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Abstract This paper introduces a technique for the exploration of re-
lational data based on formal concept analysis (FCA). The formal de-
scription is followed by a simple example from basic mathematics.
Taking a concrete data set (as per example a relational database) on
the one hand and a priori rules (as database constraints) on the other
hand the presented algorithm determines all formulae of a certain shape
(expressed as description logic statements) valid in this setting. This can
even be done interactively: during the process, a domain expert may
update the data set in order to witness the invalidity of a rule supposed
by the algorithm.

This technique can be used in order to refine or construct ontologies as
well as to find hidden regularities in relational data.

1 Introduction

In recent years, the term semantic web has grown significantly in interest. One
of its central issues is the idea of exchanging "meaningful data” between he-
terogeneous systems.! Enabling such communication is one of the reasons to
design ontologies for linking terminologies, combining distributed information,
and drawing conclusions therefrom. This includes the task to provide background
knowledge for the description of web pages contents.

One important formalism developed for describing ontologies is OIL, a language
based on description logics (DL). Its major advantages are decidability and the
existence of highly optimized reasoning algorithm implementations (e.g. FaCT
by Ian Horrocks, see [10]).

Clearly, the design and refinement of ontologies is an expensive task which needs
human control. However, there are several difficulties to be faced: often, large
ontologies have to be designed and many pieces of information have to be en-
tered into the system. How can one prevent that on the one hand redundant
information is given (which means wasting human resources) and on the other

* Supported by DFG/Graduiertenkolleg.
! Heterogeneous means here endowed with different terminologies.



hand certain information is forgotten to enter? Furthermore, the creator of an
ontology has to be an expert in the domain the ontology refers to as well as
(more or less) in the underlying theory of ontologies and lots of technical issues.

To deal with these problems, techniques which automatize and structure the
ontology creation and refinement process as far as possible and minimize and
facilitate the necessary human-computer interaction are highly desirable.

This paper proposes an algorithm which (given atomic roles and concepts as
well as possibly some amount of data and background information) determines
further implicational dependencies by successively presenting questions in the
form of DL entailment statements to a domain expert. Since this is done in an
organized way no redundant questions will be asked. So in a certain sense, this
approach combines knowledge discovery in databases with ontology creation.

In Section 2, based on DL a class of concept descriptions (££) is defined together
with an extensional semantic using binary power context families. Definitions of
entailment and equivalence of that formulae wrt. a fixed semantics are discussed.

In the sequel, Section 3 will shortly recall some notions of formal concept analysis
(implication, stem base) as far as they are needed for an understanding of the
attribute exploration algorithm developed by Ganter (cf. [4]).

In Section 4, we define a special kind of formal contexts that can be constructed
on the basis of a binary power context family from a set of DL-formulae. We
observe that implications within such a formal context correspond to valid DL
entailment statements.

The algorithm, that consists of a sequence of exploration steps is described in
Section 5: initialization, the actual exploration step yielding a stem base 9B;, and
how the stem base can be used to determine the attribute set and background
knowledge for the next exploration step.

In Section 6, we apply the presented algorithm to an example from basic math-
ematics.

Section 7 discusses, how the validity of an arbitrary entailment statement be-
tween concept descriptions from £L£; can be decided using just the stem bases
By, ..., B; obtained from the exploration process.

Concluding, in Section 8 we discuss how this algorithm can be applied for gen-
erating and refining ontologies.

2 The language £L: syntax and semantics

In this section, we will present a way of constructing formulae from two sets of
attribute names. These constructed formulae can be evaluated via extensional
semantics. As the name £L already indicates, this is just a reformulation of the
very basic ideas of description logic, where a binary power context family takes
the role of the interpretation.



Definition 1. Let Mg, Mg be arbitrary finite sets, the elements of which we
will call concept® names and role names resp. By EL(Mc, M) (or shortly: EL
if there is no danger of confusion) we denote the set of formulae (also called
CONCEPT DESCRIPTIONS ) inductively defined as follows:

Me.U{T,L}C &L
p,pellL=pNyell
p€e&L,re Mg = Irpell

Now we describe an extensional semantics for the above defined formulae. Power
contezt families have been introduced as a contextual representation of relational
structures. They have e.g. been used as semantics for conceptual graphs in [14].
Moreover, they suggest to extend the conceptual view® from unary predicates to
predicates with arbitrary arities. In our case it suffices to restrict to the binary
case, defined as follows.

