Finding the Largest Datalog Fragment of
Description Logic

Markus KrétzsctandSebastian Rudolph

Institut AIFB, Universitat Karlsruhe, DE

Abstract. Description Logic Programs (DLP) have been described aserige
tion logic (DL) that is in the “expressive intersection” ol_.land datalog. This
is a very weak guideline for defining DLP in a way that can benutal to be
optimal or maximal in any sense. Moreover, other DL fragmenich a$£ /L and
Horn-SHIQ have also been “expressed” using datalog. So is DLP just ohe o
of many equal DLs in this “expressive intersection”? Thipgraattempts to clar-
ify these issues by characterising DLP with various desigmciples that clearly
distinguish it from other approaches. A consequent apjicaf the introduced
principles leads to the definition of a significantly largariant of DLP which we
show to be maximal in a concrete sense. While DLP is used as@ete (and
remarkably complex) example in this paper, we argue thataiegpproaches can
be applied to find canonical definitions for other fragmerit®gical languages,
such as the “maximal” fragment of SWRL rules that can be esqwé in the DL
SROIQ.

1 Introduction

Description Logic Programs (DLP) were introduced as a fawofifragments of descrip-
tion logic (DL) that can be expressed in first-order Horniddd,15]. Since common
reasoning tasks are still undecidable for first-order Hogie, its function-free frag-
mentdatalogis of particular interest, and the term “DLP” today is moshenonly
used to refer to tractable DLs that can be translated to atisfisble datalog.

This statement is slightly more concrete than describing 2 a subset of the “ex-
pressive intersection” of DL and datalo§],[but it is still insuficient to characterise
DLP. In particular, it is well-known that other tractable Bkuch as£.L can also be
translated to equisatisfiable datalog progratisg]. It is known that the union of DLP
and&/L is an intractable DL (for some discussion, s&&]), but one may still won-
der whether DLP is merely one among several equivalent stiloe¢he “expressive
intersection” of DL and datalog.

But tractability was not among the original design goals bPPand one might also
weaken this principle to require merely a semantics-pu@sgtransformation to data-

log. Could the union of DLP anél.L then be considered as an extended version of DLP?

Possibly yes, since it is contained in the DL Ha$ 7Q for which a satisfiability-
preserving datalog transformation is knovfj. [However,&L and DLP can be trans-
lated to datalog axiom-by-axiom, i.e. inmodularfashion, while the known datalog

transformation for HornSH 7Q needs to consider the whole knowledge base. But how

can we be sure that there is no simpler transformation givantioth data-complexity

http://korrekt.org/
http://sebastian-rudolph.de/

and combined complexity of datalog and Ha¥H 7Q agree? The answer is given in
Proposition2 below.

In any case, it is obvious that the design principles for DUBut-also for6L and
Horn-SHIQ — are not sfficiently well articulated to clarify the distinction betwee
those formalisms. This paper thus approaches an expliaibckerisation of DLP, not
in terms of concrete syntax but in terms of general desigmcjpies, which captures
the specifics of the known DLP for datalog. An essential ppiecis structurality of
the language: a formula should be in DLP based on its ternctsire, not based on
concrete entity names that it uses. Moreover, we ask wh&hercould be defined
as a larger, or even as thargest DL language that satisfies our design principles. A
positive answer to this question is given by introducingggicantly larger variant of
DLP that is proven to be a maximal DLP description logic in$lease of this work.

This paper begins with some preliminary definitions in Setf. In Section3,
we discuss the problems of characterising DLP and provideesondamental results.
Sectiond provides a simplified version of the main results by restrgcattention to the
smaller description logicALC, where it is significantly easier to define a DLP frag-
ment and prove its maximality. These simplifications allasvta outline the general
proof structure and some relevant methods, but they doeraithver all relevant parts
of earlier DLP definitions nor all relevant proof techniqueded in the general case.
A full definition for an extended languag@L# is then provided in Sectioh. In Sec-
tion 6, we show howDL# can be expressed using datalog. SecHialiscussed some
important model-theoretic constructions for characiegifagments of first-order logic
that can be expressed in datalog. These constructionsareified as a basis for show-
ing maximality of DLP in Section8. Section9 provides a short outlook on further
application areas for the presented approaches.

2 Preliminaries

We consider the well-known description logRROZQ as defined in§]. As we are
mainly interested in the syntax of the language to be defived;onsidelSROTQ"™®
denotingSROZQ without simplicity and regularity constraints. In pariauSROIQ"™®
allows arbitrary role inclusion axiomi; o ... o Ry T R. Clearly, the semantics of
SROIQ"™® follows from that of SROZQ. As usual SROIQ"™® knowledge bases are
defined over finite sets of individual namkgsconcept name8, and rolesR. For the
purpose of this paper, we assume tRahcludes inverse roles, i.e. that for eaRle R
there is an inverse InR) € R such that Inv :R — R is bijective, symmetric, and
irreflexive. We call = (1, A, R) signature and all signatures are assumed to be finite
in this paper. A signature”’ = (I’,A’,R’) is called anextensiorof ., if | C I’ and
AcCA’andRcCcR'.

Our work leads to rather complex syntactic descriptions bflinguages, so it is
desirable to simplify syntax as much as possible early orfottimately, expressive
features that can be considered as syntactic sug&Rifi7Q may not be syntactic
sugar in the restricted DL fragments we study. For exampke symbolT cannot be
expressed byA LI —A in DLP. Thus, in general, the precise set of available opesat
influences the definition and expressivity of DLP. Yet, we dsuane within this paper

that the universal rol& is not a specific logical symbol, but that it is only available
through axiomatisatioh.Omitting U as a language construct significantly simplifies
the complexity of the definitions we arrive at. Some furthgtactic simplification can
be assumed without any reservations: we always wiRéA andvYR.A as>1RA and
<OR.—A, respectively, and we omit syntactic forms that can be édrlwy exchanging
operators in conjunctions and disjunctions, i.e. we sgagidmmars only up to com-
mutativity and associativity afi andu.

EverySROIQ™® GCIC C D can be expressed by ~C L D (i.e. by stating that
the conceptC u D is universally valid). In the following, we will often ta¢jtassume
that GCls are expressed as universally valid concepts. drer simplification, we
consider various syntactic normal forms. We witF(KB) for the negation normal
form (NNF) of a knowledge base KB, defined as usualDBy(KB) we denote the dis-
junctive normal form, which is obtained by exhaustivelylaging subconcepts of the
form (Cu D) E with (CrE)u(DmE). Note that we do not distribute Boolean concept
constructors over role restrictions, i.e. our DNF may stilhtain complex nested con-
cepts. Our later definition of DLP is not generally closedemslich transformations:
requiring closure under stronger normalisations reduseamount of knowledge bases
that the definition covers.

Obviously SROTQ™ knowledge bases KB can be expressed as semantically equiv-
alent theories of first-order logic with equalityQL), wherel, A, R take the réles of
constants, unary predicates and binary predicates, riaggc\We will user(KB) to
denote one (arbitrary) such translation, and we will comsgignatures oSROZQ as
FOL - signatures when convenient, but we will assume that onliyiddal names (con-
stants), concept names (unary predicates), and rolesryhpnedicates) are present in
any considere&OL - signature.

We use the termdatalod’ to refer to the function-free Horn logic fragment of
FOL_.2 A datalog programover a first-order signature’ is a first-order theory over
. which contains only Horn clauses, if€OL - formulae of one of the forms

YX.(ALA ... AA—> A)
YX(ALA ... AA > 1)
YX.(T — A),

whereA are atoms ove” that contain no function symbols, aret quantifies over
all variables occurring in the implications. For clarityewse the nullary operatons
and 1 that are interpreted dsue andfalse respectively. We will follow the common
practice of omitting the quantifiers, and of writing fagts— A asA.

Our discussion is necessarily based on a notion of semamtiespondence be-
tween diferent logical theories of DL and datalog. It turns out, hogrethat semantic

! This is easy inSROIQ sinceU is not required to be simpler c dR{a}, T = IS .{a},
Ro S C U; we will see later that the same can be done in DLP.

2 Please note that it is also common to study datalog underteehigyder semantics. The first-
order and higher-order view are closely related in someemspl], yet it is crucial to not
confuse the approaches. Throughout this work, we will only logics with a first-order
semantics.

equivalence is too strong — it does not allow the use of anyilsymbols for express-
ing a logical relationship — while equisatisfiability is te@ak — it does not preserve
relevant logical entailments. The following notion turng ¢o be a more appropriate
middle-ground:

Definition 1. GivenFOL - theories T and Twith signatures¥ and.””, then T se-
mantically emulated if

(1) .’ extends?,

(2) every model of Thecomes a model of T when restricted to the interpretatiéns o
symbols froms”, and

(3) for every modely of T there is a model” of T’ that has the same domain g8
and that coincides witty” on all symbols of”.

Given aSROIQ knowledge bas&B and a datalog program P, we say that P
emulateKB if P emulatest(KB).

Note that, in contrast to equivalence and equisatisfighdémantic emulation is not
a symmetric relation, since one of the theories introduddgianal “internal” symbols
to its signature. It would be possible to establish more ggmstions that are based on
arbitrary incomplete mappings between two signatureswieutound the basic defini-
tion above to be adequate for this work. We also point outitigtisually not necessary
to mention the signatures @fandT’ explicitly, since it is always possible to find min-
imal signatures fol andT’ that satisfy condition (1) of Definitiof.

Given a situation as in Definitioh, we find that a first-order formulaover.s is a
logical consequence dfif and only if it is a logical consequence ©f. This illustrates
how strong this form of correspondence is, and it hints aptilaetical relevance of this
condition for knowledge representation: whenever a th&disemantically emulates a
theoryT, we find thatT” andT encode the same informati@bout the symbols T,
and in particular thaf’ cannot be distinguished fromin any application that restricts
to those symbols. In a sens€, thus really “simulates” the behaviour ®fin arbitrary
contexts, but possibly by means of ratheffetient syntactic structurédf the required
“interface” is restricted not only to a particular set of dyois but also to a particular
logic, then the following definition may seem more natural.

Definition 2. Let T and T be twoFOL - theories, let¥ be the signature over which
T is defined, and leL be some fragment ¢fOL -. We say that T £-emulatesT if for
everyL formulag over.”, we find that TU {¢} and TU {¢} are equisatisfiable.

In particular, this provides us with a notion BOL _-emulation that describes a
situation where two theories behave equivalent in the cowteany first-order theory
over the given signature. To avoid confusion, formal resultl always be explicit about
the intended type of emulation, although we will sometimgsak of “emulation” to
refer to semantic emulation in informal discussions. Itas Imard to see that semantic
emulation implies=OL _-emulation.

3 We generally avoid the term “simulation” here since it issaily common in the context of
model-theoretic relationships in modal logR].[

Proposition 1. For any fragment/ of first-order logic with equality and theories T
and T, if T’ semantically emulates T thert T-emulates T.

Proof. It suffices to show the claim for the case thais FOL_. Consider two theo-
riesT’ andT such thafl’ semantically emulate. We need to show that’ FOL _-
emulatedT . A simple induction on the structure BOL - formulae can be used to show
that the validity of &OL - formulae w.r.t. any first-order interpretation is independent
of the interpretation of the signature elements not ocaogrin ¢ (1). To show the claim,
suppose the conditions of Definitidnhold butT does not~OL _-emulateT’. Hence,
there is &FOL - formulag over.” such thafll U{p} andT’ U{¢} are not equisatisfiable.
However, ifT U {¢} has some moddl, then we can apply condition (3) of Definitidn
to obtain an extended modé! such thatZ” | T’. But sinceyp contains only symbols
that are interpreted in the same way byand 7/, we obtain?’ E ¢ from (). Con-
versely, if T’ U {¢} has a modelf, then condition (2) implies that the restrictidrof

to the signature of is such thaty = T. As before, {) impliesJ E ¢. O

3 Considerations for Defining DLP

In this section, we discuss why defining DLP is not straightfard, and we specify

various design principles to guide our subsequent defmifitlie goal is to arrive at a
notion of DLP that is characterised by these principles,pmeed to DLP being some
ad hocfragment of description logic that happens to be expressibtiatalog without

being maximal or canonical in any sense. The first desigrcimia fixes our choice of

syntax and underlying DL:

DLP 1 (DL Syntax)DLP knowledge bases should 8&07Q™® knowledge bases.

The second principle states that the semantics of every Dioledge base can be
expressed in datalog. We will see below that it is sometinse$uli to introduce auxil-
iary symbols during the translation to datalog. If this imdpthe datalog program can
no longer be semantically equivalent to the original knalgkebase, even if all conse-
guences with respect to the original predicates are sélstime. Yetequisatisfiability
— the requirement that a DLP knowledge base is satisfiflbiks idatalog translation is
— turns out to be too weak for many purposes. A suitable com@®is the notion of
emulationintroduced in Definitiorg:

DLP 2 (Semantic Correspondenc&here should be a transformation functitatalog
that maps a DLP knowledge base KB to a datalog progdatalog(KB) such that
datalog(KB) FOL _-emulates KB.

It turns out that DLP 2 is a strong requirement with many ulsefunsequences.
For example, it ensures us that instance retrieval queaasdirectly be answered
over datalog, without needing to know the details of the ldgtaransformation: to
find out whether KB entail€(a), it suffices to check itlatalog(KB) entailsC(a). But
DLP 2 is much stronger than the requirement of preserving atmmic consequences,

since the entailment of ariyOL = formula over the signature of KB can be checked in
datalog(KB).

The principles DLP 1 and DLP 2 set the stage for defining DLPtbey do not
yet provide sficient details to attempt a definition. The description of Dafthe
“intersection” of DL and datalog is not a useful basis for diefy DLP: the syntactic
intersection of the two formalisms contains no terminatafjaxioms at all. This raises
the question of how to define DLP in a canonical way. A naiveraagh would be
to define a DL ontology to belong to DLP if it can be expressedalsemantically
equivalent datalog program. Such a definition would be delpractical use: every
inconsistent ontology can trivially be expressed in dajaénd therefore a DL reasoner
is needed to decide whether or not a knowledge base shoutths&lered to be in DLP.
This is certainly undesirable from a practical viewpoihis therefore preferable to give
a definition that can be checked without complex semantiqeaations:

DLP 3 (Tractability) Containment of a knowledge base KB in a DLP description logic
over some signature” should be decidable in polynomial time with respect to tlae si
of KB and.7.

Note that typical syntactic language definitions are oftéypslynomial, e.qg. if they
can be decided in logarithmic space (which leads to a lines algorithm that can
be parallelised). Yet, polynomial time language definigsianight still be acceptable:
for example, every decidable DL with transitive roles, n@mkestrictions, and role
hierarchies already requires polynomial time for checlsimgplicity of roles.

The downside of a syntactic approach is that semanticallyvatgnt transforma-
tions on a knowledge base may change its status with respdait . This is not a
new problem — many DLs are not syntactically closed underasgicelly equivalent
transformations, e.g. due to simplicity restrictions —ibirhposes an additional burden
on ontology engineers and implementers. To alleviate thoblpm, a reasonable fur-
ther design principle is to require closure under at leastestorms of equivalence or
satisfiability preserving transformations. Particulasgmmon transformations are the
construction of negation normal form and disjunctive ndrfoam as defined earlier.

DLP 4 (Closure Under NNF and DNFA knowledge base KB should be in DLR its
negation normal formiNF(KB) and its disjunctive normal forrdNF(KB) are in DLP.

Closure under NNF will turn out to be mostly harmless, whiesare under DNF
imposes some real restrictions to our subsequent treatkiverstill include it here since
it allows us to generally present DL concepts as disjunstisach that the relationship
to datalog rules (disjunctions of literals) is more direct.

The above principles still allow DLP to be defined in such a wat some DLP
knowledge base subsumes another knowledge base that is DbPi In other words,
it might happen that adding axioms to a non-DLP knowledge bashs it into a DLP
knowledge base. This “nonmonotonic” behaviour is undesraince it requires im-
plementations and knowledge engineers to consider alhaxif a knowledge base in
order to check if it is in DLP. The following principle reqes definitions to be more
well-behaved:

DLP 5 (Modularity) Consider two knowledge bases KBnd KB,. Then KB, U KB,
should be in DLP if and only if both KBand KB, are. Moreover, in this case the
datalog transformation should Hetalog(KB; U KB>) = datalog(KB1) U datalog(KB3).

Modularity ensures that one can decide for each axiom of wlatge base whether
or not it belongs to DLP without regarding any other axiontse foal thus has changed
from defining DLPknowledge base® defining DLPaxioms.Note thatSROZQ with
global constraints (regularity, simplicity) does not sBtiDLP 5 (to see this, set KB=
{Tra(R)} and KB, = {T C >1R.T}) which is our actual reason to considgRO7Q"®
instead ofSROZ Q. The above principles alreadyffge to establish an interesting result
about tractability of reasoning in DLP:

Proposition 2. Consider a class K of knowledge bases that belong to a DL factwh
DLP 1to DLP 5 are satisfied, and such that the maximal sizeiofasin K is bounded.
Then deciding satisfiability of knowledge bases in K is fss$in polynomial time.

Proof. By DLP 2, satisfiability of KBe K can be decided by checking satisfiability of
datalog(KB). Assume that the size of axioms in knowledge basésimat mosn. Up to
renaming of symbols, there is only a finite number dfatient axioms of siza. We can
assume without loss of generality that the transformadiaalog produces structurally
similar datalog for structurally similar axioms, so thaété are only a finite number
of structurally diferent datalog theoriefatalog({e}) that can be obtained from axioms
a in K. The maximal number of variables occurring within thesealbaf programs is
bounded by somen. By DLP 5, the same holds for all programiatalog(KB) with
KB e K. Satisfiability of datalog with at mosh variables per rule can be decided in
time polynomial in 2" [4]. Sincem is a constant, this yields a polynomial time upper
bound for deciding satisfiability of knowledge base«in O

The previous result states that reasoning in any DLP langisagecessarily “al-
most” tractable. Indeed, many DLs allow complex axioms todbeomposed into a
number of simpler normal forms of bounded size, and in any sase tractability is
obtained, but it turns out that there are arbitrarily largéPlaxioms that cannot be de-
composed in DLP. Yet, Propositighclarifies why HornSH7Q cannot be in DLP:
ExpTiMe worst-case complexity of reasoning can be proven for a dlass Horn-
SHIQ knowledge bases as in the above proposition (S8genpting that remaining
complex axioms can be decomposed in HOH-7 Q).

Note that none of the above principles actually require Dh.Bantain any knowl-
edge base at all. An obvious approach thus is to define DLP tbébkargest DL that
adheres to all of the chosen design principles. The questiask at this pointis whether
this is actually possible: is there a definition of DLP thatewks to the above principles
and that includes as many DL ontologies as possible? Theariswa resounding no:

Proposition 3. Consider a description logi€p, p that adheres to the principles DLP 1
to DLP 5. There is a description logi€y,, , that adheres to DLP 1 to DLP 5 while
covering more knowledge bases, il&p ¢ L, p-

Proof. We first need to argue that, even with unlimited resourcethdatalog trans-
lation, it is not possible that DLP supports &ROZQ axioms. We show that, if the

concept expressiod is satisfiable and does not contain the symisbla;, A;, ¢ andd,
then the axiona := {c} C Cn3aR.(dn (AL AL)) cannot be emulated by any datalog pro-
gram. For a contradiction, suppose thais emulated by a datalog theodgtalog(a).

By constructiong is satisfiable, and so ig, Ay T L1} for eachi = 1,2. By Defini-
tion 2, we find thatdatalog(e) U {A; C L} is satisfiable, too. Thus, there are modgls

of datalog(a) such thaT.A\iIi = (). By the least model property of datalog, there is also a
model7 of datalog(e) such thatA! = A7 = 0. But thendatalog(e) U {Ay LI Ap C L} is
satisfiable althoughw, A1 LI A, C L} is not, contradicting the supposed emulation.

