Semi-Automatic Acquisition of Semantic Descriptions of Web Sites

Sudhir Agarwal
Institute of Applied Informatics and Formal Description Methods (AIFB) and
Karlsruhe Service Research Institute (KSRI)
University of Karlsruhe (TH),
Karlsruhe, Germany.
agarwal@kit.edu

Abstract

In order to obtain the desired information or functionality
in the Web, a user often needs to perform multiple interac-
tions with the Web site, e.g. submitting Web forms filled up
with appropriate information, and the further execution of
such a Web process depends on the information provided
by the user in the previous steps of the process. The formal
models underlying existing systems for supporting users in
coping with the Web do not capture the dynamics and data
flow of Web processes. As a result, searching for information
in the so called "Deep Web” or desired business processes
offered via the Web still requires significant manual effort.

In this paper, we present a semantic process description
language and present a mapping of the dynamics and
data flow of Web sites to our semantic process description
language. In order to allow development of more sophisti-
cated methods and tools that consider the dynamics and
data flow inside or among Web sites, significant number
of descriptions of Web sites are needed. We approach this
bootstrapping problem by presenting a technique for semi-
automatic acquisition of semantic descriptions of Web Sites.

1. Introduction

There is a tremendous amount of information hidden in
the so called "Deep Web” [1]. This information is offered
to the users via dynamically generated Web pages '. In
order to access the information in the deep Web, a user
needs to perform certain steps, e.g. submitting the Web
forms filled up with appropriate information. For example,
in order to find the weather of some city on some data, a
user needs to enter the name of the city and the date in a
form. Furthermore, a lot of business is offered via Web sites,
e.g. selling books, that can have effects in the real world,
e.g. ordering a book at an online shop triggers the shipment
of the book to user. Again, in order to avail the functionality
offered by such business processes, a user needs to perform

1. We will use the terms "dynamic Web pages” and “static Web pages” in
the sense of their intuitive meanings. Theoretically, the boundary between
the two is not clearly defined.

certain actions, e.g. selecting a book, entering the shipment
address, entering the credit card details etc. In addition to
Web sites, information and business are also provided via
Web services.

In order to support a user in coping with the huge amount
of information and business provided via the Web, automatic
tools have been developed. The most prominent tools are
perhaps the search engines like Google, Yahoo! and MSN.
The formal models underlying such tools mainly consider
the content of the Web pages for building their respective
search indexes but hardly the dynamic aspects of the Web.
More precisely, the control and data flow among various
Web pages and the dependency of the content of a Web
page which appears as part of a process (e.g. book ordering
process) on the user input received on the previous pages of
the process. As a result, currently, it is hard to find Web sites
that do offer the desired information but on a page generated
dynamically at some later stage of the process and not on
the very first (mostly static) page.

In this paper, we view Web pages, Web sites and Web
services in a unifying way as Web processes and focus
mainly on the dynamic aspects of such processes. With such
a process oriented view on the Web, we aim to build the basis
for the development of more sophisticated methods and tools
that can address the increasing demands of the users. Since
acquisition of expressive descriptions of Web processes is
one of the biggest hurdles on the way to a repository of
descriptions of Web processes, we also present a semi-
automatic technique for the acquisition of such descriptions.

The paper is structured as follows. In Section 2, we
give a short overview of our formalism for describing
distributed processes [2]. In Section 3, we present a mapping
of Web artefacts and some HTML elements to our process
description language. In Section 4, we present our semi-
automatic approach for acquiring the semantic descriptions
of Web pages. We summarize our results and discuss some
future work in Section 6 after discussing the related work
in more detail in Section 5.

2. Semantic Description of Web Processes

As motivated in Section 1, in order to enable more sophis-
ticated automatic support, the necessary information about
Web processes must be available in machine interpretable
form. In this section, we give a short overview of the
language for describing Web processes semantically [2] and
show how Web sites can described as processes in this
languages. The formalism is a novel combination of the
process algebra m-calculus [3] and the description logic
SHZIQ(D). In Section 2.1, we propose to use SHZQ(D)
ontologies to describe resources (domain ontologies) seman-
tically. In Section 2.2, we present a formalism for describing
the functionality of Web services semantically.