Definition 2. A BINARY POWER CONTEXT FAMILY on a set A, called the UNI-
VERSE, with A # () is a pair (Kc,Kg) consisting of the formal contexts Ke :=
(Gc,Mc,Ic) and K’R = (GR,MR,IR) with Gc = A and GR =Ax A.

As we know from the definition of formal context, M¢ and My are arbitrary
sets and Ic C G¢ X M¢ as well as Ir C Gr X Mg.

Definition 3. The semantics mapping [.]» : EL(Mc, Mr) — P(A) for a binary
power context family R on o universe A with attribute sets Mec, My is defined
recursively:

[T].:=A4

[L]-:=0

[m]+ :=mfe for allm € Mc
[e M 94]e = lel- N [¥]-

[3rdly =={z € A|Ty:(z,y) Er'®* Ay €[]} forallr € Mg

By £L,, we denote the set of all concept descriptions from EL with role depth of
at most n.

Furthermore, we say a formula ¢ is VALID IN ® (which we denote by R = o),
iff [¢]» = A. A formula 3 ENTAILS a formula ¢ in R (write: ¢ = 59), iff
[¢]» C [¥]--

Two formulae ¢ and 1 are called K—EQUIVALENT, iff o E29 and ¥ E o
(write: ¢ =4 ¢).

Abbreviation: Let C = {c1,...,c,} be a finite set of £L concept descriptions.
Then the new concept description ¢; M ... M ¢, will be abbreviated by []C.
Furthermore, let [[{c} =cand [0 =T.

2 Whenever in this article we use the term concept we refer to the notion used in De-
scription Logic. If we want to refer to the meaning used in Formal Concept Analysis
we use formal concept.

8 More precisely: the way of thinking in conceptual hierarchies.



In our view, ££ comprises the majority of concept descriptions used in human
thinking. Most of the concepts employed intuitively have a positive (i.e. negation
free) conjunctive structure, while disjunctions and negations are used quite rarely
(cf. [13]).

Our algorithm provides for a given number n a canonical set of entailment state-
ments by means of which the validity of every entailment query concerning con-
cept descriptions from £L,, can be decided.

3 Attribute exploration

We assume the reader to be familiar with the basics of formal concept analysis
(for a detailed introduction see [5]).

Let us here only shortly recall the attribute exploration algorithm. Developed
by Ganter (see [4]), this algorithm allows for interactively determining the im-
plicational knowledge of a given domain.

Definition 4. Let M be an arbitrary set. If A and B are two sets with A,B C M
we will call the pair (A, B) an IMPLICATION on M. To support intuition we will
write it as A — B in the sequel. We say an implication HOLDS for an attribute
set C, iff from A C C follows B C C. Moreover, an implication HOLDS in a
formal context K = (G, M, I) iff it holds for all its object intents.

Given a set A C M and o set J of implications on M, we write A” for the
smallest subset of M which

— contains A and
— fulfills all implications from 3.4

Let Imp(K) denote the set of all implications holding in K. A set of implications
B is called implicational base of K iff it is

— complete, i.e., AB = ATmP&) for gll A C M and
— irredundant, i.e., for every implication i € B there is an A C M with
AB\E} £ AImp(K)

Roughly spoken, an implicational base of a formal context is a small representa-
tion of its complete implicational knowledge. Guigues and Duquenne [7] found
a characterization of a canonical minimal implicational base - the so called stem
base.

With attribute exploration we are provided with a tool to determine a stem base
for a context which does not need to be known entirely in advance. For a detailed
description of the algorithm see [5]. It starts with a fragmentary context, i.e., a
context containing only some “example” objects, and systematically determines

4 Since those two requirements are preserved under intersection, the existence of a
smallest such set is assured. Moreover, note that the operation (.)” is a closure
operator on M. Note also, that given A and J the closure can be calculated in linear
time (cf. [3]).



possible implications. These hypotheses are presented to an “expert”, who either
confirms them, or provides a counterexample. This dialogue continues until the
complete information is determined.

Note, that the “expert” needs not to be a human being. It might as well be an-
other algorithm (such as a reasoner, a constraint solver, or an automatic theorem
prover), which is capable of answering the questions (cf. [1]).

