
Finding the Largest Datalog Fragment of
Description Logic

Markus KrötzschandSebastian Rudolph

Institut AIFB, Universität Karlsruhe, DE

Abstract. Description Logic Programs (DLP) have been described as a descrip-
tion logic (DL) that is in the “expressive intersection” of DL and datalog. This
is a very weak guideline for defining DLP in a way that can be claimed to be
optimal or maximal in any sense. Moreover, other DL fragments such asEL and
Horn-SHIQ have also been “expressed” using datalog. So is DLP just one out
of many equal DLs in this “expressive intersection”? This paper attempts to clar-
ify these issues by characterising DLP with various design principles that clearly
distinguish it from other approaches. A consequent application of the introduced
principles leads to the definition of a significantly larger variant of DLP which we
show to be maximal in a concrete sense. While DLP is used as a concrete (and
remarkably complex) example in this paper, we argue that similar approaches can
be applied to find canonical definitions for other fragments of logical languages,
such as the “maximal” fragment of SWRL rules that can be expressed in the DL
SROIQ.

1 Introduction

Description Logic Programs (DLP) were introduced as a family of fragments of descrip-
tion logic (DL) that can be expressed in first-order Horn-logic [5,15]. Since common
reasoning tasks are still undecidable for first-order Horn-logic, its function-free frag-
mentdatalog is of particular interest, and the term “DLP” today is most commonly
used to refer to tractable DLs that can be translated to equisatisfiable datalog.

This statement is slightly more concrete than describing DLP as a subset of the “ex-
pressive intersection” of DL and datalog [5], but it is still insufficient to characterise
DLP. In particular, it is well-known that other tractable DLs such asEL can also be
translated to equisatisfiable datalog programs [11,8]. It is known that the union of DLP
andEL is an intractable DL (for some discussion, see [11]), but one may still won-
der whether DLP is merely one among several equivalent subsets of the “expressive
intersection” of DL and datalog.

But tractability was not among the original design goals of DLP, and one might also
weaken this principle to require merely a semantics-preserving transformation to data-
log. Could the union of DLP andEL then be considered as an extended version of DLP?
Possibly yes, since it is contained in the DL Horn-SHIQ for which a satisfiability-
preserving datalog transformation is known [7]. However,EL and DLP can be trans-
lated to datalog axiom-by-axiom, i.e. in amodular fashion, while the known datalog
transformation for Horn-SHIQ needs to consider the whole knowledge base. But how
can we be sure that there is no simpler transformation given that both data-complexity

http://korrekt.org/
http://sebastian-rudolph.de/

and combined complexity of datalog and Horn-SHIQ agree? The answer is given in
Proposition2 below.

In any case, it is obvious that the design principles for DLP –but also forEL and
Horn-SHIQ – are not sufficiently well articulated to clarify the distinction between
those formalisms. This paper thus approaches an explicit characterisation of DLP, not
in terms of concrete syntax but in terms of general design principles, which captures
the specifics of the known DLP for datalog. An essential principle is structurality of
the language: a formula should be in DLP based on its term structure, not based on
concrete entity names that it uses. Moreover, we ask whetherDLP could be defined
as a larger, or even as thelargest, DL language that satisfies our design principles. A
positive answer to this question is given by introducing a significantly larger variant of
DLP that is proven to be a maximal DLP description logic in thesense of this work.

This paper begins with some preliminary definitions in Section 2. In Section3,
we discuss the problems of characterising DLP and provide some fundamental results.
Section4 provides a simplified version of the main results by restricting attention to the
smaller description logicALC, where it is significantly easier to define a DLP frag-
ment and prove its maximality. These simplifications allow us to outline the general
proof structure and some relevant methods, but they do neither cover all relevant parts
of earlier DLP definitions nor all relevant proof techniquesneeded in the general case.
A full definition for an extended languageDLP is then provided in Section5. In Sec-
tion 6, we show howDLP can be expressed using datalog. Section7 discussed some
important model-theoretic constructions for characterising fragments of first-order logic
that can be expressed in datalog. These constructions are then used as a basis for show-
ing maximality ofDLP in Section8. Section9 provides a short outlook on further
application areas for the presented approaches.

2 Preliminaries

We consider the well-known description logicSROIQ as defined in [6]. As we are
mainly interested in the syntax of the language to be defined,we considerSROIQfree

denotingSROIQwithout simplicity and regularity constraints. In particularSROIQfree

allows arbitrary role inclusion axiomsR1 ◦ . . . ◦ Rn ⊑ R. Clearly, the semantics of
SROIQfree follows from that ofSROIQ. As usual,SROIQfree knowledge bases are
defined over finite sets of individual namesI , concept namesA, and rolesR. For the
purpose of this paper, we assume thatR includes inverse roles, i.e. that for eachR ∈ R
there is an inverse Inv(R) ∈ R such that Inv :R → R is bijective, symmetric, and
irreflexive. We callS = 〈I ,A,R〉 signature, and all signatures are assumed to be finite
in this paper. A signatureS ′

= 〈I ′,A′,R′〉 is called anextensionof S , if I ⊆ I ′ and
A ⊆ A′ andR ⊆ R′.

Our work leads to rather complex syntactic descriptions of DL languages, so it is
desirable to simplify syntax as much as possible early on. Unfortunately, expressive
features that can be considered as syntactic sugar inSROIQ may not be syntactic
sugar in the restricted DL fragments we study. For example, the symbol⊤ cannot be
expressed byA ⊔ ¬A in DLP. Thus, in general, the precise set of available operators
influences the definition and expressivity of DLP. Yet, we do assume within this paper

that the universal roleU is not a specific logical symbol, but that it is only available
through axiomatisation.1 Omitting U as a language construct significantly simplifies
the complexity of the definitions we arrive at. Some further syntactic simplification can
be assumed without any reservations: we always write∃R.A and∀R.A as>1R.A and
60R.¬A, respectively, and we omit syntactic forms that can be derived by exchanging
operators in conjunctions and disjunctions, i.e. we specify grammars only up to com-
mutativity and associativity of⊓ and⊔.

EverySROIQfree GCI C ⊑ D can be expressed by⊤ ⊑ ¬C⊔ D (i.e. by stating that
the concept¬C ⊔ D is universally valid). In the following, we will often tacitly assume
that GCIs are expressed as universally valid concepts. For further simplification, we
consider various syntactic normal forms. We writeNNF(KB) for the negation normal
form (NNF) of a knowledge base KB, defined as usual. ByDNF(KB) we denote the dis-
junctive normal form, which is obtained by exhaustively replacing subconcepts of the
form (C⊔D)⊓E with (C⊓E)⊔ (D⊓E). Note that we do not distribute Boolean concept
constructors over role restrictions, i.e. our DNF may stillcontain complex nested con-
cepts. Our later definition of DLP is not generally closed under such transformations:
requiring closure under stronger normalisations reduces the amount of knowledge bases
that the definition covers.

Obviously,SROIQfree knowledge bases KB can be expressed as semantically equiv-
alent theories of first-order logic with equality (FOL=), whereI , A, R take the rôles of
constants, unary predicates and binary predicates, respectively. We will useπ(KB) to
denote one (arbitrary) such translation, and we will consider signatures ofSROIQ as
FOL= signatures when convenient, but we will assume that only individual names (con-
stants), concept names (unary predicates), and roles (binary predicates) are present in
any consideredFOL= signature.

We use the term “datalog” to refer to the function-free Horn logic fragment of
FOL=.2 A datalog programover a first-order signatureS is a first-order theory over
S which contains only Horn clauses, i.e.FOL= formulae of one of the forms

∀x.(A1 ∧ . . . ∧ An→ A)
∀x.(A1 ∧ . . . ∧ An→ ⊥)
∀x.(⊤ → A),

whereA(i) are atoms overS that contain no function symbols, and∀x quantifies over
all variables occurring in the implications. For clarity, we use the nullary operators⊤
and⊥ that are interpreted astrue andfalse, respectively. We will follow the common
practice of omitting the quantifiers, and of writing facts⊤ → A asA.

Our discussion is necessarily based on a notion of semantic correspondence be-
tween different logical theories of DL and datalog. It turns out, however, that semantic

1 This is easy inSROIQ sinceU is not required to be simple:⊤ ⊑ ∃R.{a}, ⊤ ⊑ ∃S−.{a},
R◦ S ⊑ U; we will see later that the same can be done in DLP.

2 Please note that it is also common to study datalog under a higher-order semantics. The first-
order and higher-order view are closely related in some respects [1], yet it is crucial to not
confuse the approaches. Throughout this work, we will only study logics with a first-order
semantics.

equivalence is too strong – it does not allow the use of auxiliary symbols for express-
ing a logical relationship – while equisatisfiability is tooweak – it does not preserve
relevant logical entailments. The following notion turns out to be a more appropriate
middle-ground:

Definition 1. GivenFOL= theories T and T′ with signaturesS andS ′, then T′ se-
mantically emulatesT if

(1) S ′ extendsS ,
(2) every model of T′ becomes a model of T when restricted to the interpretations of

symbols fromS , and
(3) for every modelJ of T there is a modelI of T′ that has the same domain asJ,

and that coincides withJ on all symbols ofS .

Given aSROIQ knowledge baseKB and a datalog program P, we say that P
emulatesKB if P emulatesπ(KB).

Note that, in contrast to equivalence and equisatisfiability, semantic emulation is not
a symmetric relation, since one of the theories introduces additional “internal” symbols
to its signature. It would be possible to establish more general notions that are based on
arbitrary incomplete mappings between two signatures, butwe found the basic defini-
tion above to be adequate for this work. We also point out thatit is usually not necessary
to mention the signatures ofT andT′ explicitly, since it is always possible to find min-
imal signatures forT andT′ that satisfy condition (1) of Definition1.

Given a situation as in Definition1, we find that a first-order formulaϕ overS is a
logical consequence ofT if and only if it is a logical consequence ofT′. This illustrates
how strong this form of correspondence is, and it hints at thepractical relevance of this
condition for knowledge representation: whenever a theoryT′ semantically emulates a
theoryT, we find thatT′ andT encode the same informationabout the symbolsin T,
and in particular thatT′ cannot be distinguished fromT in any application that restricts
to those symbols. In a sense,T′ thus really “simulates” the behaviour ofT in arbitrary
contexts, but possibly by means of rather different syntactic structures.3 If the required
“interface” is restricted not only to a particular set of symbols but also to a particular
logic, then the following definition may seem more natural.

Definition 2. Let T and T′ be twoFOL= theories, letS be the signature over which
T is defined, and letL be some fragment ofFOL=. We say that T′ L-emulatesT if for
everyL formulaϕ overS , we find that T′ ∪ {ϕ} and T∪ {ϕ} are equisatisfiable.

In particular, this provides us with a notion ofFOL=-emulation that describes a
situation where two theories behave equivalent in the context of any first-order theory
over the given signature. To avoid confusion, formal results will always be explicit about
the intended type of emulation, although we will sometimes speak of “emulation” to
refer to semantic emulation in informal discussions. It is not hard to see that semantic
emulation impliesFOL=-emulation.

3 We generally avoid the term “simulation” here since it is already common in the context of
model-theoretic relationships in modal logic [3].

