
Semantic Management of Middleware

Daniel Oberle
University of Karlsruhe

Institute of Applied Informatics and Formal Description Methods (AIFB)
Knowledge Management Group

D-76128 Karlsruhe
Germany

oberle@aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/WBS

ABSTRACT
The Ph.D. proposal addresses the complexity of building dis-
tributed applications and systems with Application Servers
and Web Services middleware, respectively. Despite their
flexible XML-based configuration, taming the ever growing
complexity remains all but an easy task. To remedy such
problems, the thesis proposes an ontology-based approach
to support the management (i.e. development and adminis-
tration) of Application Server and Web Services based ap-
plications. The ontology captures properties of, relation-
ships between and behaviors of the components and services
that are required for management purposes. The ontology
is an explicit conceptual model with formal logic-based se-
mantics. Therefore its descriptions of components and ser-
vices may be queried, may foresight required actions, or may
be checked to avoid inconsistent system configurations —
during development as well as during run time. Thus, the
ontology-based approach retains the original flexibility, but
it adds new capabilities for the developer and user of the
system.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; H.3.5 [In-
formation Storage and Retrieval]: Online Information
Services—Web-based Services

General Terms
Management, Languages, Design

Keywords
Application Server, Service Oriented Architecture, Web Ser-
vice, Ontology, Middleware, Semantic Technology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
1st International Middleware Doctoral Symposium Toronto, Canada
Copyright 2004 ACM 1-58113-948-9 ...$5.00.

1. PROBLEMS AND GOALS
This section introduces the usage of semantic technolo-

gies, i.e. ontologies and their reasoning algorithms, both in
Application Servers and Web Services middleware (1.1 and
1.2). Although the usage of semantic technologies helps to
tame the complexity, a new problem arises, viz. the pro-
vision of semantic metadata. Semantic metadata are the
actual descriptions in terms of the ontology, in our case of
both software components residing in an Application Server
and Web Services. While some of the semantic metadata can
be generated automatically, a full specification will always
require manual provision. This is usually a rather cumber-
some and error-prone work for the developer. Hence, 1.3
proposes the crafting and usage of well-designed ontology
libraries.
Every subsection is divided into problem and goal descrip-

tion as well as a comment on the significance of the research.

1.1 Usage of Semantic Technology
in Application Servers

1.1.1 Problem
Application Servers are component-based middleware plat-

forms offering an environment in which users can deploy
self-developed or third-party components [1]. As a sophisti-
cated middleware, Application Servers provide functionality
such as dynamic loading, naming services, load balancing,
security, connection pooling, transactions, or persistence.
Despite the bundled functionality, realizing a complex dis-

tributed application remains all but an easy task. For in-
stance, managing component dependencies, versions, and
licenses is a typical problem in an ever-growing repository
of programming libraries. In Microsoft environments, this
is often referred to as “DLL Hell”. Configuration files, even
if they are more or less human-readable XML, do not pro-
vide an abstraction mechanism to tame the complexity is-
sues arising in such systems.
As a way to abstract from many such low-level and often

platform-specific problems, the paradigm of Model-Driven
Architectures (MDA) [16] has gained wide-spread influence.
The principal idea of MDA is to separate conceptual con-
cerns, such as which component is using which other compo-
nent, from implementation-specific concerns, such as which
version of an application interface requires which versions
of windows libraries. MDA achieves this separation by fac-

torizing the two concerns, specifying them separately and
compiling them into an executable.
Notwithstanding that MDA already provides conceptual

modelling in order to improve management of complex sys-
tems, MDA is disadvantaged in two ways. First, MDA re-
quires a compilation step preventing changes at run time
which are characteristic for Application Server software. Sec-
ond, an MDA itself cannot be queried or reasoned about.
Hence, there is no way to ask the system whether some
configuration is valid or whether further components are
needed.