2.1. Modeling Resources with Ontologies

We specify concrete resources as description logic in-
dividuals, among which relationships “=" and “#” can
be specified. These relationship types are necessary to
achieve interoperability in the descriptions of individuals
and are directly provided by expressive description logics,
e.g. SHZQ(D), which the decidable variant OWL-DL of
the Web ontology language OWL? is also based on. The
resources can be further classified into sets that can be hierar-
chically ordered according to the subset relationship. Again,
expressive description logics provide the “C” relationship
type to relate the sets. In addition to the mentioned relation
types, SHZQ(D) also allows the modeling of arbitrary
relation types among concepts and use of relations among
individuals.

2.2. Modeling Behaviour

A Web service whether stateless or stateful is a process.
Mostly, RPC (Remote Procedure Call) like Web services are
stateless, whereas Web services with a flow of Web pages
are typically stateful. In order to model the semantics of
Web services, we model them as processes. The syntax of
the formalism is defined recursively as follows:

P = 0]yvr...,v5).P | y{x1...,20).P|

Wty oo Zn) W1y ey Ym) P | w?Py: Pa |
P1 H P2 | P1 +P2 | @A{yl,...,yn}

The Null process 0 is a process that does nothing. This
process is used to denote the termination of a process.

The Input process y[v1, . .., v,).P is a process that inputs
arbitrary names z1,..., 2z, at port y, binds them to names
v1...,v, and then behaves like the process P{z;/v;},
where z;/v; denotes substituting z; for v;.

2. http://www.w3.0rg/2004/OWL/

The Output process y{x1,...,x,).P is a process that
outputs the names z;...,x, at port y and then behaves
like the process P.

In an input process expression y[v1, . .., Vs].P, U1,..., Uy
are variables. We model variables as DL. A-Box individuals
within the name space of the corresponding actor. The reason
for doing this is that variable v can be bound to a value «
(which is again an A-Box individual) by adding an A-Box
individual equality axiom v = =z in the knowledge base.
Once, we have such an axiom in the knowledge base, the
variable v can be used just as a value as in case of pro-
gramming languages. In an output process y(x1,...,x,).P
, T1,...,T, are resources, which are also modeled as DL
A-Box individuals and are available since all the individual
names of the associated ontology can occur freely in the
process expression.

In practice, information about the type of communication
protocol and the type of messages that can be transmitted
over a channel is very useful. E.g. one may wish to know
whether the book selling business process will send the book
via HTTP as PDF or via surface mail as hard copy.

For communication activities (input as well as output), we
use a pair (p,a) in place y, where p is the communication
protocol, e.g. http”, “phone”, “fax”, “surface-mail” etc.,
and a is the address. Finally, by modeling channel types
as description logic individuals we make sure that channel
descriptions can be sent and received just like any other
resources and thus the mobility is preserved.

The Local process {(z1,...,Zn)(Y1, - -, Ym).P performs
the operation [locally wrt. to the server with the arguments
Z1,...,%n and produces output y1, ..., Y. It then behaves
like the process P.

A local operation is a decidable procedure that updates
the A-Box of the agent that executes the local operation. A
local operation may perform a query on the local knowledge
base or some calculation to add new individuals and add
corresponding axioms in the knowledge base to relate the
individuals with each other. It can also remove existing
DL axioms from the knowledge base. So, we define a
local operation type L(x1,...,2Zn)(Y1,...,Ym) as a list
of change types A and a list of rules R. Each change
type § € A is a parameterized proposition, where the
parameters belong to the set {x1,...,z,}. Furthermore,
a change type § is adorned with “+” or “-” which indi-
cates whether the proposition corresponding to § is added
to or removed from the knowledge base. For example,
if the change type {+classMember(z1,22)} belongs to
the change types of a local operation type L(z1,z2)(),
executing L with arguments Peter and Person will add
the axiom classMember(Peter, Person) in the knowl-
edge base. The set of rules R contain rules that re-
late the output variables y1,..., ¥y, to the input variables
Za,---,Tn. A concrete invocation of a local operation type
L(z1,...,2)(y1,...,Ym) contains values for the input

parameters x1,...,x, and yields values for the output
variables y1, ..., Ym.-

The Deterministic Choice w?P;: Py is a process that
checks whether the condition w is true or not. It behaves
like the process Pp, if the condition w it true otherwise
like the process P». In practice one needs to check rich
conditions, e.g. whether the income of person x is higher
than the income of person y. The process expression w?P: Q)
that behaves like P if the condition w is true, and otherwise
like @. The condition w can be any predicate in the ontology
of actor that checks the condition. These include concept
names, relation names defined in the T-Box, rule heads
of DL-safe rules in the R-Box of the ontology and any
predicate symbols, the implementations of which lie outside
the description logic reasoner. This allows to model very
expressive conditions the check for whose truth value is still
decidable. For more details about the formalism, in particular
its formal semantics, we refer to [2].