Proposition 1. For any fragmentL of first-order logic with equality and theories T
and T′, if T ′ semantically emulates T then T′ L-emulates T.

Proof. It suffices to show the claim for the case thatL is FOL=. Consider two theo-
ries T′ andT such thatT′ semantically emulatesT. We need to show thatT′ FOL=-
emulatesT. A simple induction on the structure ofFOL= formulae can be used to show
that the validity of aFOL= formulaϕ w.r.t. any first-order interpretation is independent
of the interpretation of the signature elements not occurring inϕ (†). To show the claim,
suppose the conditions of Definition1 hold butT does notFOL=-emulateT′. Hence,
there is aFOL= formulaϕ overS such thatT∪{ϕ} andT′∪{ϕ} are not equisatisfiable.
However, ifT ∪ {ϕ} has some modelI, then we can apply condition (3) of Definition1
to obtain an extended modelI′ such thatI′ |= T′. But sinceϕ contains only symbols
that are interpreted in the same way byI andI′, we obtainI′ |= ϕ from (†). Con-
versely, ifT′ ∪ {ϕ} has a modelJ, then condition (2) implies that the restrictionI ofJ
to the signature ofT is such thatJ |= T. As before, (†) impliesJ |= ϕ. ⊓⊔

3 Considerations for Defining DLP

In this section, we discuss why defining DLP is not straightforward, and we specify
various design principles to guide our subsequent definition. The goal is to arrive at a
notion of DLP that is characterised by these principles, as opposed to DLP being some
ad hocfragment of description logic that happens to be expressible in datalog without
being maximal or canonical in any sense. The first design principle fixes our choice of
syntax and underlying DL:

DLP 1 (DL Syntax)DLP knowledge bases should beSROIQfree knowledge bases.

The second principle states that the semantics of every DLP knowledge base can be
expressed in datalog. We will see below that it is sometimes useful to introduce auxil-
iary symbols during the translation to datalog. If this is done, the datalog program can
no longer be semantically equivalent to the original knowledge base, even if all conse-
quences with respect to the original predicates are still the same. Yet,equisatisfiability
– the requirement that a DLP knowledge base is satisfiable iff its datalog translation is
– turns out to be too weak for many purposes. A suitable compromise is the notion of
emulationintroduced in Definition2:

DLP 2 (Semantic Correspondence)There should be a transformation functiondatalog
that maps a DLP knowledge base KB to a datalog programdatalog(KB) such that
datalog(KB) FOL=-emulates KB.

It turns out that DLP 2 is a strong requirement with many useful consequences.
For example, it ensures us that instance retrieval queries can directly be answered
over datalog, without needing to know the details of the datalog transformation: to
find out whether KB entailsC(a), it suffices to check ifdatalog(KB) entailsC(a). But
DLP 2 is much stronger than the requirement of preserving such atomic consequences,

since the entailment of anyFOL= formula over the signature of KB can be checked in
datalog(KB).

The principles DLP 1 and DLP 2 set the stage for defining DLP butthey do not
yet provide sufficient details to attempt a definition. The description of DLPas the
“intersection” of DL and datalog is not a useful basis for defining DLP: the syntactic
intersection of the two formalisms contains no terminological axioms at all. This raises
the question of how to define DLP in a canonical way. A naive approach would be
to define a DL ontology to belong to DLP if it can be expressed bya semantically
equivalent datalog program. Such a definition would be of little practical use: every
inconsistent ontology can trivially be expressed in datalog, and therefore a DL reasoner
is needed to decide whether or not a knowledge base should be considered to be in DLP.
This is certainly undesirable from a practical viewpoint. It is therefore preferable to give
a definition that can be checked without complex semantic computations:

DLP 3 (Tractability) Containment of a knowledge base KB in a DLP description logic
over some signatureS should be decidable in polynomial time with respect to the size
of KB andS .

Note that typical syntactic language definitions are often subpolynomial, e.g. if they
can be decided in logarithmic space (which leads to a linear time algorithm that can
be parallelised). Yet, polynomial time language definitions might still be acceptable:
for example, every decidable DL with transitive roles, number restrictions, and role
hierarchies already requires polynomial time for checkingsimplicity of roles.

The downside of a syntactic approach is that semantically equivalent transforma-
tions on a knowledge base may change its status with respect to DLP. This is not a
new problem – many DLs are not syntactically closed under semantically equivalent
transformations, e.g. due to simplicity restrictions – butit imposes an additional burden
on ontology engineers and implementers. To alleviate this problem, a reasonable fur-
ther design principle is to require closure under at least some forms of equivalence or
satisfiability preserving transformations. Particularlycommon transformations are the
construction of negation normal form and disjunctive normal form as defined earlier.

DLP 4 (Closure Under NNF and DNF)A knowledge base KB should be in DLP iff its
negation normal formNNF(KB) and its disjunctive normal formDNF(KB) are in DLP.

Closure under NNF will turn out to be mostly harmless, while closure under DNF
imposes some real restrictions to our subsequent treatment. We still include it here since
it allows us to generally present DL concepts as disjunctions, such that the relationship
to datalog rules (disjunctions of literals) is more direct.

The above principles still allow DLP to be defined in such a waythat some DLP
knowledge base subsumes another knowledge base that is not in DLP. In other words,
it might happen that adding axioms to a non-DLP knowledge base turns it into a DLP
knowledge base. This “nonmonotonic” behaviour is undesirable since it requires im-
plementations and knowledge engineers to consider all axioms of a knowledge base in
order to check if it is in DLP. The following principle requires definitions to be more
well-behaved:

DLP 5 (Modularity) Consider two knowledge bases KB1 and KB2. Then KB1 ∪ KB2

should be in DLP if and only if both KB1 and KB2 are. Moreover, in this case the
datalog transformation should bedatalog(KB1∪KB2) = datalog(KB1)∪datalog(KB2).

Modularity ensures that one can decide for each axiom of a knowledge base whether
or not it belongs to DLP without regarding any other axioms. The goal thus has changed
from defining DLPknowledge basesto defining DLPaxioms.Note thatSROIQ with
global constraints (regularity, simplicity) does not satisfy DLP 5 (to see this, set KB1 =
{Tra(R)} and KB2 = {⊤ ⊑ >1R.⊤}) which is our actual reason to considerSROIQfree

instead ofSROIQ. The above principles already suffice to establish an interesting result
about tractability of reasoning in DLP:

Proposition 2. Consider a class K of knowledge bases that belong to a DL for which
DLP 1 to DLP 5 are satisfied, and such that the maximal size of axioms in K is bounded.
Then deciding satisfiability of knowledge bases in K is possible in polynomial time.

Proof. By DLP 2, satisfiability of KB∈ K can be decided by checking satisfiability of
datalog(KB). Assume that the size of axioms in knowledge bases inK is at mostn. Up to
renaming of symbols, there is only a finite number of different axioms of sizen. We can
assume without loss of generality that the transformationdatalog produces structurally
similar datalog for structurally similar axioms, so that there are only a finite number
of structurally different datalog theoriesdatalog({α}) that can be obtained from axioms
α in K. The maximal number of variables occurring within these datalog programs is
bounded by somem. By DLP 5, the same holds for all programsdatalog(KB) with
KB ∈ K. Satisfiability of datalog with at mostm variables per rule can be decided in
time polynomial in 2m [4]. Sincem is a constant, this yields a polynomial time upper
bound for deciding satisfiability of knowledge bases inK. ⊓⊔

The previous result states that reasoning in any DLP language is necessarily “al-
most” tractable. Indeed, many DLs allow complex axioms to bedecomposed into a
number of simpler normal forms of bounded size, and in any such case tractability is
obtained, but it turns out that there are arbitrarily large DLP axioms that cannot be de-
composed in DLP. Yet, Proposition2 clarifies why Horn-SHIQ cannot be in DLP:
ET worst-case complexity of reasoning can be proven for a classK of Horn-
SHIQ knowledge bases as in the above proposition (see [9], noting that remaining
complex axioms can be decomposed in Horn-SHIQ).

Note that none of the above principles actually require DLP to contain any knowl-
edge base at all. An obvious approach thus is to define DLP to bethe largest DL that
adheres to all of the chosen design principles. The questionto ask at this point is whether
this is actually possible: is there a definition of DLP that adheres to the above principles
and that includes as many DL ontologies as possible? The answer is a resounding no:

Proposition 3. Consider a description logicLDLP that adheres to the principles DLP 1
to DLP 5. There is a description logicL′DLP that adheres to DLP 1 to DLP 5 while
covering more knowledge bases, i.e.LDLP ⊂ L

′
DLP.

Proof. We first need to argue that, even with unlimited resources forthe datalog trans-
lation, it is not possible that DLP supports allSROIQ axioms. We show that, if the

concept expressionC is satisfiable and does not contain the symbolsR, A1, A2, c andd,
then the axiomα ≔ {c} ⊑ C⊓∃R.(d⊓(A1⊔A2)) cannot be emulated by any datalog pro-
gram. For a contradiction, suppose thatα is emulated by a datalog theorydatalog(α).
By construction,α is satisfiable, and so is{α,Ai ⊑ ⊥} for eachi = 1, 2. By Defini-
tion 2, we find thatdatalog(α) ∪ {Ai ⊑ ⊥} is satisfiable, too. Thus, there are modelsIi

of datalog(α) such thatAIi
i = ∅. By the least model property of datalog, there is also a

modelI of datalog(α) such thatAI1 = AI2 = ∅. But thendatalog(α) ∪ {A1 ⊔ A2 ⊑ ⊥} is
satisfiable although{α,A1 ⊔ A2 ⊑ ⊥} is not, contradicting the supposed emulation.

We can now show that there is some unsatisfiable axiom that is not inLDLP. To this
end, recall that deciding (un)satisfiability ofSHOIQ concept expressions is NE-
T hard. This follows from NET hardness of deciding consistency ofSHOIQ
knowledge bases [14] together with the fact that knowledge base satisfiability inSROIQ
can be reduced to concept satisfiability [13]. However, we just showed that, if the axiom
α = {c} ⊑ C⊓∃R.({d}⊓ (A1⊔A2)) is inLDLP with symbolsR, A1, A2, c, d not inC, then
the conceptC is unsatisfiable. Thus, ifLDLP contains all unsatisfiableSHOIQ axioms
of the form ofα, then deciding whetherα ∈ LDLP is equivalent to deciding whetherC is
unsatisfiable (since one can clearly constructα from C in polynomial time). By DLP 3,
this would yield a polynomial decision procedure forSHOIQ concept satisfiability –
a contradiction.

Therefore, there is an unsatisfiable axiomα with α < LDLP. Now let L′DLP be
defined as{KB | DNF(NNF(KB)) \ {DNF(NNF(α))} ∈ LDLP}. The transformation is
given by datalog′(KB) = datalog(KB) if KB ∈ LDLP, and datalog′(KB) = {⊤ →
A(x),A(x) → ⊥} ∪ datalog(DNF(NNF(KB)) \ {DNF(NNF(α))}) otherwise, whereA is a
new predicate symbol. It is immediate that this defines a DL fragment (DLP 1), and that
this definition is tractable (DLP 3). Equisatisfiability (DLP 2) follows since any knowl-
edge base containing an axiom that is equivalent toα is unsatisfiable. Closure under
negation normal form (DLP 4) and modularity (DLP 5) are immediate. ⊓⊔

This shows that any attempt to arrive at a maximal definition of DLP based on
the above design principles must fail. Summing up, the abovedesign principles are
still too weak for characterising DLP: any concrete definition requires further choices
that, lacking concrete guidelines, are necessarily somewhat arbitrary. Thus, while it is
certainly useful to capture some general requirements in explicit principles, the resulting
approach of defining DLP would not be a significant improvement over existingad hoc
approaches.

