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Abstract. In this paper, we present an approach for measuring inconsistency in
a knowledge base. We first define the degree of inconsistency using a four-valued
semantics for the description logicALC. Then an ordering over knowledge bases
is given by considering their inconsistency degrees. Our measure of inconsistency
can provide important information for inconsistency handling.

1 Introduction

Inconsistency has often been viewed as erroneous information in a knowledge base, but
this is not necessarily the best perspective on the problem. The study of inconsistency
handling in Artificial Intelligence indeed has a long tradition, and corresponding results
are recently being transferred to description logics which are a family of decidable
subsets of first-order logic.

There are mainly two classes of approaches to dealing with inconsistent descrip-
tion logic based knowledge bases. The first class of approaches is to circumvent the
inconsistency problem by applying a non-standard reasoning method to obtain mean-
ingful answers [1, 2] – i.e. to ignore the inconsistency in this manner. The second class
of approaches to deal with logical contradictions is to resolve logical modeling errors
whenever a logical problem is encountered [3, 4].

However, given an inconsistent knowledge base, it is not always clear which ap-
proach should be taken to deal with the inconsistency. Another problem is that when
resolving inconsistency, there are often several alternative solutions and it would be
helpful to have some extra information (such as an ordering on elements of the knowl-
edge base) to decide which solution is the best one. It has been shown that analyzing
inconsistency is helpful to decide how to act on inconsistency [5], i.e. whether to ignore
it or to resolve it. Furthermore, measuring inconsistency in a knowledge base in classical
logic can provide some context information which can be used to resolve inconsistency
[6–8].
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There are mainly two classes of inconsistency measures in classical logic. The first
class of measures is defined by the number of formulas which are responsible for an
inconsistency, i.e. a knowledge base in propositional logic is more inconsistent if more
logical formulas are required to produce the inconsistency [9]. The second class con-
siders the propositions in the language which are affected by the inconsistency. In this
case, a knowledge base in propositional logic is more inconsistent if more propositional
variables are affected by the inconsistency [6, 10]. The approaches belonging to the sec-
ond class are often based on some paraconsistent semantics because we can still find
models for inconsistent knowledge bases using paraconsistent logics.

Most of the work on measuring inconsistency is concerned with knowledge bases
in propositional logic. In [11], the authors generalized the work on measuring inconsis-
tency in quasi-classical logic to the first-order case with restriction to prenex conjunc-
tive form (PCNF) since all first-order theories can be translated into PCNF. However,
it is still not clear how to properly perform PCNF on description logics (DLs) while
maintaining DLs structures.

The main contributions of this paper are summarized as follows:

– We present an approach for measuring inconsistency of a DL knowledge base.
– We define domain-dependent inconsistency for a consistent knowledge base. This

makes it possible to measure the inconsistency degree of a consistent DL knowl-
edge bases with respect to a domain.

– An ordering is given which provides a way to order all knowledge bases according
to their inconsistency degree. With respect to such an ordering, consistent knowl-
edge bases are always less inconsistent than all inconsistent knowledge bases.

At the same time, there are potential applications for inconsistency measures for
knowledge bases, as they provide evidences for reliability of knowledge bases when an
inconsistency occurs. In a scenario where knowledge bases are merged together, we can
give higher priority to knowledge bases which are less inconsistent. When resolving
inconsistency in the merged knowledge base, we can delete or weaken some axioms
from the knowledge base with lower priority.

In this paper, we propose an approach for measuring inconsistency in description
logic based knowledge bases. We first define the degree of inconsistency using a four-
valued semantics for description logic ALC. By analyzing the degree of inconsistency
of a knowledge base, we can either resolve inconsistency if the degree is high (e.g.
greater than 0.7) or ignore it otherwise. After that, an ordering over inconsistent knowl-
edge bases is given by considering their inconsistency degrees.

This paper is organized as follows. We first provide some basic notions for De-
scription Logics in Section 2. Then, the concept of domain-dependent (in)consistency
is defined in Section 3. Our measure of inconsistency is then given in Section 4. Finally,
we discuss related work and conclude the paper in Section 5.

2 Preliminaries

2.1 The Description Logic ALC
We briefly review the terminology of the description logic ALC and its relation with
first order logic FOL. For comprehensive background reading, please refer to [12, 13].