1.1.2 Goal
To remedy such problems, one of the goals of the thesis

is an ontology-based approach to support the development
and administration of software components in an Applica-
tion Server. The ontology captures properties of, relation-
ships between and behaviors of the components that are
required for development and administration purposes. The
ontology is an explicit conceptual model with formal logic-
based semantics. Therefore its descriptions of components
may be queried, may foresight required actions, e.g. preload-
ing of indirectly required components, or may be checked to
avoid inconsistent system configurations — during develop-
ment as well as during run time. Thus, the ontology-based
approach retains the original flexibility in configuring and
running the Application Server, but it adds new capabilities
for the developer and user of the system. A first version of
the ontology’s design is discussed in [22, 21].
In [21] we show how an overall system architecture of an

ontology-based Application Server could look like. The left
side of Figure 1 outlines potential sources, which provide in-
put for the framework. This includes web and Application
Server configuration files, annotated source code, or meta-
data files. This information is parsed and converted into
semantic metadata. Thus, this data is now available con-
forming to a harmonizing conceptual model. The semantic
metadata and the ontology are fed into the inference engine
which is embedded in the Application Server itself. The
reasoning capability is used by an array of tools at develop-
ment and at run time. The tools either expose a graphical
user interface (e.g. security management) or provide core
functionality (e.g. the dynamic component loader).

Applications

J2EE Core Services

WEB-INF.xml

ejb-jar.xml

.htaccess

Annotations in
source code

Other metadata

...

...

Inference
Engine

Ontology

Application
1

(eBank)

Application 2

(Pet Store)

Naming

Transaction
Manager Security

...

Administration

Security
Management

Version
Management

...

Component
Loader

Figure 1: System architecture of the Application
Server. Semantic metadata and the ontology are
loaded into the inference engine. Value-added ser-
vices and tools leverage the reasoning capability em-
bedded in the Application Server.

1.1.3 Significance
Given the wide-spread usage of Application Servers and

the growing complexity of distributed applications, this will
be a significant improvement for the management and ad-
ministration of such applications.

1.2 Usage of Semantic Technology
in Web Services Middleware

1.2.1 Problem
Distributed systems based on Service Oriented Architec-

tures (SOA) factorize the functionality in loosely-coupled
and independent services rather than in components like
done in Application Servers. The Web-based middleware
for such systems is called “Web Services” subsuming a set
of protocols and XML-languages for invocation, discovery,
and interface description of services.
However, building a distributed system based on a SOA

constitutes similar problems to the ones in an Application
Server. There are already a multitude of description files (for
the interface description [10], for composition1 purposes [3,
5, 2, 9], for discovery [26] etc.). The complexity will increase
by incorporating further aspects like security (WS-Security
[4]), transactions (WS-Transaction [8]) and trust (WS-Trust
[6]). Existing and currently arising ontology-based efforts
like [25, 12, 27] focus mostly on the capability description of
a service to improve discovery.

1.2.2 Goal
Therefore, the second goal of the thesis is an ontology-

based approach to support the management of Web Services
based systems. The ontology is able to capture all relevant
aspects (interface description, security information, etc.) of
a service in a harmonizing explicit conceptual model that
can be queried and reasoned with.
The idea is to leverage the ontology infrastructure intro-

duced in 1.1 to achieve this goal since most Web Services are
and will be exposures of the functionality hosted in software
components residing in Application Servers. However, the
situation becomes more complex compared to Application
Servers as the system is distributed over several organiza-
tional units. Hence, the research has to take into account
additional aspects like network delays, reliability, trust and
security issues. Also, new problems have to solved, e.g. the
translation of the different vocabularies used, where to do
the reasoning, who gathers the data and who gets access to
them.

1.2.3 Significance
SOAs are considered as the basis of the next generation

of distributed software systems. Hence, the significance and
interest in this work will be rather high. Research on Web
Services is currently rising with first ontology-based efforts
(e.g. [25]) as well as novel conferences and workshops in this
area.