Analysing the proof of Proposition3 reveals the reason why DLP 1 to DLP 5 are still
insufficient. Intuitively, a definition of DLP cannot reach the desired maximum since the
computations that were required in this case would no longerbe polynomial (DLP 3).
Even DLP 5 does not ameliorate the situation, since expressive DLs can encode com-
plex semantic relationships within single axioms. The coreof the argument underlying
Proposition3 in this sense is the fact that there is no polynomial time procedure for
deciding whether or not a singleSROIQ axiom can be expressed in datalog.

These considerations highlight a strategy for further constraining DLP to obtain
a clearly defined canonical definition instead of infinitely many non-optimal choices.
Namely, it is necessary to prevent complicated semantic effects that may arise when
considering even single DL axioms from having any impact on the definition of DLP.

Intuitively speaking, the reason for the high complexity ofevaluating single axioms is
that individual parts of an axiom, even if they are structurally separated, may seman-
tically affect each other. In expressive DLs, individual parts of an axiom can capture
the semantics of arbitrary terminological axioms: the TBoxcan beinternalisedinto a
single axiom.

An important observation now is that the semantic interplayof parts of an axiom
usually requires entity names to be reused. For example, theaxiom⊤ ⊑ A⊓ ¬A is un-
satisfiable because the concept nameA is used in both conjuncts, while the structurally
similar formula⊤ ⊑ A ⊓ ¬B is satisfiable. So, in order to disallow complex semantic
effects within single axioms to affect DLP, we can require DLP to be closed under the
exchange of entities in the following sense:

Definition 3. Let F be aFOL= formula, a DL axiom, or a DL concept expression,
and let S be a signature. An expression F′ is a renamingof F in S if F ′ can be
obtained from F by replacing each occurrence of a role/concept/individual name with
some role/concept/individual name inS . Multiple occurrences of the same entity name
in F neednotbe replaced by the same entity name ofS in this process.

A knowledge baseKB′ is a renamingof a knowledge baseKB if it is obtained from
KB by replacing each axiom with a renaming.

DLP 6 (Structurality) Consider knowledge bases KB and KB′ such that KB′ is an
arbitrary renaming KB. Then KB is in DLP iff KB′ is.

Note that we do not require all occurrences of an entity name to be renamed to-
gether, so it is indeed possible to obtainA ⊓ ¬B from A ⊓ ¬A. This is clearly a very
strong requirement since it forces DLP to be based on the syntactic structure of ax-
ioms rather than on the semantic effects that occur for one particular axiom that has this
structure. We will thus study the semantics and expressivity of formulae based on their
syntactic structure, disregarding any possible interactions between signature symbols.
We therefore call aFOL= formula, DL axiom, or DL concept expressionF structural
if no signature symbols occur more than once inF.

Together with modularity (DLP 5), this principle captures the essential difference
between a “syntactic” and a “semantic” transformation fromDL to datalog. Indeed,
if DLP adheres to DLP 5 and DLP 6, then it may only include knowledge bases for
which all potential semantic effects can be faithfully represented in datalog. The datalog
transformation thus needs to take into account that additional axioms may be added
(DLP 5) to state that certain entity names are semantically equivalent, while hardly
any semantic consequences can be computed in advance without knowing about these
equivalences. In consequence, the semantic computations that determine satisfiability
must be accomplished in datalog, and not during the translation. This intuition will turn
out to be quite accurate – but a lot more is needed to establishformal results below.

Structurality also interacts with normal form transformations. For example, the con-
cept (¬A⊔¬B)⊓C can be emulated in datalog using rules⊤ → C(x) andA(x)∧B(x)→
⊥. But its DNF (¬A⊓C)⊔ (¬B⊓C) is only in DLP if its renaming (¬A⊓C)⊔ (¬B⊓D)
is, which turns out to be not the case. Therefore, the knowledge base{¬A ⊔ ¬B,C}
is in DLP but the knowledge base{(¬A ⊔ ¬B) ⊓ C} is not. We have discussed above

Concepts that are necessarily equivalent to⊤ and⊥

LA⊤ F ⊤ | ∀R.L
A
⊤ | L

A
⊤ ⊓ LA⊤ | L

A
⊤ ⊔C

LA⊥ F ⊥ | ∃R.L
A
⊥ | L

A
⊥ ⊓ C | LA⊥ ⊔ LA⊥

Body concepts: forC in normal form,C ∈ LAB iffC ⊔ A (or ¬C ⊑ A) is inDLPALC
LAB F LA⊤ | L

A
⊥ | ¬A | ∀R.LAB | L

A
B ⊓ LAB | L

A
B ⊔ LAB

Head concepts: forC in normal form,C ∈ LAH iff A ⊑ C is inDLPALC
LAH F LAB | A | ∀R.L

A
H | L

A
H ⊓ LAH | L

A
H ⊔ LAB

Assertional concepts: forC in normal form,C ∈ LAa iffC(a) is inDLPALC
LAa F LAH | ∃R.L

A
a | L

A
a ⊓ LAa | L

A
a ⊔ LAB

Fig. 1.Grammars for definingDLPALC concepts in negation normal form

why such effects are not avoidable in general. The more transformationsare allowed
for DLP, the less knowledge bases are contained in DLP. Note that such effects do not
occur for negation normal forms.

4 TheALC Fragment of DLP

Our investigations in later sections show that the definition of a maximal DLP frag-
ment ofSROIQfree is surprisingly complex, and the required proofs for showing its
maximality are rather intricate. For this reason, we first characterise the maximal DLP
fragment of the much simpler description logicALC. The absence of nominals and
cardinality restrictions simplifies the required constructions significantly. Various basic
aspects of the relationship between DL and datalog can also be found in this simpler
case, but there are also a number of aspects that are not touched at all.

Throughout this section, we use∃ and∀ instead of>1 and60 . . .¬, which yields a
more natural syntax forALC. Exploiting DLP 4 we can simplify the definition of DLP
by giving concepts in negation normal form only.

Definition 4. We define the description logicDLPALC to contain all knowledge bases
consisting only ofSROIQfree axioms which are

– GCIs C⊑ D such thatNNF(¬C ⊔ D) is anLAH concept as defined in Fig.1, or
– ABox axioms C(a) whereNNF(C) is anLAa concept as defined in Fig.1.

Following the grammatical structure ofDLPALC, we specify three auxiliary func-
tions for constructing datalog programs to emulate aDLPALC knowledge base.

Lemma 1. Given a concept name A, and a concept C∈ LAH , Fig. 2 recursively defines
a datalog programdlgAH (A ⊑ C) that semantically emulates A⊑ C.

Proof. First note that the definition ofdlgAH (A ⊑ C) is well. In particular, programs
dlgAB (¬B ⊑ D) are only used ifD ∈ LAB . The claim is shown by induction over the
definitions ofdlgAB (¬A ⊑ C) anddlgAH (A ⊑ C), where the hypothesis for the former is

C dlgAH (A ⊑ C)

D ∈ LAB dlgAB (¬X ⊑ D) ∪ {A(x) ∧ X(x)→ ⊥}

B {A(x)→ B(x)}

∀R.D dlgAH (X ⊑ D) ∪ {A(x) ∧R(x, y)→ X(y)}

D1 ⊓ D2 dlgAH (A ⊑ D1) ∪ dlgAH (A ⊑ D2)

D1 ⊔ D2 ∈ (LAH ⊔ LAB) dlgAH (X2 ⊑ D1) ∪ dlgAB (¬X1 ⊑ D2) ∪ {A(x) ∧ X1(x)→ X2(x)}

C dlgAB (¬A ⊑ C)

D ∈ LA⊤ {}

D ∈ LA⊥ {A(x)}

¬B {B(x)→ A(x)}

∀R.D dlgAB (¬X ⊑ D) ∪ {R(x, y) ∧ X(y)→ A(x)}

D1 ⊓ D2 ∈ (LAB ⊓ LAB) dlgAB (¬A ⊑ D1) ∪ dlgAB (¬A ⊑ D2)

D1 ⊔ D2 ∈ (LAB ⊔ LAB) dlgAB (¬X1 ⊑ D1) ∪ dlgAB (¬X2 ⊑ D2) ∪ {X1(x) ∧ X2(x)→ A(x)}

A, B concept names,R a role name,X(i) fresh concept names

Fig. 2.Transforming axiomsA ⊑ LAH and¬A ⊑ LAB to datalog

that it semantically emulates¬A ⊑ C. The easy induction steps can directly be estab-
lished by showing that any model of the datalog program can berestricted to a model
of the corresponding DL axiom, and any model of the DL axiom can be extended to an
interpretation that models the datalog program. We omit further details here. Examples
of a very similar argument are found in the proofs of Lemma6 and7. ⊓⊔

Lemma 2. Given a constant a and a concept C∈ LAa , Fig. 3 recursively defines a
datalog programdlgAH (C(a),⊥) that semantically emulates C(a).

Proof. The construction of Fig.3 uses a “guard” conceptE that is used to defer the
encoding ofLAB disjunctions. The induction claim thus is that, for everyE ∈ LAB , C ∈
LAa , anda ∈ I , the programdlgAH (C(a),E) semantically emulates (C ⊔ E)(a).

The conceptE is processed in caseC ∈ LAH by usingdlgAH . Another more interesting
case isC = ∃R.D. The basic encoding works by standard Skolemisation, but the guard
concept is also processed and a new guard¬Y is created for the Skolem constantd. It is
not hard to show semantic emulation in all cases and we omit further details and refer
to the full proofs given in Section6. ⊓⊔

We summarise these results in the emulation theorem forDLPALC.

Theorem 1. For everyDLPALC axiomα as in Definition4, one can construct a data-
log programdlg(α) that emulatesα.

C dlgAa (C(a),E)

D ∈ LAH dlgAH (X ⊑ D ⊔ E) ∪ {X(a)}

D1 ⊓ D2 dlgAa (D1(a),E) ∪ dlgAa (D2(a),E)

D1 ⊔ D2 ∈ (LAa ⊔ LAB) dlgAB (¬X ⊑ D2) ∪ dlgAa (D1(a), E ⊔ ¬X)

∃R.D dlgAB (¬X ⊑ E) ∪ {X(a)→ R(a,b),X(a)→ Y(b)} ∪ dlgAa (D(b),¬Y)

E ∈ LAB , X,Y fresh concept names,b a fresh constant

Fig. 3.Transforming axiomsC(a) with C ∈ LAa to datalog

Proof. If α = C ⊑ D is a TBox axiom, definedatalog(α) ≔ dlgAH (A ⊑ NNF(¬C⊔D))∪
{A(x)}. If α = C(a) is an ABox axiom, definedatalog(α) ≔ dlgAa (C(a),⊥). The result
follows by Lemma1 and2. ⊓⊔

It remains to show thatDLPALC is indeed the largest DLP fragment ofALC. We
first define auxiliary datalog programs to entail that a concept’s extension is empty for
arbitrary concepts that are not inLA⊤ .