Table 1. Syntax and semantics of ALC and translation from ALC to FOL

Constructor Syntax Φ(C, x) Semantics
atomic concept A A A(x) AI ⊆ ∆I

abstract role RA R R(x, y) RI ⊆ ∆I ×∆I

individuals I o o oI ∈ ∆I

conjunction C1 u C2 Φ(C1, x) ∩ Φ(C2, x) CI ∩DI

disjunction C1 t C2 Φ(C1, x) ∪ Φ(C2, x) CI ∪DI

negation ¬C ¬A(x) ∆I \ CI

exists restriction ∃R.C ∃yR(x, y) ∧ Φ(C, y) {x | ∃y, (x, y) ∈ RI and y ∈ CI}
value restriction ∀R.C ∀yR(x, y) → Φ(C, y) {x | ∀y, (x, y) ∈ RI implies y ∈ CI}

Axiom Name Syntax Φ(·) Semantics
concept inclusion C1 v C2 ∀x, Φ(C1, x) → Φ(C2, x) CI

1 ⊆ CI
2

concept assertion C(a) Φ(C, a) aI ∈ CI

role assertion R(a, b) R(a,b) (aI , bI) ∈ RI

Corresponding to monadic predicates, dyadic predicates, and functional constants,
concept, role, and individual are fundamental notions of description logics. We as-
sume that we are given a set of concept names (i.e., atomic unitary predicates), a set of
role names (i.e., atomic binary predicates) and a set of individuals (i.e., functional con-
stants). Complex concepts (complex monadic formulae) in ALC can be formed from
these inductively as follows.

1. All atomic concept are concepts;
2. If C, D are concepts, then C tD, C uD, and ¬C are concepts;
3. If C is a concept and R is a role, then ∀R.C and ∃R.C are concepts.

For example, suppose Doctor, Man are the given atomic concepts, hasChild is an
atomic role, and lucy, bill are two individuals. Then, Doctor u Man is a complex con-
cept representing male doctors; the complex concept ∀hasChild.Doctor means the
concept representing things whose children are all doctors, and ∃hasChild.> is a com-
plex concept corresponding to the set of individuals who have at least one child. Then
(DoctoruMan)(bill) means that bill is a male doctor, and hasChild(lucy, bill) means
that bill is a child of lucy.

The formal definition of the semantics of ALC is given by means of interpretations
I = (∆I , ·I) consisting of a non-empty domain ∆I and a mapping ·I satisfying the
conditions in Table 1 whose third column is the translation Φ(C, x) ([14, 13]) from
every concept C to a first-order formula, where a, b are constant symbols, y is a fresh
variable symbol and x is either the constant symbol a or a variable symbol. The unique
name assumption is adapted by Description Logics.

An ALC knowledge base (or knowledge base for simplicity) consists of a set of
assertions, called the ABox, and a set of inclusion axioms, calld the TBox. Assertions
are of the form C(a) or R(a, b), where a, b are individuals and C and R are concepts
and roles, respectively. Inclusion axioms are of the form C v D, where C and D are



Table 2. Semantics of ALC4 Concepts

Constructor Syntax Semantics
A AI = 〈P, N〉, where P, N ⊆ ∆I

R RI = 〈RP , RN 〉, where RP , RN ⊆ ∆I ×∆I

o oI ∈ ∆I

C1 u C2 〈P1 ∩ P2, N1 ∪N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

C1 t C2 〈P1 ∪ P2, N1 ∩N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

¬C (¬C)I = 〈N, P 〉, if CI = 〈P, N〉
∃R.C 〈{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj+(CI)},

{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj−(CI)}〉
∀R.C 〈{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj−(CI)}〉

concepts. The translation Φ(·) from an axiom to a FOL formula is also given in the
third column of Table 1. Informally, an assertion C(a) means that the individual a is
an instance of the concept C, and an assertion R(a, b) means that the individual a is
related with the individual b via the property R. The inclusion axiom C v D means
that each individual of C is an individual of D.

An interpretation satisfies anALC knowledge base (i.e. is a model of the knowledge
base) iff it satisfies each axiom in both the ABox and the TBox. An ALC knowledge
base is called satisfiable (unsatisfiable) iff there exists (does not exist) such a model.
In ALC, reasoning tasks, i.e. the derivation of logical consequences, can be reduced to
satisfiability checking of ontologies [12, 15].