We can now show that there is some unsatisfiable axiom thatis L p p. To this
end, recall that deciding (un)satisfiability SFHOZQ concept expressions is N&
Tmve hard. This follows from NEpTmve hardness of deciding consistency$HO7Q
knowledge based ff] together with the fact that knowledge base satisfiabilitJROIQ
can be reduced to concept satisfiabiltty]. However, we just showed that, if the axiom
a = {c} C CraR({d}n(ALLUAy))is in Lp p with symbolsR, Ay, Ay, ¢, d notinC, then
the concep€ is unsatisfiable. Thus, if 5 p contains all unsatisfiabl8HO7Q axioms
of the form ofa, then deciding whether € Lpp is equivalent to deciding wheth€ris
unsatisfiable (since one can clearly construfrom C in polynomial time). By DLP 3,
this would yield a polynomial decision procedure 8+ O7Q concept satisfiability —
a contradiction.

Therefore, there is an unsatisfiable axianwith « ¢ Lpp. Now let £f , be
defined agKB | DNF(NNF(KB)) \ {DNF(NNF(a))} € Lp.p}. The transformation is
given by datalog’(KB) = datalog(KB) if KB € Lp.p, anddatalog’(KB) = {T —
A(X), A(X) — L} U datalog(DNF(NNF(KB)) \ {DNF(NNF())}) otherwise, wheré\ is a
new predicate symbol. It is immediate that this defines a Rbriment (DLP 1), and that
this definition is tractable (DLP 3). Equisatisfiability (PL2) follows since any knowl-
edge base containing an axiom that is equivalent te unsatisfiable. Closure under
negation normal form (DLP 4) and modularity (DLP 5) are immagel O

This shows that any attempt to arrive at a maximal definitib®bP based on
the above design principles must fail. Summing up, the alt®sgn principles are
still too weak for characterising DLP: any concrete defamtrequires further choices
that, lacking concrete guidelines, are necessarily sorataibitrary. Thus, while it is
certainly useful to capture some general requirementgahaprinciples, the resulting
approach of defining DLP would not be a significant improvenoeer existingad hoc
approaches.

Analysing the proof of PropositicBreveals the reason why DLP 1 to DLP 5 are still
insuficient. Intuitively, a definition of DLP cannot reach the dedimaximum since the
computations that were required in this case would no lobggrolynomial (DLP 3).
Even DLP 5 does not ameliorate the situation, since exp@g3is can encode com-
plex semantic relationships within single axioms. The adfréhe argument underlying
Proposition3 in this sense is the fact that there is no polynomial time @doce for
deciding whether or not a singl#RO7 Q axiom can be expressed in datalog.

These considerations highlight a strategy for further traiming DLP to obtain
a clearly defined canonical definition instead of infinitelamg non-optimal choices.
Namely, it is necessary to prevent complicated sematffitécis that may arise when
considering even single DL axioms from having any impacthtendefinition of DLP.

Intuitively speaking, the reason for the high complexityegéluating single axioms is
that individual parts of an axiom, even if they are strudtyrseparated, may seman-
tically affect each other. In expressive DLs, individual parts of ammxcan capture
the semantics of arbitrary terminological axioms: the TBar beinternalisedinto a
single axiom.

An important observation now is that the semantic interglaparts of an axiom
usually requires entity names to be reused. For exampleptioen T = A=A is un-
satisfiable because the concept nakig used in both conjuncts, while the structurally
similar formulaT C A -B is satisfiable. So, in order to disallow complex semantic
effects within single axioms tofect DLP, we can require DLP to be closed under the
exchange of entities in the following sense:

Definition 3. Let F be aFOL. formula, a DL axiom, or a DL concept expression,
and let. be a signature. An expression 5 a renamingof F in . if F’ can be
obtained from F by replacing each occurrence of a fa@cepindividual name with
some rolgconcepindividual name in. Multiple occurrences of the same entity name
in F neednotbe replaced by the same entity name6in this process.

A knowledge baskB’ is arenamingof a knowledge bas¢B if it is obtained from
KB by replacing each axiom with a renaming.

DLP 6 (Structurality) Consider knowledge bases KB and K&uch that KB is an
arbitrary renaming KB. Then KB is in DLRIIKB' is.

Note that we do not require all occurrences of an entity nasrigetrenamed to-
gether, so it is indeed possible to obta#im —B from A —A. This is clearly a very
strong requirement since it forces DLP to be based on thestjotstructure of ax-
ioms rather than on the semanttéeets that occur for one particular axiom that has this
structure. We will thus study the semantics and expregsififormulae based on their
syntactic structure, disregarding any possible intevastbetween signature symbols.
We therefore call &OL - formula, DL axiom, or DL concept expressiénstructural
if no signature symbols occur more than oncé&in

Together with modularity (DLP 5), this principle capturée tessential dierence
between a “syntactic” and a “semantic” transformation frbin to datalog. Indeed,
if DLP adheres to DLP 5 and DLP 6, then it may only include krexlge bases for
which all potential semantidkects can be faithfully represented in datalog. The datalog
transformation thus needs to take into account that additiaxioms may be added
(DLP 5) to state that certain entity names are semanticajyvalent, while hardly
any semantic consequences can be computed in advance wittowing about these
equivalences. In consequence, the semantic computatiahgétermine satisfiability
must be accomplished in datalog, and not during the traaslathis intuition will turn
out to be quite accurate — but a lot more is needed to estdblistal results below.

Structurality also interacts with normal form transforioas. For example, the con-
cept GAL-B)MC can be emulated in datalog using rutes» C(x) andA(x) A B(x) —

L. Butits DNF AN C)u (=BmC)is only in DLP if its renamingtAnC) U (-=Bn D)
is, which turns out to be not the case. Therefore, the knayddshse-A L =B, C}
is in DLP but the knowledge bagé-A L1 —B) r1 C} is not. We have discussed above

Concepts that are necessarily equivalent and L

LA =T |VRLA|LANLZ | LALC

LA = L [ARLA|LANC LA uLA

Body concepts: fo€ in normal form,C € L iff Cu A (or -C C A) is in DLP arc
LT o= LA LT [-A [VRLE LI LA LFuLY

Head concepts: fa€ in normal form,C € Lﬂ if ACCisin DLParc

L7 o= LEJA [VRLA LA NLA LA uLY

Assertional concepts: f& in normal form,C € LY iff C(a) is in DLP ac

LI o= L7 IRLE LI NLA LI uLY

Fig. 1. Grammars for definind L® # rc concepts in negation normal form

why such #&ects are not avoidable in general. The more transformatonsllowed
for DLP, the less knowledge bases are contained in DLP. Naitesuch &ects do not
occur for negation normal forms.

4 The ALC Fragment of DLP

Our investigations in later sections show that the definité a maximal DLP frag-
ment of SROZQ™® is surprisingly complex, and the required proofs for shayits
maximality are rather intricate. For this reason, we firgrelterise the maximal DLP
fragment of the much simpler description logitLC. The absence of nominals and
cardinality restrictions simplifies the required constinres significantly. Various basic
aspects of the relationship between DL and datalog can @dound in this simpler
case, but there are also a number of aspects that are noetbathll.

Throughoutthis section, we uSeandV instead o1 and<0 ... -, which yields a
more natural syntax faALC. Exploiting DLP 4 we can simplify the definition of DLP
by giving concepts in negation normal form only.

Definition 4. We define the description logie L # »¢ to contain all knowledge bases
consisting only o8RO7 Q" axioms which are

— GCls Cc D such thaNNF(-C LI D) is anL;{ concept as defined in Fig, or
— ABox axioms @) whereNNF(C) is anL ' concept as defined in Fid.

Following the grammatical structure 81.LP » ¢, we specify three auxiliary func-
tions for constructing datalog programs to emulafe 8P ¢ knowledge base.

Lemma 1. Given a concept name A, and a concept €7, Fig. 2 recursively defines
a datalog programjlgﬁ(A C C) that semantically emulates@AC.

Proof. First note that the definition ofig/{(A C C) is well. In particular, programs
digg'(=B € D) are only used ifD € L. The claim is shown by induction over the
definitions ofdigZ'(~A £ C) anddig/j(A C C), where the hypothesis for the former is

c \dlgﬁ(A cC)

DelLy digg (=X £ D) U {A(X) A X(X) = L}

B {A(X) = B(X)}

YR.D digy/{(X C D) U{A(X) A R(X.Y) = X(y)}
Di1 M D, dig/}(AC Dy) U dig/(AC Dy)

D,uD;e (Lﬁ(L Lg‘) dIgﬂ(Xz [Dl) U dlgg‘(ﬁxl c D2) U {A(X) A Xl(X) - XZ(X)}

C ‘dlgg‘(ﬂA cC)

Dely i

DelLf {A(X)}

-B {B(x) — A(x)}

YRD digd (=X € D) U {R(x,Y) A X(y) = A(X)}

D:nD;e (Lg‘ [l Lg‘) dlg“g[(ﬂA c D))u dlg‘g[(ﬂA c D)
DiuD;e (Lg{ (] Lg{) dlg‘g‘(—'xl cCDy)u dlgg‘(—'X2 C Dy) U {X1(X) A Xo(X) = A(X)}
A, B concept name®R a role namexg; fresh concept names

Fig. 2. Transforming axiom# C L} and-A C L{' to datalog

that it semantically emulatesA C C. The easy induction steps can directly be estab-
lished by showing that any model of the datalog program care$ieicted to a model

of the corresponding DL axiom, and any model of the DL axiom lca extended to an
interpretation that models the datalog program. We omih&irdetails here. Examples
of a very similar argument are found in the proofs of LenmBraand?7. O

Lemma 2. Given a constant a and a concept € L, Fig. 3 recursively defines a
datalog progranligy;(C(a), L) that semantically emulates().

Proof. The construction of Fig3 uses a “guard” concefi that is used to defer the
encoding ofL# disjunctions. The induction claim thus is that, for evéne L, C €
LZ, anda € I, the programilg{(C(a), E) semantically emulate€(L E)(a).

The concepE is processed in casze L{| by usingdig;. Another more interesting
case i€ = dR.D. The basic encoding works by standard Skolemisation, leugtfard
conceptis also processed and a new gudfds created for the Skolem constahtt is
not hard to show semantic emulation in all cases and we omitdudetails and refer
to the full proofs given in Sectio. O

We summarise these results in the emulation theore®itP 4 /.

Theorem 1. For everyD LP 4 ¢ axioma as in Definitiond4, one can construct a data-
log programdig(a) that emulatesr.

C | dig(C(a). E)

DelLy dig//(X c DU E) U {X(a)}

D; M D, digz'(Da(a), E) U dig;(D2(a), E)

D,ub,e (LZ[[Lg‘) dlg?(_'X [D2) U dIgZ‘(Dl(a), Eu —|X)

3IRD digZ (~X C E) U {X(a) — R(@b). X(a) — Y(b)} U digZ(D(b). -Y)

E e Ly, XY fresh concept nameb a fresh constant

Fig. 3. Transforming axiom€(a) with C € L to datalog

Proof. If @ = C C D is a TBox axiom, defindatalog(a) := dIgﬁ‘(A C NNF(-CuD))uU
{A(X)}. If @ = C(a) is an ABox axiom, defin@atalog(e) := digZ'(C(a), L). The result
follows by Lemmal and2. O

It remains to show thaD LP 4 ¢ is indeed the largest DLP fragment@t/C. We
first define auxiliary datalog programs to entail that a cptisextension is empty for
arbitrary concepts that are notli'.

Definition 5. Given a structural concept & L7, a datalog progranC C L] is
recursively defined as follows:

—IfC =_Llset[CC L]x = {}.

IfC e A set[CC L]x :={C(X) — L}.

IfC =-Be-Aset[CLC L]4 :={B(X)}

IfC =VRDwithD¢ L7 set[CC L]a:={RXX)}U[DC L]a.

— IfC=3dRDset[CLC L]# = {R(X,y) » L}.

If C = Dy 1 Dy with Dy ¢ Lz(set[CC L]l :=[D1C L]4.

If C = Dy U Dy with Dy, D5 ¢ Lz(set[CC L)lg =[D1C L]xU[D2C L]4.

Given a structural concept @ L7, a datalog progran{ T C CJ# is defined a§ T C
Cla = [[NNF(ﬂC) C 14

Note that this definition is well, and in particular tiatg L7 impliesNNF(-C) ¢
L7 Moreover, it is easy to see thiE C L]« ([T S Cl«) is satisfiable and entails
ccL(rcQ).

The next lemma shows that concepts that are ndtjncan be forced to require
certain positive entailments to hold in any model in whicaytihave a non-empty ex-
tension.

Lemma3. IfC ¢ Lg‘ is structural then there is a datalog prograii€ = AJ# for a
fresh concept name A such that

— [C C A]l4 U {C(a)} is satisfiable for any individual name a, and
— [CCAlaECLCA.

Proof. The result is shown by induction over the structur&off C € A is a concept
name, ther{C C Al # := {C(X) —» A(X)} clearly satisfies the claim. {£ = YR.D with
D¢ Lg‘ set[C C Allg = [D C Allg U {R(X, X)}. The claim follows by induction. If
C = 3dRD with D # L then[[C C A« := {R(X,y) — A(X)} clearly satisfies the claim.
If C = Dy Dywith Dy ¢ LY, D;,D, ¢ LY then[[C € A]l# = [D; C A4 satisfies
the claim by the induction hypothesis. For the c@8se D; LI D, with D; ¢ Lg‘ and
D1,D; ¢ L7, we can defingC C Al# := [D1 T AlaU[[D2 C L] 4. The claim follows
by induction. O

Note that the prografiC C A]l4 does noFOL _-emulateC C A since the subpro-
gram[[D; C L] 4 that is used for thel case excludes a number of interpretations that
satisfyC. But the previous result lices for our subsequent arguments.

Theorem 2. Consider a structural concept C, an individual name a, andoacept
name A not occuring in C.

(1) If C ¢ L then Qa) cannot be=OL _-emulated by any datalog program.
(2) If C ¢ L{] then AC C andT C C cannot beFOL _-emulated by any datalog
program, unles® = PSpack.

In particular, no fragment ofALC that s larger thanD LP 4 ¢ can beFOL _-emulated
in datalog, unles® = PSeack.

Proof. The proof for both claims proceeds by an interleaved indnaiiver the structure
of C. Note thatC cannot be atomic in either case. We begin with the inductiepss
for claim (1), assuming that the claims hold for all subfotaguof C. Suppose for a
contradiction that there is a datalog progrRag) thatFOL _-emulatesC(a).

If C = 3RD with D ¢ L thenPce U {R(@,y) — y ~ b} FOL_-emulatesD(b)
for a fresh individuab, contradicting the induction hypothesis (1) or If C = YR.D
with D ¢ Lﬁ‘ thenPc() U {A(X) — R(a, X)} FOL_-emulatesA c D, contradicting the
induction hypothesis (2) fob. If C = C; 1 C, with C; ¢ LY andC,,C; ¢ Lf‘ then
Pc@a U [T C Colla FOL --emulatesC,(a), contradicting the induction hypothesis (1)
for C;.

Consider the casé = C, LI C; whereCy,C, ¢ L7 If Cy ¢ L thenPc UC, C
1]# FOL_-emulatesC;(a), again contradicting the induction hypothesis (1) @&«
Otherwise, ifC;,C, € LY thenC,,C; ¢ Lg‘. Using fresh concept namdg and A,
consider datalog progran® := {Ai(X) > L} U[[C1 C Ailla U [[Co C Axlla (I = 1, 2).
Itis not hard to see thdC(a)} U P; is satisfiable, so the same is true R U P; by
FOL _-emulation. ThusPc U [C1 T A1]la U [Co C Asll4 must have a moddl; such
thatA’ = 0 fori = 1,2. By the least model property of datalog (see, e4), fhis
implies thatPg(z U [C1 € Alla U [C2 E Axll# has a moder such thata! = A7 = 0.
ThusPc UP;, UP; is satisfiable. But clearl; = C; C L (i = 1,2) so{C(a)}UP1UP,
is unsatisfiable, contradicting the suppo&€al__-emulation.

This finishes the induction steps for claim (1). For claim &)ppose for a contra-
diction thatA C Cis FOL _-emulated by some datalog progr&@xc. First consider the
case tha€ ¢ L. ThenPacc U {A(@)} FOL _-emulate<C(a) for some fresh individual
a, contradicting the induction hypothesis (1) forThus, the remaining induction steps
only need to cover the cases®f L'\ L.

The case fo€ = C; 11 C; is similar to step (1). Likewise, the only remaining case
of C = C; U C; is the case where, w.l.o.g2; L7 \ LYY, which can also be treated as
before. There are no remaining cases@ot VYR.D.

Consider the cas€ = JIR.D with D ¢ L7\ ThenPazc U [T C D]# FOL_-
emulatesA C IR T. The logic obtained by extendin®.L?P #,c with axioms of the
form A € 3R T is known as Horr#L™ [9]. Reasoning in HoreL™ was shown to
be PSace hard op. cit., and this proof can easily be adopted to use axilyms of
bounded size. Assuming that £ PSace the supposed#OL _-emulation contradicts
Proposition2. O

Our subsequent results for the maximal DLP fragment of thecrifgtion logic
SROIQ™® further strengthen the previous theorem so that the assompt: PSace
is no longer required. We thus do not invest any mdfereto accomplish this for the
above case.

5 Defining Description Logic Programs

In this section, we provide a direct definition of DLP. We fsgmmarise the character-
isation given in SectioB.

Definition 6. A description logicL is aDLP description logidf the set of its knowledge
bases adheres to the principles DLP 1-DLP 6 of Sec@ion

Our goal in this section thus is to define the maximal DLP dpson logic. Some
practical considerations are needed for this to becomédipatlg feasible. Namely, it
turns out that the characterisation as given in the pre\geason leads to a prohibitively
complex syntactic description of the language. Our first gothis section therefore is
to identify ways of simplifying its presentation. Note thais not desirable to simply
eliminate “syntactic sugar” in general, since the very gidahis work is to characterise
which SROZQ knowledge bases can be considered as syntactic sugar &oglat

A natural approach is to restrict attention to axioms in sommenal form. DLP 4
requires closure under negation normal form, which seenfreéous from the burden
of explicitly considering negative occurrences of nonagitoconcepts. But NNF does
not allow for this simplification, since concepts of the foqm R D still containD in
negative polarity. A modified NNF is more adequate.

A SROIQ"™® concept expressio@ is in positive negation normal forfpNNF) if

— if <nRD is a subexpression &, thenD has the form-D’, and
— every other occurrence efin C is part of a subconceptD with D € A or D = {a}
withael.

It is easy to see that an§ROIQ™® concept expressio can be transformed into a
semantically equivalent concept expresstiNF(C) in linear time. A DLP description
logic thus can be defined by providing gsINF only.

While pNNF effectively reduces the size of a DLP definition by half, the definis
still exceedingly complex. The construction of disjunetivormal forms is compatible
with pNNF, so we can additionally require this form of normalisatiénother source

Concepts containing at maselements in any interpretation, and their complements
L,=Los=1|L,nC|L,uL,|>nR.Lp1(n=>1)
Lemer 5= {1} [Lem | Lemua MC | Ly UL (M + M = m+ 1)
L.o=Loa=T|A|{l}|IRSelf| =A | ={l}|-TR.Self |[L, L, |[L, uC |
<NR.-C (N> 0)| >0R.C|>nR.Lpq (N> 1)
Lamzz= T | A | IR.Self | =A | ={I} | =IR.Self |
Lemt MLamet [Lama U C | Lay UL cpy (M 4+ =m) |
<NR.-C (n>0)| >0R.C|>nR.Lq (N> 1)
Concepts not containing at maselements in any interpretation, and their complements
Lr=Lsyou=T|LyuC|L+nL:|[>0R.C|<nNR.=Ls,n (n=>0)
LwarTFl = _'{l} | L2w7m| LwalTFl uc | Lwam’ m Lwam” (m +m’ =m+ 1)
Ly =Lspou=L|A|{l}|IRSelf | =A | ~{l} | -IR.Self [Ly UL, |[L; 1 C |
>nR.C (n>1)| <nR.=Ls, (N> 0)
soomet 2= LA {1} AR.Self | =A | ={l} | ~IR.Self |
Loo-miULlsymal Lz(u;m—l MC | Lsyny MLsynr (m +m’ = m) |
>nR.C(n>1)|<nR.-L,n (n>0)

—l

C: any SROIQ"™® concept

Fig. 4. Grammars for structurally valid, unsatisfiable, refutabled satisfiable concepts

of complexity is the fact thaSROIQ features many concept expressions for which all
possible renamings are necessarily equivalemao L. Simple examples such as.iC
were already encountered in the definitionk dfandL ! in Sectiord, butSROIQ also
includes expressions likeOR.C or <3R.{a} L {b}.