4 EL-Contexts

On the basis of a binary power context family we can define for an arbitrary set
of £L concept descriptions a corresponding context, which states for every object
from the underlying universe, whether it fulfills a certain concept description.

Definition 5. Given a binary power context family R = (Ke,Kgr) on a uni-
verse A and a set M C EL(M¢, MR), the corresponding £ L-CONTEXT is defined
in the following way:

Keg (M) := (A, M, I) with §Im :& 6 € [m]+

Now, assume

{ml,...,mk} —> {mk+1,...,ml}

is an implication valid in K¢ . It can be shown easily that this is equivalent to
the validity of the entailment statement

|_|{m1, e ,mk} IZ? |_|{mk+1,. . .,ml}.

Since the wanted result of the exploration process is a means for deciding the
validity of any entailment statement between concept descriptions from ££; for a
giveni € N, we look for a small set M C EL(M¢, M) such that every entailment
corresponds to an implication in M.

5 Successive exploration

The exploration technique described here consists of a sequence of single at-
tribute explorations, each step providing necessary information for the next one.
The formal context explored in step ¢ € N will be denoted with K; = (A, M;, ;).
The set of example objects we start with will be named G;. The process yields
the corresponding stem base B;, which is used as background information for
the next step as well as to generate the attribute set M; 1. Furthermore, using
the stem bases Bo,...,B;, any entailment statement on £L; can be decided
(this will be dealt with in Section 7).



We start the exploration sequence with the context Ko = (Go.My, Iy) where
Go = G,
My := M U {T, J_}, and

Iy := (Ie N GxMc) U (Gx{T}),
with G being a set of objects initially “known” to the algorithm.
After having carried out the preparations, the actual exploration (the dialogue
with the expert) takes place. Every implication {m1,...,mg} = {mgs1,...,mi}
being presented to the expert has to be interpreted in the following way: “Do
all entities from the universe that fulfill the concept description my M ... M my
also fulfill the concept description my41 M...Mm;?” The expert either confirms
this, or provides an entity that violates this condition. The result of this process
is the stem base B;.
The attribute set M; ;1 for the (i + 1)th exploration step is generated as follows:

My = MoU{3r.myM...Nmy, | € Mg, {my,...,my} = {mq,...,m,}% C M;}

The choice of this attribute set is motivated by the following fact: for any set A
of attributes from M; we have [1A =, [ A% (see the appendix for the proof).
Thus (in comparison to creating new attributes for any conjunction) we can
reduce the necessary amount of attributes considerably without loosing expres-
sivity. Conjunctions outside any quantifier range do not need to be internalized
into new attributes, since the structure of the implications allows to express
them anyway (cf. Theorem 1 in the appendix).

We now investigate, which implicational information is automaticly valid in K;
because it is valid in any binary power context family, that is compatible with
By, ..., B;. This can be used as a priori knowledge for the exploration of K;;1
in order to minimize the amount of questions asked to the expert.

First of all, due to the internal structure of the composed attributes there are
some trivially valid implications, they are of the form

{3r.[ |A} = {3r.[ |B} forall BC A and A, B € M;.

Next, in every exploration step we want to reuse the knowledge collected in the
former steps. Therefore we define a sequence of maps (f;)

m—=m,ifme McU{T, L}
Ir.[Hma,...,ma} = I [H{fimi(ma), ..., fimr(my)}>

where f; assigns to each attribute of the context K; its “updated version” in K; ;.
This mapping naturally extends to implications by applying it to the literals.
Obviously an implication ¢ is valid in K; iff f;(¢) is valid in K;;;. Thus we can
use the implicational knowledge collected in exploration step i as background
information for the step i+1, by adding { f(¢) | ¢ € B} to the a priori information
for the next exploration step. When proceeding from ¢ = 0 to ¢ = 1 this step is
trivial since all attributes from Mj, are primitive concepts.