From the translations from ALC axioms to FOL formulae shown in Table 1, ALC
is a subset of FOL, which is proven decidable [12].

2.2 Four-valued Semantics for ALC

We consider the four-valued semantics forALC given in [2]. Semantically, four-valued
interpretations map individuals to elements of the domain of the interpretation, as usual.
For concepts, however, to allow for reasoning with inconsistencies, a four-valued inter-
pretation over a domain ∆I assigns to each concept C a pair 〈P, N〉 of (not necessarily
disjoint) subsets of ∆I . Intuitively, P is the set of elements known to belong to the ex-
tension of C, while N is the set of elements known to be not contained in the extension
of C. P and N are not necessarily disjoint and mutually complemental with respect to
the domain.

Formally, a four-valued interpretation is a pair I = (∆I , ·I) with ∆I as domain,
where ·I is a function assigning elements of ∆I to individuals, and subsets of (∆I)2 to
concepts, such that the conditions in Table 2 are satisfied, where functions proj+(·) and
proj−(·) are defined by proj+〈P, N〉 = P and proj−〈P, N〉 = N.

The idea of four-valued semantics is based on the idea of having four truth values,
instead of the classical two. The four truth values stand for true, false, unknown and
contradictory. We use the symbols t, f, ⊥̈, >̈, respectively, for these truth values, and



Table 3. Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics
material inclusion C1 7→ C2 ∆I \ proj−(CI

1 ) ⊆ proj+(CI
2 )

internal inclusion C1 @ C2 proj+(CI
1 ) ⊆ proj+(CI

2 )
strong inclusion C1 → C2 proj+(CI

1 ) ⊆ proj+(CI
2 ) and

proj−(CI
2 ) ⊆ proj−(CI

1 )

concept assertion C(a) aI ∈ proj+(CI)
role assertion R(a, b) (aI , bI) ∈ proj+(RI)

the set of these four truth values is denoted by FOUR. The correspondence between
truth values from FOUR and concept extensions are defined as follows:

Definition 1 For instances a ∈ ∆I and concept names C,

– CI(a) = t, iff aI ∈ proj+(CI) and aI 6∈ proj−(CI),
– CI(a) = f , iff aI 6∈ proj+(CI) and aI ∈ proj−(CI),
– CI(a) = >̈, iff aI ∈ proj+(CI) and aI ∈ proj−(CI),
– CI(a) = ⊥̈, iff aI 6∈ proj+(CI) and aI 6∈ proj−(CI).

The correspondence between FOUR and role extensions can be defined in a similar
way.

Obviously, for the semantics defined above, we ensure that a number of useful
equivalences from classical DLs, such as the double negation law and the de Morgan
Laws, hold.

The increase of truth values for four-valued semantics allows for several ways to
define meaningful notions of four-valued implication. Indeed, there are three major
notions of implication in the literature [16]. Corresponding to them, we have three ways
to explain class inclusions in ALC: the material inclusion axiom, the internal inclusion
axiom, and the strong inclusion axiom, denoted as C 7→ D, C @ D, and C → D,
respectively, to distinguish from classical class inclusion C v D. The semantics of the
three different types of inclusion axioms is formally defined in Table 3 (together with
the semantics of concept assertions).

These three class inclusion axioms provide knowledge base engineers with a flexi-
ble way to define different knowledge bases according to their different semantics [2].
However, when 4-valued models are used to measure inconsistency, we will point out
that in Section 4.1 only one of them, the material inclusion, is proper. This is also a
reason why other 4-valued description logics [17, 18] are not suitable for measuring
inconsistency.

We say that a four-valued interpretation I satisfies a four-valued knowledge base
KB (i.e. is a model of it) iff it satisfies each assertion and each inclusion axiom in KB.
A knowledge base KB is 4-valued satisfiable (unsatisfiable) iff there exists (does not
exist) such a model.



3 Domain-dependent Inconsistency

In this section, we define a domain-dependent inconsistency in DLs. We first recall the
notion of inconsistency in DLs.

Definition 2 A knowledge base KB is classically inconsistent iff KB has no classical
model. A knowledge base which is classically inconsistent is called an inconsistent
knowledge base. Otherwise, it is called a consistent knowledge base.

