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1 Introduction

Rules that allow existential quantifiers in the head (conclusion) have been studied ex-
tensively in knowledge representation, databases, and logic programming (in the related
form of logic programs with function symbols). In general, it is not decidable if a set
of such rules admits a finite model, but a number of sufficient conditions have been
proposed to detect situations where this is the case.

Two suchacyclicity conditions arejoint acycliclity [8] and super-weak acyclicity
[9]. This short technical note investigates the relationshipbetween the two conditions.
The main result is that, while super-weak acyclcity is a moregeneral condition, the two
conditions coincide on all sets of rules that do not contain multiple occurrences of the
same variable in any body atom (Theorem1). We also observe that this restriction does
not reduce the expressivity of jointly acyclic rules (Theorem2).

We first introduce our basic notation (Section2) and recall the idea of acyclicity
using the case ofweak acyclicity(Section3). Thereafter, we introduce joint acyclicity
(Section4) and conmpare it with super-weak acyclicity (Section5).

2 Preliminaries

Our syntax is based on a standard first-order logic signaturethat is based on finite sets
C of constants, F of function symbols, andP of predicates, and on an infinite set of
variablesV. These sets are mutually disjoint. We will usually keep the signature im-
plicit. The assumption on finiteness is useful when defining notions such asgrounding.
A functionar : F∪P→ N associates a natural numberar(σ) with each function symbol
or predicateσ ∈ F ∪ P that defines thearity of σ. The set ofpositionsof σ ∈ F ∪ R
is the setΠσ = {〈σ, 1〉, . . . , 〈σ, ar(σ)〉}. A term is a standard first-order term constructed
from variables, constants, and function symbols.

We generally use lettersx, y, z, v, w, u for variables,a, b, c, d for constants,f ,
g for function symbols,R, S, T for predicates, ands, t for terms, possibly with sub-



or superscripts. Boldfaced expressions, such asx or c, are used to denote lists of the
respective elements.

Definition 1. An atomis a formula of the form R(t1, . . . , tn) wherear(R) = n. Anexis-
tential rule(or simplyrule in the context of this paper) is a formula of the form

∀x.∀y.ϕ[x, y]→ ∃z.ψ[x, z]

wherex, y, and z are mutually disjoint lists of variables, andϕ[x, y] andψ[x, z] are
conjunctions of function-free atoms that containexactlythe variables inx, y andx, z,
respectively. In particular, all variables inx must occur inϕ, a condition known as
safety.

The conjunctionϕ is called thepremiseor body,ψ is called theconclusionor head,
andx is called thefrontier. A Datalog ruleis a rule without existential quantifiers, i.e.,
one wherez is empty. Afact is a rule with empty body (a conclusion that is uncondi-
tionally true). As opposed to the body, we require the head ofa rule to contain at least
one atom.

Safety of rules simplifies the definition of some syntactic conditions in the paper.
However, all of our results remain valid if one assumes the existence of a special atom of
the form⊤(x) that describes a tautological condition, which can be usedto make unsafe
rules safe without changing their semantics. We usually omit the preceding universal
quantifiers when writing rules, and we use sets of atoms as a convenient notation for
conjunctions of atoms.

In the literature on databases, existential rules are knownasTuple Generating De-
pendencies, constants are known asvalues, and predicates are known asrelations. Rules
are often assumed to contain no constant symbols and are thusstrictly separated from
facts. A set of facts forms adatabase(instance). We do not use this terminology in this
paper.

Definition 2. A rule setR is renamed apartif each variable name is bound in at most
one quantifier inR. A universal (existential) variablein such a renamed rule set is
one that occurs in a universal (existential) quantifier. Afrontier variableis a universal
variable that occurs in the head of its rule.

The previous condition allows us to uniquely identify variables by their name, which
simplifies many definitions.

Existential rules are a syntactic fragment of first-order predicate logic, and we con-
sider it under the according semantics.

Definition 3. An interpretationI consists of a non-empty domain∆I and an interpre-
tation function·I, defined as usual. The notion of amodelof a set S of logical formulae
is defined according to the standard semantics of first-orderlogic. Two sets S and T of
logical formulae areequivalentif they have the same set of models. In particular, this
terminology applies to sets of rules.