The Composition Py || P, consists of P; and P» acting
in parallel. The components may act independently; also,
an output action of P; (resp. P») at any output port x may
synchronize with an input action of P» (resp. P;) at x, to
create a silent (7) action of the composite agent P; || Ps.

The Summation P; + P, denotes the non-deterministic
choice and behaves either like P; or like . In contrast to
deterministic choice, in which a process evolves depending
on the truth value of some condition, e.g. equality, in case of
non-deterministic choice, the user of the process selects one
of the alternatives and the selected alternative is executed.

The named process expression is called Agent Identifier.

For any agent identifier A (with arity n), there must be

. . . de
a unique defining equation A(zq,...,z,)) P, where

the names x1,...,x, are distinct and are the only names
which may occur unbound in P. Now, the process Agent
@QA{y;y ...,yn} behaves like P{yi/x1,...,Yn/xn}. Note
that defining equations provide recursion, since P may
contain any agent identifier, even A itself.

3. Semantics Description of Web Sites

Having an expressive process description formalism at
hand, we now present how Web sites can be seen as
processes and thus described by our process description
formalism semantically. To do so, we present in this section
a mapping between common elements of HTML and our
process description language.

Seen abstractly, a Web page consists of mainly two types
of elements, namely elements that present information to the
user, e.g. text paragraphs, tables etc. and elements that are
meant for interacting with the user, e.g. forms and links. In
general, a Web page is a part of a Web site and may not be
directly reachable but appears only on a certain navigation
path of the site. Table 1 presents our view on Web artifacts
as a elements of our process description language.

Web Artefact Process Language Element

URL/Web site Agent identifier

Web page Message

Link Invocation of an agent identifier
Form Input process

Form field name concept

Form field values | Instances of the concept corresponding to
the field name

CGI script Local operation

Web Agent identifier with all Web sites as con-

currently running components

Table 1. Mapping between Web Artifacts and
Elements of our Process Language

When a URL is accessed, the Web server produces a
Web page and sends it to the client. In some cases, a
URL has arguments (appended to the base URL after the

symbol ”7”). So, a URL wu with arguments ay,...,a,

. . def
can be seen as an agent identifier u(ay,...,a,) =
w(byy ..., bm)(01,...,0).c{01,...,00).P, where

{b1,...,bm} < {a1,...,a,}. The left hand side of
the expression describes that the agent u has arguments
ai,...,a,. The right hand side of the expression describes
the defining process of the agent identifier and says that
an agent of type w first performs a local operation u with
b1,...,b,, as input arguments and o1,...,0; as outputs.

Note that {b1,...,b} C {a1,...,a,} must hold since
{a1,...,a,} are the only names than may occur freely
in the defining process expression. The names o,...,0;

denote the content of the HTML page, which is then sent
to the client in the subsequent output activity. Some of the
o; may be links to other Web sites or submit buttons of the
forms. Each such o; denotes a possibility to navigate to
the next page. That is, process P that denotes the further
evolution of the process can be seen as the P =)" o; with
0; € {01, .. .,Ol}.

If an o; is a link, it denotes the usage of a URL. The
names of the arguments, if any, can be seen as concepts of
one or more ontologies, whereas the values of the arguments
as instances of the concepts corresponding to the respective
argument.

In case of a form, the “action” can be either a link or the
invocation of a method executed locally by the server (CGI
script). The usage of a URL is equivalent to the invocation
of an agent identifier, whereas a CGI script is equivalent to
the invocation of a local operation. Submission of a form
binds the values entered in the form fields to the names of
the corresponding fields. Note, that such a binding happens
before the server executes the CGI script. Hence, a form f
with field names vy, ..., v, can be seen as an input process
flv1,...,v,).P where P denotes the process representing
the non-deterministic choice of all the submit buttons of the
form f. That is, if the form f has submit buttons by, ..., b,
then is P =5 by,...,bp.

The field names vy, . . ., v, can be seen as concepts on one
or more ontologies, as a field name denotes the set of all
possible values. Sometimes, a form field already contains
the list of possible values, e.g. a combo box, a list box
or radio buttons. These values represent possible values for
the field name and can be seen as instances of the concept
corresponding to the field name.