Definition 7. Let C be aSROZQ concept expression.

— Cisstructurally validif T £ C’ is valid for every renaming Cof C.

— Cisstructurally unsatisfiablé C’ C L is valid for every renaming Cof C.

— Cisstructurally refutablé it is not structurally valid, i.e. if there is a renaming C
of C such thatr £ C’ is refutable.

— C is structurally satisfiabléf it is not structurally unsatisfiable, i.e. if there is a
renaming C of C such that CC 1 is refutable.

The renamings Cconsidered here refer to renamings over arbitrary signagjrand
are not restricted to the signature of C.

Many non-trivial examples for such concepts are based offattte¢hat some DL
concepts do not allow for arbitrary interpretations but iardéact constrained to cer-
tain extensions. It is possible to provide a complete syittabaracterisation of these
SROIQ concepts.

Lemma 4. The grammars given in Figl characterise sets RO Q concept expres-
sions as follows:

— C € L, iff C contains at most n elements for any interpretatign

— C e L., iffC’ contains more than n elements for some interpretafipn

— C € Lsyniff4* \ Cf contains at most n elements for any interpretatign

— CeéeLlsyn iff 47 \ C contains more than n elements for some interpretafion

In particular, L+, L, L+, andL , characterise the sets of structurally valid, unsatisfi-
able, refutable, or satisfiable concept expressions.

Proof. We first show the “only if” direction ot ., by induction over the structure of
the grammars. The base caseand{l} (wheren > 1 is required) are obvious. The case
L <n-1 (Wheren > 1) is immediate from the induction hypothesis. Note thatdthges of
L andn for n = 0 are simply special instances of the respective caseas fod. The
cases fot. ., M C andL <y M L <y are again obvious from the induction hypothesis.

Considering the grammar for each operator, it can be seéh thas indeed the set
complement ot ., for eachn. An easy induction oven is used to show this formally,
where it siffices to compare the cases for each constructor to see thatrtheyhaustive
and non-overlapping. Thus, to show the “if” direction of tHaim forL ., it suffices to
show the “only if” direction of the claim fok. .

The “only if” direction of the claim forL ., if again established induction over
the structure of concepts In.,. Most cases are obvious. For the cas€af D, it is
necessary to note that the extension€ @ndD, in addition to containing more than
elements, can always be selected freely to ensure thattdreéation of both extensions
contains enough elements.

The proofs for the claims abolt.,_, andL s, are similar. O

The previous result shows that structural validity, sattsfity, unsatisfiability, and
refutability of a concept expression can be recognised ipnmmial time by using the
given grammaré.For another simplification of our characterisation, we nfaystas-
sume that almost all occurrences of such concepts have bewnated in the concepts
that we consider. This completes the ingredients we needéfiining the normal form
that is used below.

Definition 8. A concept expression C is DLP normal formif C = DNF(pNNF(C))
and

— if C has a structurally valid subconcept D, then® T and either C= D or D
occurs in a subconcept of the foram RD,

— if C has a structurally unsatisfiable subconcept D, thes-0 and either C= D
or D occurs in a subconcept of the foram R-D.

The unique DLP normal form of a concept D is denote@®byNF(C).

It is easy to see th@LPNF(C) can be computed in polynomial time. In particular,
structurally valid and unsatisfiable subconcepts can blaceg byT and L, respec-
tively, and expressions of the for@ L L andC 1 T can be reduced tG. Also note

4 Note that the omission of the universal role allows us to ignconcepts such asOU.{a}
which would otherwise be structurally unsatisfiable; samsimplifications occur throughout
this section.

that the order of applying the single normalisation stepssdwot &ect the DLP nor-
mal form. It therefore dfices to characterise concepts in DLP normal form that are a
DLP description logic. When convenient, we continue to u#s& C D to represent
the unique DLP normal form ofC u D. Exploiting associativity and commutativity

of m and ofu, we furthermore disregard order and nesting of multiplgwactions or
disjunctions.

Whereas structurally valid and invalid subconcepts areriga in DLP normal
forms, we still have reason to consider concepts with iestli extensions. We thus
useD«,, (Ds-n) to denote the sublanguage of conceptk gf (L »,_n) that are in DLP
normal form.

Before giving the full definition of a large — actually, as wélwhow below,the
largest— DLP description logic, we provide some examples to skdielcomplexities
of this endeavour (datalog emulations are provided in gheses). DLP expressions of
the formA M dR.B C VS.C (A(X) A R(x,Y) A B(y) A S(x,2 — C(2)) are well-known.
The same is true foA C AR.{c} (A(X) — R(x, c)) but hardly forA C >2R.({c} u {d})
(A(X) — R(x,c), A(X) = R(x,d)). Another unusual form of DLP axioms arises when
Skolem constants (not functions) can be used as in the {chse >2RA (R(c, s),
R(c, 8), A(S), A(S), s~ § — L with freshs, ') andA C JdR.({c} 1 3AS.T) (A(X) —
R(x, ¢), A(X) — S(c, s) with freshs). Besides these simple cases, there are various DLP
axioms for which the emulation in datalog is significantlynmeomplicated, typically
requiring an exponential number of rules. Examplesia@re >2R.(={a} U AL B) and
{c} C >5R (AU {a} u ({b} M <1S.({c} L {d}))). These cases are based on the complex
semantic interactions between nominals and atleasiatistis.

Definition 9. We define the description logieL# to contain all knowledge bases con-
sisting only ofSROZ7Q"® axioms which are

— RBox axioms, or
— GCls Cc D suchthatthe DLP normal form efCLID is aDp, p concept as defined
in the following grammar:

Dpp:=T|L|CH[D™(Nn>1)|Cyr

whereCy is defined as in Figs, andD=" andC.; are defined as in Figh, or
— Abox axioms (a) where the DLP normal form of C i, L, or a D, concept as
defined in Fig5.

In spite of the immense simplifications that DLP normal formpdes, the def-
inition of DLP still turns out to be extremely complex. We have not succeede
simplifying the presentation any further without loosingpstantial expressive features.
Some intuitive explanations help to understand the unthrligleas. It is instructive to
also compare these intuitions to the above examples.

The core language elements are in FEigSince all concepts are in DNF, each sub-
language consists of a conjunctive p@rand a disjunctive paid. Definitions of DLP
typically distinguish between “head” and “body” concetsdCy andCg play a sim-
ilar role in our definition.Cy represents concepts that carry the full expressive power
of a DLP GCI, and that can serve as right-hand sides (“head$¥)).P GCls.Cg con-
cepts can be seen as negated generic left hand sides (“Badi€CIs. However, these

Body concepts: fo€ in normal form,C € Dg iff CLI A (or-C C A) is in DLP
Cgu=-A|={l} | -3IR.Self | <SOR.~(Dg U {L1}) | Cg M C;g
Dg := Cg | Dg LI Dg

Head concepts: fa€ in normal form,C € Dy, iff AC Cis in DLP

Ch:=Cg|A|{l}|IR.Self | >nR.Dyy | KOR.=Dy | <IR.=(Dg U {L}) | CH M Cy | Dy
Dy == Cq | Dy b Dg | Dal_ICZ

Assertional concepts: f& in normal form,C € D, iff {a} C Cisin DLP

a:=Cqx|2nR.D>™" |C,C,y
Dy = C, | DauDg

Disjunctions of nominal assertions of the fofin C,

Dy == {l}[{l}nCa
D1t == Dy U Dy

Conjunction of negated nominals, i.e. complements of soomeimal disjunction

le = —|{|}
C_‘(ml) = C_nm—fl}
C,u=~{l}|CsnCs

Filler concepts foen in D,

D*":=T|CmuUDf (1<m<n®-n)|DguD}, (M<n) |
DauDy, uDy (forr:=n-(m+1)we haver > 0andr(r —1) > m)
where no disjuncts are added for expressidgsandDo,

Extended concepts with restricted forms of (“local”) disjtions, used iD>" only

C}; := Cg | SOR.=D} | <NR.~(D N Dy m) | C5 11 C
D; == C | D5 LD} | DL LIC,

C}, o= Cy | >NR.D}, | OR.-D}, | <1R.~Dj | <nR.~(D} N D, m) | C; M C}, | DX,
D}, == C} ID; uD; D UC,

Ci:=Cf, | >nR.(D U{T})|CiNC

D: == C: | D; LD}

Dj, = {l}nC}
D 7= Dy U Dy,

Fig. 5. Grammars for defining DLP concepts in DLP normal form

Additional concepts based on global domain size restnistio
D=tu={1}nC
D=™1:=D="u ({I} nCT™Y)
Additional concepts expressingfor unary domains (“propositional” case)
CP = {1} C?nCP? | <OR.~(D?) | <nR.=D (n > 1)
DY :==CP|DPLD
Additional head and body concept expressions for unary dw{gropositional” case)
Ch=Ct|CY | -A|-3R.Self | CE N CE | <OR.~(D U {L})
D == DY | D} | D§ U D}
Cf == CE|A|3IRSelf| C, N Cf | >1R.D}, | <OR.-D}]
Df, ==D?|C} | D], uD}
Additional structurally unsatisfiable concepts for donsairfi restricted size
Cl:=~{l}|CtnC|>1R.D|>nR.D(n>2)
C:™li=CI™INC|>nRD™I(n>1)|>nR.D(N>m+2)
DiMu:=C™| DL D™
Concepts that can never hold for all individuals
Cir =} C,ynC

D: concepts in DLP normal form that are not structurally validunsatisfiable
C: concepts oD that are no disjunctions

Fig. 6. Grammars for defining DLP concepts: special cases withicestrdomain size

basic classes are notflaient for defining a maximal DLRC, characterises concept
expressions which can be asserted for named individuaksse thre even more expres-
sive thanCy in that existential restrictions are allowed (intuitivelliis is possible as
in the context of known individuals the existentially assdrrole neighbours can be
expressed by Skolem constanf3), concepts then can be viewed as collections of in-
dividual assertions (e.ga} 1 B). Another way of stating such assertions is to Gsen

a disjunction (e.g—{a} L B).

By far the most complex semantic interactions occur foatigestrictions in ABox
assertionsD>" and all subsequent definitions address this single casexgarple, the
DLP axiom{a} C >2R.(—{b} L AL B) can be semantically emulated by the following
set of datalog rules, wherg are auxiliary constants:

R(@acy), R(ac), bxc— Ab), bzxc,— Bb).

This emulation uses internal symbols to resolve apparaigiyinctive cases in a
deterministic way. The datalog program does not represspindtive information: its
least model simply contains two successors that are not emhaThe nested disjunc-
tion only becomes relevant in the context of some disjurdi®@L - formula, such as
¥X.X = aV X ~ b. The considered theory is no longer datalog in this casettangro-
gram simply “re-uses” the disjunctive expressive powevjated by the external theory.

The fact that the actual program is far from being semanyiegjuivalent to the original
axiom illustrates the motive and utility of our definition sgmantic emulation.

Many uses of nominals and atleast-restrictions lead to roongplex interactions,
some of which require completelyftérent encodings. This is withnessed by the more
complex arithmetic side condition usedi". Concepts irD.n N D} correspond to
disjunctions ofm nominal classes, each of which is required to satisfy furdisgunc-
tive conditions, as e.db} m >1R.(A L B). Now, as an example, a disjunction of an
atomic class and four such “disjunctive nominals” is alldves a filler for>7 (since
3x 2> 4)butnotfor=6 (since 2x 1 < 4). Also note that the disjunctive concepts like
D}, andDj that are allowed in fillers do not allow all types of disjunetinformation
but only a finite amount of “local” disjunctions. For examglia LI B LI C requires one
“local” decision aboug, whereas concepts liKa} M <OR—-(BLu C) or{a} M <2R-1
require arbitrarily many decisions for &lsuccessors.

The remaining grammars in Fi§.take care of less interesting special cases. Most
importantly,C,’f| covers all concepts that can be emulated if the interpogtatbmain is
restricted to contain just one individu&l..+ contains axioms which make the knowl-
edge base inconsistent as they deny the existence of a nomiraauxiliary classes
C3™M describe concepts that cannot be satisfied by an interjpretaith at mostm ele-
ments in their domain, as described in the following lemma.

Lemma 5. A structural concept C# L in DLP normal form is inC7™ as defined in
Fig. 6 for some nm 1iff, for all interpretationsZ with domain size#(4”) < m, we find
ITECLC ..

Proof. The “only if” direction can be shown by an easy induction, veiie base cases
are given by conceptsn RD with n > m, and — in the case = 1 — negated nominals
-{a}. The proofis straightforward and we omit further details.

For the “if” direction, assume th& ¢ CT™ U {1}, and let4 be a domain of size
m, i.e. #(1) = m. Then, for any € 4, we can find an interpretatiaf(s, C) such that
4700 = g ands € CO), The base cases with of the formC, JR.Self, {I}, =C,
-3JR.Self, and — ifn = 1 —={l} are obvious. IfC = D; U D,, then, without loss of
generalityD1 ¢ CT™ andZ (s, C) = (5, D1) satisfies the claim.

Now assume that is of the formD; n D,. ThenDy, D, ¢ CT™ U {1}, and we
find interpretationd (6, D1) andZ (6, D2) as in the hypothesis. Sin€gis structural, the
hypothesis foD; is also satisfied by any variaft(s, D;) of 7(5, D1) which is obtained
by changing the interpretation of symbols that occubinThus we can assume without
loss of generality thaf (6, D1) has been chosen such that it agrees Wii# D,) on all
signature symbols that occur D,. By a symmetric argumentation fdr(s, D), we
find that such arf (6, D;) would also satisfy the hypothesis fB», and hence we can
set7(s,C) := 1(5, D).

If C = <nRD, then any interpretatiofi(s, C) with R’ (s, C) = 0 satisfies the claim.
If C = >nRD with n < m, then consider distinct elemends,...,5, € 4. Using
structurality and the induction hypothesis again, we findoaeh (5, C) = 7(61,D) =
... = I(6n, D) such thaR’®®) = ((6,6; | L < i < n)}. o

c \ digg(-ALC C)

{A(X)} U P|nv
-B {B(X) - A(X)} U F)Inv
—|{C} {A(C)} U Plnv
-JR. Self {R(X, X) - A(X)} U P

D; M D, | digg(=AE D;) Udlgg(—~AE Dy)

D1 U Dy | digg(=X; E D;) Udigg(=Xz E D2) U {X1(X) A Xz(X) = A(X)}
<OR.~-D| digg(=X E D) U {R(X,y) A X(y) = A(X)}

A, B concept names;, an individual nameR a role, X fresh concept names

Fig. 7. Transforming axiomsA C (Dg U {}) to datalog

6 Emulating DLP in Datalog

In this section, we show that knowledge base®Xf® as given in Definitior® can
indeed be emulated in datalog.

Emulations are generally established by means of reclysiedined functions that
translateD L axioms to datalog. Relevant (auxiliary) transformations eequired
for each of the languages defined in Figand6. In all cases, the built-in semantics
of inverse roles is explicitly needed in datalog. For thisgmse, an auxiliary datalog
programPy,, is defined a®,, = {R(X,y) — Inv(R)(Y, X) | R € R}, whereR is the set
of roles of the given signature. We begin with the rather $incpse oDg.

Lemma 6. EveryDLP axiom—-A C C with A a concept name and € Dg U {L} is
semantically emulated by the datalog progreiy,(—A C C) as defined in Fig7.

Proof. Note that the definition in FigZ is well — especially all recursive uses difjg
refer to arguments in the domain of this function. The praotgeds by induction over
the structure o€, showing that the conditions of Definitidhare satisfied. We show a
single induction step to illustrate the easy argumentation

Consider the cagé = D; LI D,. For one direction of the claim, consider any model
I of -A C C. An interpretation/’ over the extended signature is defined by setting
X! =47\ D! fori = 1,2. Itis easy to see thal' = {-=X C Dj | i = 1,2} U {Xy(X) A
X2(X) — A(X)}. By the induction hypothesis, we can find an interpretatfarthat
extends/” and such thaf’; = digg(—=Xi £ D1). Another application of the hypothesis
yields a modell'; |- digg(—A £ C) as required to show the claim. The other direction
requires us to show that every modebifz(—A C C) is also a model of A C C, which
is obvious when applying the induction hypothesis. O

Now define, for a datalog programand a ground literal(c), a datalog program
Plag = {A(C)AF — H | F — H e P}. This way of manipulating datalog programs is
convenient for our following definitions. Clearly, # semantically emulates a formula
@, thenP|a semantically emulates v —A(c).

c \ digy(AC C)

D e Dg digg(=X E D) U {A(X) A X(X) = L}
B {A(X) = B(X)} U Piny

{c} {A(X) > c~ X} U Py

IR Self {A(X) > R(X, X)} U Py

D11 D, € (Dy M Dy)| dig,(AC D) Udlg, (AT Dy)
{ctnD €Dy dig,({c} E D)lag U digy (AL {c})

D,uD, € (DH [N} DB)

digy (X2 E D1) U dlgg(=Xy E D2) U {A(X) A X1(X) — Xa(X)}

D;uD, € (DauCs)

Uceind(0z) d19a({C} E D1)lag

>nRD € (>nR.Dy)

Ueer (1A() = R(X O} U Udenyi {A(X) A €~ d = 1} U digy({c} T D))

I = ind(D), andD, such thaD = D} L (D, 1 {c}) for someD;, € Dp_1,
<OR-D digy (X € D) U {A(X) A R(X, y) — X(¥)}
<1R-D digg(=X E D) U{A(X) ARXY) A X(Y) AR(X,2) A X(2) > y ~ Z}

A, B concept names;, d individual namesR a role, Xy fresh concept names,
dig,({c} £ C) as defined in Fig9 below

Fig. 8. Transforming axiom#& C Dy to datalog

The remaining language definitions of Figare interdependent, so the correspond-
ing translation needs to be established in a single requfsiovhich semantic emula-
tion is shown in a single structural induction. We still segia the relevant claims for
clarity, so the following lemmata can be considered as itidacsteps in the overall
proof. The following lemma illustrates a first, simple indioa step:

Lemma 7. Consider a concept € Dy such that, for every proper subconceptd,
of C and individual symbol d, the progradgiy,({d} C D) semantically emulatesl} C
D. Then, given a concept name A, the datalog progdayg(A C C) as defined in Fig8
semantically emulates & C.

Proof. Note that the definition is well, and especially that all usiggrogramslig, ({d}
D) do indeed refer to proper subconceptsf C. The proof proceeds by induction, us-
ing similar arguments as in Lemn@ We illustrate a single case which uses some
features that did not occur before.

Consider the cas€ = {c} m D € Dq. For the one direction, lel be a model
of AC C. If n({c} C D) is a first-order formula that corresponds{ty = D, then
I E -A(c) v x({c} C D). Moreover,f = AL {c}. By our assumptions and the induction
hypothesisdig,({c} C D) semantically emulateg} © D — hencedlg,({c} T D)lag)
semantically emulatesA(c) v n({c} C D) —, anddigy (A C {c}) semantically emulates
A C {c}. Since the auxiliary symbols that may occur in both dataloggpams are
distinct, semantic emulation yields a single extendedjmetations” such that?’ £
diga({c} E D)lae and”’ E digy(A C {c}), as required. The other direction is shown in
a similar fashion by applying the induction hypothesis asslianptions of the lemma.

O

The induction steps for definingjg,({c} £ C) are rather more complex, and some
preparation is needed first. Concepts of the fobysDy},, andD{ allow for restricted
forms of “local” disjunction. To make this notion explicite first elaborate how such
concepts can be expressed as disjunctions of finitely riag$ knowledge bases.