This also means that every rule set is equivalent to one that is renamed apart. We do
not make theUnique Name Assumption(UNA) where different constants are required



to be interpreted differently. This becomes relevant only when considering rulesthat
include equality, which we do not do herein.

The primary reasoning problem that we consider is the following kind of query
containment.

Definition 4. A boolean conjunctive query(BCQ) is a formula∃v.Q where Q is a con-
junction of atoms andv contains all variables in Q. A BCQ∃v.Q is entailedbyR if it
is entailed under standard first-order logic semantics.

This is closely related to the relevant task of findingcertain answersto conjunctive
queries with free variables (that is, for CQs that are not BCQs). Checking satisfiability
and BCQ entailment for unrestricted existential rules is undecidable [4,3] even with
very strong restrictions on the vocabulary or the number of rules [2].

3 Weak Acyclicity and the Skolem Chase

As a first introduction to the idea of acyclicity, we recapitulate the notion ofweak
acyclicity [6,7] and its relationship to a simple inferencing procedure known as the
Skolem chase[9].

Definition 5. Given a set of rulesR, thedependency graphis a directed graph that has
the positions of predicates inR as its nodes. For every ruleρ ∈ R, and every variable x
at position〈R, p〉 in the head ofρ, the graph contains edges as follows:

– If x is universally quantified, and x occurs in a body atom at position 〈S, q〉, there
is an edge from〈S, q〉 to 〈R, p〉.

– If x is existentially quantified, and the body ofρ contains a (necessarily universally
quantified) variable y at〈S, q〉 such that y also occurs in the head ofρ, then there
is a special edgefrom 〈S, q〉 to 〈R, p〉.

R is weakly acyclicif its dependency graph has no cycle going through a special edge.
The class of weakly acyclic rule sets is denotedwa.

Intuitively, non-special edges encode the possible passing of values in bottom-up
reasoning, whereas special edges encode the dependency between the premise that a
rule was applied to and the new individuals that the application of this rule entails. A
cycle over special edges may indicate that newly invented values can recursively be used
in premises which require the invention of further valuesad infinitum. For instance, the
dependency graph of the rule

R(x, y)→ ∃z.R(y, z) (1)

has a special edge from〈R, 2〉 to itself. Indeed this rule may lead to the construction
of an infiniteR-chain of new elements. To formalise this, it is convenient to think of a
concrete reasoning procedure being applied to rules. To this end, it is useful to express
existential quantifiers using Skolem function symbols:



Definition 6. Consider a ruleρ of the form∀x, y.ϕ[x, y] → ∃z.ψ[x, z] wherex are
exactly those variables that occur in head and body. Let l be the size ofx. TheSkolemi-
sationof ρ is the rule∀x, y.ϕ[x, y] → ψ′[x] whereψ′ is obtained fromψ by replacing
every variable z∈ z with a function term fz(x) where fz is a fresh function symbol of
arity l. The Skolemisation of a set of rules is the union of theSkolemisations of each of
its elements.

The set of body variablesx of a ruleρ that also occur in the head ofρ is known
as thefrontier of ρ. In Definition 6 we only use frontier variables in Skolem terms
since one can rewrite∀x, y.ϕ[x, y]→ ∃z.ψ[x, z] as∀x.(∃y.ϕ[x, y])→ (∃z.ψ[x, z]). This
also explains why Definition5 considers only frontier variables as possible sources of
special edges.

Fact 1 Given a rule setR with SkolemizationR′, and a BCQ∃v.Q over the signature
ofR (without Skolem function symbols), we haveR |= ∃v.Q iff R′ |= ∃v.Q.

A possible approach to BCQ answering is to recursively construct consequences
bottom-up, similar to the consequence operator in Logic Programming. In database
theory where existential rules have often been studied, this procedure (and its possibly
infinite result) is known as thechase.