According to Definition 2, KB is inconsistent iff it has no classical model. However,
given a knowledge base which is consistent, it may be ”inconsistent” for a domain.

Example 3 Given a knowledge base KB = {T ,A}, where T = {A v ∃R.¬A} and
A = {A(a)}, KB is consistent because KB has a classical model I = 〈∆I , ·I〉, where
∆I = {a, b} and AI = {a}, RI = {(a, b)}. However, KB has no classical model with
respect to the domain {a}.

We have the following definition of domain-dependent inconsistency.

Definition 4 For a given domain D, we call KB domain-dependently inconsistent with
respect to D, denoted D-inconsistent, if KB has no classical model with respect to D.
Otherwise it is called D-consistent.

Example 5 (Example 3 continued) Consider two domains ∆I1 = {a} and ∆I2 =
{a, b}. It is easy to check that KB is ∆I1-inconsistent, but ∆I2-consistent.

Given another knowledge base KB′ = {A v ∃R.A, A(a)}, KB′ is both ∆I1-consistent
and ∆I2-consistent. Therefore, KB is “more inconsistent” than KB′. In the settings
where only finite domains are considered, such as databases, the concept of domain-
dependent (in)consistency can provide us with an approach to distinguish the extent of
inconsistency of two logically consistent knowledge bases.

We give an important property of domain-dependent (in)consistency.

Proposition 6 An ALC knowledge base KB is consistent, if and only if there exists a
positive integer N , such that for any finite domain D whose cardinality is greater than
N (i.e. |D| ≥ N ), KB is D-consistent.

The proposition holds because of the finite model property of ALC and the fact that it
is equality-free. It says that for a consistent knowledge base in ALC, it will be domain-
dependently consistent after the domain’s cardinality becomes greater than a finite pos-
itive integer. Obviously, this property does not hold for other DLs in general and neither
for FOL theories which do not have the finite model property or are not equality-free.

4 Inconsistency Measure

In this section, we measure inconsistency of anALC knowledge base using four-valued
models. In section 4.1 we discuss which kind of semantics of class inclusions as defined
in Table 3 is appropriate to be used for measuring inconsistency. In section 4.2, we



define the (domain-dependent) inconsistency degree of a knowledge base and study
specially the properties of the inconsistency degree for ALC knowledge bases. Finally,
in section 4.3, we give an ordering on knowledge bases based on the inconsistency
degrees.

4.1 The Choice of Class Inclusion Axioms
Without explicit declaration, if a class inclusion axiom is expressed in the form C v D,
its semantics is the classical semantics as defined in Table 1. If it is in the form of
C 7→ D, C @ D, or C → D, it is interpreted under the four-valued semantics as
defined in Table 3.

Example 7 Consider T = {A t ¬A v A u ¬A} which is a TBox of an inconsistent
knowledge base. Based on four-valued semantics, we have the following three ways to
interpret the subsumption: T1 = {A t ¬A 7→ A u ¬A}, T2 = {A t ¬A @ A u ¬A},
and T3 = {At¬A → Au¬A}, respectively. Now consider the following two 4-valued
interpretations:

I1 = (∆I1 , ·I1) : AI1 = 〈∆I1 ,∆I1〉
I2 = (∆I2 , ·I2) : AI2 = 〈∅, ∅〉

According to Table 3, T1 has a unique 4-valued model I1, while T2 and T3 both have I1

and I2 as 4-valued models.

In the above example, the difference between I1 and I2 is that I1 assigns contra-
diction to the concept A, while I2 assigns nothing to a contradictory value, though
knowledge base T is inconsistent. Therefore, if we interpret a subsumption of an in-
consistent knowledge base as internal or strong class inclusion axiom, there may exist
a 4-valued model which does not assign contradiction to any concept or role name. We
give a proposition which shows an important property of material inclusion. We first
introduce some denotations.

Definition 8 Let I be a four-valued model of KB with domain ∆I , and let LKB be the
set of atomic concepts and roles occurring in KB. The inconsistency set of I for KB,
written ConflictOnto(I, KB), is defined as follows:

ConflictOnto(I, KB) = ConflictConcepts(I, KB) ∪ ConflictRoles(I, KB),

where ConflictConcepts(I, KB) = {A(a) | AI(a) = >̈, A ∈ LKB, a ∈ ∆I}, and
ConflictRoles(I, KB) = {R(a1, a2) | RI(a1, a2) = >̈, R ∈ LKB, a1, a2 ∈ ∆I}.