This way, a Web site can be seen as an agent identifier
and even the whole Web as an agent identifier with all the
Web sites as concurrently running agents.

4. Acquisition of Semantic Descriptions

In this section, we describe how we aim to acquire
a large set of high quality semantic descriptions of Web
sites. The proposed semi-automatic solution consists of a
crawler and an automatic extraction component to achieve
initial semantic descriptions formalized with the formalism
presented in Section 2, which can be refined at a later stage
manually with appropriate tool support.

We denote with A the set of agent identifiers and with
O the set of domain ontologies. Algorithm 1 is the main
crawler loop. Algorithms 2 and 3 are used within Algo-
rithm 1 to create semantic descriptions of a Web page
reachable via clicking link or by submitting a form respec-
tively. Algorithm 4 is a utility algorithm that is used within
Algorithm 3 to process various types of form fields and
add the information as concepts or instances in the domain
ontology of a Web page.

Algorithm 1 initializes the set of agent identifiers A4 as
well the set of domain ontologies O to (). The algorithm
needs a set of URLs that serve as seed URLs for the
crawler. When the crawler runs and fetches information
about Web pages that are part of a Web site, the process
expressing defining the agent identifier corresponding to the
Web site needs to be expanded accordingly. For this purpose,
the agent identifiers for each of the URLs in the starting
queue are created with Algorithm 2, that is responsible
for processing links. Once the agent identifiers have been
created, the main crawler loop begins and runs until the
queue is empty. In each iteration, it dequeues the first link
in the queue, while adding possibly new links to the queue
that are reachable from the link under consideration via
“clicking” links or ”submitting” forms.

As it becomes clear from the algorithms presented in this
section, the crawling component creates a separate ontology
for each agent identifier. We foresee that these ontologies
can be aligned semi-automatically. Approaches like [4] can
be employed to find alignments among ontologies auto-
matically, which can be further refined manually. Another
important information that is foreseen for manual acquisition
is defining the relationships between the input and output
variables of a local operation type (cf. Section 2.2).

Algorithm 1 Semi-Automatic Acquisition
1: Initialize A to 0. Initialize O to ().
2: Let () denote the queue containing the seed URLs of
the crawler.
3: for all ¢ € Q do
4: Create agent identifier for ¢ with Algorithm 2 and
denote it with ¢().
while Q # 0 do
Dequeue the first URL from @, denote it with q.
Fetch the Web page p located at q.
Replace h in the definition of ¢() with the string
representing the HTML code of the Web page p.
9: Extract all links in the Web page p, denote the set of
extracted links with L,,.
10: Initialize a set of agent identifiers N to ().
11: foralllc L, do

® W

12: Create agent identifier for link [with Algorithm 2
and add it to V.
13: enqueue link [to the queue Q.

14: Extract all forms in the Web page p, denote the set
of extracted forms with F),.

15: for all f € F}, do

16: Create agent identifier for form f with Algorithm 3

and add it to V.

17 Links in L, and the URLs specified in the action”
elements of the forms in page p are the only possi-
bilities to to the next page from page p.

18: Replace the process expression P at the end of
the agent identifier ¢() with the process expression
> nen - The later describes a non-deterministic
choice process with all the action URLs of the forms
and links in the Web page p as options, a user chooses
from.

One of the advantages of our approach is that we do not
aim for indexing different instances of a Web page generated
dynamically for different values of the arguments. Rather,
our descriptions capture the dependency of a Web page on
its arguments. More precisely, we do not submit forms for
all possible combinations of the values of the form fields
and store the resulting Web page. This not only saves a lot
of storage space, but also does not cause extra load on the
Web servers.