1.3 Reusable Ontology Libraries

1.3.1 Problem
The two goals stated above are dependent on the provision

of semantic metadata in terms of the ontology describing

1Depending on the effort, composition is also called orches-
tration, workflow, choreography or conversation.

both the components and the services. While some of the
semantic metadata can be generated automatically, a full
specification will always require manual provision. This is
usually a rather cumbersome and error-prone work for the
developer.
One reason for that is the lack of ontology quality of exist-

ing efforts (e.g. [25, 22]). Like discussed in [7], there are three
criteria for the evaluation of ontology quality: extensional
coverage (concerning the amount of entities that are sup-
posed to be described by an ontological theory), intensional
coverage (concerning what kinds of entities are described by
an ontological theory), and precision (concerning what ax-
ioms are required to describe just the models the ontology
designer intends to cover). According to these criteria, a
good ontology should approximate the domain of discourse
that is supposed to be described, it should have a signature
that maps all the kinds of entities intended by the designer,
and it should axiomatize the predicates in order to: 1) catch
all the intended models, and 2) exclude the unintended ones.
In [20] we analyzed an existing ontology for the semantic

description of web services, called OWL-S [25]. The analysis
yielded four shortcomings that are typical also for other on-
tologies. The first one (conceptual ambiguity) features both
insufficient intensional coverage and overprecision. The sec-
ond and the third (poor axiomatization and loose design)
are cases of insufficient precision. In the third problem, the
weakness is mainly inherited by limitations of the expressiv-
ity of the ontology language. The fourth (narrow scope) is
a case of both extensional and intensional coverage.

Conceptual Ambiguity Since there is no clear conceptual
framework behind OWL-S, it is often difficult for users
to understand the intended meaning of some concepts,
the relationship between these concepts as well as how
they relate to the modelled services. Many concepts
are still being clarified both within the OWL-S coali-
tion and in public mailing lists.

Poor Axiomatization The primary goal of OWL-S is to
be machine processable and it operates in an open en-
vironment. Hence, it is important that each concept
is characterized by a rich axiomatization in order to
support meaningful inferences. In contrast to concep-
tual ambiguity, poor axiomatization reflects the lesser
problem when the definition of concepts is clear, but
axiomatization in the ontology itself needs improve-
ment. In many respects, OWL-S shows the charac-
teristics of a typical application ontology: there is no
firm concept or relation hierarchy (most concepts and
relations are direct subconcepts of the top level con-
cept or relation) and several relations take the top level
concept as their domain or range.

Loose Design A further problematic aspect from an on-
tologist’s point of view is its entangled design. At
the heart of this problem lies the purpose of OWL-
S in providing descriptions of various views on Web
Services required to support a number of different ser-
vice related tasks (discovery, composition, invocation).
Besides the functional dimension, Web Service descrip-
tions should be contextualized to represent various view-
points on a service, possibly with different granularity.
Most of these views, however, are overlapping in that
they concern some of the same attributes of a service.

A straightforward modularization in such cases results
in an entangled ontology, where the placement of cer-
tain knowledge becomes arbitrary and intensive map-
ping is required between modules. This phenomenon
is well described in object-oriented design, where the
notion of aspects [11] was recently proposed to encap-
sulate concerns that cross-cut the concept hierarchy of
a software.

Narrow Scope Finally, the scope of OWL-S needs to be
extended to represent real world services that natu-
rally cross the lines between information systems and
the physical world. While OWL-S acknowledges this
aspect of services, it is unclear how a distinction could
be made between the objects and events within an
information system (regarding data and the manipu-
lation of data) and the real world objects and events
external to such a system.

1.3.2 Goal
Hence, the third goal of the thesis is to enable the reuse

of existing ontologies in such a way that high quality can be
rather easily achieved by just re-using a proven foundational
ontology. Apart from that, a high-quality foundational on-
tology should be general enough to allow for mediation be-
tween many interesting (meta)data sources. Finally, a foun-
dational ontology that attracts wide-spread agreement from
its community may also lead to a wide-spread understand-
ing of its definitions — and correspondingly to more concise
semantic (meta)data.
Therefore, a foundational ontology is used to build an on-

tology library for both the ontologies used in Application
Servers and in Web Services middleware, carefully investi-
gating ontological choices known from philosophy, linguis-
tics and mathematics. Foundational ontologies (aka “upper
level ontologies”) respond to the aforementioned shortcom-
ings as they provide a reference point for easy and rigorous
comparisons among different ontological approaches.
The usage of a common foundational ontology also allows

to harmonize both ontologies for a simpler translation ac-
knowledging the fact that services are often exposures of
components residing in an Application Server. [15]

Domain and application ontologies

Descriptions & Situations

DOLCE

Core Ontology
of Components

Core Ontology
of Services

Figure 2: Ontology Library.