Definition 10. Consider concept expressions C and D such that:

— Ce-CandDe D, or
— CeCandDeDy, or
— Ce{l}and De D.

A set of knowledge bas&&p is defined recursively as follows:

(1) If D € Dy thenKcep = {{C C D}}.

Assume D¢ D, for the remaining cases.

(2) If D= D, 1D, then?(C;D = {KB]_ U KB> | KB € WCEDP KB, € WCEDz}-
(3) If D = Dy u D3 then:

(3a) If D; € C;, define auxiliary sets of knowledge bagég for M C ind(D;) as
follows: K := {{C C [Mgem ~{d}} U Ugeinao\m KBa | KB € Kigep, | Then
setKeco = Umcinap,) Km-

(3b) If D1 € Df \ Cs, then consider fresh concept nameséadd B, and define
Keep = {{C C-B;uUBy}UKB1UKB, | KB; € 7(431@31, KB, € WBZQDZ}.

(30) If D1, Dy ¢ DE, thenKcep = (](CEDl U (](CEDZ.

(4) If D =>nRD’ then;

(4a) If D’ e D}, thenw.l.o.g. D= Dy U...uDywith D; = {di} 1 Dj and ¥ € C}.
DefineXeep = {{C T >n R L {di}} U UL, KBi | KB; € Kigco: .

(4b) If D’ ¢ D, then consider a fresh individual name d and assumeM@tp =
{KB1,...,KBg}. Letd (i = 1,...,n) be fresh individuals, and |¢¢B'j denote
the knowledge bad€B ; with all occurrences of d replaced by.dhen define
Koo = {{{di}n{d} € L | 1<i<j<nju{C C >1R{d} | 1<i<n}U
Urcien KBy, 1K1, ko € {1, s}}.

(5) If D =<nR~D’ then:

(5a) If D’ € C, then a=n-partitioning M of ind(D’) is a setM = {My, ..., M}
of m > n mutually disjoint non-empty sets; M ind(D’). Given such an-
partitioning, defineKB 5, := {{c} C {d} | ¢,d € M; for some i€ {1,....m}} U
{CM[lees=1R{c}C L |S cCind(D"),#M; | Min'S # 0} > n}. Then define
Keep = {KBp | M a=n-partitioning ofind(D’)}.

(5b) If D' = D, u Dy where D € C; and D, € Df, then define a set of knowl-
edge base%(y for a set MC ind(D;) as follows: Ky = {KB U Ugem KBy |

KB € Kccpr With D7 = <N R=[Tgeinao,m ~{d} KBa € Kiaico, |- Then de-

fineKeeo = Umcinapy) K-
(5¢) Ifn<1and D € D, then consider a fresh concept name B, and $etG-B

if D’ € D and C := B otherwise. Defin&ccp = {{C C <NR-C’} UKB |
KB € Koo

As usual, empty conjunctions are treatedradn cases (3a) and (5b), the construction
may lead to axioms ih +; these axioms are omitted frofccp.

Observe that, without loss of generality, the cases in tlewipus definition are
indeed exhaustive and mutually exclusive fore Df. In particular, cases (5a) and
(5b) cover all situations whe® € (Ds,-m N DY), where we find #hd(D’) > n and
#ind(D1) > n, respectively, since we assume tliat¢ D,. It is easy to verify that
all recursive uses oKcrp satisfy the definition’s conditions 0@ andD, and that all
axioms in knowledge bases #c-p are in DLP normal form. Note that case (4b) can
only occur ifD € D} \ D;, soC must be a nominal in these cases. Similar observations
for the other cases allow us to state the following lemma.

Lemma 8. Consider concept expressions C and D as in DefinifionIf D is in D}
(Df;, DE) then all axioms of the form € E in knowledge bases &ccp are such that
Eisin Da (DH, DB).

In particular, the knowledge bases¥tcp are in DLP.

Proof. The claim can be verified by considering all axioms that aeated in the cases
of Definition 10. The claims foiD, D}, andD{ are interdependent and must be proven
together.

The claim clearly holds for the base case (1). Case (2) imatelgli follows from
the induction hypothesis. Case (3a) is trivial since adddl axioms of the fornC C E
do not occur in knowledge bases Hfqcp,. Case (3b) and (3c) are again immediate
from the induction hypothesis, where we note for (3b) hati D is in D, (Dy, Dg)
for D; € Dg \ Cs wheneveD; is in D, (Dy, Dg).

Case (4a) can only occur B € Dyj, \ D so it sufices to note that the concept
>nR ", {di} is in Dy. Case (4b) in turn requires th& € D} \ D}, and clearly
>1R{d} € Da.

Cases (5a) is immediate, sinCa1[|5 >1R{c} C L is equivalently expressed as
C C | lees <OR—~{c}, the conclusion of which is iDg. Case (5b) follows directly by
induction. Case (5c¢) comprises three relevant case<) andD’ € Df (D € Df),n=0
andD’ € D}, (D € D)), n = 1 andD’ € Df, (D € Dy,). We find thatC’ is in Dg (Dn)
wheneveiD’ is in Df (D})), so that the claim holds in each case.

It remains to show the second part of the claim. Using thegdast of the claim, the
preconditions orC andD imply that all axiomsC C E that are constructed foKccp
are inDLP. AxiomsC’ C E in Kcep with C’ # C must be obtained from son¥&cp/
that was used in the construction®-p. But such recursive constructions only occur
in cases where the preconditions of the definition are sadis§io the claim follows by
induction. O

The next proposition shows th@tc D is emulated by the disjunction of the knowl-
edge bases ificcp, thus establishing the correctness of the decompositiarddzs
not provide a syntax for knowledge base disjunctions, andevaot want to move to
first-order logic here, so we use a slightlyfdrent formulation that follows Definitiof

Proposition 4. Consider concept expressions C and D as in Definitiorboth based
on some sighature”. Let.¥” be the extended signature&p.

— Every interpretationy over.” with 7 = C C D can be extended to an interpreta-
tion 7’ over.¥” such that/’ = KB for someKB € Kccp.

— For every interpretatiory” over.#” such thatZ’ | KB for someKB € Kcrp, we
find that’ C C D.

Proof. We proceed by induction. Case (1) is obvious. Cases (2) isidiate from the
induction hypothesis. For case (3a), Mtbe the largest set of individuals such that
I E C C [gem —{d}. Using the induction hypothesis, it is easy to see fhat C C D
implies that there is an extensidh of 7 such thatZ” = KB for some KBe K. The
converse is similar.

For case (3b), consider an interpretatibover.” with 7 = C C D. Consider the
extended signature”” with the fresh concept nam@&s andB,, and define an extension
17 of I over.s” by settingB{" := -D{ andB}" := DJ. Theni” | -B; C D; and
1" | By C Dy, and we can apply the induction hypothesis%6ig,cp, andXg,cp, to
obtain modeld}" (over some extended signatus€”’) such that’'y KB; for some
KB1 € K-p,cp, andZ7 KB for some KB € Kg,cp,. Sincel} and} agree orBy,
B,, and all symbols o€ C D, there is an interpretatiaff such that7” E KB; U KB».
SinceC? = -B!' UB/, itis easy to see thdl’ satisfies the conditions of the claim. The
other direction of the claim for (3b) is an easy consequehttgeanduction hypothesis.

Case (3c) can only occur@ € {I}, and it is easy to see that the claim holds in this
case.

Case (4a) is again not hard to see when using the inductiarthggis. For case (4b),
first note thatC must be a nominal sinde is cannot be iDy. The required semantic
emulation then is an easy consequence of standard Skol@mizaahere each successor
di may satisfy any of the slicient subconditions that are captured byill,<B. ,KBL,

The reasoning for case (5a) is similar to case (3a): giventengretatior?, we find
a>n-partitioning M such that, d € M; iff ¢/ = d’. Itis easy to see that = C C D
impliesZ | KBy; no induction is required. The other direction is again olbgi

Case (5b) is a simple extension of case (5a) where a stbsétindividuals is se-
lected in each knowledge base to ensure that all individefalld are instances dbo,
thus reducing the requirement to a maximal numbéR-gficcessors that do not belong
to M. To express this more formally, we use expressishd).({d} 11 E) whereU is
the universal role that can be semantically emulate@ £ — this allows us to embed
ABox assertions into GCls. With this notation, we obsena@C <n R—(D; L D,) is
semantically emulated by the disjunction of all the axi®s <n R [geingo,)\m ~1din
[MNgem =1U.({d} 1 Cy) for all M C ind(D4). It is easy to see that the construction in (5b)
corresponds to this disjunction, where conjunction is nledes in case (2), and indi-
vidual assertions are encoded using the recursive cotisins&q,-p, that are valid by
the induction hypothesis. The converse is easily obtaiyesdrhilar considerations.

Case (5c) uses a similar argument as case (3b). Considetespratation/ over
< with 7 E C C D. For the extended signaturg” with fresh concept namB, an
extensionZ” of I is defined by settin€’/” := D’. By the induction hypothesis for
Koo, We find a model” (over some extended signatuv€’) such that7” = KB for
some KB e Kccp . But then there is a corresponding knowledge basé KBC C
<nR-C’} UKB in Kccp such that” E KB’. ThusZ’ satisfies the conditions of the
claim when restricted to””. The other direction is again easy. O

We can now define datalog programs for semantically emugjatiioms of the form
{c} C >nRD>". We consider all three main case€=,LID}, DguDy,, DauD}, LIDy —
individually, before combining these cases with the renmgjfiorms ofD, to complete

the induction.

Lemma 9. Consider a constantc, and aconceptCnRD;LID, suchthat € C_p,
D, € D, and(1 < m< n? —n).

Assume that, for every individual symbol d and every knaydé@se<B € Kqcp,,
there is a datalog progrardatalog(KB) that semantically emulaté€B.

Then we canggectively construct a datalog progradiy,({c} £ C) that semantically
emulateqc} C C.

Proof. Let h be the smallest number such th&t2(#Kq\cp,)", whered is an arbitrary
constant (clearly, the cardinality/ycp, does not depend on the choiced)f Now let
S :={ckli,jefl....,n ke {l... ,h}} beasetohxnxhfresh constants. It is
convenient to consider the indices of constantsS to be coordinates, so th&tconsists
of the elements of a three dimensional matrix withows, n columns, anc layers.
Now given anyk = 1,..., h, we define set&, B« c Sfor alli = 1,...,n by setting:

AX = {Citk, Cizk, - - -» G} and B == {Cyik, Caik . - -, G-

In other WordsA}((B}‘) is theith row (column) in layeh of S. Now given a set
O c S, defineO(k) = {cijk € O i,] € {1,...,n}} —the intersection oD with layerhin
S. Now for everyh-tuplev = (X, ..., Xy) with X € {A,B}forallk = 1,..., h, there is
a unique partitionind®, = {O4, ..., Oy} of S into n disjoint subset®; C S (1 <i < n)
for which the following holds: for every € {1,...,n} andk € {1,..., h}, we find that
Gi(k) = (Xk):‘. Observe that the"partitionsP, that can be constructed in this way are
indeed mutually distinct. Intuitively, the partitiofs thus encode binary numberstlof
digits.

Given partitionings = {Oy, ..., Op} andP’ = {0y, .. ., O;),} of S, we say thaP is
finer than P if, for everyi € {1, ..., p’}, we find thatO; is a union of part©; € P. Note
that every parO; can be contained in at most one p@ftand thusp’ < p. Partitions of
the formP, have the following important property: for every partitiBr= {Oy, ..., Op)
of Swith pe {n,...,n+ m- 1}, there is at most one partition of the foiy such that
P is finer thanP,. To show this, consider twb-tuplesv, w C {A, B}" that difer in (at
least) thekth componentK € {1, ..., h}), i.e. (w.l.0o.g.) thekth component of is A, and
thekth component ofv is B. Now for any partitionP that is finer tharP, andP,,, for
everyi € {1,...,n} there are part®,...,O; € P such thalA!‘ = Ok U...u0Oj(Kk),
and part©,, ..., O']., € Psuch thaB}‘ =0Oy(Ku.. .uO},(k). This implies thaP cannot
contain a par©O such that &(k) > 1 since no two setA}(and B}S share more than one
constant. Henc® must have at least parts to cover all elements in laylerNow the
preconditionrm < n? — nimplies thatn + m— 1 < n?, which establishes the claim.

To establish the required datalog program, partitions eistants are considered
as equality classes, and rules are created to check focplartequalities. To this end,
define a conjunctiofiO] := c1A.. .Ac; forevery seO = {c, ..., Cqy} C S. This notation
is extended to partitionB = {Os, ..., O} of S by setting[P] := [O1] A ... A [Gi].

Consider a fresh constadt For everyh-tuplev € {A,B)", let¢, : P, — Kiaicp,
be a mapping of parts d¢¥, to knowledge bases iKqcp, such that, for every-tuple

K =(KBy,...,KB,) € 7([’5)@2 of knowledge bases, there is latuplew € {A, B}" with
partition Py, = {Oq,...,0Oy} as defined above, ant},(O;) = KB; for alli = 1,...,n.
This choice of the functiong, is possible due to our initial choice bf since there are
2" such functions but only#, ., differentn-tuples of knowledge bases frofjqcp, .
For every partitiorP of S intoi € {1,...,n+ m— 1} parts, datalog rules are con-
structed as follows. IP is not finer than any partition of the forR,, then only the rule
[P] — L is added (this includes the caseR®having less than parts). Otherwise, let
Py be the unique partition of this form that is finer thnFor every parO of P,, select
one partr(O) of P such thatr(O) C O, so that there are distinctselected partin P.
Now letdy, ..., dn denote thenconstants oD;. For everye = dy,, dy and for every
partO € P,, let A be a fresh concept name and construct the following datalog:

() [P1Ae~ f — Ae), wheref € n(O) is arbitrary,
(i) datalog(KB’)|ae Where KB is obtained fromp,(O) by replacing all occurrences
of {d} with {e}.

Now dig,({c} £ C) is defined to be the union &, and all datalog rules constructed
above, and the datalog fad®c, ¢i) for all i, j € {1,...,n}andk € {1,..., h}.

It remains to show thadlg,({c} £ C) semantically emulatelg} © C. For the one
direction, consider a moddl of {c} C C. We need to show that it can be extended
to a model ofdig,({c} = C). Selectn distinct R-successorsy, ..., d, of ¢ such that
§i € (D1uDy)” foralli = 1,...,n. By Propositiord, for alle € {ds, ..., dn}, if e/ € DS
then there is an extended interpretatiqrsuch that/¢ | KB for some KB € Kiecp,-
Sincel . extends/ only over fresh symbols that occur in ofi&cp,, all interpretations
I can be combined into a single extensibrof 7.

Now let KB, € Kjqicp, denote the knowledge base from which KB obtained
by replacing all axioms of the forqu} C F by {e} C F, whered is the constant used
when constructinglg,({c} £ C). By the construction oflig,({c} € C), there is a tuple
v € {A B} and a partitiorP, = {Os, ..., Oy} such that,(O;) = KB;jj foralli=1,...,n
for which df = ¢; andd! # g; forall | < j.

Consider anye € {di, ..., dy} with &’ € D7. The modell” above was constructed
such thatZ” | KB, and thus, by the assumption of the lemma, there is an ertefi3i
of 7’ such that7’ [datalog(KB¢). We define a model of dig,({c} € C) by further
extendingg”. For all constant$ € S, definefJ := ¢, for the uniqué € {1,...,n} such
thatf € O;. Moreover, for each of the fresh concept nafnietroduced in (i) above, let
A7 be the smallest extension for which all rules of (i) are $atisby. 7.

Now it is easy to see thal satisfies the factR(c, cij) for all i, j € {1,...,n} and
k € {1,...,h}. To see that it also satisfies the rules constructed in (dyvapbnote that
the rules (i) for some particulag € {ci,...,Cn} are always satisfied {7 = A(e).
AssumedJ E A(€). By minimality of A7, this implies thaty £ e ~ f for some
f € S that belongs to a pa®; of P, and thuse’ = §; for somei € {1,...,n}. By
constructiong,(0O;) is of the form KL’{jj (wheree might be unequal ta;, but with

el = d~j‘7 = ;). Sinces; € (D1 U Dy)?, we finds; € DZ and thus7 dig,({b'} € F)
forall{b}jC F e KB'J_, whereb’ = eif b = d andb’ = b otherwise. This shows that the
rules (ii) are indeed satisfied by.

For the other direction, consider a modelof dig,({c} © C). We need to show
that it is also a model ofc} C C. Let P be the partition ofS that corresponds to the
~ equivalence classes @ghinduced bys. By the construction ofllg,({c} © C), the
partition P is finer than some patrtition of the forR,, and thus has at leastparts.
Moreover,n of the parts ofP are selected parts of the formfO) for someO € P,. It
is not hard to see that thedomain elements of that correspond to the selected parts
areR-successors af that belong toD; LI D5)?, which is an easy consequence of rules
(i) and (ii) together with the assumed model-theoretic egpondences for axioms in
Kidico, - U

Lemma 10. Consider a constant ¢, and a conceptCn RD;LID; suchthat @ € Dg,
D2 € Dy, with m< n of the form B = ({c1} M Cy) U ... U ({Cm} M Cry).

Assume that, for every= {1, ..., m} and every knowledge bak® € K¢ cc,, there
is a datalog prograntlatalog(KB) that semantically emulatd€B.

Then we canggectively construct a datalog progradiy,({c} £ C) that semantically
emulateqc} C C.

Proof. For eachi = 1,...,m, letl; > 1 be the least number such that 2 #Kqcc,,
and consider a s&; of fresh constant§; = {ai1, b1, ..., ay,, by, }. Let V; denote the
set of all sets of the fornixs, X, ..., X, } with x, € {ain, bin} for allh € {1,...,1;}. Let
¢i : Vi = Kz, be an arbitrary surjective function (which exists due tocheice of
a suficiently largel;).

Consider fresh constands, . . ., dn_m (note than—m > 1) and a fresh concept name
B. We construct the following datalog rules and programs:

(i) digg(~BC Dy)
(ii) foreveryie{l,...,n—mj:
R(c, dy),
B(d)) — L for a fresh concept nanm®
(iii) foreveryi,je{l,....n—m},i # j:
di] dj - 1,

(iv) foreveryie{l1,...,n—-mjandj € {1,...,m}:
di ~Cj— 1,

(v) foreveryi e {1,...,mfandh e {1,...,1;}:
R(c, an),

R(c, bin),
ah ~ bip — L,

(vi) foreveryi € {1,...,mfandv = {Xi1, Xi2, ..., Xi,} € Vi:
B(xi1) A ... A B(xi,) = A(c) for a fresh concept nang
A(C) — G = Xi1,
datalog(¢i(V))lac)

(vii) foreveryi,je{l,...,m},i# j, foreveryee Sjandf € Sj U {dy,...,dnm}:
ex f - exd.

Nowdlg,({c} C C) is defined as the union &,, and all rules and programs constructed
above.

It remains to show thadig,({c} £ C) semantically emulatelg} C C. For the one
direction, consider any modélof {c} C C. Selectn distinctR-successorg;, .. ., d, of
¢’ such that; € (D1 LIDy)? foralli = 1,...,n. By Propositior4, for alli € {1,..., m},
if c,f € Cif then there is an extended interpretatinsuch that7; £ KB; for some
KBi € K¢ icc,- SinceZ; extendsl only over fresh symbols that occur in o€ cc,,
allinterpretationd’; can be combined into a single extensiGrof 7. By the assumption
of the lemma, we find an extensigil of 7’ such thaty”’ = datalog(KB;).

A model 7 of dig,({c} C C) is defined by further extending”. For the auxiliary
conceptB of (i), defineB” := (-D;)’ and letJ be such thatJ k digg(-B C Dj)
(which is possible by Lemm@). For each € {1,...,n— m}, selectdij € {01,...,0n}
such that rules (ii)—(iv) above are satisfied. This is alwpgssible since at mosh
eljements ofé1,...,6n) can be in 6D1)?. Without loss of generality, we assume that
di = 0.