After these preparations, we can carry out the next exploration step. This
process can be repeated (i = 2,3,...), yet the number of attributes can in-
crease drastically from step to step; in the worst case we would get |M; 1| =

fi: My — My, {



|Mc| 4 |Mg|-2/M:l. So practically the algorithm would have to be ended after a
few steps. However, the more dependencies there are in the data the less rapid
would be that growth.®

6 An example from basic mathematics

Let us consider an easy example for this exploration method. As our universe
A we take the natural numbers N := {0,1,2,...}. Let M¢ and Mg and their
corresponding incidence relations be defined as shown in Figure 1.

|c € Mc|name |cf¢ := {n e N| nlcc} |
ev even {2n | n € N}

od odd {2n+1|neN}

pr prime {n>2|kl=n=ke{1,n}}
el equals zero {0}

el equals one {1}

e2 equals two {2}

92 greater than two|{n € N|n > 3}

|r € Mz|name [r'= :={(n,m) €N’ | (n,m)Igrr}|
s successor |{(n,n+1)|n €N}

P predecessor|{(n + 1,n) | n € N}

d divisor {(m,n) | 3k € N: m = kn}

m multiple  |{(n,m) | 3k € N: m = kn}

Figure 1. Attribute sets M¢, Mz and definition of the incidence relations I¢, I'r for
the example.

So, with the above defined interpretations of the attributes, the crosstables of
the corresponding power context family would look like in Figure 2.

Now let us carry out the exploration of this example. The first step consists of
an exploration just on the attributes from M¢ U {T, L} =: My and yields the
stem base and corresponding concept lattice in Figure 3.

Proceeding with our example, we have to generate the attribute set M; for the
next exploration step. It is shown in Figure 4.

Then we have to generate the a priori knowledge for the second exploration step.
Firstly, this would contain all trivially valid implications such as 3d.(ev M prl
e2) — 3d.ev or Ip.(odMel) — Ip.T.

Moreover, we use the information collected so far. Since we proceed from the
first (¢ = 0) to the second (i = 1) step and fo is the identity function, we can
just use By as additional a priori information without further adaption.

® Theoretically, a fixed point - where no more information will be acquired by further
exploration steps - will be achieved, if A is finite.



[Ke [[e0]e1]e2]g2]prlev]od] [Kz [s[p|d|m]

0 ||x x (0,0) X
1 X x| [(0,1)][x] [x
2 X X | X (1,00 [x| |x
3 x|x| |x| [(0,2) X
4 X X (1,1) X | x
5 x|x| x| [(2,0) X
6 x| [x (0,3) X
7 x % x (1,2)||x X
8 x x (2,1)|| [x|x
9 X x| 1(3,0) X

Figure 2. Crosstables representing the power context family in the example.

{e0} — {ev} |{ev, od} — {L}
{e1}  —{od} |{g2, e0} — {1}
{e2} — {ev,pr}|{g2, e1} — {1}
{ev, pr} — {e2} |{e0, e2} — {1}
{od, pr} — {92} |0 - {T}
{pr, 92} — {od}

Figure 3. Stem base and concept lattice provided by exploration of Kp.



ev ds.T dp. T 3d. T dm. T

od ds.g2 dp.g2 3d.g2 Im.g2
pr ds.pr dp.pr 3d.pr Im.pr
el ds.od dp.od 3d.od Im.od
el ds.ev dp.ev 3d.ev Elm.ev
e2 3ds.(odMel) Ip.(odMN el) Eld (odMel) m.(odM el)

g2 Fs.(evN ¢2) Ep (ev ¢2) 3d.(ev g2) m.(ev g2)

T  Fs.(evM e0) Ip.(ev €0) 3d.(ev €0) m.(ev e0)

1 3s.(odM ¢g2npr) Ep (odM g2M pr) 3d.(od M g2 pr) Elm (odM g21M pr)
ds.(evM pr e2) Ip.(evN pr e2) Ad.(evN pr e2) Im.(ev prn e2)

Figure 4. Attributes M; for the second exploration step.

After these preparations, we can carry out the next exploration step. The con-
cept lattice of the resulting implicational base is shown in Figure 5.

Much information can be read directly from the lattice: formulae attached to
the same diagram node are semantically equivalent wrt. the fixed semantics
So from the bottommost node we can conclude Ad.(evMeld) = -, 1 meaning “no
natural number can be divided by zero”. Looking at the topmost node, we find
e.g. 3s.T =, T : “every natural number has a successor”

The exploratlon process could be continued for KQ,K’;, .... In our case, the at-
tribute set My would already have 163 elements.