Definition 5. Given a structural concept C< LA⊤ , a datalog program~C ⊑ ⊥�A is
recursively defined as follows:

– If C = ⊥ set~C ⊑ ⊥�A ≔ {}.
– If C ∈ A set~C ⊑ ⊥�A ≔ {C(x)→ ⊥}.
– If C = ¬B ∈ ¬A set~C ⊑ ⊥�A ≔ {B(x)}.
– If C = ∀R.D with D < LA⊤ set~C ⊑ ⊥�A ≔ {R(x, x)} ∪ ~D ⊑ ⊥�A.
– If C = ∃R.D set~C ⊑ ⊥�A ≔ {R(x, y)→ ⊥}.
– If C = D1 ⊓ D2 with D1 < LA⊤ set~C ⊑ ⊥�A ≔ ~D1 ⊑ ⊥�A.
– If C = D1 ⊔ D2 with D1,D2 < LA⊤ set~C ⊑ ⊥�A ≔ ~D1 ⊑ ⊥�A ∪ ~D2 ⊑ ⊥�A.

Given a structural concept C< LA⊥ , a datalog program~⊤ ⊑ C�A is defined as~⊤ ⊑
C�A ≔ ~NNF(¬C) ⊑ ⊥�A.

Note that this definition is well, and in particular thatC < LA⊥ impliesNNF(¬C) <
LA⊤ . Moreover, it is easy to see that~C ⊑ ⊥�A (~⊤ ⊑ C�A) is satisfiable and entails
C ⊑ ⊥ (⊤ ⊑ C).

The next lemma shows that concepts that are not inLAB can be forced to require
certain positive entailments to hold in any model in which they have a non-empty ex-
tension.

Lemma 3. If C < LAB is structural then there is a datalog program~C ⊑ A�A for a
fresh concept name A such that

– ~C ⊑ A�A ∪ {C(a)} is satisfiable for any individual name a, and
– ~C ⊑ A�A |= C ⊑ A.

Proof. The result is shown by induction over the structure ofC. If C ∈ A is a concept
name, then~C ⊑ A�A ≔ {C(x) → A(x)} clearly satisfies the claim. IfC = ∀R.D with
D < LAB set~C ⊑ A�A ≔ ~D ⊑ A�A ∪ {R(x, x)}. The claim follows by induction. If
C = ∃R.D with D , ⊥ then~C ⊑ A�A ≔ {R(x, y) → A(x)} clearly satisfies the claim.
If C = D1 ⊓ D2 with D1 < LAB , D1,D2 < LA⊥ then~C ⊑ A�A ≔ ~D1 ⊑ A�A satisfies
the claim by the induction hypothesis. For the caseC = D1 ⊔ D2 with D1 < LAB and
D1,D2 < LA⊤ , we can define~C ⊑ A�A ≔ ~D1 ⊑ A�A∪~D2 ⊑ ⊥�A. The claim follows
by induction. ⊓⊔

Note that the program~C ⊑ A�A does notFOL=-emulateC ⊑ A since the subpro-
gram~D2 ⊑ ⊥�A that is used for the⊔ case excludes a number of interpretations that
satisfyC. But the previous result suffices for our subsequent arguments.

Theorem 2. Consider a structural concept C, an individual name a, and a concept
name A not occuring in C.

(1) If C < LAa then C(a) cannot beFOL=-emulated by any datalog program.
(2) If C < LAH then A ⊑ C and⊤ ⊑ C cannot beFOL=-emulated by any datalog

program, unlessP= PS.

In particular, no fragment ofALC that is larger thanDLPALC can beFOL=-emulated
in datalog, unlessP= PS.

Proof. The proof for both claims proceeds by an interleaved induction over the structure
of C. Note thatC cannot be atomic in either case. We begin with the induction steps
for claim (1), assuming that the claims hold for all subformulae of C. Suppose for a
contradiction that there is a datalog programPC(a) thatFOL=-emulatesC(a).

If C = ∃R.D with D < LAa thenPC(a) ∪ {R(a, y) → y ≈ b} FOL=-emulatesD(b)
for a fresh individualb, contradicting the induction hypothesis (1) forD. If C = ∀R.D
with D < LAH thenPC(a) ∪ {A(x) → R(a, x)} FOL=-emulatesA ⊑ D, contradicting the
induction hypothesis (2) forD. If C = C1 ⊓ C2 with C1 < LAa andC1,C2 < LA⊥ then
PC(a) ∪ ~⊤ ⊑ C2�A FOL=-emulatesC1(a), contradicting the induction hypothesis (1)
for C1.

Consider the caseC = C1 ⊔C2 whereC1,C2 < LA⊤ . If C1 < LAa thenPC(a) ∪ ~C2 ⊑

⊥�A FOL=-emulatesC1(a), again contradicting the induction hypothesis (1) forC1.
Otherwise, ifC1,C2 ∈ LAa thenC1,C2 < LAB . Using fresh concept namesA1 andA2,
consider datalog programsPi ≔ {Ai(x) → ⊥} ∪ ~C1 ⊑ A1�A ∪ ~C2 ⊑ A2�A (i = 1, 2).
It is not hard to see that{C(a)} ∪ Pi is satisfiable, so the same is true forPC(a) ∪ Pi by
FOL=-emulation. Thus,PC(a) ∪ ~C1 ⊑ A1�A ∪ ~C2 ⊑ A2�A must have a modelIi such
that AIi

i = ∅ for i = 1, 2. By the least model property of datalog (see, e.g., [4]), this
implies thatPC(a) ∪ ~C1 ⊑ A1�A ∪ ~C2 ⊑ A2�A has a modelI such thatAI1 = AI2 = ∅.
ThusPC(a)∪P1∪P2 is satisfiable. But clearlyPi |= Ci ⊑ ⊥ (i = 1, 2) so{C(a)}∪P1∪P2

is unsatisfiable, contradicting the supposedFOL=-emulation.
This finishes the induction steps for claim (1). For claim (2), suppose for a contra-

diction thatA ⊑ C is FOL=-emulated by some datalog programPA⊑C. First consider the
case thatC < LAa . ThenPA⊑C ∪ {A(a)} FOL=-emulatesC(a) for some fresh individual
a, contradicting the induction hypothesis (1) forC. Thus, the remaining induction steps
only need to cover the cases ofC ∈ LAa \ LAH .

The case forC = C1 ⊓C2 is similar to step (1). Likewise, the only remaining case
of C = C1 ⊔ C2 is the case where, w.l.o.g.,C1LAa \ LAH , which can also be treated as
before. There are no remaining cases forC = ∀R.D.

Consider the caseC = ∃R.D with D < LA⊥ . Then PA⊑C ∪ ~⊤ ⊑ D�A FOL=-
emulatesA ⊑ ∃R.⊤. The logic obtained by extendingDLPALC with axioms of the
form A ⊑ ∃R.⊤ is known as Horn-FL− [9]. Reasoning in Horn-FL− was shown to
be PS hard op. cit., and this proof can easily be adopted to use onlyaxioms of
bounded size. Assuming that P, PS the supposedFOL=-emulation contradicts
Proposition2. ⊓⊔

Our subsequent results for the maximal DLP fragment of the description logic
SROIQfree further strengthen the previous theorem so that the assumption P, PS
is no longer required. We thus do not invest any more effort to accomplish this for the
above case.

5 Defining Description Logic Programs

In this section, we provide a direct definition of DLP. We firstsummarise the character-
isation given in Section3.

Definition 6. A description logicL is aDLP description logicif the set of its knowledge
bases adheres to the principles DLP 1–DLP 6 of Section3.

Our goal in this section thus is to define the maximal DLP description logic. Some
practical considerations are needed for this to become practically feasible. Namely, it
turns out that the characterisation as given in the previoussection leads to a prohibitively
complex syntactic description of the language. Our first goal in this section therefore is
to identify ways of simplifying its presentation. Note thatit is not desirable to simply
eliminate “syntactic sugar” in general, since the very goalof this work is to characterise
whichSROIQ knowledge bases can be considered as syntactic sugar for datalog.

A natural approach is to restrict attention to axioms in somenormal form. DLP 4
requires closure under negation normal form, which seems tofree us from the burden
of explicitly considering negative occurrences of non-atomic concepts. But NNF does
not allow for this simplification, since concepts of the form6n R.D still containD in
negative polarity. A modified NNF is more adequate.

A SROIQfree concept expressionC is in positive negation normal form(pNNF) if

– if 6n R.D is a subexpression ofC, thenD has the form¬D′, and
– every other occurrence of¬ in C is part of a subconcept¬D with D ∈ A or D = {a}

with a ∈ I .

It is easy to see that anySROIQfree concept expressionC can be transformed into a
semantically equivalent concept expressionpNNF(C) in linear time. A DLP description
logic thus can be defined by providing itspNNF only.

While pNNF effectively reduces the size of a DLP definition by half, the definition is
still exceedingly complex. The construction of disjunctive normal forms is compatible
with pNNF, so we can additionally require this form of normalisation.Another source

Concepts containing at mostn elements in any interpretation, and their complements

L⊥ = L≤0F ⊥ | L⊥ ⊓ C | L⊥ ⊔ L⊥ | >nR.L≤n−1 (n ≥ 1)

L≤m+1F {I } | L≤m | L≤m+1 ⊓C | L≤m′ ⊔ L≤m′′ (m′ +m′′ = m+ 1)

L⊥ = L≤0F ⊤ | A | {I } | ∃R.Self | ¬A | ¬{I } | ¬∃R.Self | L⊥ ⊓ L⊥ | L⊥ ⊔C |
6nR.¬C (n ≥ 0) | >0R.C | >nR.L≤n−1 (n ≥ 1)

L≤m+1F ⊤ | A | ∃R.Self | ¬A | ¬{I } | ¬∃R.Self |

L≤m+1 ⊓ L≤m+1 | L≤m+1 ⊔ C | L≤m′ ⊔ L≤m′′ (m′ +m′′ = m) |
6nR.¬C (n ≥ 0) | >0R.C | >nR.L≤n−1 (n ≥ 1)

Concepts not containing at mostn elements in any interpretation, and their complements

L⊤ = L≥ω−0F ⊤ | L⊤ ⊔ C | L⊤ ⊓ L⊤ | >0R.C | 6nR.¬L≥ω−n (n ≥ 0)

L≥ω−m−1F ¬{I } | L≥ω−m | L≥ω−m−1 ⊔C | L≥ω−m′ ⊓ L≥ω−m′′ (m′ +m′′ = m+ 1)

L⊤ = L≥ω−0 F ⊥ | A | {I } | ∃R.Self | ¬A | ¬{I } | ¬∃R.Self | L⊤ ⊔ L⊤ | L⊤ ⊓C |
>nR.C (n ≥ 1) | 6nR.¬L≥ω−n (n ≥ 0)

L≥ω−m−1F ⊥ | A | {I } | ∃R.Self | ¬A | ¬{I } | ¬∃R.Self |

L≥ω−m−1 ⊔ L≥ω−m−1 | L≥ω−m−1 ⊓C | L≥ω−m′ ⊓ L≥ω−m′′ (m′ +m′′ = m) |
>nR.C (n ≥ 1) | 6nR.¬L≥ω−n (n ≥ 0)

C: anySROIQfree concept

Fig. 4.Grammars for structurally valid, unsatisfiable, refutable, and satisfiable concepts

of complexity is the fact thatSROIQ features many concept expressions for which all
possible renamings are necessarily equivalent to⊤ or⊥. Simple examples such as⊤⊔C
were already encountered in the definitions ofLA⊤ andLA⊥ in Section4, butSROIQ also
includes expressions like>0R.C or63R.{a} ⊔ {b}.