Definition 7. Consider a set of rulesR and letR′ be a Skolemisation ofR. A ground
instanceof a rule is a formula that is obtained by removing all quantifiers and by uni-
formly replacing each variable with a variable-free (i.e.ground) term (possibly includ-
ing Skolem functions). TheSkolem chaseis defined to be the least set SkC of ground
facts that is closed under the following rule:

if the ruleρ is the ground instance of a rule inR′ and if B∈ SkC for every body
atom B ofρ, then H∈ SkC for every head atom H ofρ.

The Skolem chase can be computed by applying rules bottom-upbut this con-
struction may not terminate. For example, using rule (2) together with a factR(a, b)
the Skolem chase has the form{R(a, b),R(b, f (b)),R(b, f ( f (b))), . . .}. In essence, all
acyclicity conditions studied in this paper can be viewed assyntactic checks whether
the Skolem chase terminates for a given set of rules. Deciding this in the general case
is not possible:

Fact 2 The problem of determining whether the Skolem chase terminates for a given
set of rules is undecidable.

This is an easy consequence of standard Turing machine simulations in logic pro-
grams [5], where the halting of the Turing machine is equivalent to the finiteness of the
facts derived in forward-chaining. Finite or not, the Skolem chase is a correct reasoning
procedure, and we can strengthen Fact1 as follows:

Fact 3 Given a rule setR with (possibly infinite) Skolem chase SkC, and a BCQ∃v.Q
over the signature ofR (without Skolem function symbols), we haveR |= ∃v.Q iff SkC|=
∃v.Q.



Fact 4 The Skolem chase of a weakly-acyclic set of rulesR is finite.

The previous statement is easy to verify. Weak acyclicity ensures that the Skolem
chase does not lead to any Skolem term of the formf (t) where the argumentst contain
another term with the Skolem functionf . Since there are only a finite number of terms
without this form of nesting, the overall number of derivable ground facts over the
(fixed) predicates is bounded. This type of reasoning can also be used to obtain a good
intuition about the advanced notions of acyclicity considered below.

Summing up, an acyclicity condition is a criterion that allows us to decide whether
the Skolem chase will terminate on a given set of rules.

4 Joint Acyclicity

This section introducesjoint acyclicity, which is a proper generalisation of the notion
of weak acyclicity introduced in Section3. Considering again the example (1), we note
that the potential for creating an infinite Skolem chase is lost when extending the rule
as follows:

R(x, y) ∧C(y)→ ∃z.R(y, z). (2)

This rule cannot be applied recursively since invented values are not required to be-
long toC. Yet, the dependency graph contains the same cycle as beforeand the rule
is not weakly acyclic. This highlights an important deficiency of weak acyclicity that
was also noted in [9]: weakening a rule by adding additional requirements to itsbody
may destroy weak acyclicity. Moreover, note that even the occurrence of existentially
quantified variables on all premise positions would not necessarily lead to an infinite
Skolem chase:

A(x) ∧ B(x)→ ∃y, z.S(x, y, z) ∧ A(y) ∧ B(z). (3)

Again, the example fails to be weakly acyclic even though no infinite Skolem chase can
occur. We capture this formally by shifting our focus from positions to variables (which
can occur in multiple positions):

Definition 8. Consider a renamed apart set of rulesR. For a variable x, letPosB(x)
(PosH(x)) be the set of all positions where x occurs in the body (head) of a – neces-
sarily unique – rule. Now for any existentially quantified variable v, letMove(v) be the
smallest set of positions such that (1)PosH(v) ⊆ Move(v), and (2)PosH(y) ⊆ Move(v)
for every universally quantified variable y withPosB(y) ⊆ Move(v).

The existential dependency graphof R has the existentially quantified variables
of R as its nodes. There is an edge from v to w if the rule where w occurs contains a
universally quantified (body) variable z that also occurs inthe head and withPosB(z) ⊆
Move(v).
R is jointly acyclic if its existential dependency graph is acyclic. The class ofjointly

acyclic rule sets is denotedja.

ThusMove(x) contains the positions in which values invented forx may appear.
This captures the effect of non-special edges in Definition5, whereas special edges
correspond to edges in the existential dependency graph. Definition 5 is obtained by



modifying condition (2) in Definition8 to requirePosB(y) ∩ Move(x) , ∅ instead of
PosB(y) ⊆ Move(x). This states that a value is propagated by a rule if it satisfiessome–
instead ofall – of the rule’s premises. Joint acyclicity therefore appears to be the more
natural condition.