5. Related Work

Current search engines like Google, Yahoo! and MSN
offer only limited support for searching for Web pages
that offer certain information or effects after some user
interactions. The reason for this is that the search is based on
a search index that is built automatically by a crawler which
cannot reach many dynamically generated Web pages [5].
Another shortcoming of the current search engines is that

Algorithm 2 Create Agent Identifier for a Link
Require: URL !/
1: Let b denote the base URL of [. That is, the part of the
URL [before 77"

2: Extract the (name, value) pairs of the arguments of link
I. Let names(l) denote the set of names and a(l) the
set of these (name, value) pairs. Further, let name(a),
with a a (name,value) pair, denote the name in the pair
a and value(a) the value in the pair a.
if o, ¢ O then

Add an ontology oy, in the set of ontologies O.
for all a € a(l) do
Add a concept name(a) in the ontology o,
Add an individual value(a) as instance of the concept
name(a) in the ontology oy

8: Add a local operation type Lj(names(l))(h) to the set

of local operation types

9: Add an agent identifier b(names(l))

Q@QLy(names(l))(h).c(h).P to the set of agent
identifiers A
Ensure: Agent identifier b

N hw

dﬁf

Algorithm 3 Process a Form
Require: Form f
1: Process the fields of the form f with Algorithm 4.
2: Extract the URL specified under ”action” in the form f.
Let ay denote the action URL.
3: if Action method is “get” then

4 Add an agent identifier f()
plnames(f)].Qas{names(f)/names(ays)} to
the set of agent identifiers 4. {This means that in
case action method is “get”, the form behaves like
the agent corresponding to the action URL after
inputting the field values. The field values are passed
to the invocation of the agent corresponding to the
action URL.}

5: else

6: Add a local operation type a¢(names(f))(h) to the
set of local operation types

7. Add an agent identifier f()
plnames(f)].Qay(names(f))(h).c(h).P to the
set of agent identifiers A. {This means that in case
action method is “post”, after receiving the input
values from the user, the server performs an operation
locally with the field values and then produces the
next Web page }

Ensure: Agent identifier f.

def

def

Algorithm 4 Process Form Fields
Require: Form f
1: Extract the names of the fields in form f. Let names(f)
denote the set of names of form f.
2: for all n € names(f) do
3: Add the concept n in the ontology o,,.
4. Extract the values of the field n and denote them by
v(n)
5. for all v € v(n) do
6: add an individual v as instance of the concept n in
the ontology o,.
Ensure: names(f)

they do not support search based on the user constraints on
the process of reaching certain information or achieving an
effect. E.g. a user that wishes to order a book may want to
search for books by their ISBN and may not want to enter
his date of birth at any stage of the book ordering process.

The contributions of [5] are manifold. Firstly, it presents
an algorithm for informativeness test that is used to evaluate
query templates, i.e. combinations of form inputs. Secondly,
it presents an algorithms for efficiently traversing the space
of query templates to identify those suitable for surfacing.
Thirdly, it presents an algorithm for predicting appropriate
inputs values for text boxes. Our approach is different
from [5] since it is based on semantic annotation of the
services and not on indexing probably the whole database
of the service providers. Note that in some cases it may be
legally forbidden by the service providers for other parties
to index their database partially or completely. Furthermore,
in our approach we can deal with a sequence of Web pages
whereas the approach presented in [5] can deal with single
pages.

BPEL4AWS [6] is a popular formalism for modeling
business processes in the Web. It combines XLANG and
WSFL. However, it still lacks formal semantics and rea-
soning procedures. Therefore, our work is complementary
to BPEL4WS as our formal model may be used in its
extended form to specify formal semantics for BPEL4WS,
which is needed in order to prove certain properties of
reasoning algorithms based on BPEL4WS. Note, that all
the attempts to define formal semantics of BPEL4WS cover
only the dynamic behavior of BPEL4WS. Resource schemas
that are an essential part of multi party business processes
have not been considered. Furthermore, BPEL4WS views
Web services as black boxes with one input and one output
activity. In our model, we do not have this restriction. In
our view, services can have multiple interactions with the
user. BPML? is similar to BPEL4WS in the sense that it
focuses more on the execution of a business process than
on reasoning about properties of a process.

3. http://www.bpmi.org

Traditional research on semantically annotating Web
pages mainly focussed on static Web pages [7]. Later some
approaches addressed the issue of deep annotation of Web
pages. For example [8] relies on the cooperation of the
providers of the dynamic Web pages and expects them to
generate the semantic annotation together with the Web
page and integrate it in the Web page before sending it
to the client. Apart from the rather limited acceptance of
these approaches in the practice, the annotation formalism
underlying these approaches does not allow to describe the
user input dependent flow and contents of Web pages.