Definition 7. Let C be aSROIQ concept expression.

– C is structurally validif ⊤ ⊑ C′ is valid for every renaming C′ of C.
– C is structurally unsatisfiableif C′ ⊑ ⊥ is valid for every renaming C′ of C.
– C is structurally refutableif it is not structurally valid, i.e. if there is a renaming C′

of C such that⊤ ⊑ C′ is refutable.
– C is structurally satisfiableif it is not structurally unsatisfiable, i.e. if there is a

renaming C′ of C such that C′ ⊑ ⊥ is refutable.

The renamings C′ considered here refer to renamings over arbitrary signatures, and
are not restricted to the signature of C.

Many non-trivial examples for such concepts are based on thefact that some DL
concepts do not allow for arbitrary interpretations but arein fact constrained to cer-
tain extensions. It is possible to provide a complete syntactic characterisation of these
SROIQ concepts.

Lemma 4. The grammars given in Fig.4 characterise sets ofSROIQ concept expres-
sions as follows:

– C ∈ L≤n iff CI contains at most n elements for any interpretationI,
– C ∈ L≤n iff CI contains more than n elements for some interpretationI,
– C ∈ L≥ω−n iff ∆I \CI contains at most n elements for any interpretationI,
– C ∈ L≥ω−n iff ∆I \CI contains more than n elements for some interpretationI.

In particular, L⊤, L⊥, L⊤, andL⊥ characterise the sets of structurally valid, unsatisfi-
able, refutable, or satisfiable concept expressions.

Proof. We first show the “only if” direction ofL≤n by induction over the structure of
the grammars. The base cases⊥ and{I } (wheren ≥ 1 is required) are obvious. The case
L≤n−1 (wheren ≥ 1) is immediate from the induction hypothesis. Note that thecases of
⊔ and⊓ for n = 0 are simply special instances of the respective cases forn ≥ 1. The
cases forL≤n ⊓C andL≤m′ ⊓ L≤m′′ are again obvious from the induction hypothesis.

Considering the grammar for each operator, it can be seen that L≤n is indeed the set
complement ofL≤n for eachn. An easy induction overn is used to show this formally,
where it suffices to compare the cases for each constructor to see that theyare exhaustive
and non-overlapping. Thus, to show the “if” direction of theclaim forL≤n, it suffices to
show the “only if” direction of the claim forL≤n.

The “only if” direction of the claim forL≤n if again established induction over
the structure of concepts inL≤n. Most cases are obvious. For the case ofC ⊓ D, it is
necessary to note that the extensions ofC andD, in addition to containing more thann
elements, can always be selected freely to ensure that the intersection of both extensions
contains enough elements.

The proofs for the claims aboutL≥ω−n andL≥ω−n are similar. ⊓⊔

The previous result shows that structural validity, satisfiability, unsatisfiability, and
refutability of a concept expression can be recognised in polynomial time by using the
given grammars.4 For another simplification of our characterisation, we may thus as-
sume that almost all occurrences of such concepts have been eliminated in the concepts
that we consider. This completes the ingredients we need fordefining the normal form
that is used below.

Definition 8. A concept expression C is inDLP normal formif C = DNF(pNNF(C))
and

– if C has a structurally valid subconcept D, then D= ⊤ and either C= D or D
occurs in a subconcept of the form>n R.D,

– if C has a structurally unsatisfiable subconcept D, then D= ⊥ and either C= D
or D occurs in a subconcept of the form6n R.¬D.

The unique DLP normal form of a concept D is denoted byDLPNF(C).

It is easy to see thatDLPNF(C) can be computed in polynomial time. In particular,
structurally valid and unsatisfiable subconcepts can be replaced by⊤ and⊥, respec-
tively, and expressions of the formC ⊔ ⊥ andC ⊓ ⊤ can be reduced toC. Also note

4 Note that the omission of the universal role allows us to ignore concepts such as60U.{a}
which would otherwise be structurally unsatisfiable; similar simplifications occur throughout
this section.

that the order of applying the single normalisation steps does not affect the DLP nor-
mal form. It therefore suffices to characterise concepts in DLP normal form that are a
DLP description logic. When convenient, we continue to use GCIsC ⊑ D to represent
the unique DLP normal form of¬C ⊔ D. Exploiting associativity and commutativity
of ⊓ and of⊔, we furthermore disregard order and nesting of multiple conjunctions or
disjunctions.

Whereas structurally valid and invalid subconcepts are ignored in DLP normal
forms, we still have reason to consider concepts with restricted extensions. We thus
useD≤n (D≥ω−n) to denote the sublanguage of concepts ofL≤n (L≥ω−n) that are in DLP
normal form.

Before giving the full definition of a large – actually, as we will show below,the
largest– DLP description logic, we provide some examples to sketch the complexities
of this endeavour (datalog emulations are provided in parentheses). DLP expressions of
the formA ⊓ ∃R.B ⊑ ∀S.C (A(x) ∧ R(x, y) ∧ B(y) ∧ S(x, z) → C(z)) are well-known.
The same is true forA ⊑ ∃R.{c} (A(x) → R(x, c)) but hardly forA ⊑ >2R.({c} ⊔ {d})
(A(x) → R(x, c), A(x) → R(x, d)). Another unusual form of DLP axioms arises when
Skolem constants (not functions) can be used as in the case{c} ⊑ >2R.A (R(c, s),
R(c, s′), A(s), A(s′), s ≈ s′ → ⊥ with fresh s, s′) andA ⊑ ∃R.({c} ⊓ ∃S.⊤) (A(x) →
R(x, c), A(x)→ S(c, s) with freshs). Besides these simple cases, there are various DLP
axioms for which the emulation in datalog is significantly more complicated, typically
requiring an exponential number of rules. Examples are{c} ⊑ >2R.(¬{a} ⊔ A⊔ B) and
{c} ⊑ >5R.(A⊔ {a} ⊔ ({b} ⊓ 61S.({c} ⊔ {d}))). These cases are based on the complex
semantic interactions between nominals and atleast-restrictions.

Definition 9. We define the description logicDLP to contain all knowledge bases con-
sisting only ofSROIQfree axioms which are

– RBox axioms, or
– GCIs C⊑ D such that the DLP normal form of¬C⊔D is aDDLP concept as defined

in the following grammar:

DDLPF ⊤ | ⊥ | CH | D=n (n ≥ 1) | C,⊤

whereCH is defined as in Fig.5, andD=n andC,⊤ are defined as in Fig.6, or
– Abox axioms C(a) where the DLP normal form of C is⊤, ⊥, or a Da concept as

defined in Fig.5.

In spite of the immense simplifications that DLP normal form provides, the def-
inition of DLP still turns out to be extremely complex. We have not succeeded in
simplifying the presentation any further without loosing substantial expressive features.
Some intuitive explanations help to understand the underlying ideas. It is instructive to
also compare these intuitions to the above examples.

The core language elements are in Fig.5. Since all concepts are in DNF, each sub-
language consists of a conjunctive partC and a disjunctive partD. Definitions of DLP
typically distinguish between “head” and “body” concepts,andCH andCB play a sim-
ilar role in our definition.CH represents concepts that carry the full expressive power
of a DLP GCI, and that can serve as right-hand sides (“heads”)of DLP GCIs.CB con-
cepts can be seen as negated generic left hand sides (“bodies”) of GCIs. However, these

Body concepts: forC in normal form,C ∈ DB iffC ⊔ A (or ¬C ⊑ A) is in DLP

CBF ¬A | ¬{I } | ¬∃R.Self | 60R.¬(DB ∪ {⊥}) | CB ⊓CB

DBF CB | DB ⊔ DB

Head concepts: forC in normal form,C ∈ DH iff A ⊑ C is in DLP

CH F CB | A | {I } | ∃R.Self | >nR.Dn! | 60R.¬DH | 61R.¬(DB ∪ {⊥}) | CH ⊓CH | D1!

DH F CH | DH ⊔ DB | Da ⊔ C≥
Assertional concepts: forC in normal form,C ∈ Da iff {a} ⊑ C is in DLP

CaF CH | >nR.D>n | Ca ⊓Ca

DaF Ca | Da ⊔DB

Disjunctions of nominal assertions of the form{I } ⊓Ca

D1! F {I } | {I } ⊓ Ca

Dm+1! F Dm! ⊔ D1!

Conjunction of negated nominals, i.e. complements of some nominal disjunction

C¬1F ¬{I }

C¬(m+1)F C¬m⊓ ¬{I }

C≥ F ¬{I } | C≥ ⊓C≥
Filler concepts for>n in Da

D>n F ⊤ | C¬m⊔ D+a (1 ≤ m≤ n2 − n) | DB ⊔ D+m! (m< n) |
Da ⊔ D+m! ⊔ Dl! (for r ≔ n− (m+ l) we haver > 0 andr(r − 1) ≥ m)
where no disjuncts are added for expressionsD+0! andD0!

Extended concepts with restricted forms of (“local”) disjunctions, used inD>n only

C+BF CB | 60R.¬D+B | 6nR.¬(D+a ∩ D≥ω−m) | C+B ⊓ C+B
D+BF C+B | D

+

B ⊔ D+B | D
+

a ⊔C≥

C+H F CH | >nR.D+n! | 60R.¬D+H | 61R.¬D+B | 6nR.¬(D+a ∩D≥ω−m) | C+H ⊓C+H | D
+

1!

D+H F C+H | D
+

H ⊔ D+B | D
+

a ⊔ C≥

C+a F C+H | >nR.(D+a ∪ {⊤}) | C
+

a ⊓C+a
D+a F C+a | D

+

a ⊔ D+a
D+1! F {I } ⊓C+a

D+m+1! F D+m! ⊔ D+1!