Intuitively, ConflictOnto(I, KB) is the set of conflicting atomic individual assertions.

Proposition 9 Given an ALC knowledge base KB=(T ,A), KB is inconsistent if and
only if ConflictOnto(I, KB) 6= ∅ for very 4-valued model I of KB, provided that all
class inclusion axioms in T are explained as material inclusions.

According to Proposition 9 and the counterexample 7, it is more desirable to inter-
pret class inclusion by material inclusion. So, in the rest of this section, we choose only
the semantics of material inclusion as the 4-valued semantics of class inclusion. That is,
other semantics are not used to measure inconsistency of an an knowledge base, though
they are used to reason with an knowledge base in [2].



4.2 Inconsistency Degree

In this section, we give formal definitions of the inconsistency degree of an inconsis-
tent knowledge base and the domain-dependent inconsistency degree for a consistent
knowledge base.To do this, we need the following notions.

Definition 10 For the knowledge base KB and a 4-valued interpretation I ,

GroundOnto(I, KB) = GroundConcepts(I, KB) ∪ GroundRoles(I, KB),

where GroundConcepts(I, KB) = {A(a) | a ∈ ∆I , A ∈ LKB}, GroundRoles(I, KB) =
{R(a1, a2) | a1, a2 ∈ ∆I , R ∈ LKB}.

Intuitively, GroundOnto(I, KB) is the collection of all atomic individual assertions.
In order to define the degree of inconsistency, we consider only interpretations with

finite domains. This is reasonable in practical cases because only a finite number of
individuals can be represented or would be used. This is also reasonable from the theo-
retical aspect becauseALC has the finite model property — that is, if a knowledge base
is consistent and within the expressivity of ALC, then it has a classical model whose
domain is finite.

Definition 11 The inconsistency degree of a knowledge base w.r.t. a model I ∈M4(KB),
denote IncI(KB), is a value in [0, 1] calculated in the following way:

IncI(KB) =
|ConflictOnto(I, KB)|
|GroundOnto(I, KB)|

That is, the inconsistency degree of KB w.r.t. I is the ratio of the number of conflicting
atomic individual assertions divided by the amount of all possible atomic individual
assertions of KB w.r.t. I . It measures to what extent a given knowledge base contains
inconsistency w.r.t. I .

Example 12 Consider knowledge base KB1 = (T ,A), where T = {A v Bu¬B},A =
{A(a)}. A 4-valued model of KB1 is as follows: I1 = (∆I1 , ·I1), where ∆I1 = {a},
AI1(a) = t, and BI1(a) = >̈. For this model, GroundOnto(I1, KB1) = {A(a), B(a)},
and B(a) is the unique element in ConflictOnto(I1, KB1). Therefore, IncI1(KB1) = 1

2 .

In [11], it has been shown that for a fixed domain, not all the models need to be
considered to define an inconsistency measure because some of them may overestimate
the degree of inconsistency. Let us go back to Example 12.

Example 13 (Example 12 Continued) Consider another 4-valued model of KB1: I2 =
(∆I2 , ·I2), where ∆I2 = {a}, AI2(a) = >̈, BI2(a) = >̈. I1 and I2 share the same
domain. Since |ConflictOnto(I2, KB1)| = |{B(a), A(a)}| = 2, we have I1 ≤Incons I2

by Definition 14. This is because ·I2 assigns contradiction to A(a). However, A(a)
is not necessary a conflicting axiom in four-valued semantics. Therefore, we conclude
that IncI2(KB) overestimates the degree of inconsistency of KB1.

We next define a partial ordering on M4(KB) such that the minimal elements w.r.t.
it can be used to define the inconsistency measure for KB.



Definition 14 (Model ordering w.r.t. inconsistency) Let I1 and I2 be two four-valued
models of a knowledge base KB such that |∆I

1| = |∆I
2|. We say the inconsistency of I1

is less than or equal to I2, written I1 ≤Incons I2, if and only if IncI1(KB) ≤ IncI2(KB).