The following rule is jointly acyclic (as a singleton set) but not weakly acyclic: its
existential dependency graph does not have any edges whereas its dependency graph is
a clique of special edges.

R(x, y) ∧ S(x, y)→ ∃v,w.R(x,v) ∧ R(w, y) ∧ S(x,w) ∧ S(v, y) (4)

In spite of this generalisation, joint acyclicity is easy torecognise.

Proposition 1. Checking whether a set of rules is jointly-acyclic isP-complete w.r.t.
the size of the rule set.

Proof. Detecting cycles in a directed graph and checking inclusionof a position in
Move(x) is clearly possible in polynomial time. The latter problemis also hard for P
since propositional Horn logic entailment can be expressedusing unary predicates with
a single variable to encode propositions. ⊓⊔

5 Super-Weak Acyclicity

Another generalisation of weak acyclicity, calledsuper-weak acyclicity(swa), has been
proposed in [9]. Super-weak acyclicity is more general than joint acyclicity as it uses
function symbols and unification to exclude some additionalcases of value propagation.
However, as we show in this section, joint acyclicity and super-weak acyclicity coincide
on the major class ofduplicate-freerule sets. Since every rule set can be expressed by
one that is duplicate-free, we argue thatja already captures the main improvement that
swa provides over weak acyclicity, so that the additional machinery needed to define
swa might not be desirable.

To provide for a more accurate estimation of acyclicity, super-weak acyclicity con-
siders not just the predicate positions where an invented value may occur, but also the
syntactic form of the atoms where values occurred in the Skolemised rule set. A posi-
tion in the context of a rule atom is called aplace, formally given by a pair〈a, i〉 where
a is an atom withn arguments andi ∈ {1, . . . , n} is the index of a parameter ina. For
example, consider the rule

R(x, x)→ ∃y.R(x, y) ∧ R(y, x). (5)

This rule is not jointly acyclic, since〈R, 1〉, 〈R, 2〉 ∈ Move(y). Yet, the Skolem chase of
the according Skolemised rule

R(x, x)→ R(x, f (x)) ∧ R( f (x), x). (6)

is finite, since the rule is not applicable to any of the derived facts. Namely,f (x) occurs
in the places〈R(x, f (x)〉 and〈x, f (x)〉, and neither of these occurrences can beunified
with R(x′, x′) (a renamed apart variant of the premise of (6)). By using places and
unification instead of positions and set containment, Definition 8 can be generalised to
the definition of super-weak acyclicity:



Definition 9. Consider a renamed apart set of rulesR with SkolemisationR′. For a
term t, letPlcB(t) (PlcH(t)) be the set of all places where t occurs in the body (head)
of a – necessarily unique – rule ofR′. Given two sets P1,P2 of places ofR′, we write
P1 { P2 if, for every〈a, i〉 ∈ P2, there is some〈b, i〉 ⊆ P1 and two substitutionsθ, θ′

such that aθ = bθ′.
Now for any Skolem term f(x) in R′, let Moveswa( f (x)) be the smallest set of places

such that (1)PlcH( f (x)) ⊆ Moveswa( f (x)), and (2)PlcH(y) ⊆ Moveswa( f (x)) for every
universally quantified variable y withMoveswa( f (x)){ PlcB(y).

Theunification dependency graphof R has the Skolem terms ofR′ as its nodes.
There is an edge from f(x) to g(y) if y contains a variable z withPlcB(z){ Moveswa( f (x)).
R is super-weakly acyclicif its unification dependency graph is acyclic. The class

of weakly acyclic rule sets is denotedswa.

We have slightly changed the formulation as compared to [9] to emphasize the sim-
ilarity to Definition8. It is easy to verify that the resulting notion is the same.

Though one could expect that the use of substitution provides a much better estimate
of value propagation during the chase, this effect is very much limited since only indi-
vidual atoms are considered. Indeed, joint acyclicity and super-weak acyclicity coincide
in many cases. More precisely, we say that a rule set isduplicate-freeif it contains no
body atom in which a variable occurs more than once.