Fig. 5.Grammars for defining DLP concepts in DLP normal form

Additional concepts based on global domain size restrictions

D=1F {I } ⊓ Cp
H

D=m+1F D=m⊔ ({I } ⊓ C=m+1
⊥)

Additional concepts expressing⊤ for unary domains (“propositional” case)

Cp
⊤ F {I } | C

p
⊤ ⊓ Cp

⊤ | 60R.¬(Dp
⊤) | 6nR.¬D (n ≥ 1)

Dp
⊤ F Cp

⊤ | D
p
⊤ ⊔D

Additional head and body concept expressions for unary domains (“propositional” case)

Cp
BF C=1

⊥ | C
p
⊤ | ¬A | ¬∃R.Self | Cp

B ⊓ Cp
B | 60R.¬(Dp

B ∪ {⊥})

Dp
BF Dp

⊤ | D
p
B | D

p
B ⊔ Dp

B

Cp
H F Cp

B | A | ∃R.Self | Cp
H ⊓ Cp

H | >1R.Dp
H | 60R.¬Dp

H

Dp
H F Dp

⊤ | C
p
H | D

p
H ⊔Dp

B

Additional structurally unsatisfiable concepts for domains of restricted size

C=1
⊥ F ¬{I } | C

=1
⊥ ⊓ C | >1R.D=1

⊥ | >nR.D (n ≥ 2)

C=m+1
⊥ F C=m+1

⊥ ⊓C | >nR.D=m+1
⊥ (n ≥ 1) | >nR.D (n ≥ m+ 2)

D=m
⊥ F C=m

⊥ | D
=m
⊥ ⊔ D=m

⊥

Concepts that can never hold for all individuals

C,⊤ F ¬{I } | C,⊤ ⊓C

D: concepts in DLP normal form that are not structurally validor unsatisfiable
C: concepts ofD that are no disjunctions

Fig. 6.Grammars for defining DLP concepts: special cases with restricted domain size

basic classes are not sufficient for defining a maximal DLP.Ca characterises concept
expressions which can be asserted for named individuals – these are even more expres-
sive thanCH in that existential restrictions are allowed (intuitively, this is possible as
in the context of known individuals the existentially asserted role neighbours can be
expressed by Skolem constants).Dm! concepts then can be viewed as collections of in-
dividual assertions (e.g.{a} ⊓ B). Another way of stating such assertions is to useC≥ in
a disjunction (e.g.¬{a} ⊔ B).

By far the most complex semantic interactions occur for atleast-restrictions in ABox
assertions:D>n and all subsequent definitions address this single case. Forexample, the
DLP axiom{a} ⊑ >2R.(¬{b} ⊔ A⊔ B) can be semantically emulated by the following
set of datalog rules, whereci are auxiliary constants:

R(a, c1), R(a, c2), b ≈ c1→ A(b), b ≈ c2→ B(b).

This emulation uses internal symbols to resolve apparentlydisjunctive cases in a
deterministic way. The datalog program does not represent disjunctive information: its
least model simply contains two successors that are not equal to b. The nested disjunc-
tion only becomes relevant in the context of some disjunctive FOL= formula, such as
∀x.x ≈ a∨ x ≈ b. The considered theory is no longer datalog in this case, andthe pro-
gram simply “re-uses” the disjunctive expressive power provided by the external theory.

The fact that the actual program is far from being semantically equivalent to the original
axiom illustrates the motive and utility of our definition ofsemantic emulation.

Many uses of nominals and atleast-restrictions lead to morecomplex interactions,
some of which require completely different encodings. This is witnessed by the more
complex arithmetic side condition used inD>n . Concepts inD≤m ∩ D+a correspond to
disjunctions ofm nominal classes, each of which is required to satisfy further disjunc-
tive conditions, as e.g.{b} ⊓ >1R.(A ⊔ B). Now, as an example, a disjunction of an
atomic class and four such “disjunctive nominals” is allowed as a filler for>7 (since
3× 2 ≥ 4) but not for>6 (since 2× 1 < 4). Also note that the disjunctive concepts like
D+H andD+a that are allowed in fillers do not allow all types of disjunctive information
but only a finite amount of “local” disjunctions. For example, {a} ⊔ B⊔C requires one
“local” decision abouta, whereas concepts like{a} ⊓ 60R.¬(B⊔C) or {a} ⊓ 62R.¬⊥
require arbitrarily many decisions for allRsuccessors.

The remaining grammars in Fig.6 take care of less interesting special cases. Most
importantly,Cp

H covers all concepts that can be emulated if the interpretation domain is
restricted to contain just one individual.C,⊤ contains axioms which make the knowl-
edge base inconsistent as they deny the existence of a nominal. The auxiliary classes
C=m
⊥ describe concepts that cannot be satisfied by an interpretation with at mostm ele-

ments in their domain, as described in the following lemma.

Lemma 5. A structural concept C, ⊥ in DLP normal form is inC=m
⊥ as defined in

Fig. 6 for some m≥ 1 iff, for all interpretationsI with domain size#(∆I) ≤ m, we find
I |= C ⊑ ⊥.

Proof. The “only if” direction can be shown by an easy induction, where the base cases
are given by concepts>n R.D with n > m, and – in the casen = 1 – negated nominals
¬{a}. The proof is straightforward and we omit further details.

For the “if” direction, assume thatC < C=m
⊥ ∪ {⊥}, and let∆ be a domain of size

m, i.e. #(∆) = m. Then, for anyδ ∈ ∆, we can find an interpretationI(δ,C) such that
∆I(δ,C)

= ∆ andδ ∈ CI(δ,C). The base cases withC of the formC, ∃R.Self, {I }, ¬C,
¬∃R.Self, and – if n = 1 – ¬{I } are obvious. IfC = D1 ⊔ D2, then, without loss of
generality,D1 < C=m

⊥ andI(δ,C) ≔ I(δ,D1) satisfies the claim.
Now assume thatC is of the formD1 ⊓ D2. ThenD1,D2 < C=m

⊥ ∪ {⊥}, and we
find interpretationsI(δ,D1) andI(δ,D2) as in the hypothesis. SinceC is structural, the
hypothesis forD1 is also satisfied by any variantI′(δ,D1) of I(δ,D1) which is obtained
by changing the interpretation of symbols that occur inD2. Thus we can assume without
loss of generality thatI(δ,D1) has been chosen such that it agrees withI(δ,D2) on all
signature symbols that occur inD2. By a symmetric argumentation forI(δ,D2), we
find that such anI(δ,D1) would also satisfy the hypothesis forD2, and hence we can
setI(δ,C) ≔ I(δ,D1).

If C = 6n R.D, then any interpretationI(δ,C) with RI(δ,C) = ∅ satisfies the claim.
If C = >n R.D with n ≤ m, then consider distinct elementsδ1, . . . , δn ∈ ∆. Using
structurality and the induction hypothesis again, we find a modelI(δ,C) = I(δ1,D) =
. . . = I(δn,D) such thatRI(δ,C)

= {〈δ, δi | 1 ≤ i ≤ n〉}. ⊓⊔

C dlgB(¬A ⊑ C)

⊥ {A(x)} ∪ PInv

¬B {B(x)→ A(x)} ∪ PInv

¬{c} {A(c)} ∪ PInv

¬∃R.Self {R(x, x)→ A(x)} ∪ PInv

D1 ⊓ D2 dlgB(¬A ⊑ D1) ∪ dlgB(¬A ⊑ D2)

D1 ⊔ D2 dlgB(¬X1 ⊑ D1) ∪ dlgB(¬X2 ⊑ D2) ∪ {X1(x) ∧ X2(x)→ A(x)}

60R.¬D dlgB(¬X ⊑ D) ∪ {R(x, y) ∧ X(y)→ A(x)}

A,B concept names,c an individual name,Ra role,X(i) fresh concept names

Fig. 7. Transforming axioms¬A ⊑ (DB ∪ {⊥}) to datalog

6 EmulatingDLP in Datalog

In this section, we show that knowledge bases ofDLP as given in Definition9 can
indeed be emulated in datalog.

Emulations are generally established by means of recursively defined functions that
translateDLP axioms to datalog. Relevant (auxiliary) transformations are required
for each of the languages defined in Fig.5 and6. In all cases, the built-in semantics
of inverse roles is explicitly needed in datalog. For this purpose, an auxiliary datalog
programPInv is defined asPInv ≔ {R(x, y) → Inv(R)(y, x) | R ∈ R}, whereR is the set
of roles of the given signature. We begin with the rather simple case ofDB.

Lemma 6. EveryDLP axiom¬A ⊑ C with A a concept name and C∈ DB ∪ {⊥} is
semantically emulated by the datalog programdlgB(¬A ⊑ C) as defined in Fig.7.

Proof. Note that the definition in Fig.7 is well – especially all recursive uses ofdlgB

refer to arguments in the domain of this function. The proof proceeds by induction over
the structure ofC, showing that the conditions of Definition1 are satisfied. We show a
single induction step to illustrate the easy argumentation.

Consider the caseC = D1 ⊔ D2. For one direction of the claim, consider any model
I of ¬A ⊑ C. An interpretationI′ over the extended signature is defined by setting
XI

′

i ≔ ∆I \ DIi for i = 1, 2. It is easy to see thatI′ |= {¬Xi ⊑ Di | i = 1, 2} ∪ {X1(x) ∧
X2(x) → A(x)}. By the induction hypothesis, we can find an interpretationI1 that
extendsI′ and such thatI1 |= dlgB(¬X1 ⊑ D1). Another application of the hypothesis
yields a modelI2 |= dlgB(¬A ⊑ C) as required to show the claim. The other direction
requires us to show that every model ofdlgB(¬A ⊑ C) is also a model of¬A ⊑ C, which
is obvious when applying the induction hypothesis. ⊓⊔

Now define, for a datalog programP and a ground literalA(c), a datalog program
P|A(c) ≔ {A(c) ∧ F → H | F → H ∈ P}. This way of manipulating datalog programs is
convenient for our following definitions. Clearly, ifP semantically emulates a formula
ϕ, thenP|A(c) semantically emulatesϕ ∨ ¬A(c).

C dlgH(A ⊑ C)

D ∈ DB dlgB(¬X ⊑ D) ∪ {A(x) ∧ X(x)→ ⊥}

B {A(x)→ B(x)} ∪ PInv

{c} {A(x)→ c ≈ x} ∪ PInv

∃R.Self {A(x)→ R(x, x)} ∪ PInv

D1 ⊓ D2 ∈ (DH ⊓ DH) dlgH(A ⊑ D1) ∪ dlgH(A ⊑ D2)

{c} ⊓ D ∈ D1! dlga({c} ⊑ D)|A(c) ∪ dlgH(A ⊑ {c})

D1 ⊔ D2 ∈ (DH ⊔ DB) dlgH(X2 ⊑ D1) ∪ dlgB(¬X1 ⊑ D2) ∪ {A(x) ∧ X1(x)→ X2(x)}

D1 ⊔ D2 ∈ (Da ⊔C≥)
⋃

c∈ind(D2) dlga({c} ⊑ D1)|A(c)

>n R.D ∈ (>nR.Dn!)
⋃

c∈I

(

{A(x)→ R(x, c)} ∪
⋃

d∈I\{c}{A(x) ∧ c ≈ d→ ⊥} ∪ dlga({c} ⊑ Dc)
)

I = ind(D), andDc such thatD = D′c ⊔ (Dc ⊓ {c}) for someD′c ∈ Dn−1!

60R.¬D dlgH(X ⊑ D) ∪ {A(x) ∧ R(x, y)→ X(y)}

61R.¬D dlgB(¬X ⊑ D) ∪ {A(x) ∧R(x, y) ∧ X(y) ∧ R(x, z) ∧ X(z)→ y ≈ z}

A,B concept names,c,d individual names,R a role,X(i) fresh concept names,
dlga({c} ⊑ C) as defined in Fig.9 below

Fig. 8.Transforming axiomsA ⊑ DH to datalog

The remaining language definitions of Fig.5 are interdependent, so the correspond-
ing translation needs to be established in a single recursion for which semantic emula-
tion is shown in a single structural induction. We still separate the relevant claims for
clarity, so the following lemmata can be considered as induction steps in the overall
proof. The following lemma illustrates a first, simple induction step:

Lemma 7. Consider a concept C∈ DH such that, for every proper subconcept D∈ Da

of C and individual symbol d, the programdlga({d} ⊑ D) semantically emulates{d} ⊑
D. Then, given a concept name A, the datalog programdlgH(A ⊑ C) as defined in Fig.8
semantically emulates A⊑ C.