The condition |∆I1 | = |∆I2 | in this definition just reflects the perspective that only
models with the same cardinality of domain are comparative. As usual, I1 <Incons I2

denotes I1 ≤Incons I2 and I2 6≤Incons I1, and I1 ≡Incons I2 denotes I1 ≤Incons I2

and I2 ≤Incons I1. I1 ≤Incons I2 means that I1 is more consistent than I2.
The model ordering w.r.t. inconsistency is used to define preferred models.

Definition 15 Let KB be a DL-based knowledge base and n(n ≥ 1) be a given car-
dinality. The preferred models w.r.t ≤Incons of size n, written PreferModeln(KB), are
defined as follows:

PreferModeln(KB) = {I | |∆I | = n;∀I ′ ∈M4(KB), |∆I′ | = n implies I ≤Incons I ′}

That is, PreferModeln(KB) is the set of all models of size n which are minimal with
respect to ≤Incons.

From Definition 14 and Definition 15, it is easy to see that for the preferred models
I1 and I2 with a same cardinality, inconsistency degrees of the knowledge base w.r.t
them are equal. That is, IncI1(KB) = IncI2(KB), which means I1 and I2 have the same
amount of contradictory atomic assertions, though the elements of their domains may
be quite different.

For simplicity, we say an interpretation is well-sized if and only if the cardinality of
its domain is equal to or greater than the number of individuals in KB. Because of the
unique name assumption of the DL ALC, an interpretation can be a model only if it is
well-sized. Moreover, the following theorem asserts the existence of preferred models
among the well-sized interpretations.

Theorem 16 For any given ALC knowledge base KB, preferred models among well-
sized interpretations always exist.

Above we have considered the inconsistency degrees of knowledge bases with re-
spect to four-valued models, especially with respect to preferred models. Now we define
an integrated inconsistency degree of a knowledge base allowing for different domains.

Definition 17 Given a knowledge base KB and an arbitrary cardinality n(n ≥ 1), let
In be an arbitrary model in PreferModelsn(KB). The inconsistency degree sequence of
KB, called OntoInc(KB), is defined as 〈r1, r2, ..., rn, ...〉, where rn = Inc(In, KB) if In

is well-sized. and let rn = ∗ otherwise.

In Definition 17, we use ∗ as a kind of null value. Given a domain with size n, we
have the following three cases: (1) if rn = ∗, it means that the knowledge knowledge
base has no 4-valued models with size n; (2)if rn = 0, it means that KB has a classical
model among its 4-valued models. (3) if rn > 0(6= ∗), it means KB has no classical
models but has 4-valued models.

From Theorem 16 and the unique name assumption of ALC the following property
holds obviously.



Proposition 18 Assume KB is a knowledge base and OntoInc(KB) = 〈r1, r2, ...〉, and
N is the number of individuals of KB. Then

ri

{
= ∗ if 0 < i < N,

≥ 0(6= ∗) if i ≥ N.

This proposition shows that for a knowledge base, its inconsistency measure cannot
be a meaningless sequence — that is, each element is the null value ∗. Moreover, the
non-null values in the sequence start just from the position which equals the number of
individuals in the knowledge base, and remains greater than zero in the latter positions
of the sequence for inconsistent knowledge bases and becomes zero after n becomes
large enough for consistent ALC knowledge bases.

Example 19 (Example 7 continued) Obviously, for any four-valued model I = 〈∆I , ·I〉
of T , A must be assigned to 〈∆I ,∆I〉, therefore OntoInc(KB) = {1, 1, ...}.

Example 20 (Example 12 continued) Each preferred model I of KB1 must satisfy that
(1) it assigns one and only one individual assertion in {B(a), A(a)} to the contradic-
tory truth value >̈ — that is, BI(a) = >̈ and A(a) = t, or BI(a) = t and A(a) = >̈;
(2) it assigns other grounded assertions to truth values among the set {t, f, ⊥̈}. So
|ConflictOnto(I, KB)| = 1. Consequently, OntoInc(KB1) = { 1

2 , 1
4 , ..., 1

2n , ...}.

Example 21 (Example 5 continued) It is easy to check that OntoInc(KB′) = 〈1, 0, 0, ...〉,
while OntoInc(KB′′) = 〈0, 0, ...〉. By definition 22, KB′ has more domain-dependent in-
consistency than KB′′, that is, KB′′ ≺Incons KB′.

4.3 Ordering Knowledge Bases with respect to their Inconsistent Degrees

In this section, we define an ordering over all knowledge bases inspired by [19].

