+ is a valuation when E is consistent and complete.

Theorem 7. If E™ is a consistent and complete theory in Z+, then the map vg+ is a
Sfour-valued valuation on L, i.e.: v+ (—¢) = g+ (9), vp+ (VYY) = vp+ (@) Vog+ (¥),
vp+ (@A) = vp+ (@) Avp+ (), and v+ (¢ DY) = vp+ (d) D vp+ (V).

Definition 10. Ler v be a valuation on L, define the complete and deductive closed
theory EF w.rt. vin ol by:

Ef=Th({p" |peLvlp) e{t, T}}U{p™ |peLvlp)c{f T}}
U {-p* [peLolp)e{fiL}}U{-p |peLvlp) et L}})

Proposition 2. The theory ES w.r.t. v is (classical) consistent.

Theorem 8. Let Ef be the theory w.r.t. a given valuation v, then



16" €Brif v(g) €{t, TH ~6 € B if v(¢) € {f, T}
2. =" € BFif v(9) € {f, 1} ~=6" € Ef if v(g) € {t, L}.
Thus the correspondence between consistent and complete deductive closed theo-
ries and four-valued valuations is built up completely.

Corollary 1. Let v be a valuation on L and E™ be a consistent complete and deductive
closed theory, then v is w.r.t. ET iff ET is w.r:t. v.

5.2 Relation Between Models and Extensions

From definition 9, we can see that under the transformation it is reasonable to declare
¢ is true (or false) when $+ (or —Tb+) is present, while the presence of —|$+ (or ﬂ—TZ)—F)
states the lack of information of “being true (or false)”. In the sense of information
keeping, transformation is naturally extended to commit default rules:

Definition 11. 7(D) = {a* : -—5 /5+ | a: /vy € D}

In definition 11, the prerequisite and the justification are transformed in such differ-
ent ways that we can easily distinguish different beliefs they stand for.

In order to minimize the statements drawn by the default theory, we explicitly im-
port =pT and —p~ by default to declare that we lack the information about whether p
is true and false respectively.

Definition 12. D* = {Z2- 22 | p e A(L)}.
Definition 13. The k-minimal transformation of default theory T is defined by

TH(T) = (W', T(D)U D).
Theorem 9. All extensions of T*(T') are consistent and complete.
The following example shows how our technique of transformation works:

Example 5. Suppose that T = (0, {2, 2£}). T" has no extensions, while T*(T) has
a unique extension: E* = Th({-p™,-p~, ¢, ¢~ }). Let M be the model w.r.t. ET,
then M is just the only one k-minimal model of 7', as shown in example 3.

Theorem 10. Let M be a four-valued model in L, M is defined as in theorem 3. Then
E* wrt. M is an extension of T*(T) iff E¥ = ;o E;f, where E = Nnerr, Ef,
and EJ'\’} is the theory w.r.t. N.

Theorem 11. Let M be a k-minimal model of a default theory T = (W, D). If E* is
the theory w.r.t. M, then E™ is an extension of T*(T).

Theorem 12. Let T = (W, D) be a default theory in L and E™ is an extension of
TH(T). If M is the valuation w.r.t. E¥, then M is a k-minimal model of T.

Corollary 2. Let T be a default theory in L and ¢ € L. Then T |=F ¢ iff $+ is in
every extension of T"(T).

Thus we can get four-valued models of a default theory by computing extensions of
its counterpart transformed from itself and vise versa as shown in Fig. 1.
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Fig. 1. The relationship between the four-valued default logic and Reiter’s default logic

6 Related Work

The default logic in the signed system [2] is only used to restore contents from formulae

in Z+, which are transformed from the original ones in L. In this paper, we presented a
paraconsistent variant of default logic.

In terms of proposing a variant and an extension of Reiter’s default logic, one of the
previous work is the bi-default logic [3]. The bi-default logic (or Reiter’s default logic)
is incomparable to the four-valued default logic in reasoning power. For example, the
default theory in example 3 has a k-minimal four-valued model but lacks bi-extensions
(and extensions). But when there is no default rules present, the four-valued default
logic may infer less conclusions than the bi-default logic (or default logic) does, which
is based on classical logic. Secondly, although a map from the bi-extensions to FOU R
is given, we can not get four-valued models of a default theory. In fact, the map is even
not a four-valued valuation, e.g. there is a map which gives both ¢ and v the same value
T but assigns ¢ A1) the value f. But we explicitly defined four-valued models for default
theory. Finally, in the four-valued default logic, the prerequisite and the justification of a
default rule are transformed into different forms, unlike the case of the bi-default logic,
in which the bi-extension is defined to justify whether a default rule is applicable. One
advantage of our method is that the proof theory of Reiter’s default logic is preserved.

In the method proposed in [11, 12], circumscription is used as a tool to calculate
multi-valued preferential models in classical logic. But circumscription is weaker than
default logic [13], so their method is also weaker than ours in expressive and reasoning
power.

The three-valued default logic DL3 [9] is based on Lukasiewicz three-valued logic
LUK3. By introducing modal like operators M and L, a formula can be declared to
be “possibly” true or “certainly” true in DL3. Since LUK3 is not paraconsistent [14],
DL3 also collapses whenever the premise is not consistent. Considering the adopted
approaches, there are two main differences between DL3 and the four-valued default
logic. First, we defined four-valued models for default theory instead of extensions
done in DL3. Second, we can get all four-valued models of every default theory by
computing extensions in standard default logic. But Radzikowska only discussed the
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proof theory limited to normal default theories in the original paper [9], by simulating
that of Reiter’s default logic.

7 Conclusion

In this paper, we proposed the k-minimal four-valued semantics for default theory. As
an extension of Belnap’s four-valued logic [6, 7, 5] and a paraconsistent version of Re-
iter’s default logic [1], the four-valued default logic can handle inconsistencies and it
still uses default theories in knowledge representation.

A novel technique was also provided to transform default theories into the ones
without trivial extensions. The one-to-one correspondence between the extensions of
default theory gained by transformation and the four-valued models of the original one
was set up as shown in Fig.1. Thus, four-valued models of default theory can be com-
puted by default logic theorem provers (e.g. [8]).

In this paper, we defined k-minimal models for default theory, and we confirmed
that our method can be applied to other minimalities. The results of this paper are lim-
ited to propositional level, we will extend it to first-order case, as well as consider the
applications of the four-valued default logic in commonsense reasoning in the future.
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