Figure 2 depicts the ontology library. DOLCE (Descrip-
tive Ontology for Linguistic and Cognitive Engineering) [19]
has been chosen as the basis of the library. It features a
rich axiomatization of domain independent concepts, ex-
plicit construction principles, careful reference to interdis-
ciplinary literature as well as common sense-orientedness.
DOLCE is axiomatized in a modal logic, but it is main-
tained also in other languages, used according to the partic-
ular trade-off between expressivity and computational com-
plexity that is required by a certain application.

Several additional theories exist for DOLCE that come in
the form of ontology modules. Descriptions & Situations
(D & S) is such a module and axiomatizes a theory of on-
tological contexts [14]. The descriptions of services show
a clear contextual nature, one may only have to consider
the number of different views that may exist on a service:
the view of a service provider, that of the service requestor
or the legal view of a contract etc. The concepts used to
formulate any given view are clearly separate from the ac-
tual objects they act upon and often independent from the
concepts appearing in other views.
We applied both DOLCE and the additional modelling

capabilities of D & S to formalize core ontologies for com-
ponents and for services. While the first axiomatizes typical
concepts in an Application Server (most prominently soft-
ware components and their interrelationships) the second
deals with similar aspects of services. Domain and applica-
tion ontologies can finally reuse the core ontologies.

1.3.3 Significance
Interest in foundational ontologies is rising as existing

ontology-based efforts suffer several problems that create
ambiguity and complicate the provision of semantic meta-
data.

2. METHODOLOGY
Studies were carried out in theWonderWeb project2 whose

objective was, among others, to link new and existing Se-
mantic Web3 tools in a comprehensive technical infrastruc-
ture.
Based on those needs, we derived a set of requirements

and possible design solutions. We iterated several times over
requirements and design solutions and took into account ex-
isting efforts and methods (e.g. MDA or OWL-S [25]).
The resulting infrastructure is an Application Server for

the Semantic Web. Besides integrating semantic technology
within the server itself, it additionally facilitates plug’n’play
engineering of ontology-based modules and, thus, the devel-
opment and maintenance of comprehensive Semantic Web
applications. Its design and development are based on ex-
isting Application Servers. However, their underlying con-
cepts are applied and augmented for use in the Semantic
Web. [24]
The infrastructure will be extended by means for a) the se-

mantic management of Web Services and b) semi-automatic
generation of corresponding semantic metadata.

3. EVALUATION
It is usually difficult to substantiate the advantages of

ontology-based applications in numbers. The best way to
demonstrate their benefits is to have a modularized appli-
cation and perform a controlled experiment. Modules pro-
viding the same functionality with and without the usage
of ontologies have to be applied and the application eval-
uated each time. Such experiments are difficult to set up
and in many cases the nature of the application makes it
impossible. This is the case with Application Servers and

2http://wonderweb.semanticweb.org
3The Semantic Web augments the current WWW by giving
information a well-defined meaning, better enabling com-
puters and people to work in cooperation. This is done by
adding semantic metadata to web resources.

Web Services based systems where ontology-usage is deeply
rooted in the infrastructure.
Hence, the thesis takes the following approaches for eval-

uation. First, a significant part of the architecture has
been prototypically implemented and test-driven in a sys-
tem called KAON SERVER4. This prototypical implemen-
tation successfully shows that some of the goals of the thesis
are already met. Second, another strategy is to show that
ontology-based applications make it possible to do some-
thing that was hitherto impossible or too costly. Therefore,
the thesis will estimate possible cost reductions by usage of
ontologies in a company. The idea is to achieve the cost re-
ductions by easier maintenance and thus fewer man power.
Both approaches are further discussed in the following sub-
sections.