Now select an injective functios : {1,....,m} — {2,...,n} such thaiy(i) = j if
¢/ =6 for somej € {1,...,n} and there is n& < i such that! = &;; andy(i) € D
otherwise. Again, it is not hard to see that this is alwayssjibs. Now for each €
{1,..., m}, interpretations for constants 8 are defined as follows. lff € Ci], then let
v € V, be such that KB= ¢;(v). Otherwise, let’ € V, be arbitrary. Foralh e {1,...,l;}
andx € {a, bin}, definex? := 6, if x € v, andx” := ¢, otherwise. It is not hard to
see thatJ satisfies rules (v) and (vii). For the auxiliary conceptmtroduced in (vi)
for some setv € V;, setA” = {c/} if w = vanddy,g) € (=D1)? (which also implies
¢/ = 6y()), and ser” := 0 otherwise. Thus, there is at most one such auxiliary concept
for i that is non-empty, corresponding to the get V; for which KB; = ¢;(v). The
construction ofy” ensures that the remaining rules of (vi) are satisfied asnestjut
should be observed that this construction also works in @ise that/ = ¢ for some
i # .

For the other direction, consider any modebf dig,({c} T C). The rules of (i)—
(iv) obviously establism — m distinct R-successorsl, ..., d,-m of ¢ that are inD;.
According to rules (vii), for every € {1,...,m} and evenk € {1,...,l;}, somexy €
{ai, bi} is unequal to all constants 8yU{d, ..., dm-n} forall j # i with j € {1,..., m}.
Hence, if the premise of the first rule of (vi) is false foral€ V;, then there must be
somek € {1,..., i} such thatx/ ¢ B and hence, by (i)x; € D, yielding the required
distinct R-successor for. Otherwise, if the premise of the first rule of (vi) is true for
somev €V, thencif ~ X1 Is the required successor, sim:{ee Dé' is ensured by the
rules of (vi) together with the assumptions of the lemma. O

Lemma 11. Consider a constant ¢, and a concept=C>n RD; LI D, LI D3 such that
D1 € Dq, D2 € D], of the form B = ({c1} M Cy) U ... U ({cm} 1 Cry), D3 € D} of the
form D; = ({Cmy1} MCrp) U .. LU ({Cmu} T Crst), @and for r:= n— (m+1) we have r> 0
and r(r —1) > m.

Assume that, for every constantitg,({e} T D) semantically emulatei®} C D1,
and that, for everKB € Kiccc, (i € {1,..., m+1}), datalog(KB) semantically emulates
KB.

Then we canggectively construct a datalog prograaiiy,({c} C C) that semantically
emulateqc} C C.

Proof. Let s> 1 be such that2> [{"; #Kcc,. Consider the following sets of fresh
constants:

—{dili=1,...,r},
—{gjli=1....mj=1...,s}
—{fili=1,...,1}.

Now, for eachi = 1,...,m, letg; : {1,2}° - K|c)cc, be a surjective function frors-
ary binary numbers t&cc,, which exists due to our choice ef Moreover, for each
i=1....,mlety; = (h k) be a pair of distinct numbetsk € {1,...,r},h # k such
thaty; # ¢ whenevei # j. This choice is possible since there afe— 1) such pairs
andr(r — 1) > mwas assumed. Given anyary tupled, we used(k) to denote théth
componentobf fork = 1,..., j. In particular, we use the notatign(»(j)) (i = 1,...,m,
j=1,...,9) with tuplesy € {1, 2} below.

Let B be a fresh concept name — we will use it to mark certain disRguccessors
that the datalog program must ensure to exist. We constradbtlowing datalog rules
and programs:

() forall e f e{dy,...,dr,Cy,...,Cnu} Withe # f:
Ble)AB(f)rnex~ f — 1,
B(e) - R(c, e),

(i) forallie{d,...,r}:

B(di),
dlga(|: Dl)

(i) forall i e {1, m},ve{l,2)5 he{l,..., s\
R(c, en),

dig,({en) C Dy),
forall je{1,....r}, j #¢i(1),] # ¥i(2):&n = dj — L,
&1~ Ay) A--- A 8s = dye) — AG) for a fresh concept namg,
A(c) — B(ci),
datalog(¢i(V))la)
(iv) foralli,je{d,...,mwithi= j,forallhe{l,...,s}:
if there isk € {1, 2} such thayi(K) = ¢j(K): &nh = €n — &n = dy,x),
otherwisegy ~ ejp — L,
(v) forallie{d,...,1},je{d,...,rk
R(c, fi),
dig,({fi} T D),
fi = dj = A(cmy) for a fresh concept nang
A(Cm+i) — B(Cmii)s
dlg,({Cmsi} E Crml)|A(c,m,)y
(vi) forallee {fy,..., f,e11,...,€15....6m,---,Cmg"

it
forall f € {fy,..., f|}W|the¢ fifre—-fxd,
forall f €{cy,.. EB(f)Afre— L.
Now dig,({c} C) is defined as the union ¢, and all rules and programs con-

structed above.

It remains to show thallg,({c} C C) that semantically emulatds} C C. For the
one direction, consider any modebf {c} C C. Selecth distinctR-successor&, . . ., o,

of ¢/ such thats; € (D; U D, U D3)? foralli = 1,...,n. By Propositiond, for all
i €{l,....,m},if ¢/ € C/ then there is an extended interpretatigrsuch thatf; = KB;
for some KB € Kic)zc - As in the proof of Lemmad0 above, we can find an extended
interpretationy” such thaty” E KB;. Using a similar argument, we can chggésuch
thatJ” E dig,({c;} € C)) for eachj € {m+1,...,m+1} forwhichc{ € C{.

A model J of dig,({c} £ C) is defined by further extendin@’. At leastr elements
6 € {01,...,0n} must satisfys € D{ — w.l.o.g. we assume that this is the case for
61,...,6r. Thenset =g foralli e {1,...,r}.

Now select an injective functiosr : {1,...,m+ 1} — {1,...,n} such that-(i) = |
if ¢/ € C/,c/ =6 forsomej e {1,...,n} and there is nd’ < i such thatt! = 6;;
ando(i) € Dy otherwise. Such a function clearly exists. Consider somél, ..., m}.

If 6({0) e Df, then setelz = o(i) for eachh € {1,..., s}. Otherwise s, = ¢/ and

¢/ € Cl. In this case, let € {1,2}° be such that KB= ¢;(), and define‘% = d
foreachh e {1,...,s}. Finally, fori € {1,...,1}, definefij = Oor(mi)-

By the assumption of the lemma, for each program of the fdigy({e} £ D) that
is constructed in rules (ii), (iii), and (v), we can extefidto symbols ofdlg,({e} C D)
so that the respective programs are satisfied.B-ame select the smallest extensions
BY for which the rules of (ii), (iii), and (v) that usB are satisfied. It is easy to check
that the rules of (i) are satisfied. Similarly, we assign mialiextensions to all auxiliary
concept nameA introduced in (iii) and (v). Now it is not hard to check thiatsatisfies
all rules of (i)—(vi) as required.

T
wi(v(h)

For the other direction, consider any modebf dig,({c} © C). The rules of (ii)
establishr distinct R-successorsl, ..., d; of c that are inD;. For anyi € {1,...,1},
the rules of (iv) ensure théf is not equal to any; in B. The rules of (v) leave two
possibilities. Eitheff; is equal to some constaglf, in which case&nm. is anR-successor
of cthat is inCyy,i, and that is distinct from all othey, anddy by (i). Or f; is not equal
to any constard; or f, (h # i), and thus not equal to amy either (vi); sof; constitutes
a newR-successor of that is inD;.

For anyi € {1,...,m}, if someey, is not equal tady, 1) or dy,2), then the rules of
(iif) and (iv) ensure thaty is not equal to any other constant of the fodnor ej.
Rules (iv) ensure thag, is also not equal to any constant of the foffnand thusey,
constitutes an addition@&-successor ot that is inD;. If no suchey exists, then a
rule of (iii) applies for some € {1, 2}%, implying thatcif € A for the respective fresh
concept namé\. But then the rules of (iii) together with the assumptionghef lemma
imply thatZ £ ¢i(v) € Kic)cc,- By Propositio4, we find thatc! € C/. Rules (i) and
(iv) ensure that; is distinct from the remaining-successors. Overall, we thus obtain
r + m+ | = ndistinctR-successors af that belong td; LI D, LI Ds. O

Lemma 12. Consider a concept & D, and constant ¢ such that every datalog pro-
gramdig,({c} £ D) (digy(X £ D)) on the right hand side of Fig® semantically em-
ulates{c} C D (X c D). Then the datalog progranilg,({c} C C) as defined in Fig9
semantically emulates} C C.

c | diga({c) £ ©)

D € Dy dig, (X & D) U {X(c)}

D:ND; dig,({c} © D1) U dig,({c} E D)

D1 U D3 € (D, U Dg)| digg(—=X E D2) U dig,({c} E Di)lx(

>nRT {R(c, &), ..., R(c,an)} U Piny

>nRD (D #T) dig,({c} E C) as defined in Lemm§, 10, and11

X a fresh concept namae, fresh constants

Fig. 9. Transforming axiom¢l } C D, to datalog

Proof. The proof proceeds by induction. The complex cases havadireeen estab-
lished in Lemmad, 10, and11. The remaining induction steps are very similar to the
steps in Lemm# and7. O

We can now complete our induction by summarising the presiemnmata.

Proposition 5. Consider concepts € Dy, D € D,, a concept name A, and a constant
symbol c. Lemm&, 7, 9, 10, 11, and12 together define a recursive construction pro-
cedure for datalog programdigy (A £ C) anddig,({c} £ D) that semantically emulate
AC C and{c} C D, respectively.

Proof. The mentioned results are the basis for establishing arctivéuargument to
proof the claim. Lemma&, 10and11 require the existence of certain datalog programs
datalog(KB). For this proof, we definelatalog(KB) := {digg(-A E E) | -AEC E €
KB}U{dig4y(AE E) | AC E e KB} U {dlg,({f} E E) | {f} C E € KB} (we provide a
more general definition afatalog(KB) for other forms knowledge bases at the end of
this section). According to Lemntathis definition is well and covers all axioms that
can occur in KB.

It remains to show that the preconditions of each inductiep are indeed satisfied
by applying the induction hypothesis that the claim holdgarper subconcepts of the
considered concepts. This is obvious whenever preconditiequire the claim to hold
for programs of the fornalg, (A’ € C’) or dig,({c’} © D) whereC’ andD’ are proper
subconcepts df andD, respectively.

The induction steps fadig,({c} © D), however, need to use Lemr3a10 which
11 additionally require that, for a proper subconcBpiof D and some KBe K¢ \co,
the claim holds for all programdig,, (A C E) with A T E € KB and for all programs
dig,({f} © E) with {f} C E € KB (the translationgligg(—A C E) are always given
by Lemmas). Inspecting DefinitiorLl0, we find that most axioms in knowledge bases
of Kic)cor are of the formC © D” with D a proper subconcept @’, so that the
induction hypothesis applies. However, all cases other ¢hya (2), and (3c) also intro-
duce additional axioms that are not referring to subcorsc&t checking the recursive
definitions of these axioms, it is easy to see that the claildshfor all axioms of this
form. O

We still need to show that the “propositional” concept®if!' can also be emulated
in datalog.

0% ‘ dlg(d) \ Pinv

Ref(R) {R(x, X)}

Irr(R) {R(X, X) — L}

Sym(R) {R(X.y) = R(y, x)}

Asy(R) {R(xy) ARy, X) — L}

Dis(Ry, Ry) {Ri(%,¥) A Ra(X,y) — L}

Tra(R) {R(xy) AR(Y. 2 = R(x,2)}
RioRpo...oR\ER | {Ri(X0, X1) A ... A Ry(Xn-1, %) = R(Xo, Xn)}

Fig. 10. TransformingSROZ Q RBox axioms to datalog

Lemma 13. For every concept G D=" for some n> 1, one can construct a datalog
programdatalog(C) that semantically emulates C.

Proof. Cis of the form (c;} M Cy) L. U ({cn} 11 Cy) with Cy € CF andC; € C7' for
i =2,...,n. Itis not hard to see thal is semantically equivalent tfr;} n Cy. This
is shown by induction oven. Clearly, all models ofC have domains with at most
elements. By Lemma4, for alln > 2, ({c;} mCy) U ... U ({ca} M Cp) is semantically
equivalentto{c;} mCy) U ... u ({ch1} M Chg), as required.

All models of {c;} 1 C; have a unary domain, so that further simplifications are
possible. Given any conceft in DLP normal form, let¢(D) be the concept that is
obtained by exhaustively applying the following rules:

— If D has a subconceptl RE, replace this subconcept By AR Self.
— If D has a subconcepim RE with m > 1, replace this subconcept hy
— If D has a subconcegim R—E with m > 1, replace this subconcept by

It is easy to check thab e Cf implies DLPNF(¢(D)) € Dg, and thatD € C[,
implies DLPNF(¢(D)) € Dy. Clearly,{c1} m C; is semantically equivalent tfc;} m
¢(Cy), which is in turn equivalent to the knowledge bdse C {ci},{c1} T #(C1)}.
Thus, by Propositiorb, C is semantically emulated byatalog(C) = {x ~ ¢} U
dig,({c1} T DLPNF(¢(Cy))) as long aDLPNF(¢(Cy)) ¢ (T, L}. If DLPNF(¢(C1)) = T
setdatalog(C) := {}. If DLPNF(¢(C31)) = L setdatalog(C) = {T — L} (the unsatisfiable
rule with empty body and head). O

To obtain the main result of this section, it remains to shioat RBox and ABox
axioms inDLP can also be emulated in datalog.

Theorem 3. For everyDLP axioma as in Definition9, one can construct a datalog
programdatalog(«) that semantically emulates

Proof. If @ is a TBox axiom of the fornC C D, then settE := DLPNF(—=C u D). If
E = T thendatalog(e) = {}. If E = L of E € C.+ thendatalog(a) = {T — 1}
(the unsatisfiable rule with empty body and head). It is easgee, that concepts of the
form C.+ are indeed unsatisfiable when used as axiomB. & D=" for somen > 1

then setdatalog(e) := datalog(E) as defined in Lemma3. Finally, if E € Dy then
setdatalog(a) = digy (A C E) U {A(X)} as defined in Propositio, whereA is a fresh
concept name.

If @ is an ABox axiom of the forn€C(a) with DLPNF(C) € D, then setlatalog(w) :=
dig,({a} € DLPNF(C)) as given in Propositiob.

If « is an RBox axiom theulgg(e) is obtained as the union &%, and the rules
given in Fig.10. Setdatalog(a) := digg(a). It is easy to see that this datalog program
satisfies the claim. O

7 Model Constructions for Datalog

In this section, we introduce constructions on first-ordgid interpretations which will
be essential for showing that certain formulae cannot beliR. he general approach
is to find operations that preserve models for datalog prograe. operations under
which the set of models of any datalog program must be closekell-known model
construction in logic programming is the intersection obtiterbrand models, and it
is well-known that Horn logic is closed under such intergts. The next definition
generalises intersections in two ways: on the one handgei fisctions to allow for
interpretations with dferent (non-Herbrand) domains; on the other hand, it allosvs u
to construct additional domain elements as feature cortibmsof existing elements.

Definition 11. Consider a first-order logic signaturg” and two interpretationg; and
I, over that signature. Consider a sétand functiong: : 4 — A7 andv : 4 — 472
such that, for each constant c i&¥, there is exactly one elemeég € 4 for which
u(@c) = ¢’ andv(c) = c’2. Theproduct interpretatio = 71 x,, I is defined as
follows:

— 49 =4,

— for each constant c i, set & := g,

— for each n-ary predicate symbol p and n-tuﬁle A", sets € p” iff,u(g) e p’rand
¥(8) € p’2, whereu(s) andv(s) denote the tuples obtained by applyjngnd v to
each component ot

The previous definition does not imply that constants hastndit interpretations:
8¢ = dq if and only if ¢’* = d’* andc’z = d’2. As the definition of equality in product
models is similar to the definition of predicate extensidtnis,convenient to formulate
Definition 11 for first-order logic without equality, assuming thats introduced by the
well-known axiomatisation of its properties. A direct défon for FOL - is straight-
forward.

The essential property of product interpretations is thieviong:

Proposition 6. Consider a signature”, interpretationsZ; and7,, and functiong: :
4 — A1 andv : 4 — 472 as in Definition11. Then, for every datalog program P over
<, we findthat/; E P andZ, P impliesZy x,, I E P.

Proof. Let J = 11 X,, I,. Consider any ruld8 — H in P, and a variable assign-
mentZ for J such thaty, Z E B. Define a variable assignmef; for 7, by set-
ting Z1(X) = u(Z(x)). By Definition 11, it is easy to see thafi, Z; E B, and thus
I1,Z1 E H. Analogously, we construct a variable assignnigpsuch that’,, Z, E B
and’Z,, Z, E H. Itis easy to see that this impligg, Z E H as required. O

A well-known special case of the above product construdgombtained fo1 =
A% x A2 with 4 andy being the projections to the first and second component ¢f eac
pair in4. It turns out that this canonical product construction issufficient to detect
all cases of knowledge bases that cannoE@4d _-emulated in datalog. For example,
the set of models of the non-DLP axiof@ C >2 R.(={b} L <1S.-A) is closed under
canonical products. The more general construction aboneésled to address such
cases.

When using Propositioéito show that a knowledge base cannoEs. _-emulated
in datalog, it must be taken into account tR&L --emulation is not as strong as se-
mantic equivalence. It is not ficient to show that the models of a knowledge base are
not closed under products. For example, the DLP axjaht >1R.T has a model
with domainsa? = {a, x}, a’ := a, andR! := (a, x). Yet, the functioru : {a} — {a, x}
with u(a) = a can be used to construct an interpretation,, 7 that is not a model
of the axiom. Note that all preconditions of Definitidd are satisfied. Propositiof
allows us to conclude that there is no datalog program thsgnsantically equivalent
to{a} C >1R.T, but not that there is no such progr&®L --emulatingthe axiom. To
show that a knowledge base cannot even be emulated in datedaperefore use the
following observation.

Lemma 14. Consider a knowledge ba# over some signatute’. If there areFOL -
theories T and T, over.¥ such that:

— KB U Ty andKB U T, are satisfiable, and
— for every pair of modeld’; E KB U Ty andZ, E KB U T, possibly based on an
extended signaturg”’, there are functiong andv such thatl'y x,,, 7, ¥ KB,

thenKB cannot bd=OL _-emulated in datalog.
If Ty = T, then this conclusion can also be obtained if the precondlitioly holds
for pairs of equal model$; = 7».

Proof. For a contradiction, suppose that the preconditions ofe¢hena hold and there
is a datalog prograrR thatFOL _-emulates KB. The® U KB U T is satisfied by some
modelZ; of P for eachi = 1, 2, where the relevant signature®may be larger than the
signature of KB. LetJ = 71 X, I, denote the product interpretation from the second
condition. Applying PropositioB, we find thaty is a model ofP that is not a model of
KB. But then the union oP with aFOL - formula of .« that is semantically equivalent
to the negation of the conjunction of all axioms in KB is sfisle, contradicting the
supposed emulation. The last part of the claim is obvious. O

The optional extension of the signature in the previous lenwan be important
since the preconditions of Definitiobl require that the domain of the constructed
model contains elements for all constant symbols.

As a simple example for this approach, we show that KBT = A L B} cannot
be FOL _-emulated in datalog. Define auxiliary knowledge bases KBA C 1} and
KB, = {BLC L}. Clearly, KBUKB; and KBU KB are satisfied by some moddlg and
TI,, respectively. However, it is easy to see that no produ¢y&ndZ, can be a model
of KB — independent of the choice afandy — since the extensions & and B must
always be empty in such a product.