OWL-S Process Model [9] is an OWL ontology to de-
scribe the choreography of composite Web services. How-
ever, OWL-S Process Model does not allow to model process
variables in a clean way, which makes it difficult to model
the relationships between inputs and outputs of various
activities. Furthermore, there is no formal semantics of the
current OWL-S Process Model, which makes it difficult to
automatically reason about the data and control flow of
composite Web services modeled with OWL-S. Note, that
the formal semantics presented in [10] covers one of earlier
versions of DAML-S.

WSMO (Web Service Modeling Ontology) provides the
conceptual underpinning and a formal language for seman-
tically describing Web services in order to facilitate the
automatization of discovering, combining and invoking elec-
tronic services over the Web [11]. WSMO is more a formal-
ized bird-eye view than a concrete Web service description
language. Existing reference implementations of WSMO are
based on the Web Service Modeling Language(WSML) .
In contrast to OWL-S WSMO proposes to model pre-
conditions and effects of a service as logical expressions
in WSML. However, the semantics of pre-conditions and
effects can not be captured by a WSML reasoner since it can
not reason about changing knowledge base. Furthermore,
currently, WSMO only provides techniques for modeling
atomic Web services but there is no WSMO approach for
modeling processes.

6. Conclusion and Outlook

In this paper, we addressed the shortcoming of the current
search engines while dealing with dynamics and data flow
inside or among Web sites. We presented a semantic process
description language and showed how Web sites can be
viewed as processes with multiple user interactions by
presenting a mapping of Web sites to our process description
language. In order to enable development of sophisticated
methods and tools that can live up to the ever growing
expectations of the users, it is necessary to have a significant
number of semantic descriptions of Web sites. We address
this bootstrapping problem by showing how such semantic

4. http://www.wsmo.org/wsml/wsml-syntax

descriptions of Web sites can be acquired semi-automatically
by presenting algorithms for automatically creating semantic
descriptions that can be manually refined and modified.
These algorithms can be easily incorporated in a Web
crawler.

Acknowledgment

Research reported in this paper was supported by the EU
in the project SOA4All (http://www.soadall.eu).

References

[1] M. K. Bergman, “The deep web: Surfacing hidden value,”
Journal of Electronic Publishing, 2001.

[2] S. Agarwal, S. Rudolph, and A. Abecker, “Semantic de-
scription of distributed business processes,” in Proceedings
of AAAI Spring Symposium - AI Meets Business Rules and
Process Management, March 2008.

[3] R. Milner, J. Parrow, and D. Walker, “A Calculus of
Mobile Processes, Part I+I1,” Journal of Information and
Computation, pp. 1-87, September 1992.

[4] M. Ehrig, S. Staab, and Y. Sure, “Bootstrapping Ontology
Alignment Methods with APFEL,” in Proceedings of the
4th International Semantic Web Conference, ISWC 2005,
Galway, Ireland, November 6-10, 2005., ser. LNCS, Y. Gil,
E. Motta, V. R. Benjamins, and M. A. Musen, Eds., vol. 3729.
Springer, November 2005, pp. 186-200.

[5] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and
A. Halevy, “Google’s deep web crawl,” Proc. VLDB Endow.,
vol. 1, no. 2, pp. 1241-1252, 2008.

[6] T. Andrew, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana, “Business Process Execution
Language for Web Services,” BEA Systems, IBM Corp.,
Microsoft Corp., SAP AG, Siebel Systems, Tech. Rep., 2003.

[7]1 S. Handschuh and S. Staab, Annotation for the Semantic Web.
IOS Press, 2003.

[8] S. Handschuh, S. Staab, and R. Volz, “Annotation for the
deep web,” IEEE Intelligent Systems, vol. 18, no. 5, pp. 42—
48, SEP, special issue on information integration.

[9] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan,
“Automated Discovery, Interaction and Composition of Se-
mantic Web Services,” Journal of Web Semantics, vol. 1,
no. 1, pp. 27-46, December 2003.

[10] A. Ankolekar, F. Huch, and K. Sycara, “Concurrent Execution
Semantics for DAML-S with Subtypes,” in Proceedings of the
First International Semantic Web Conference: The Semantic
Web (ISWC 2002), ser. Lecture Notes in Computer Science
(LNCS), 1. Horrocks and J. A. Hendler, Eds., vol. 2342.
Sardinia, Italy: Springer, 2002, pp. 14-21.

[11] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,
M. Stollberg, A. Pollers, C. Feier, C. Bussler, and D. Fensel,
“Web Service Modeling Ontology,” Applied Ontology, vol. 1,
no. 1, pp. 77-106, 2005.