7 Checking the validity of an entailment statement

Suppose the exploration procedure has been carried out until step 7 and let
¢1 E e (with ¢1,c2 € EL;) be an entailment statement, the validity of which
has to be checked.

In order to do this, we define a recursive function: ¢ : ££ x N — P(£L) with

o(m,i) := {m}®i form € McU{T, L}
p(3r.c,i) := {Ir.[p(c,i — 1)}“8"2B
e(C,i) == (U{p(ei) | c€ C})

Note that for all ¢ € ££; we have ¢(c,1) C M; (see the appendix for the proof).
Furthermore, ¢ carries out an equivalency preserving transformation, which
means [c]» = [[¢(c,4)]- for all c € EL;.

Due to these facts we can check the validity of any entailment statement between
concept descriptions from £L; in the following way (see the appendix for the
proof):

c1 Epca <= p(ca,1) C ple1,1)

By being able to check the validity of entailment statements we can also check
the equivalence of concept descriptions. So, from our implicational base we can
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derive the fact ev = 3d.e2 as well as 3d.e2 |=, ev, therefore ev =,3d.e2, which
is obvious in our case, however, in general this could be a way to minimize
the set of primitive concepts by finding definitions (composed formulae that are
equivalent) for some of them.

8 A possible application: ontology exploration

After having described the algorithm, we want to discuss how it can be used
in order to aid generating or refining ontologies by finding additional domain
axioms. We hereby refer to ontology types based on description logics, wherein
EL can be embedded, and for which exist efficient reasoning algorithms. The
probably most prominent example is OIL being equivalent to the very expressive
description logic SHZQ(d) (see [9] and [8]).

Deciding which features of the domain entities are of interest to the ontology
users (and thus should be incorporated in the ontology) is a task being left to
the human domain experts. So suppose, the stipulation of classes (M¢) and roles
(M) has been carried out. Possibly also some domain axioms have already been
stated.

Additionally there could be some sample data set (e.g. a relational database)
containing entities, the classes they belong to, and information about slots.
Now we can apply our algorithm. Thereby the sample data set mentioned above
can be incorporated completely into the object set G. If this is impossible (be-
cause the data set might not be available as a whole and can only be queried)
or not indicated (because of efficiency reasons), we can nevertheless use it by
querying it “on the fly” as we shall see in the sequel.

When being started, the algorithm comes up with implications asking for their
validity. These are interpreted as hypothetical domain axioms. Such an axiom
will be passed to a DL-reasoner, which tries to prove it from the axioms already
present in the ontology description. If it succeeds, the validity of the new axiom
is confirmed to the exploration algorithm. If it does not, the database will be
queried for a counterexample (in case the entire data set has not completely been
added to G in advance). If such a counterexample has been found, the validity
of the presented hypothetical axiom will be denied and the counterexample be
entered. The remaining case is the interesting one: it has been found evidence
neither for validity (by a proof) nor for non-validity (by a counterexample) of
the hypothetical axiom. In this case, the human expert will be asked for the
ultimate decision. If the expert confirms the validity, genuinely new information
about the domain has been made explicit and will be added to the ontology
description, thereby refining it. In case of denial, the counterexample provided
by the expert may not only be added to G but also to our sample data set, which
means extending it by an “interesting” entity.

This algorithm assures that all valid domain axioms having the shape of ££,
entailment statements are found in the exploration step n. Therefore we believe
it to be a useful tool for ontology engineers, helping them to structure the process
of specifying domain knowledge.



9 Related work

The PhD thesis of Zickwolff [15] can be seen as a first attempt to apply the
FCA exploration technique to a logic more expressive than propositional logic.
Implicational bases in her sense represent the first order Horn theory of a certain
domain.

Formal contexts, where attributes are DL-formulae and the incidence relation
is defined by validity, have been described by Prediger in [11]. However, this
work presented a way of enlarging a context’s attribute set by “interesting”
descriptions without dealing with exploration issues.