Theorem 1. A duplicate-free rule setR is jointly acyclic if and only if it is super-weakly
acyclic.

Proof. Given a setP of places, defineP↓ to be the set of positions{〈p, i〉 | 〈p(t, i)〉 ∈ P}.
Consider an existentially quantified variablev in R that was replaced by the Skolem
term f (x) in the SkolemisationR′ of R. We first show thatMoveswa( f (x))↓ = Move(v)
by induction over their definitions in Definition8 and9. The base case (1) is obvious.

For the inductive step (2), consider a universally quantified variabley as in (2) of the
respective defintions. We show thatMoveswa( f (x)) { PlcB(y) iff Move(v) ⊆ PosB(y).
The “only if” direction is part of the definition of{. For the “if” direction, we observe
that every place〈a, i〉 ∈ PosB(y) is of the formR(z) wherez is a vector of mutually
distinct variables. Therefore, the substitutions required in the definition of{ do always
exist as long as there is an atom〈b, i〉 ∈ Moveswa( f (x)) whereb is of the formR(t). By
the induction hypothesis, this is the case exactly if〈R, i〉 ∈ Move(v), which shows the
claim.

We thus find that the existential dependency graph and the unification dependency
graph are equal up to renaming of existential variables intoSkolem terms. Indeed, the
edges of both graphs agree sincePlcB(z) { Moveswa( f (x)) iff PosB(z) ⊆ Move(v)
which follows by a similar argument as in the induction step above. ⊓⊔

Thus the difference betweenswa andja is limited to rule sets that are not duplicate-
free. The following result that is based on a construction byAfrati et al. [1] shows that
such rule sets do not add real expressivity over duplicate-free rule sets:

Theorem 2. For every rule setR that contains a body atom in which a variable occurs
more than once, there is a rule setR′ where this is not the case and such that a BCQ



overR follows fromR iff it follows fromR′. Moreover,R′ can be constructed in time
exponential in the maximal arity of predicates inR and polynomial in the size ofR if
the maximal arity is fixed.

This statement has been shown in [1, Proposition 2.10] for the case of Datalog pro-
grams, where duplicate-free Datalog programs have been callednormal. The construc-
tion for sets of existential rules is essentially the same. We do not recapitulate the formal
construction of the proof from [1] and rather give an illustrating example. Consider the
rules

R(x, x, y)→ C(y) (7)

R(x, y, z)→ ∃v.R(y, z, v). (8)

To eliminate the duplicate variable in rule (7), the atomR(x, x, y) is replaced by an
auxiliary atomR113(x, y) whereR113 is a new predicate (the vector 113 encodes the
sequence of parameter positions where each variable inR(x, x, y) first occurs). Instead
of adding a ruleR(x, x, y) → R113(x, y), we consider all rules that could possibly lead
to the derivation of a fact matchingR(x, x, y), and we create special instances of these
rules for derivingR113(x, y). This is only the case for rule (8) if y andz represent the
same value. Thus we obtain a new rule set:

R113(x, y)→ C(y) (9)

R(x, y, z)→ ∃v.R(y, z, v) (10)

R(x, y, y)→ ∃v.R113(y, v). (11)

where rule (11) has been introduced as a specialization of (8). This leads to a new atom
R(x, y, y) with duplicate variables that is again replaced by an auxiliary atomR122(x, y).
However, none of the original rules (especially not rule (8)) can actually lead toR(x, y, y)
(or R122(x, y)) being derived. So the final rule set is:

R113(x, y)→ C(y) (12)

R(x, y, z)→ ∃v.R(y, z, v) (13)

R122(x, y)→ ∃v.R113(y, v). (14)

If facts were given, they would be translated like rules. It is not difficult but a bit te-
dious to formulate the complete transformation in general.It is easy to see that only the
original rule set needs to be considered when looking for ways to derive an auxiliary
atom, and that the number of auxiliary rules obtained in eachreplacement step is thus
bounded by the (linear) number of head atoms in the input ruleset. Moreover, up to re-
naming of variables the number of possible duplicate variable patterns is exponentially
bounded by the arity of the respective predicate. These observations lead to the claimed
upper bounds in Theorem2.
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