3.1 KAON SERVER
KAON SERVER [23] implements a significant part of

the aforementioned architecture and is optional part of the
KArlsruhe ONtology and Semantic Web Toolsuite (KAON)
[18]. It makes use of the Java Management Extensions (JMX
[17]) — an open technology for component management.
With JMX it becomes possible to configure, manage and
monitor Java applications at run time, as well as break appli-
cations into components that can be exchanged. Basically,
JMX defines interfaces of managed beans (MBeans) which
are JavaBeans that represent JMX manageable resources.
MBeans are hosted by an MBeanServer which allows their
run time deployment and manipulation. All management
operations performed on the MBeans are done through in-
terfaces on the MBeanServer.
JMX only provides an API specification with several avail-

able implementations. We have chosen JBossMX which is
the core of the open-source JBoss Application Server [13]
that augments J2EE by dynamic component deployment.
This choice allows us to inherit all the functionality provided
by JBoss in the form of its MBeans (Servlet Containers, EJB
Containers etc.). We deploy our inference engine as an ad-
ditional MBean and augment the existing component loader
and dependency management to exploit the inferencing. A
version and security management tool allows to browse and
query the ontology at run time. Several separate descrip-
tion languages and corresponding files are substituted by
the ontology and corresponding semantic metadata. Thus,
it is possible to use the KAON SERVER as a “semantically
enhanced JBoss”.

3.2 Reduction of Maintenance Costs
The usage of semantic technology will be explored at a

particular company in order to estimate possible reduction
of maintenance costs.
The goal is to show that the company’s software devel-

opers can better maintain their multitude of databases and
servers by inferencing over access rights, system dependen-
cies etc. The relationships between software components,
services and databases will be formalized by an ontology.
Applying an inference engine will allow powerful semantic
queries like “which services are affected by a change of soft-
ware component x?”.

4The KAON SERVER can be downloaded at http://kaon.
semanticweb.org

Acknowledgements. The author would like to thank Stef-
fen Staab, Andreas Eberhart and Rudi Studer from the In-
stitute AIFB for their much valued supervision. Also Mike
Uschold from Boeing as well as the colleagues of the Won-
derWeb projects for their fruitful hints.

4. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.

Web Services. Springer, Sep 2003.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. K. F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business
Process Execution Language for Web Services Version
1. Specification, May 2003. http:
//www.ibm.com/developerworks/library/ws-bpel/.

[3] A. Arkin, S. Askary, S. Fordin, W. Jekeli,
K. Kawaguchi, D. Orchard, S. Pogliani, K. Riemer,
S. Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimek.
Web Service Choreography Interface (WSCI). W3C
Note, aug 2002. http://www.w3.org/TR/wsci.

[4] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo,
P. Hallam-Baker, J. Klein, B. LaMacchia, P. Leach,
J. Manferdelli, H. Maruyama, A. Nadalin, N. N. H.
Prafullchandra, J. Shewchuk, and D. Simon. Web
Services Security (WS-Security). Specification, Apr
2002. http://www-106.ibm.com/developerworks/
webservices/library/ws-secure/.

[5] A. Banerji, C. Bartolini, D. Beringer, V. Chopella,
K. Govindarajan, A. Karp, H. Kuno, M. Lemon,
G. Pogossiants, S. Sharma, and S. Williams. Web
Services Conversation Language (WSCL). W3C Note,
Mar 2002. http://www.w3.org/TR/wscl10/.

[6] BEA Systems, Computer Associates International,
IBM Corporation, Layer 7 Technologies, Microsoft
Corporation, Netegrity, Oblix, OpenNetwork
Technologies, Ping Identity Corporation, Reactivity,
RSA Security, VeriSign, and Westbridge Technology.
Web Services Trust Language (WS-Trust).
Specification, May 2004. http://www-106.ibm.com/
developerworks/library/specification/ws-trust/.

[7] S. Borgo, A. Gangemi, N. Guarino, C. Masolo, and
A. Oltramari. Ontology RoadMap. WonderWeb
Deliverable D15, Dec 2002.
http://wonderweb.semanticweb.org.