Of course there are other examples for whi@ndy must be chosen more carefully.
In particular, it is sometimes necessary to restrict thewamhof new elements that are
introduced by the product. The following definition provsdeuseful notation for such
a restricted form of products that will befSigient for most applications:

Definition 12. Consider interpretationg; and 7, over a signature”’, and letl be the
set of constants i”. Given a set SC | x |, functionsu : 4 — 47 andv : 4 — 4%2
are defined as follows:

—A4=SuU{c,cy|cel},
- ﬂ((cv d>) = CZly
— v((c, d)) := d’.

I1xs I, denotes the product interpretatian x,,, 7> for these functions.

A special aspect of the previous definition is that it retdrattention to named ele-
ments — elements that are represented by some individua ramthe original models.
It is an easy corollary of Propositidghthat all other elements are indeed irrelevant for
satisfying a datalog program.

8 Showing Structural Maximality of DLP

In this section, we show that the earlier definition¥# is indeed maximal for the
underlying principles. The proof mainly uses the principistructurality (DLP 6) due
to which it sufices to show that structural concept expressions that aie fiaf® can-
not beFOL _-emulated in datalog. To this end, we generally use theeglyatuggested
by Lemmal4. The below discussions often use datalog rules or DL axiontisd con-
text of first-order logic to conveniently denote an arbigr&OL - theory of the same
semantics, as obtained by any of the standard translatispecially, this abbreviated
form never refers to the more compléatalog transformation of0.£% concepts, and it
is only used when syntactic details are not relevant. Maggaove assume thatalways
denotes the equality predicate, and do not explicitly pfean axiomatisation for it.

The outline of the proof is as follows. We start by specifygomne useful kinds of
auxiliary datalog programs in DefinitidkBand14. The first major class of concept ex-
pressions is excluded by Propositibwhich shows that concepts that are nobifican
usually not be emulated in datalog. This result is prepaseddmmals, Lemmals,
and Lemmal7. These lemmata also are of some utility later on, since theybe used
to exclude most forms of existential statements from DLP.

The second main ingredient of the maximality proof is Cangll1. It extends
Proposition7 by establishing that concepts can typically not be emulatethtalog if

they are not irDy. The chief insight that leads to this result is formulatedémmal8
which sports the most complex proof of this section. Aftés th is comparatively easy
to establish Lemma9 to treat some pathological cases that had been excluded from
the earlier considerations. In particular, it includes'fh@positional” case where a DL
concept enforces a unary interpretation domain.

The outcomes of Propositiofy Corollaryl1, and Lemmal9 are finally summarised
in the main Theorem.

To pursue the proof strategy outlined by Lemi@ our main work consists in
specifying suitable auxiliary theoridg andT,. To simplify this task, we first define
some auxiliary theories that will be used frequently. Mahyhese constructions have
the additional advantage of being in datalog — with the intgo@rconsequence that they
are still satisfied by product interpretations (Propogit). Often this is relevant for
showing that said product interpretations cannot satigfiven non-DLP concept.

Whereas many concept expressi@sannot be=OL _-emulated in datalog, it is
usually possible to specify a datalog program that entgjils C for a given constant
by specifying stiicient properties thatmust satisfy for this to be true. This only fails if
C is structurally unsatisfiable. The below construction geliges this idea to any num-
ber of constants, and to the dual case wHey& —C is entailed. The constructions in
Definition 13and14 should be compared to the simpler cases discussed in DefiBiti
which serve essentially the same purposeAdiC.

Definition 13. Consider a structural concept C in positive normal form, amtlvidual
namesg,...,c,forn > 0. If C ¢ L., the datalog progranfcy, ..., cy € C] is defined
recursively as follows:

— IfC =T orC=>0RDthen[cg,...,ch € C] = 0.

— IfC = {d} then n= 0and[cg € C] := {co = d}.

— If C is of the formA, A, —{l}, dR.Self, or —=3R.Self, then[co,...,C, € C] =
Uoxi<n datalog({ci} € C).

—C=D;nDythenD ¢ L, fori = 1,2, and[c,...,Ch € C] = [Co,...,Ch €
DiJUlco,...,Ch € Do].

— If C = Dy U Dy with Dy ¢ Ly, then[cg,...,c, € C] == [Co,...,Cn € D1].

— IfC = D1 u Dy with Dy € Loy and Dy € Ly such that th+ m” = n— 1, then
[co,....cn € Cll :==[Co,...,Cw € Dill U [Crw+1, .., Crvmrr+1 € D2

— IfC = >mRD withm> 1, consider fresh constantgd. ., dn, and seflco, . . .,
Cl=1[do,....,dne DJU{R(G,d)) |0<i<nO0<j<muid ~dj — L|
i<j<m

— IfC =<mR-D, then[cg,...,ch e Cl:={X~GARXY) = L|1<i<nhL

Ch €
0<

If C ¢ L._n, define a datalog prograricy, ..., ¢, ¢ C] := [[Co, ..., C, € pNNF(=C)].

Note that the given cases directly follow the definitionLof, in Fig. 4. Also note
that[co,...,ch € C] and[cy, ...,y ¢ CJ are satisfiable, even if we additionally re-
quire that all constants are mutually unequal (which is not implied by the datalog
programs).

Definition 13 can be viewed as a way to entail statements of the fagi ... L
{ca} C Cif C ¢ L, For cases wher€ is not inL., for anyn > 0 this approach

can be generalised to entail statements of the form C for a more general class of
conceptd. The necessary construction is provided by the followinfinitéon which

is very similar to Definitionl3. We provide an alternative perspective and specify the
dual case — entailing C D in cases wher€ ¢ L, , for all m > 0 — which is the only
case that is needed in our subsequent arguments.

Definition 14. Consider a structural concept C in positive normal form, antbncept
D € Dy.

If C ¢ Ls,—m for any m> 0, the datalog progranfC C D] is defined recursively
as follows:

If C = Lthen[CC D]< = 0.

If C is of the formA, {1}, or AR.Self, then[[C C D]« := datalog(C C D).

If C is of the form=A, or =3R.Self, then[[C C D]« := datalog(C C L).

IfC =DiuDy thenD ¢ Ly, mforanym>0(i=1,2),and[CC D]« :=[D;iC
D]< U [D;C D]-.

If C = D111 Dy with Dy ¢ L, forany m> 0, then[[C C D]« = [D; C D]«.

If C = <mR=E, then consider fresh constantg d ., dn,, and defind[C C D]< =
[do,...,dm ¢ EJTU{di = dj = L[0<i < j<mUJocmdatalog(>1R.{di}).

— If C = >mRE, then[C C D] := datalog(>1R.T C D).

It should be noted that the cases of the definition are indeealestive. Also observe
that[C C D] is always satisfiable, whei®@ # L is important to ensure that this is
actually true for cases lik§{c} C D]<. This also shows thdfC C A< U{A C 1}
cannot be assumed to be satisfiable in general.

Some further observations should be made in order to ursthetdtow Defini-
tions 13 and14 can be used when discussing datalog emulation. The cotistradén
both cases do certainly nBOL _-emulate the statement that they entail. For example,
[c € C] enforces one particular case for whigh C C; it does in general not describe
all such cases. Moreover, the progr@ C D] may enforce a much stronger condi-
tion such a€ C L asin the case & = <m R~-E. This illustrates that the extension of
C can be constrained fC C D].. Conversely, a knowledge bag&LI B C D] might
entail the stronger statemeAtZ D.

Luckily, as long as structurality is assumed, the knowleldases of Definitiorl3
and14 hardly semantically interact with concept expressionsiothan those that they
are constructed from. Yet, it must be noted @&t . . ., ¢, € C] may introduce mutually
unequal individualgl, for the caseC = >m RD, and that two distinct individuals are
already required i€ = —{d}. This dfect can occur for all of the above constructions.
Logical theories iFFOL - can restrict the maximum size of the domain, and the same
is accomplished by DL axioms that correspond to conceptessions irl. <, for some
m > 0. We need to exclude this possibility when using the abofieitiens.

The previous discussion shows that it is important to cédlsefiheck all uses of
Definitions13 and 14 to avoid undesired semantic ramifications. A useful inbuitis
that the constructed theories enforce a simplification uptimat allows us to disregard
the concept’s internal structure. As an example of a typisabe of these constructions,
consider the axionw = {a} T C; LI C, with C, ¢ L+. Thena U [[a ¢ C,] implies

{{a} C C1).5 So[a ¢ C,] allowed us to dismiss an “uninteresting to focus on the
impact ofC;.

The following lemmata use the product construction to eedéments that are
not in a given concept’s extension, where we usually use theeziated product con-
struction of Definition12. In the weakest case, elements outside the extension must be
provided to achieve this (Lemnib). With stronger side conditions, some or even all
of the elements can be part of the concept extension (Let@aad17). The lemmata
are essential ingredients for showing that subconceptatbanot inD} cannot occur in
any DLP conceptthatis in normal form, and the assumptiotissdemma are therefore
motivated by the definition dD}.

Lemma 15. Consider a structural concept C in DLP normal form such that @ and
C ¢ Dsy_nforalln > 0 (in particular C # T). Let g, ..., c, be fresh constants. There
is a consistent datalog prografity, . . ., ¢, ¢ Cllx such that

— [[Co,....Ccn & Clx E —=(ci = ¢;) foralli, j € {O,...,n}with i # |,

— [Co,...,cn ¢ Clx E{c}C =Cforalli=0,...,n,

— for all models7y, 7, of [[Cy,...,Ch ¢ Clx, and any set of constants N | with
{Co,....Cn} € N, the producty = 71 xxn) Z2 is such thakc;, c;) ¢ CJ for all
i,je€{0,...,n}.

Proof. Using a fresh concept nanfe we defing[co,...,c, ¢ Clx = [C C =A]< U
{Alc) |0 <i<nufg=c — L]0<i< | <nh Given models7; and
I of [cp,....,cn ¢ Cllx, andJ = T1 Xnxn) L2, we find that(c;, c;) € A7 for all
i,j €1{0,...,n}. Since[cy,...,cn ¢ Clx is in datalog, it is satisfied by, and thus we
conclude(c;, cj) ¢ CJ foralli, j € {0,...,n} as required. O

The next lemma considers concefts# Dy. The lemma is also stated for sets of
individuals, and additional care is now needed to ensuttéttisgpossible foiC to have
a set of (distinct) instances. It is not enough to ass@weD.,, for some or alln > 0
since this pre-condition cannot be preserved by all regei®nstructions. Namely, the
recursion in the casé = D; LI D, must be based on the one subcondgpfor which
we haveD; ¢ D, but there is no reason f@; ¢ D, to hold for anyn > 1 (onlyn =0
is excluded sinc€ is in DLP normal form). This explains why the lemma considers
multiple individualsco, . . ., ¢, only in cases where this problem can be avoided.

Lemma 16. Consider a structural concept C in DLP normal form such thag ©,,

and C does not have a subconcepgj. Let n> 0 be such that = 0 if C is a dis-
junction or Ce D for some k> 0, and consider fresh constantg c. ., cp, do, . . ., dn.

There is a consistent datalog progrdiy, .. ., ¢, € C,do, ..., dn ¢ Clx and according
set M:={Cp,...,Cn,do,....,dnjU{c el | coccursin[cy,...,ch€C,dg,...,dn ¢ Clx}

such that

— [co,...,ch € C,dp,...,dn ¢ Cllx E —~(e~ f)foralle, f € {Co,...,Cn,do,...,0dm}
withe=# f,

5 This implication is not quite &OL _-emulation sincga ¢ C,] can require a minimal domain
cardinality, as discussed above.

— [Co,...,Chn€C,dg,...,dn¢Clx E{g}CCforalli=0,...,n,

— [co,...,chneC.dp,...,dn ¢ Clx E{d}c -C foralli=0,...,m,

— for all modelsrq, 7, of [Co,...,Ch € C,do,...,dm ¢ Clx, and any set of constants
N c I with M € N, the producty = 71 X(nxn) L2 is such thakc;, d;) ¢ CJ for all
ief0,...,nfand je {0,...,m}.

Proof. Note that the conditions imply th&t € D}, and henc€ ¢ {T, 1}. SetP = {e~
f—-1]efef{c,....,Chdo,...,dn},e % f}. We define]co,...,ch € C,do,...,dn ¢
Cl« recursively based on the structure@f and we inductively show that it has the
required properties. Both parts can conveniently be ieéeed. Thus, in each of the
following cases, lef’; and 7, be models of thécy,...,c, € C,do,...,dn ¢ Cllx just
defined, and lef/ be the product interpretation as in the claim:

— If C has the formA, {I} or dR.Self, then|[co,...,ch € C,dg,...,dn ¢ Clx =
PU[co,...,ch € CJUdo,...,dn¢ C].

Itis easy to see thdf satisfies the claim. Note that the pre-conditions of the lamm
imply n = 0 whenevec € {l}.

—If C = Dy n Dy with D; ¢ D, then[co,...,cy € C,dp,...,dn ¢ Clx =
[co,....,ch€ D1, dg,...,dn ¢ D1lx.

Since 7, and 7, are models of[cy,...,C, € Dy,do,...,dn ¢ D1]lx, the claim
follows immediately by induction.

— If C = Dy 1 D, with Dy ¢ Cf andD» ¢ D, forall k > 0, thenn = O is required.
Define[lco € C,dp, ..., dm & Clx := [Co € D1,do, ...,dm & D1]x U [D2 C {Co}ll<.

I, and’, are models ofcy,...,Ch € Dy, do,...,dn ¢ D1]x and we can apply the
induction hypothesis. The desired result follows sinceptealucty also satisfies
the datalog prografiD; C {Co}]l<.

— If C=>kRD with k> 1, then[cy,...,ch € C,dp,...,dm ¢ Clx := PU{R(ci, &) |
O<i<nl<j<kuley,...,exe DJU{R(,X) - L |0< j< mforfresh
individual name®y, .. ., &.

It is again easy to see thgt satisfies the claim.

— If C = <OR-D with D ¢ Dg, then, for a fresh constaef define[co,...,cn €
C,do,...,dn ¢ Clx = PU{R(c,X) » x~ e R(c,e) | 0<i<nfU{R(d, f)|0<
i<miuleeD,f ¢ D]x.

We find that((c;, d;), (e, f)) € R7 foralli € {0,...,njandj € {0,...,m}. The
claim follows from the induction hypothesis.

— If C = <1R~D with D ¢ D, for all k > 0, then consider fresh individuals
e f,g. Define[[co,...,ch € C,dp,...,dn ¢ Clx = PU{R(c,X) = X~ e R(G;, €) |
O0<i<nU{Rd,f),Rd,g | 0<i<muUl e f,g¢ D]x. Note that the last
component of this union also requires that the individuasaded bye, f, g are
mutually distinct.

We find that((c;, d;), (e, f)) € R” and((c;,d;),(e,g)) € R foralli € {0,...,n}
andj € {0, ..., m}. The claim follows from Lemmabs.

It should be verified that the given cases are exhaustiveatticplar,C = <1R-D
with D ¢ D5, for all k > 0 is the only case wheit@ = <k R-D for somek > 1 —
all other forms are either iD; or not inDZ. Moreover, all recursive applications of the
construction satisfy the necessary pre-conditions, éaslhethe requirements fon > 1
are preserved. O

The third and final lemma in this series is only needed for mdiviiduals so that
we can simplify our presentation slightly. However, thestomction now becomes more
complex since we can no longer use an auxiliary datalog yhead since more care is
needed in selecting a suitable product interpretation.

Lemma 17. Consider a structural concept C in DLP normal form such thag ©,,
and C does not have a subconcepDD. Let @, c; be fresh constants. There is a
consistent first-order theotrfjcy, ¢; € CJlx and a set of constants N | such that

— [[co,¢1 € Clix E ~(Co = C1),

— [co,c1 €Clx E{c}ECfori=0,1,

— for all modelsT of [co, ¢1 € Clly, the producty = 7 Xnxn) £ is such thatco, ¢;) ¢
cJ.

Proof. The conditions again imply tha € D, and henceC ¢ {T,_L}. Moreover,
C ¢ Dy, andC e Df implies thatC ¢ D.;. IndeedC ¢ D<o sinceC is in DLP normal
form, and thusC € D.; would imply thatC is of the form{l} n C3 c Dj, c Df;. This
property is inherited by subconce@sof C as long a ¢ Dy,.

We defing]co, c; € C]« recursively based on the structure@®fand we inductively
show that it has the required properties. Both parts canextantly be interleaved. In
addition, we also specify a suitable S¢tof constant symbols to use in the product
construction in the recursion. Thus, in each of the follgvaases, lef’ be a model
of the[co,...,cnh € Clx just defined, and ley be the product interpretation as in the
claim.

— If C = D1uD, with Dy, D5 ¢ DE then[[cg, ¢1 € Cllx := [Co € D1,¢1 ¢ D1]lxU[[Cy €
D,, ¢y ¢ D>l and the seN is defined as in Lemma6.

Using Lemmal, it is easy to see thdl satisfies the claim.

— If C = Dy 1 D, with Dy ¢ D{;, andD, € D then consider a fresh concept nafe
SinceC ¢ Ds,,_n forall n > 0, the same holds fdp; andD,. MoreoverD; ¢ D
as discussed initially. We thus can deflfwg, ¢; € CJlx := [Cp, C1 € D1]lx U [D2 E
-AJ< U {A(co), A(c1)}. The setN is defined to be the same as fap, c; € Dy]«.

I is a model offcy, ¢; € D1]lx and we can apply the induction hypothesis. The
desired result follows since the prodygtalso satisfies the datalog progriid, C
-A]< U {A(co), A(cy)} (Propositiorg).

— If C = Dy 1 D3 then we can assuni®; ¢ Dy,. Clearly,C ¢ D<; impliesD,, D> ¢
D<1. Thus we can sefcy, ¢; € Cllx := [Co,C1 € D1llx U [[Co, C1 € D>], whereN is
again taken to be the set of constants as defineficioc; € D1]l«.

We can again apply the induction hypothesis sifide [[Co, C; € D1]l«, and use the
fact thatJ E [[co, c1 € D2].

— If C=>nRDthenD ¢ D}, UD<y_1 U{1}. Since all subconcepts Gfare assumed
to be inD}, we conclude thaD ¢ D.,. Thus we can introduce fresh individ-
ual symbolsdy, ..., d, and setfcy,c; € Clx = [do,...,dn € D] U {=(e = f) |
e f efcoCr,dy,....dn}1 e+ F}U{YXR(Co, X) & Vocicn X = di} U{VX.R(C1, X) &
Vo<i<n X = di}. DefineN := {co, ¢1}.

We claim that(cy,c1) € 47 is such that(cy,c;) ¢ C7. Consider any element
(e, f)y € 47 such that(co, ¢1), (e, f)) € R7. By the construction aff, we have that

(cg.eh),(cl, t1) e R, and thue’ = df andf’ = d{forsomei €{0,....,n=-1},j e
{1,...,n}. Since the constant} are unequal t@y, c1, this implies thate, f ¢ N,
andthuse = f = d = d;. Therefore(e, f) is equal todf] forsomei € {1,...,n-1}
whenevek(co, C1), (&, f)) € R7, as required fotcy, ¢1) ¢ C7.

— If C = <OR-D with D ¢ Dy, then defingfcy,c1 € CJx := [Co,C1 € D]x U
{R(Co, Co), R(c1, €1)}, whereN is defined as fofcy, ¢; € D]«.

The claim follows by induction as before.

—IfC =<1R-Dwith D ¢ Dg U {1} then[c,co € Cllx := [[Co € D,c; ¢ D]« U
{R(co, Co), R(co, €1), R(C1, Co), R(C1, €1)}, whereN is defined to be the sdf as given
in Lemmaleé.

The claim is a consequence of Lemita

— If C = <nR-D with n > 2 then consider fresh individual symbails . . ., c, and
define[[co, 1 € Cllx :=[[Co,C1 ¢ DIx U [Ca,...,Ch ¢ DTU{R(ci,cj) | i €{0,1},] €
{0,....n}i # jJu{=(ci = ¢c;) | 0<i< j<n}, whereN is defined to be the séi
as given in Lemmas.

It is easy to see thdty, c;) in J has at leash distinct R-successorsc;, ¢;) (i =
2,...,n)and{cy, Cp). The former are not i sinceJ satisfies the datalog program
[ca,...,ch ¢ DJ. The latter are not it by Lemmals.