Proof. Note that the definition is well, and especially that all usesof programsdlga({d} ⊑
D) do indeed refer to proper subconceptsD of C. The proof proceeds by induction, us-
ing similar arguments as in Lemma6. We illustrate a single case which uses some
features that did not occur before.

Consider the caseC = {c} ⊓ D ∈ D1!. For the one direction, letI be a model
of A ⊑ C. If π({c} ⊑ D) is a first-order formula that corresponds to{c} ⊑ D, then
I |= ¬A(c)∨ π({c} ⊑ D). Moreover,I |= A ⊑ {c}. By our assumptions and the induction
hypothesis,dlga({c} ⊑ D) semantically emulates{c} ⊑ D – hencedlga({c} ⊑ D)|A(c)

semantically emulates¬A(c) ∨ π({c} ⊑ D) –, anddlgH(A ⊑ {c}) semantically emulates
A ⊑ {c}. Since the auxiliary symbols that may occur in both datalog programs are
distinct, semantic emulation yields a single extended interpretationI′ such thatI′ |=
dlga({c} ⊑ D)|A(c) andI′ |= dlgH(A ⊑ {c}), as required. The other direction is shown in
a similar fashion by applying the induction hypothesis and assumptions of the lemma.

⊓⊔

The induction steps for definingdlga({c} ⊑ C) are rather more complex, and some
preparation is needed first. Concepts of the formsD+a , D+H , andD+B allow for restricted
forms of “local” disjunction. To make this notion explicit,we first elaborate how such
concepts can be expressed as disjunctions of finitely manyDLP knowledge bases.

Definition 10. Consider concept expressions C and D such that:

– C ∈ ¬C and D∈ D+B, or
– C ∈ C and D∈ D+H , or
– C ∈ {I } and D∈ D+a .

A set of knowledge basesKC⊑D is defined recursively as follows:

(1) If D ∈ Da thenKC⊑D ≔
{

{C ⊑ D}
}

.
Assume D< Da for the remaining cases.

(2) If D = D1 ⊓ D2 thenKC⊑D ≔
{

KB1 ∪ KB2 | KB1 ∈ KC⊑D1 ,KB2 ∈ KC⊑D2

}

.
(3) If D = D1 ⊔ D2 then:

(3a) If D1 ∈ C≥, define auxiliary sets of knowledge basesKM for M ⊆ ind(D1) as
follows:KM ≔

{

{

C ⊑
�

d∈M ¬{d}
}

∪
⋃

d∈ind(D1)\M KBd | KBd ∈ K{d}⊑D2

}

. Then
setKC⊑D ≔

⋃

M⊆ind(D1)KM.
(3b) If D1 ∈ D+B \ C≥, then consider fresh concept names B1 and B2, and define

KC⊑D ≔
{

{C ⊑ ¬B1 ⊔ B2} ∪ KB1 ∪ KB2 | KB1 ∈ K¬B1⊑D1 ,KB2 ∈ KB2⊑D2

}

.
(3c) If D1,D2 < D+B, thenKC⊑D ≔ KC⊑D1 ∪KC⊑D2 .

(4) If D = >n R.D′ then:
(4a) If D′ ∈ D+n! then w.l.o.g. D′ = D1 ⊔ . . .⊔ Dn with Di = {di} ⊓ D′i and D′i ∈ C+a .

DefineKC⊑D ≔
{

{

C ⊑ >n R.
⊔n

i=1{di}
}

∪
⋃n

i=1 KB i | KB i ∈ K{di }⊑D′i

}

.
(4b) If D′ < D+n! then consider a fresh individual name d and assume thatK{d}⊑D′ =

{KB1, . . . ,KBs}. Let di (i = 1, . . . , n) be fresh individuals, and letKB i
j denote

the knowledge baseKB j with all occurrences of d replaced by di . Then define

KC⊑D ≔
{

{

{di} ⊓ {d j} ⊑ ⊥ | 1≤ i < j ≤ n
}

∪
{

C ⊑ >1R.{di} | 1≤ i ≤ n
}

∪
⋃

1≤i≤n KB i
ki
| k1, . . . , kn ∈ {1, . . . , s}

}

.
(5) If D = 6n R.¬D′ then:

(5a) If D′ ∈ C≥ then a≥n-partitioningM of ind(D′) is a setM = {M1, . . . ,Mm}

of m ≥ n mutually disjoint non-empty sets Mi ⊆ ind(D′). Given such a≥n-
partitioning, defineKBM ≔

{

{c} ⊑ {d} | c, d ∈ Mi for some i∈ {1, . . . ,m}
}

∪
{

C ⊓
�

c∈S >1R.{c} ⊑ ⊥ | S ⊆ ind(D′), #{Mi | Mi ∩ S , ∅} > n
}

. Then define
KC⊑D ≔

{

KBM | M a≥n-partitioning ofind(D′)
}

.
(5b) If D′ = D1 ⊔ D2 where D1 ∈ C≥ and D2 ∈ D+a , then define a set of knowl-

edge basesKM for a set M⊆ ind(D1) as follows:KM ≔
{

KB ∪
⋃

d∈M KBd |

KB ∈ KC⊑D′′ with D′′ = 6n R.¬
�

d∈ind(D1)\M ¬{d},KBd ∈ K{d}⊑D2

}

. Then de-
fineKC⊑D ≔

⋃

M⊆ind(D1)KM.
(5c) If n≤ 1 and D′ ∈ D+H then consider a fresh concept name B, and set C′ ≔ ¬B

if D′ ∈ D+B and C′ ≔ B otherwise. DefineKC⊑D ≔
{

{

C ⊑ 6n R.¬C′
}

∪ KB |

KB ∈ KC′⊑D′
}

.

As usual, empty conjunctions are treated as⊤. In cases (3a) and (5b), the construction
may lead to axioms inL⊤; these axioms are omitted fromKC⊑D.

Observe that, without loss of generality, the cases in the previous definition are
indeed exhaustive and mutually exclusive forD ∈ D+a . In particular, cases (5a) and
(5b) cover all situations whereD ∈ (D≥ω−m ∩ D+a), where we find #ind(D′) > n and
#ind(D1) > n, respectively, since we assume thatD < Da. It is easy to verify that
all recursive uses ofKC⊑D satisfy the definition’s conditions onC andD, and that all
axioms in knowledge bases ofKC⊑D are in DLP normal form. Note that case (4b) can
only occur ifD ∈ D+a \D+H , soC must be a nominal in these cases. Similar observations
for the other cases allow us to state the following lemma.

Lemma 8. Consider concept expressions C and D as in Definition10. If D is in D+a
(D+H , D+B) then all axioms of the form C⊑ E in knowledge bases ofKC⊑D are such that
E is inDa (DH , DB).

In particular, the knowledge bases inKC⊑D are inDLP.

Proof. The claim can be verified by considering all axioms that are created in the cases
of Definition10. The claims forD+a , D+H , andD+B are interdependent and must be proven
together.

The claim clearly holds for the base case (1). Case (2) immediately follows from
the induction hypothesis. Case (3a) is trivial since additional axioms of the formC ⊑ E
do not occur in knowledge bases ofK{d}⊑D2. Case (3b) and (3c) are again immediate
from the induction hypothesis, where we note for (3b) thatD1 ⊔ D2 is in Da (DH , DB)
for D1 ∈ DB \ C≥ wheneverD2 is in Da (DH , DB).

Case (4a) can only occur ifD ∈ D+H \ D+B so it suffices to note that the concept
>n R.

⊔n
i=1{di} is in DH . Case (4b) in turn requires thatD ∈ D+a \ D+H , and clearly

>1R.{di} ∈ Da.
Cases (5a) is immediate, sinceC ⊓

�
c∈S >1R.{c} ⊑ ⊥ is equivalently expressed as

C ⊑
⊔

c∈S 60R.¬¬{c}, the conclusion of which is inDB. Case (5b) follows directly by
induction. Case (5c) comprises three relevant cases:n = 0 andD′ ∈ D+B (D ∈ D+B), n = 0
andD′ ∈ D+H (D ∈ D+H), n = 1 andD′ ∈ D+B (D ∈ D+H). We find thatC′ is in DB (DH)
wheneverD′ is in D+B (D+H), so that the claim holds in each case.

It remains to show the second part of the claim. Using the firstpart of the claim, the
preconditions onC andD imply that all axiomsC ⊑ E that are constructed forKC⊑D

are inDLP. AxiomsC′ ⊑ E inKC⊑D with C′ , C must be obtained from someKC′⊑D′

that was used in the construction ofKC⊑D. But such recursive constructions only occur
in cases where the preconditions of the definition are satisfied, so the claim follows by
induction. ⊓⊔

The next proposition shows thatC ⊑ D is emulated by the disjunction of the knowl-
edge bases inKC⊑D, thus establishing the correctness of the decomposition. DL does
not provide a syntax for knowledge base disjunctions, and wedo not want to move to
first-order logic here, so we use a slightly different formulation that follows Definition1.

Proposition 4. Consider concept expressions C and D as in Definition10, both based
on some signatureS . LetS ′ be the extended signature ofKC⊑D.

– Every interpretationI overS with I |= C ⊑ D can be extended to an interpreta-
tionI′ overS ′ such thatI′ |= KB for someKB ∈ KC⊑D.

– For every interpretationI′ overS ′ such thatI′ |= KB for someKB ∈ KC⊑D, we
find thatI′ |= C ⊑ D.

Proof. We proceed by induction. Case (1) is obvious. Cases (2) is immediate from the
induction hypothesis. For case (3a), letM be the largest set of individuals such that
I |= C ⊑

�
d∈M ¬{d}. Using the induction hypothesis, it is easy to see thatI |= C ⊑ D

implies that there is an extensionI′ of I such thatI′ |= KB for some KB∈ KM. The
converse is similar.

For case (3b), consider an interpretationI overS with I |= C ⊑ D. Consider the
extended signatureS ′ with the fresh concept namesB1 andB2, and define an extension
I′′ of I overS ′ by settingBI

′′

1 ≔ ¬DI1 andBI
′′

2 ≔ DI2 . ThenI′′ |= ¬B1 ⊑ D1 and
I′′ |= B2 ⊑ D2, and we can apply the induction hypothesis forK¬B1⊑D1 andKB2⊑D2 to
obtain modelsI′′i (over some extended signatureS ′′′) such thatI′′1 |= KB1 for some
KB1 ∈ K¬B1⊑D1 andI′′2 |= KB2 for some KB2 ∈ KB2⊑D2. SinceI′′1 andI′′2 agree onB1,
B2, and all symbols ofC ⊑ D, there is an interpretationI′ such thatI′ |= KB1 ∪ KB2.
SinceCI = ¬BI

′

1 ∪BI
′

2 , it is easy to see thatI′ satisfies the conditions of the claim. The
other direction of the claim for (3b) is an easy consequence of the induction hypothesis.