[8] F. Cabrera, G. Copeland, B. Cox, T. F. J. Klein,
T. Storey, and S. Thatte. Web Services Transaction
(WS-Transaction). Specification, 2002.

[9] L. F. Cabrera, G. Copeland, W. Cox, M. Feingold,
T. Freund, J. Johnson, C. Kaler, J. Klein,
D. Langworthy, A. Nadalin, D. Orchard, I. Robinson,
J. Shewchuk, and T. Storey. Web Services
Coordination (WS-Coordination). Specification, Sep
2003. http://www-106.ibm.com/developerworks/
library/ws-coor/.

[10] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(WSDL). http://www.w3.org/TR/wsdl, Mar 2003.
W3C Note.

[11] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented
programming: Introduction. Communications of the
ACM, 44(10):29–32, October 2001.

[12] D. Fensel and C. Bussler. The Web Service Modeling

Framework WSMF. Electronic Commerce: Research
and Applications, 1:113–137, 2002.

[13] M. Fleury and F. Reverbel. The JBoss Extensible
Server. In M. Endler and D. C. Schmidt, editors,
Middleware 2003, ACM/IFIP/USENIX International
Middleware Conference, Rio de Janeiro, Brazil, June
16-20, 2003, Proceedings, volume 2672 of Lecture
Notes in Computer Science, pages 344–373. Springer,
2003.

[14] A. Gangemi and P. Mika. Understanding the semantic
web through descriptions and situations. In
DOA/CoopIS/ODBASE 2003 Confederated
International Conferences DOA, CoopIS and
ODBASE, Proceedings, LNCS. Springer, 2003.

[15] A. Gangemi, P. Mika, M. Sabou, and D. Oberle. An
ontology of services and service descriptions. Technical
report, Laboratory for Applied Ontology
(ISTC-CNR), Viale Marx, 15, 00137 Roma, 2003.

[16] A. Gokhale, D. C. Schmidt, B. Natarajan, J. Gray,
and N. Wang. Model driven middleware. In Q. H.
Mahmoud, editor, Middleware for Communications,
chapter VII, pages 163–188. Wiley, 2004.

[17] J. Lindfors and M. Fleury. JMX — Managing J2EE
with Java Management Extensions. Sams, 2002. The
JBoss Group.

[18] A. Maedche, B. Motik, and L. Stojanovic. Managing
multiple and distributed ontologies in the Semantic
Web. VLDB Journal, 12(4):286–302, 2003.

[19] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and
A. Oltramari. Ontology Library (final). WonderWeb
Deliverable D18, Dec 2003.
http://wonderweb.semanticweb.org.

[20] P. Mika, D. Oberle, A. Gangemi, and M. Sabou.
Foundations for Service Ontologies: Aligning OWL-S
to DOLCE. In The 13th International World Wide
Web Conference Proceedings, pages 563–572. ACM,
May 2004.

[21] D. Oberle, A. Eberhart, S. Staab, and R. Volz.
Developing and managing software components in an
ontology-based application server. In 5th International
Middleware Conference, LNCS. Springer, 2004.

[22] D. Oberle, M. Sabou, and D. Richards. An ontology
for semantic middleware: extending DAML-S beyond
web-services. Technical Report 426, University of
Karlsruhe, Institute AIFB, 76128 Karlsruhe,
Germany, 2003.

[23] D. Oberle, S. Staab, R. Studer, and R. Volz. KAON
SERVER Demonstrator. WonderWeb Deliverable D7,
2003. http://wonderweb.semanticweb.org.

[24] D. Oberle, S. Staab, R. Studer, and R. Volz.
Supporting Application Development in the Semantic
Web. ACM Transactions on Internet Technology
(TOIT), 4(4), Nov 2004.

[25] The DAML Services Coalition. OWL-S 1.0 draft
release. http://www.daml.org/services/owl-s/1.0/,
Dec 2003.

[26] UDDI Coalition. UDDI Technical White Paper.
http://uddi.org, Sep 2000.

[27] M. Voskob. UDDI Spec TC V4 Requirement -
Taxonomy support for semantics. OASIS, 2004.
http://www.oasis-open.org.