Atomic concepts, nominalself restrictions, and their negations do not occur since
C¢Dy. O

The previous result is used in the following proposition lhew that certain kinds
of atmost-concepts are generally excluded from DLP, evéteif occur as subconcepts
only.

Proposition 7. Given a structural concept @ {T, L} in DLP normal form, the follow-
ing three statements are equivalent:

- C¢Dg,
— C has a subconcept B D,
— C contains a subconcegk S.—F such that Fe Df and F ¢ D5, foralll > 0
and:
(@) k=0and F¢ D}, U {L}, or
(b) k=1and F¢ Df U {l}, or
(c) k=2

If these statements hold and, in additiong@®., for alln > 0, and C¢ C.+, thenC
cannot be=OL _-emulated in datalog.

Proof. Note that the preconditions @imply that{C} is satisfiable. The claimed equiv-
alence is easily verified by considering the grammarDgrgiven in Fig.5, where
it should be noted that some cases are inherited figrandDg. Also observe that
F e Dj is thus equivalent to saying thithas no subconcef ¢ Df.

First, we define an auxiliary theory that requirdsS.—F to be non-empty in order
for C to be satisfied. As before, we sometimes mix first-order lagid DL to denote
an arbitraryFOL - theory that represents the first-order semantics of thisb@waion.
Given a constant symbo) and a subconcejt of C such thakk S.=F is a subconcept
of D, we recursively construct@OL - theoryT(c, D):

If D = <k S.=F, thenT(c, D) = 0.

— If D = D1 1 D, with <k S—=F a subconcept dD1, thenT(c, D) := T(c, D).

— If D = D1 U D, with <k S.=F a subconcept dD1, thenT(c,D) := T(c,D;) U [Cc ¢
Do].

— If D = >nRD’, then consider fresh constards ..., c, and defineT(c,D) =
{YXR(C,X) = Vi G = X} UT(Co, D).

— If D = <nR=D’ (with R # S), then consider fresh constarts . . ., c, and set

T(c, D) = {Ao<i<n R(C, C)) A No<icjen —(Ci = Cj)} U [[Cy, ..., Cn & D] U T(Co, D).

Note thafT (c, D) is satisfiable, due to structurality 6fand the fact that the subcon-
cept<k S.—F cannot be part of a subconcept of the fdtmor L, sinceC is in DLP
normal form. Now the theorY is defined a3 := T(c, C) for some fresh constat It
is easy to see thatu{C} is satisfiable, and thatu{C}U{<k S—F C 1} is unsatisfiable.

Consider the cask = 0. Leta andb be fresh constants. We use the construction
of Lemmal7 to ensure that every element in the respective productargtations has
anS-successofa, by in —=F, andN denotes the according set of constant symbols as in
the definition offa, b € F]«x. Some care is needed to ensure that the auxiliary thEory
remains true in any such product interpretation. Thus défine T U {~(c~ d) | c €
N, d occurs inT}U{¥Xx.S(x,a) A S(x,b)}U[a b € F]«. Itis not hard to see that' U{C}
is satisfiable. For an arbitrary modglof T’ U {C}, consider the product interpretation
J = I xnxny L. SinceJ satisfiesVx.S(x, a) A S(x, b) (by Proposition6), we find
(6,{(a,b)y € ST forall 6§ € 47. Thus Lemméal7 entailsy = <0S.—F C L.

Moreover,J satisfiesT. This is a consequence of Propositéifor all axioms of
T that are in datalog. The only axioms for which this is not theecare of the form
VX.R(C,X) = V1<<n G ~ X. Consider any elemené, f) € 47 such thatc”, (e, f)) €
R7. By the construction off, we have thatc’,e’),(c/, f) € R/, and thuse’ = ¢/
and ff = clf for somei, j € {1,...,n}. Since all constants ilN must be unequal to
constants;;, this implies thak, f ¢ N, and thuse = f = ¢ = c;. Therefore{e, f) is
equal toci7 for somei € {1,...,n} wheneverc?, (e, f)) € R7, so that the considered
axiom of T is indeed satisfied.

SinceTU{C}u{<k S—F C 1} is unsatisfiable, this implieg { {C}. This establishes
the preconditions for Lemm4 (for the casel; = T,) and thus shows the claim.

The other casels = 1 andk > 2 are very similar, using constructiofia € F,b ¢
Fl« and[c,...,c ¢ Fl« of Lemmal6andl5. Fork = 1, itis admissible thaa! ¢ FZ
is anS-successor of all elements. Hor> 2, k suchS—successorslf,...,cf ¢ F are
allowed. In either case, the product construction gensriateherS-successors that
require<k S.—F to be empty. O

Observe how the previous proof depends on using the secaidopdition of
Lemmal4where a single model is multiplied with itself. This is ess&irto ensure that
the auxiliary theoryT is satisfied in the product, even though it contains nontdgta
axioms. The above result also marks a case where we realfiyymeduct constructions
that are diferent from the canonical product that uses all pairs of (mBrmaividu-
als as the new interpretation domain. The auxiliary thebip the above case would
not generally be satisfied in a canonical product: the ndaldg axioms introduced
for atleast-restrictions require a fixed set of succesdtivituals, whereas a canonical

product contains additional successors that correspopaiite of the original individu-
als.

For the remaining steps of the proof, we use some additiandlary constructions.
The datalog programs of Definitiod8 and14 are not suitable to isolate properties that
exclude a concept from DLP: to the contrary, they simply ezd@ertain entailments to
override any complex semantifects. The following definition therefore provides us
with knowledge bases that can be used to “measure” infoomatbout the extension of
a conceptC without enforcingC C L. The underlying intuition is that non-emptiness
of some concepts can be ensured to eq@ditiveinformation. The construction thus
can be viewed as a generalisation of the construction in LeBo the more complex
case ofSROIQ.

We provide two casegc € C ~ A]g is used to detect whether a constaig in C,
while [C ~ A]g< is used to detect i€ is generally non-empty. Both constructions can
only work (in DLP) if C “contains” positive information, i.e. if it is not ilDg. Note
that the constructions can be considered as specialisatidia ¢ C] and[[C C A]<.

Definition 15. Consider a structural concept C in DLP normal form such thagC
Dg U {1, T} U D5,k for some k> 0. For individual names ..., ¢k and concepts
Ao, ..., A« € Dy, a datalog progranjco, ...,ck € C ~ Ay, ..., As is defined recur-
sively as follows:

— If C has the formA, {I} or JR.Self, then[cy,...,ck € C ~ Ag,....Ads =
Ubo<i<k datalog({ci} M C C A).

— If C = D1 1 D, with D; ¢ Dg, then w.l.o.g. @ is not a conjunction and thus
D1 ¢ Ds,_m for allm > 0. Define[[cg,...,ck € C~> Ag,...,Adlls = [[Co,...,Ck €
Dy~ Ao, ..., AdB.

— If C = D; u Dy with D; ¢ Dg, then D,D, ¢ Ds,_k. Set[cg,...,ck € C ~
Ag,....,Ade =1[Co....,Cck € D1~ Ag,....,AdlsUICo,...,Ck ¢ Ds].

— If C = >nRD with n > 1, then[co,...,ck € C ~ Ag,...,Ads = {R(C,X) —
Ai(c) 10<i <k

— If C = <OR-D, then, for a fresh constant d and fresh concept name B, define
[Co,....,cke C~ Ag,...,Alls = [[d € D~ BlgU({R(c,d),B(d) — A(c) |0 <
i <kl

— If C = <nR~-D with n > 1, then consider fresh constants(d= 0,...,n). Define
[Co,....ck € C~ Ao,....Adls ={R(c;,dj) |0<i<kO<j<nu{dj~d —
A(c)]0<j<l<n0<i<kluUld,...,dy¢ D].

Moreover, if C¢ Ds,k for all k > 0, then a datalog progranfiC ~» A]s< is defined
recursively as follows:

— If C has the formA, {I} or AR.Self, then[[C ~ A]lg< := datalog(C C A).

— If C = D, D, with Dy ¢ Dg and Dy ¢ Ds,,_ foralln > 0, then[[C ~ Alg< =
[D1~ Allp<.

— If C = Dy u Dy with Dy ¢ Dg, then[[C ~ Allg< = [D1 ~ Allg< U [D2 C Al<.

— IfC =2nRD with n> 1, then[[C ~ Alg< = {R(X, Y) = A(X)}.

— If C = <OR~D, then, for a fresh constant ¢ and fresh concept name B, define
[C ~ A]g< :=[[c€ D~ B]g U {R(X), B(c) = A(X)}.

— If C = <nR~D with n > 1, then consider fresh constants(c= 0,...,n). Define
[C~ Al ={Rxc)|0<i<nuicg=c - AX|0<i<j<nu
[[CO,~-~,Cn¢ D]]'

It should be noted that the cases in the previous definitierirateed exhaustive:
side conditions usually are only provided to specify a patér situation that can be
assumed without loss of generality. Conditions that folfoem the assumptions are
omitted. Observe that the necessary conditions for remusie satisfied in all cases
of the definition. The choice dD; in the cases fo€ = D; 1 D; is possible since we
disregard the nesting order af if there is someD; ¢ Dg, then there is some sudby
that does not have @. disjunct (which is inDg) while still D; ¢ Dg. But then this
D; ¢ Ds,_m for all m> 0 as required.

It is not hard to see that, given the preconditions of Debnitl5, we find that
[co,....c € C~ Ao,....Adls F Uo<i«k {C M {ci} E A} and[[C ~ Allg< F CC A
Notably, the cas€ = <nR-D uses a dierent approach than the other cases: the
positive information used to entail non-emptines&a$ found in the equality relations
that are implied between auxiliary constadts

Observe that the datalog programs of Definithiagain may significantly con-
strain the extension of. For example, ifC = <1R-1 then[C ~ A]g< is only
satisfied by interpretations that entail eitl2c L or T C C. This may entailr C A,
so we will only use[C ~ Allg< if T £ AorC C L is satisfiable. Non-emptiness of
C might also be unavoidable, so one cannot assume[hat> Alg< U{A C L} is
satisfiable. Yet, the remaining freedom will generallyfise for our purposes.

Another noteworthy fact is thdfcy, c; € C ~ Ag, A1)l is not the same affcy €
C ~ Aolls U [[c1 € C ~ A]lg, Which is the reason why the definition must explicitly
include cases witk > 0. To see this, consid€ = (={ajrm-{b})uB. Then[cy, ¢; € C ~»
Ao, Arlle = {B(Co) — Ao(Co), B(C1) — Ao(C1),Co ~ & ¢1 ~ b} but[ico € C ~ Agllg U
[c1 € C~ Aqllg = {B(co) — Ao(Co), B(c1) — Ao(ci), Co = @, ¢1 = a}. The latter entails
the unwanted consequenge~ c; since the auxiliary progranis; ¢ —{a} 1 —={b}] are
constructed independently foe 0, 1 instead of usingicy, ¢1 ¢ —{a} M —{b}].

The following lemma provides some important ingredientssioowing maximal-
ity of DLP, since it establishes the pre-conditions of Lemidgor broad classes of
concepts.

Lemma 18. Let C € Df be a structural concept expression in DLP normal form/ let
be the set of constants of the given signature, and,lletcae | be arbitrary constants
not occurring in C.

(1) If C ¢ Dy, then one of the following is true:

— There is a theory T and a set of constantEN with a, b € N such that: given
an arbitrary models of {{a} LI {b} C C} U T, we find that] = 7 Xnxny £ iS
such thata, by ¢ C7.

— There are theories 1 T, such that: given arbitrary modelg; of {{a} L {b} C
CHUT; (i = 1,2), we find that] = 71 X(x1) I is such thata, by ¢ C7.

(2) If C ¢ D,, then there are theories;T T, such that: given arbitrary models; of
{{c} C CYUT; (i = 1,2), we find thatT = 71 X(x1yZ2 is such thaté =(c,c) ¢ C7.

In all cases, model$, 7, and.1, as described in the claims exist.

Proof. By Proposition7, C € D} impliesD e D} for all subconcept® of C.

We start by considering claim (1). Claim (2) is shown indegetly below, so if
C ¢ D, then we obtain theorieB; andT; as in claim (2) for some fresh constamntit
is easy to see that the theorigs:= T; U {a~ c,b ~ ¢} (i = 1, 2) sufice for establishing
claim (1). It remains to show claim (1) for cases whére D,. An easy induction can
be used to show tha, N D, € Dy. Hence, using our assumption tiag Dy, we can
also conclud€ ¢ Dy,.

The only remaining cases for claim (1) therefore are such@& D},, so that
Lemmal7 can be applied. Defing; = T, := [a,b € C], and defineN as in the
lemma. The claim follows from Lemmy.

For claim (2), we construct theoridg = Ti(c,C) andT, = T»(c,C) for a fresh
constantc as in the claim. The proof proceeds by induction over thecsire ofC.
Note thatC cannot be an atomic class, nomirgsd|f restriction, or the negation thereof.

Consider the casé = D; n D,. Without loss of generality, we find th&t; ¢ Ds.
Applying the induction hypothesis, we obtain theorig&, C) = Ti(c,D;) (i = 1,2)
that satisfy the claim.

Consider the casé = D1 LI D,. As a first case, assume tHa4 ¢ D,. Then we can
define theoriedi(c,C) := Ti(c,D1) U [c ¢ D2] (i = 1, 2). The claim then follows from
the induction hypothesis together with the fact that evendpct interpretation con-
structed from models df;(c, C) (i = 1, 2) must also satisfffc ¢ D] by Propositiorb.
The caséD, ¢ D4 is similar.

Now assume thaf = D; LI D, with Dy, D2 ¢ Dg. Using fresh concept namés, A,
and the construction of Definitialb, defineT;(c, C) := {Ai(c) — L}UUJj-12llc € Dj ~
Ajlg fori = 1,2. Then any product interpretatigi of any two models ofT;(c, C)
(i = 1,2) satisfies Jj-12[lc € Dj ~ Ajlls U {Aj(c) — L}, and henceJ § {c} U D
(i =1,2)as required.

Consider the cas€ = <OR-D with D ¢ Dy. SinceC € D we findD € Dj,.
Using D, N D, € Dy as above, we conclude thBt ¢ D,, which allows us to apply
the induction hypothesis. Consider a fresh individual nahend defineT;(c,C) :=
Ti(d, D) U {R(c,d)} (i = 1,2). Given modelsZ; of Ti(c,C) (i = 1,2), the induction
hypothesis implies thaf := 71 X(x) 2 does not satisfyd} C D. SinceJ E R(c, d)
we concludeT £ {c} C C.

Consider the cas€ = <1R-D with D ¢ Dg andD ¢ D.,_;. Using fresh sym-
bolscy, ¢, A1, Az, we defineTi(c,C) := {A(c) —» L} U [C1,C € D ~ A, Axllg U
{R(c,c1),R(c,cp)} for i = 1,2. Using similar arguments as in the last caseCof
D; u Dy, we find that no product interpretation of modelsTofc,C) (i = 1,2) can
satisfy{c} C C.

Consider the casé = <nR-D with n > 2 andD ¢ D.,_n. Using fresh individuals
symbolscy, ..., Cy, setT = [Cy,...,Ch ¢ D] U{R(c,¢c | 0 < i < n}. We define
Ti(c,C)=Tu{circj— L|1<i<j<nlandTy(c,C):=Tu{c=cj— L|0<i<
j £ n-=1}. Thus, any model ofic} C C}uT;(c, C) ({{c} & C}UTz(c, C)) entailscy ~ ¢;
(ch-1 ~ Cp), but this entailment is lost in every product interpreatatiThis shows the
desired result since product interpretations safisfyy Propositiors.

Consider the cage = >1R.D with D ¢ D>1. ThenD e D andD ¢ D,. For a fresh
constant, defineT;(c, C) := Ti(d, D)U{R(c, X) — d = x} fori = 1, 2. The claim follows
from the induction hypothesis and the fact that every carsid product interpretation
also satisfie$R(c, X) — d ~ x}.

Consider the casé = >n RD with n > 2 andD ¢ D>". Without loss of generality,
we can assume thd& is of the formC, L ... U Cy U E (p > 1) where noC; is a
disjunction,C; ¢ Cg fori = 1,...,p, andE € Dg U {.L}. For the following argument,
we useE = 1 to cover the case where no sulis given in the original DLP normal
form. Note thate might be a disjunction but cannot be

First assume that there is sorfies {E,Cy,...,Cp} such that- € D,k for some
k > 0. SinceF is in DLP normal form, it is a disjunction that contains soniguhct
in C_m (M > 1). All subconcepts ob are assumed to be B, so ifm < n? — n then
D € D>"; a contradiction. ThuB is of the formD; L D, with D; € C_, andm > n?—n.
Moreover,D, ¢ D, since otherwise we would find € D, c D>".

The set of constants iD; is denoted amd(D1) = {Cy,...,Cm}. Letp1, P2, ..., Pren
denote a sequence of all pajps= (d;, d2) of constantsl;, d, € {cy,...,Cn} With d; #
d. The order is inessential, but some order is needed forionttpurposes. Define
auxiliary theoriesT;(c, C) := {VX.R(C, X) = V1<jen Cj * x} U U1<jem Ti(cj, D2) U {Cj =
di | n< j <m, pj_n = (di, d2)}. Observe that the first componentin this definition refers
only to the firstn constants;, . . ., ¢, the second part is specified for atlconstants,
and the third component refers to the last n constant®,1, . . ., Cy only.

To see that these theories satisfy the claim, consider mdgdef {{c} C C}UT;(c, C)
(i=1,2),andletT = I1x(x)J 2 denote their product. Observe that, by the construction
of Ti(c, C), the constants; (1 < j < m) are mutually unequal ify. Now consider an
arbitrary element € 47 such that(c”,5) € R7. By definition of the product, there
must be a constant symbdl- possibly an auxiliary constant that did not occuGn
— such thats = (d,d) and(c’i,d?y € R fori = 1,2. Since the model$; satisfy
YXR(C,X) = Vi<j<nCj = X, we conclude thaf; d ~ c; and7; £ d =~ ¢ for
some (possibly distinct!),k € {1,...,n}. Thus, there are at most elementss € 47
such thatc”, 6y € R, since there are at most distinct ways of selecting, k. Now
m of thosen? elements are of the fcn‘j7 for somej = 1,...,m, and by the induction

hypothesis we find that/ ¢ DJ. Sincec/ ¢ Di is immediate, we thus find that

crj7 ¢ D7 forall j = 1,...,m. Summing up, we conclude thgt can have most?> — m

distinct R-successors far which are inD. Sincen® — m < n? — (n?> — n) = n, we find
thatJ ¥ {c} C >nRD, as required.

For the remainder of the proof, assume tha¢ D« for all F € {E,Cy,...,Cyp}
andk > 0. In particular, we can use the constructions of Definitidrand 15. Now if
{{c} C C} U [E C <OR".=—{c}]< is unsatisfiable, the@; LI ... LI Cp, € Dp_1. Since we
assumed tha; Li... 1 C, € D, this again implieD € D>". Hence{{c} C C}U[[EC
<OR.=—{c}]< must be satisfiable (note that this includes the dase 1). It is easy
to see that{c} C C} U [E C <OR .=—{c}]< semantically emulatel4c} C >n RC; LI
... U Cp}, and that the claim can thus be established by inductionoSiné remaining
considerations we can assume thas not presentat all, i.e. th@t = >nRCyL...LIC,.

By the assumptions o@;, we can apply Definitiori5and sefl = (J<p ([Ci ~
Alle< U {R(XY) A Aiy) — Bi(X)}) for fresh concept name&,, ..., Ay, Bi, ..., Bp. It

is easy to verify that{c} C C} U T is consistent. Now consider the thedry := T U
{Bi(x) —» L | TU{{c} C C}U{B; C L}is consisterjt where it should be noted how
the B; are used to avoid inconsistencies that could arise immedgiathen requiring
A C L. Consider the case (A) that U {{c} C C} is inconsistent. Then there are two
disjoint subset$;, I, € {1,..., p} for whichTy(c,C) :=TU{B; C L | i € I} is such that
Tk(c,C) U {{c} C C} is consistent fok = 1,2, while T1(c,C) U To(c,C) U {{c} C C} is
inconsistent. Every product interpretation of model§gt, C) (k = 1, 2) entailsT (by
Proposition6) andB; C L (by Definition11), and thus cannot be a model{¢¢} = C},
as required.