Definition 22 Given two knowledge bases KB1 and KB2, assume OntoInc(KB1) =
〈r1, r2, ...〉 and OntoInc(KB2) = 〈r′1, r′2, ...〉. We say KB1 is strictly less inconsistent
than KB2, written KB1 ≺Incons KB2, iff one of the following conditions holds:

1. N1 < N2

2. N1 = N2, rn ≤ r′n(∀n ≥ K), and there exists n0 ≥ K such that rn < r′n

where N1 = min{i : ri = 0}, N2 = min{i : r′i = 0},K = min{i : ri 6= ∗, r′i 6= ∗}.

N1 (or N2) is the first position from which the elements of the sequence 〈r1, r2, ...〉 (or
〈r′1, r′2, ...〉) become 0. For an inconsistent knowledge base, the position is infinite, so we
denote N1 = ∞which is strictly greater than any finite number. So does N2. According
to Proposition 18, ≺Incons is well-defined. Moreover, an equality of two knowledge
bases can be defined by KB1 =Incons KB2 if and only if for all n ≥ K, rn = r′n.

By Definition 22 and Proposition 6, obviously, all consistent knowledge bases are
less inconsistent than any inconsistent knowledge base.

For consistent knowledge bases, according to Definition 22, one knowledge base is
less domain-inconsistent than the other if and only if 0 begins at an earlier position in



its inconsistency degree sequence than that in the inconsistency degree sequence of the
other knowledge base.

For the ordering among inconsistent knowledge bases, we only compare the values
from the position at which both sequences have non-null values, according to Definition
22. This is because there exist infinite elements of sequences of their inconsistency
degree which are non-null, and non-zero. These elements together are to reflect the
useful information about the inconsistency of knowledge bases.

Example 23 (Example 20 continued) Suppose KB2 = {A v B u ¬B,A v C, A(a)}.
In its preferred models, the individual assertions related to C are not involved with
the contradictory truth value, so OntoInc(KB2) = { 1

3 , 1
6 , ..., 1

3n , ...}. By definition 22,
KB2 ≺Incons KB1, which means that KB2 is less inconsistent than KB2.

Example 24 (Example 19, 21, 23 continued)

KB′′ ≺Incons KB′ ≺Incons KB2 ≺Incons KB1 ≺Incons KB.

5 Related Work and Conclusion

This paper provides a way to distinguish description logic based knowledge bases con-
sidering their different inconsistency degrees.

In the literature, there are basically two other works on defining four-valued seman-
tics for description logics [20, 18]. However, their definitions of class inclusion axioms
are actually the same as the internal inclusion defined in Table 3, so that their approaches
are not suitable for measuring inconsistency according to our analysis in Section 4.1.

Our work is closely related to the work of inconsistency measuring given in [11],
where Quasi-Classical models (QC logic [21]) are used as the underlying semantics. In
this paper, we use four-valued models for description logics as the underlying seman-
tics. This is because QC logic needs to translate each formula in the theory into prenex
conjunctive normal form (PCNF). This is not practical, especially for a large knowl-
edge base, because it may be quite time consuming and users probably do not like their
knowledge bases to be modified syntactically. In this paper, we can see that four-valued
models also provide us with a novel way to distinguish knowledge bases with different
inconsistency degrees.

It is apparent that the inconsistency measure defined by our approach can be used
to compute each axiom’s contribution to inconsistency of a whole knowledge base by
adapting the method proposed in [8], thereby providing important information for re-
solving inconsistency in a knowledge base. Moreover, we find that four-valued models
may provide us with some way to quantify also the incompleteness degree of knowledge
bases because of the additional truth value ⊥̈ with respect to three-valued semantics,
which is among our future work.

In [11], every set of formulae definitely has at least one QC model because neither
the constant predicate t (tautology) nor the constant predicate f (false) is contained in
the language. However, corresponding to t and f , the top concept> and bottom concept
⊥ are two basic concept constructors for ALC. Due to space limitation, we presume



that the ontologies do not use > and ⊥ as concept constructors. The discussion of the
inconsistency measure for an arbitrary inconsistent ontology will be left as future work.

For an implementation of our approach, the key point is to compute the number of
conflicting assertions in a preferred model with respect to any given finite domain. We
are currently working on the algorithm, which will be presented in a future paper.
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