Baader presented a method for computing the subsumption hierarchy of all
concept descriptions, that can be obtained by applying conjunction to concept
names in [1]. There he also proposed a “dialogue” between an attribute explo-
ration algorithm and a DL reasoner. Yet there are two main differences to the
approach presented here: While Baader deals with subsumptions (i.e., entail-
ments valid wrt. all interpretations), we consider a fixed semantic (the domain,
our ontology refers to). Furthermore, the implicational bases from our explo-
ration allow the decision of the validity of any entailment statement between
formulae, that is built up from the concept and role names by conjunction and
existencial restriction while Baader considers just conjunction. This is also the
reason why we need an algorithm with several steps: every step allows to explore
deeper nestings of existencial restriction.

10 Future work

We are confident to extend the presented approach into several directions in the
future:

First, we will enlarge the set of considered formulae, such that it comprises
formulae containing universal quantifiers.

Next, we will integrate the techniques published in our paper [6] in order to ex-
plore every role separately. Although the algorithms presented there were origi-
nally aimed at transition systems, the ideas seem to fit very well into the more
general framework of modal and description logics.

Also an exploration of the context Kg would provide a priori information accel-
erating the DL exploration process.

All these issues (as well as possibly an implementation) will be part of my PhD
thesis, which is going to appear soon.

Appendix: proofs

Theorem 1. Let R a binary power context family, M C EL and A,B C M.
Then the implication A — B is valid in Kec (M) if and only if [1A =, [1B.



Proof. Rep (M) E A — B iff for all § € A from A C §! follows B C §. This
is the case iff N{b' | b € B} C N{a’ | a € A} which due to the definition
of I is equivalent to {[b]= | b € B} C ({[a]+ | a € A} and thus also to

[MBl- M4l O

Theorem 2. Let c € EL;. Then p(c,i) C M;.

Proof. We first show ¢(c,1) C M;, using induction on the role depth considering
three cases:

— ¢ € McU{T, L}. Then by definition ¢ € M; and thus {c}?: € M;.

— ¢ = 3r.é. As induction hypothesis we have ¢(¢,71 — 1) C M;_;. Yet, since ¢
always gives a closed set wrt. B;, we have also Ir.[]p(é,7i — 1) € M;, as a
look to the constructive definition of M; immediately shows.

—c=[] C. W.l.o.g. we presuppose there is no conjunction outside the quanti-
fier range in any ¢ € C. So we have ¢(¢,i) C M; due to the two cases above,

and subsequently also ({¢(¢,%) | c € C}) Pic M, 0

Lemma 1. For any A C M; we have [1A =, []A%:.

Proof. [[14]» = N{[m]- | m € A} = N{m® | m € A} = Al = ALLL =
ABi L :n{mh |meA€Bi}=n{[[m]]_K |m€A"Bi}=[[|—|A%i]]?_ O

Theorem 3. Let ¢ € EL;. Then c =4[] ¢(c,1).
Proof. We show this again via induction on the role depth:

— ¢ € McU{T,L1}. Then we have [c]- = [[{c}]+ = [[{c}*]+ due to
Lemma 1.

— ¢ = 3r.c. By induction hypothesis we have [¢]. = [[]¢(¢,i — 1)]», there-
fore [Ir.¢]ly = [Fr-[1¢(é,% — 1)]». Moreover, from Lemma 1 follows that
[3r-e(E,i — V)]- = [[1{3r- M ¢(E i — 1)}®]+, which by definition equals
[[l—l ()0(3".;67 Z)]]‘l?

— ¢ = []C. Again we can preassume no conjunction outside the quantifier
range in any ¢ € C. Then [[1C]: = N{[e] | ¢ € C} = {[[1¢(E )] |
¢ € C} because of the cases shown before. Now, this is obviously the same
as ({[m]» | m € ¢(E,i),¢ € C} =[[1(U{¢(Eq) | ¢ € C})], which in turn
is equivalent to [[J(U{¢(&,1) | ¢ € C})®]». o

Corollary 1. Let c1,ca € EL;. Then c1 |5, c2 if and only if p(c2,1) C p(c1,1).

Proof. Due to Theorem 3, ¢; |:? ¢co is equivalent to []¢(c1,1) |:? [1e(ca,i).
According to Theorem 2, we have ¢(c1,7) C M; and ¢(ca,1) C M;. So via Theo-
rem 1, this means the same as the validity of the implication ¢(c1,7) — (c2,1%)
in K;. Now, since the application of ¢ always gives a closed set wrt. K;, this is
equivalent to ¢(ca,1) C @(c1,1). O
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