Now consider the case (B) wheféu {{c} C C} is consistent. Then there B, such
thatT u{{c} C C}U{By C L}isinconsistent. This implies tht} C C}U{>1RC,C 1}
is inconsistent. Sinc€, ¢ C. < Dg, we conclude that eithér|, i, Ci € D<n-g1 OF
this conceptis empty, i.@a=h=1.

First consider the case (B.1) wheZg € D<;. ThenCy L... U Cy ¢ Dy implies
p=nandC; € D foralli # h, 1 <i < p. SinceC is not of theDy-form >n RDy,
there isk such thatCx ¢ Da. Now Cy € D.; implies thatCy = {a} n C; for some
individuala and concep€; ¢ Da. As each model o€ requires ondR-successor of in
each concept of the fori@;, we find that{{c} C C} semantically emulate$a} C Cy}.
The claim follows by induction.

As a second case (B.2), assume that D.;. ThenC;, ¢ D for all k > 0 sinceCy,
is not a disjunction. Since this implies that {{c} T C}U{B; C L | i # h}is consistent,
this theory must be equal o' U {{c} C C}.

Consider the case (B.2.1) wheig ¢ D,. For fresh individualg,, .. ., c, define
T” = T"U{VR(C,X) = Vi< G =~ X}. Note thatT” U {{c} C C} is satisfiable by
interpretationd that have:if € Cﬁ as thendistinctR-successors af. DefineT;(c,C) =
Ur<jen Ti(Cj, CR) UT” (i = 1, 2).

To show that this satisfies the claim, consider modglsf {{c} C C} U Ti(c,C)
(i = 1,2). Since the induction hypothesis only applies to nametViddals, we intro-
ducen? fresh constantgc;, ¢,y for j,k € {1,...,n}. 71 is extended td’; over this ex-
tended signature by settidg;, colt = ¢, s0 thatZ’, | (cj, cx) ~ ¢;. The extended in-
terpretation’’, is defined analogously gor the second components. Due toottgtreic-
tions in this proof, for any constangsf, we find thatTi(e, Cy,) is the same ag;(f, C;)
with e uniformly replaced byf (i = 1,2). Thus, we find thaf| Ti({cj, c), Cy) for
i =12andalljk € {1,...,n}. Moreover,Z] E {{{cj,Cx} C Cyx} so the induction
hypothesis can be applied to obtdifix .« 17 ¥ {(Cj, c)} E Cn wherel” denotes the
extended set of constants.

Itis not hard to see that the interpretatign's= 7’ x(-x1)Z5 andyJ = I1Xx L2 are
equal (possibly up to renaming of domain elements). In @aldi, 7 entails(c;, c) =
(cj, Cjr), (G, C)). Hence we find thaf i {(c;, c)} CE Ch. Moreover, sincel; andZ»
satisfy T, we find that(c”, 5) € R7 impliess = (cj, c)” for somej, k € {1,...,n}.
Thus we obtaingy |~ {{c} C C} as required.

As the final case (B.2.2), assume ti@t € D,. SinceD ¢ D", we findD #
Ch, i.e. p > 1. We concluded J,.i<,i:n Ci € D<y-1 above for all sub-cases of (B).
HenceD is of the formD, LI D}, LI D)y — where we assume thatis the least natural
number for whichD has this form — andh andl do not satisfy the relevant conditions

in the definition ofD>". Accordingly, we denot® asCp LI My LI ... U My U Ly LI
...u L. SinceMy,...,Mnp, Ly,...,L € Ds, they are each of the fordd} rn C for
some individual namel: let ey, ..., ey, f1,..., fi denote these individual names. Set
r := n— (m+ 1), and consider fresh individual names..., c;. Define a seX =
{C1,...,Cr,€1,...,6m, f1,..., fi} Of all constants considered Rssuccessors af. Using
the induction hypothesis, define

T|(C,C) = [[el5'~'5en’]9 fl’~'~5 f| ¢ Ch]]X U
[[C]_,...,Cr Ecl"hel?-'-?el"n? fl,'-', f| ¢Ch]]>< U
Us<jem Ti(€), Mj) U{YXR(C, X) = Vgex d = X}

fori = 1, 2. Note that the construction of Lemri& is possible: ifC, would be inDy,
thenC € D, would imply C € Dg, which cannot be.

To show that this satisfies the claim, consider modglsf {{c} C C} U Ti(c,C)
(i = 1,2), and letJ = 11 xqx) 2 be the corresponding product interpretation. By
the constructions of;(c, C), we obtain thatc”, §) € R7 implies¢d = (a, b)J for some
a, b € X. We distinguish various cases:

—Ifabefes,....,en f1,..., filanda # b, then(a, b)Y ¢ EJ forallE = M4,..., Mn,
Li,...,L; can be concluded frone, by # dJ foralld = ey,...,en, f1,..., fi.
Moreovera, by’ ¢ C, by Lemmals.

—If a=Db=e¢forsomej =1,...,m then(a, by ¢ C, again by Lemmad.5. As

above(a, by’ ¢ L7 foralli = 1,...,1. A similar argument showéa, by7 ¢ M
foralli = 1,...,mwith i # j, whereasa, b)7 ¢ ij follows by the induction
hypothesis.

—Ifae{e,...,en f1,..., i}y andb € {ci,...,c}, then(a by’ ¢ C, follows from
Lemmal6. The conclusiona, by ¢ EJ forall E = Mq,..., Mm, L1,..., L fol-
lows as before.

In each of these cases, we thus find tteab)? ¢ DJ. Therefore, the only elements
(a, by that might be irD7 are such that either= b e {f;,..., fijora,be {c;,...,C}.
This yields a maximum of + r? R-successors for”. SinceD ¢ D>", we find that
r(r — 1) < m (the caser < 0 cannot occur for any case under (B)). Equivalently,
r? —r < mwhich in turn is equivalent to? — n+ m+1 < m. But thenr? + 1 < n, and we
find J £ {c} C C, as required. O

The previous lemma alreadyffiges to exclude a significant amount of axioms from
DLP:

Corollary 1. Let C be a structural concept expression in DLP normal foehA be a
fresh concept name, and let ¢ be a fresh constant symbol.

(1) IfC ¢ Dy u{T, 1}, then AC C cannot bd-OL _-emulated by any datalog program.

(2) 1fC ¢ DaU{T, L}, then{c} C C cannot bé~OL _-emulated by any datalog program.

(3) IfC¢DyuU(T,L},and C¢ D, foralln > 0, and C¢ C.r, then C cannot be
FOL _-emulated by any datalog program.

Proof. If C ¢ D, then the result follows from Propositiahin all cases. Thus assume
thatC e D for the remainder of the proof.

For claim (1), consider fresh individual symbalandb, and construct; andT; as
in Lemmal8 (1). DefineT; := T; U {A(a), A(b)} fori = 1,2. ThenT; andT; satisfy the
preconditions of Lemma4 for the knowledge base KB {{a} C A, {b}C A, AC C}. In
particular,T; U {A C C} is satisfiable sinc€ is in DLP normal form andC # L. This
suffices to establish the claim.

For claim (2) and (3), we can directly use the theofigandT, of Lemmal8(2)
and (1), respectively. To ensure that the preconditionsenfitnal4 hold for claim (3),
we need to ensure thé€} U T; is satisfiable foi = 1,2. To this endC ¢ C.+ U
{L} ensures thatC} is satisfiableC ¢ D, for all n > 0 ensures that is satisfiable
by interpretations of arbitrary domain sizes, and it is natdhto see thaC} U T; is
consistent when considering the construction in Lenii®a O

The previous result already covers a significant amount n€ept expressions that
are notin{T, L}UuDyUD™UC,. It remains to show that conceptsin, \ (D="UC.)
for somen > 1 cannot belong to DLP.

Lemma 19. Let C be a structural concept expression in DLP normal forrmohsthat
C ¢ {T,1},and Ce D, \ (D™ U C.r U Dy) for some n> 1. Then C cannot be
FOL _-emulated by any datalog program.

Proof. Observe that, for angn > 1, we findCf, c Df; ¢ CI™ c CT™. We define the
degree @D) of a concept expressid as follows. IfD € CT™ for somem > 1, then let
d(D) be the largest sualm. Otherwise, ifD € D,E’,, then definal(D) := 1. Otherwise set
d(D) := 0. Now sinceC € D™ it is of the formC = ({c1} M Cy) U... U ({cn) M Cy), and
we can assume thd{C;) < d(C,1) foralli = 1,...,n— 1. Using this notation, it is not
hard to see that ¢ D=" is equivalent to saying thal(C;) < i forsomei = 1,...,n.

First consider the case that> 1. We find thatC is semantically equivalent to
(e} M Cy) U ... u (e} 1 Gy). To see this, assume that> i. Every model ofC has
at mostn elements in its domain. Sina{C,) > n by constructionC, € C7". By
Lemmab, we thus obtairC, C C as a consequence 6f showing thaC is equivalent
to ({ce} M Cy) U ... U ({cn-1} M Chog). The claim thus follows by induction.

Now C; ¢ C7 holds for allj < i. Using Lemmab, we thus find thatc;} € Cj is
satisfiable by models of at mastlements in their domain. By structurality®f we find
thatC is satisfiable, and clearly is only satisfied by models with exacily>- 1 domain
elements. Finite domain sizes can be enforced®y - theories, and hence must be
preserved byOL _-emulation. But domain sizes greater than 1 are not preddiye
the product construction of Definitiahl, so the fact tha€ cannot bé~OL _-emulated
in datalog is a consequence of Proposiifon

Consider the case = 1. Using the same argument as above, we find tha
semantically equivalent téc;} 1 C;. By constructionCy ¢ Df'. The claim is now
shown by a miniature version of the proof steps that were tesedtablish Corollary,
where relevant constructions and arguments largely cs#ldpe to the requirement that
the domain of interpretation is unary. We first provide twxiary constructions for
the “propositional” variants of Definitioh3 and15. Given a structural concepx ¢ D?
and a constard, recursively construct a datalog progr@ich¢ D]P as follows:

— If D e C3tthen[d ¢ DJP = 0.

— If Dis of the formA, -A, —{l}, 3R.Self, or -3R.Self, then we defingid ¢ D]|° =
datalog({d} C —-D).

If D = D; 11 D, with Dy ¢ D, then[[d ¢ D]P := [[d ¢ D1]".

If D = Dy L D, with Dy, D, ¢ DP, then[d ¢ D]P := [d ¢ D1]P U [d ¢ D>]P.

— If D = <OR=D’ with D’ ¢ D, then[[d ¢ D] := {R(d,d)} U [d ¢ D']P.

— If D =>nRD’ withn> 0, then[d ¢ D]P = {=R(d, d)}.

If D ¢ Dg then, for a concept nam&, we recursively construct a datalog program
[{d} D £ A]lg as follows:

— If D has the formA or IR.Self, then[[{d}n D C A]]B datalog({d} M D C A).

— If D=D;n D, withD; ¢ Bpthen[[}|—|DEA]]B = [[{d }|‘|D1EA]]B

— If D = Dy U D, with Dy ¢ Dg andD; ¢ D , then[{d }|—|D|:A]]p =[d}nD;C
Al U d ¢ D.]P.

— If D = <OR=D’ with D’ ¢ D?, then[{d}D c A]® := [{d}nD’ C A]]p U{R(d, d)}.

— If D=>1RD’ with D’ ¢ C3%, then[[{djn D C A]]% {R(d, x) — A(x)

To establish the claim, we recursively construct theofies= Ti(c1,Cy) and T, =
T»(c1, Cy) that satisfy the preconditions of Lemriid. Note thaiC cannot be an atomic
class, nominalSelf restriction, or the negation thereof.

Consider the casé = D; LU Dz with Dy, D5 ¢ Dp Itis easy to see that(c;, C) :=
Ti(c1, D1) U {~A(X)} U Ujerollid} M Dy C A,]]p (i = 1,2) satisfy the claim for fresh
concept namesy, Ap. Furthermore, ilC = Dy LI D, with Dy ¢ Df}, andD; € D§ then
the claim is satisfied by;(c;, C) := Ti(cy, D1) U[d ¢ D2]P (i = 1, 2) Similarly, for the
caseC = Dy n Dy with D; ¢ D,‘f,, the theoried(c;, D7) (i = 1, 2) satisfy the claim.

Now consider the casé = >nRD. Thenn = 1 andD ¢ D,’j. SinceC is seman-
tically equivalent toD on singleton domains, the claim follows again by inductian.
similar reasoning is possible for the c&e- <n R-D with n = 0 andD ¢ D,E’,. O

We are now, finally, in a position to state the main theorenhisf$ection.

Theorem 4. If C is a concept expression in DLP normal form such thag COLP,
then C cannot be contained in any DLP description logic indbrse of Definitios.

Proof. By Definiti0n9 C¢{T,L}UCHUD™UC.,+foralln> 1.If C ¢ D, for all
n > 0 andC ¢ D}, then the result follows by Propositiah If C ¢ D, foralln > 0
andC € Df, then the result follows by Corollary. If C € D, for somen > 0, then the
result foIIows by Lemmad.o. O

9 Conclusions and Outlook

DLP provides an interesting example for the general proloiEcharacterising syntactic
fragments of a logic that are motivated by semantic properiiVe derived and moti-
vated a number of design principles for achieving such azatarisation for DLP, most
notably the principles omodularity (closure under unions of knowledge bases) and
structurality (closure under non-uniform renaming of signature symbaisjl showed

that the presented DLP description logic is the largest assiple. Formalisms like our
maximal DLP are unnecessarily large for practical applicet, but understanding over-
all options and underlying design principles is indispétsdor making an informed
choice of DL for a concrete task.

Our work also clarifies the fferences between DLP and the DE£ and Horn-
SH 1Q which can both be expressed in terms of datalog as well. #fiedt, neither&L
nor HornSHIZQ can beFOL _-emulated in datalog (DLP 2). The datalog obtained in
these cases still preserves satisfiability even when arpikBox facts (without com-
plex concepts) are added. In other wor@g, and HornSH 7 Q satisfy a weaker ver-
sion of DLP 2 based ofFOL2°""“emulation of Definition2, whereFOL%*""is the
variable-free fragment ofOL_. Under those weakened principles, a larger space of
possible DL fragments is allowed, but it is not clear whettfigitely many) maximal
languages exist in this case. There is clearly no largest Bunguage, since bothL
andDLP abide by the weakened principles whereas their (intragjalsiion does not.

Even when weakening the principles of DLP like this, H&#®£7 Q is still excluded
since it cannot be modular (DLP 5) by Propositianin the presence of transitivity,
Horn-SHIQalso is not strictly structural (DLP 6), but this problem twbbe overcome
by using distinct signature sets for simple and non-simpkss: Again, it is open which
results can be established for Ha${ 7Q-like DLs based on the remaining weakened
principles.

This work also explicitly introduces a notion of semargioulationwhich appears
to be novel, though loosely related to conservative exterssiln essence, it requires
that a theory can take the place of another theory in all Edgiontexts, based on a
given syntactic interface. Examples given in this papeistilate that emulation can
be very diferent from semantic equivalence. Yet, our criteria can peed to define
minimal requirements for preserving a theory’s semantres én combination with ad-
ditional information, so emulation appears to be a natwallfor enabling information
exchange in distributed knowledge systems. We expectlieattplicit articulation of
this notion will be useful for studying the semantic intexpbf heterogeneous logical
formalisms in general.

Finally, the approach of this paper — seeking a structuigicld fragment that is
provably maximal under certain conditions — immediatede to a number of further
research questions. For example, what is the maximal fragofeSWRL (“datalog
U SROIQ") that can be expressed BROZ7Q? Clearly, this fragment would contain
DL Rules [L0] and maybe some form of DL-safe rulds]. But also the maximaFOL -
fragment that can be expressed in a well-known subset suitte d&uarded Fragment
[2] or the two-variable fragment might be of general inter®gt. argue that ultimate
answers to such questions can indeed be obtained by a car#tuilation of basic
design principles. At the same time, our study indicates tiva required definitions
and arguments can become surprisingly complex when dealth@ syntactically rich
formalism like description logic. The main reason for thssthat constructs that are
usually considered “syntactic sugar” have non-trivial aatit dfects when considering
logical fragments that are structurally closed.

AcknowledgementdResearch reported herein was supported by the EU in the IST
project ACTIVE (IST-2007-215040), and by the German Rede&oundation under
the ReaSem project.

References

[En

10.

11.

12.

13.

14.

15.

. Serge Abiteboul, Richard Hull, and Victor VianBoundations of Database#\ddison Wes-
ley, 1994.

. Hajnal Andréka, Johan F. A. K. van Benthem, and Istvan NiénMdodal languages and
bounded fragments of predicate logiournal of Philosophical Logi27(3):217-274, 1998.

. Patrick Blackburn, Johan F. A. K. van Benthem, and Franktéi/ceditors. Handbook of
Modal Logic volume 3 ofStudies in Logic and Practical Reasoningelsevier Science,
2006.

. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andogokkov. Complexity and ex-
pressive power of logic programmingCM Computing Survey83(3):374-425, 2001.

. Benjamin N. Grosof, lan Horrocks, Raphael Volz, and Stddecker. Description logic
programs: combining logic programs with description logim Proceedings of the 12th
International Conference on World Wide Web (WWW,@ages 48-57. ACM, 2003.

. lan Horrocks, Oliver Kutz, and Ulrike Sattler. The evenrenioresistibleSROZ Q. In Patrick
Doherty, John Mylopoulos, and Christopher A. Welty, editétroceedings of the 10th In-
ternational Conference on Principles of Knowledge Repred®n and Reasoning (KR'06)
pages 57-67. AAAI Press, 2006.

. Ulrich Hustadt, Boris Motik, and Ulrike Sattler. Data cplexity of reasoning in very ex-
pressive description logics. In Leslie Pack Kaelbling artéséandro Saotti, editors,Pro-
ceedings of the 19th International Joint Conference onfi&idl Intelligence (IJCAI'05)
pages 466-471. Professional Book Center, 2005.

. Yevgeny Kazakov.Saturation-Based Decision Procedures for Extensions efGbarded
Fragment PhD thesis, Universitat des Saarlandes, Saarbriickemaggr 2006.

. Markus Krétzsch, Sebastian Rudolph, and Pascal Hitelemplexity boundaries for Horn

description logics. IrProceedings of the 22nd AAAI Conference on Artificial ligethce

(AAAI'Q7), pages 452—457. AAAI Press, 2007.

Markus Krotzsch, Sebastian Rudolph, and Pascal HitBlescription logic rules. In Malik

Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis Nikds Avouris, editorsProceed-

ings of the 18th European Conference on Atrtificial Intelfige (ECAI'08) pages 80-84. 10S

Press, 2008.

Markus Krétzsch, Sebastian Rudolph, and Pascal Hi&leé®: Tractable rules for OWL 2. In

Amit Sheth, Stéfen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, TFignbtnin,

and Krishnaprasad Thirunarayan, editérsyceedings of the 7th International Semantic Web

Conference (ISWC’'08yolume 5318 oL NCS pages 649-664. Springer, 2008.

Boris Motik, Ulrike Sattler, and Rudi Studer. Query aeswg for OWL DL with rules.

Journal of Web Semantic3(1):41-60, 2005.

Andrea Schaerf. Reasoning with individuals in concapgliagesData Knowledge Engi-

neering 13(2):141-176, 1994.

Stephan Tobie€€omplexity Results and Practical Algorithms for Logics imovledge Rep-

resentation PhD thesis, RWTH Aachen, Germany, 2001.

Raphael Volz. Web Ontology Reasoning with Logic Database®hD thesis, Universitat

Karlsruhe (TH), Germany, 2004.