Case (3c) can only occur ifC ∈ {I }, and it is easy to see that the claim holds in this
case.

Case (4a) is again not hard to see when using the induction hypothesis. For case (4b),
first note thatC must be a nominal sinceD is cannot be inDH . The required semantic
emulation then is an easy consequence of standard Skolemization, where each successor
di may satisfy any of the sufficient subconditions that are captured by KBi

1, . . . ,KB i
s.

The reasoning for case (5a) is similar to case (3a): given an interpretationI, we find
a≥n-partitioningM such thatc, d ∈ Mi iff cI = dI. It is easy to see thatI |= C ⊑ D
impliesI |= KBM; no induction is required. The other direction is again obvious.

Case (5b) is a simple extension of case (5a) where a subsetM of individuals is se-
lected in each knowledge base to ensure that all individualsof M are instances ofD2,
thus reducing the requirement to a maximal number ofR-successors that do not belong
to M. To express this more formally, we use expressions>1U.({d} ⊓ E) whereU is
the universal role that can be semantically emulated inDLP – this allows us to embed
ABox assertions into GCIs. With this notation, we observe thatC ⊑ 6n R.¬(D1⊔D2) is
semantically emulated by the disjunction of all the axiomsC ⊑ 6n R.¬

�
d∈ind(D1)\M ¬{d}⊓�

d∈M >1U.({d} ⊓C2) for all M ⊆ ind(D1). It is easy to see that the construction in (5b)
corresponds to this disjunction, where conjunction is modelled as in case (2), and indi-
vidual assertions are encoded using the recursive constructionsK{d}⊑D2 that are valid by
the induction hypothesis. The converse is easily obtained by similar considerations.

Case (5c) uses a similar argument as case (3b). Consider an interpretationI over
S with I |= C ⊑ D. For the extended signatureS ′ with fresh concept nameB, an
extensionI′′ of I is defined by settingC′I

′′

≔ DI. By the induction hypothesis for
KC′⊑D′ , we find a modelI′ (over some extended signatureS ′′) such thatI′ |= KB for
some KB ∈ KC′⊑D′ . But then there is a corresponding knowledge base KB′

=
{

C ⊑
6n R.¬C′

}

∪ KB in KC⊑D such thatI′ |= KB′. ThusI′ satisfies the conditions of the
claim when restricted toS ′. The other direction is again easy. ⊓⊔

We can now define datalog programs for semantically emulating axioms of the form
{c} ⊑ >n R.D>n . We consider all three main cases –C¬m⊔D+a , DB⊔D+m! , Da⊔D+m!⊔Dl! –
individually, before combining these cases with the remaining forms ofDa to complete
the induction.

Lemma 9. Consider a constant c, and a concept C= >n R.D1⊔D2 such that D1 ∈ C¬m,
D2 ∈ D+a , and(1 ≤ m≤ n2 − n).

Assume that, for every individual symbol d and every knowledge baseKB ∈ K{d}⊑D2,
there is a datalog programdatalog(KB) that semantically emulatesKB.

Then we can effectively construct a datalog programdlga({c} ⊑ C) that semantically
emulates{c} ⊑ C.

Proof. Let h be the smallest number such that 2h ≥ (#K{d}⊑D2)
n, whered is an arbitrary

constant (clearly, the cardinality #K{d}⊑D2 does not depend on the choice ofd). Now let
S ≔ {ci jk | i, j ∈ {1, . . . , n}, k ∈ {1, . . . , h}} be a set ofn × n × h fresh constants. It is
convenient to consider the indices of constants inS to be coordinates, so thatS consists
of the elements of a three dimensional matrix withn rows, n columns, andh layers.
Now given anyk = 1, . . . , h, we define setsAk

i , B
k
i ⊆ S for all i = 1, . . . , n by setting:

Ak
i ≔ {ci1k, ci2k, . . . , cink} and Bk

i ≔ {c1ik, c2ik, . . . , cnik}.

In other words,Ak
i (Bk

i) is the ith row (column) in layerh of S. Now given a set
O ⊆ S, defineO(k) ≔ {ci jk ∈ O | i, j ∈ {1, . . . , n}} – the intersection ofO with layerh in
S. Now for everyh-tuplev = 〈X1, . . . ,Xh〉 with Xk ∈ {A, B} for all k = 1, . . . , h, there is
a unique partitioningPv = {O1, . . . ,On} of S into n disjoint subsetsOi ⊆ S (1 ≤ i ≤ n)
for which the following holds: for everyi ∈ {1, . . . , n} andk ∈ {1, . . . , h}, we find that
Oi(k) = (Xk)k

i . Observe that the 2h partitionsPv that can be constructed in this way are
indeed mutually distinct. Intuitively, the partitionsPv thus encode binary numbers ofh
digits.

Given partitioningsP = {O1, . . . ,Op} andP′ = {O′1, . . . ,O
′
p′ } of S, we say thatP is

finer than P′ if, for every i ∈ {1, . . . , p′}, we find thatO′i is a union of partsO j ∈ P. Note
that every partO j can be contained in at most one partO′i , and thusp′ ≤ p. Partitions of
the formPv have the following important property: for every partitionP = {O1, . . . ,Op}

of S with p ∈ {n, . . . , n+m− 1}, there is at most one partition of the formPv such that
P is finer thanPv. To show this, consider twoh-tuplesv,w ⊆ {A, B}h that differ in (at
least) thekth component (k ∈ {1, . . . , h}), i.e. (w.l.o.g.) thekth component ofv is A, and
thekth component ofw is B. Now for any partitionP that is finer thanPv andPw, for
everyi ∈ {1, . . . , n} there are partsO1, . . . ,O j ∈ P such thatAk

i = O1(k) ∪ . . . ∪ O j(k),
and partsO′1, . . . ,O

′
j′ ∈ P such thatBk

i = O′1(k)∪ . . .∪O′j′ (k). This implies thatP cannot

contain a partO such that #O(k) > 1 since no two setsAk
i andBk

i′ share more than one
constant. HenceP must have at leastn2 parts to cover all elements in layerk. Now the
preconditionm≤ n2 − n implies thatn+m− 1 < n2, which establishes the claim.

To establish the required datalog program, partitions of constants are considered
as equality classes, and rules are created to check for particular equalities. To this end,
define a conjunction~O� ≔ c1∧. . .∧c j for every setO = {c1, . . . , cn} ⊆ S. This notation
is extended to partitionsP = {O1, . . . ,Oi} of S by setting~P� ≔ ~O1� ∧ . . . ∧ ~Oi�.

Consider a fresh constantd. For everyh-tuplev ∈ {A, B}h, let φv : Pv → K{d}⊑D2

be a mapping of parts ofPv to knowledge bases inK{d}⊑D2 such that, for everyn-tuple

K = 〈KB1, . . . ,KBn〉 ∈ K
n
{d}⊑D2

of knowledge bases, there is anh-tuplew ∈ {A, B}h with
partition Pv = {O1, . . . ,On} as defined above, andφw(Oi) = KB i for all i = 1, . . . , n.
This choice of the functionsφv is possible due to our initial choice ofh, since there are
2h such functions but only #Kn

{d}⊑D2
differentn-tuples of knowledge bases fromK{d}⊑D2.

For every partitionP of S into i ∈ {1, . . . , n + m− 1} parts, datalog rules are con-
structed as follows. IfP is not finer than any partition of the formPv, then only the rule
~P� → ⊥ is added (this includes the case ofP having less thann parts). Otherwise, let
Pv be the unique partition of this form that is finer thanP. For every partO of Pv, select
one partπ(O) of P such thatπ(O) ⊆ O, so that there aren distinctselected partsin P.
Now letd1, . . . , dm denote themconstants ofD1. For everye= d1, . . . , dm and for every
partO ∈ Pv, let A be a fresh concept name and construct the following datalog:

(i) ~P� ∧ e≈ f → A(e), wheref ∈ π(O) is arbitrary,
(ii) datalog(KB′)|A(e) where KB′ is obtained fromφv(O) by replacing all occurrences

of {d} with {e}.

Now dlga({c} ⊑ C) is defined to be the union ofPInv and all datalog rules constructed
above, and the datalog factsR(c, ci jk) for all i, j ∈ {1, . . . , n} andk ∈ {1, . . . , h}.

It remains to show thatdlga({c} ⊑ C) semantically emulates{c} ⊑ C. For the one
direction, consider a modelI of {c} ⊑ C. We need to show that it can be extended
to a model ofdlga({c} ⊑ C). Selectn distinct R-successorsδ1, . . . , δn of cI such that
δi ∈ (D1⊔D2)I for all i = 1, . . . , n. By Proposition4, for all e ∈ {d1, . . . , dm}, if eI ∈ DI2
then there is an extended interpretationIe such thatIe |= KBe for some KBe ∈ K{e}⊑D2.
SinceIe extendsI only over fresh symbols that occur in oneK{e}⊑D2, all interpretations
Ie can be combined into a single extensionI′ of I.

Now let KB′e ∈ K{d}⊑D2 denote the knowledge base from which KBe is obtained
by replacing all axioms of the form{d} ⊑ F by {e} ⊑ F, whered is the constant used
when constructingdlga({c} ⊑ C). By the construction ofdlga({c} ⊑ C), there is a tuple
v ∈ {A, B}h and a partitionPv = {O1, . . . ,On} such thatφv(Oi) = KB′dj

for all i = 1, . . . , n

for whichdIj = δi anddIl , δi for all l < j.

Consider anye ∈ {d1, . . . , dm} with eI ∈ DI2 . The modelI′ above was constructed
such thatI′ |= KBe, and thus, by the assumption of the lemma, there is an extensionJ ′

of I′ such thatJ ′ |= datalog(KBe). We define a modelJ of dlga({c} ⊑ C) by further
extendingJ ′. For all constantsf ∈ S, definefJ ≔ δi for the uniquei ∈ {1, . . . , n} such
that f ∈ Oi . Moreover, for each of the fresh concept nameA introduced in (i) above, let
AJ be the smallest extension for which all rules of (i) are satisfied byJ.

Now it is easy to see thatJ satisfies the factsR(c, ci jk) for all i, j ∈ {1, . . . , n} and
k ∈ {1, . . . , h}. To see that it also satisfies the rules constructed in (ii) above, note that
the rules (ii) for some particulare ∈ {c1, . . . , cm} are always satisfied ifJ 6|= A(e).
AssumeJ |= A(e). By minimality of AJ , this implies thatJ |= e ≈ f for some
f ∈ S that belongs to a partOi of Pv, and thuseJ = δi for somei ∈ {1, . . . , n}. By
construction,φv(Oi) is of the form KB′dj

(wheree might be unequal tod j, but with

eJ = dJj = δi). Sinceδi ∈ (D1 ⊔ D2)I, we findδi ∈ DI2 and thusJ |= dlga({b′} ⊑ F)
for all {b} ⊑ F ∈ KB′dj

, whereb′ = e if b = d andb′ = b otherwise. This shows that the
rules (ii) are indeed satisfied byJ.

For the other direction, consider a modelI of dlga({c} ⊑ C). We need to show
that it is also a model of{c} ⊑ C. Let P be the partition ofS that corresponds to the
≈ equivalence classes onS induced byI. By the construction ofdlga({c} ⊑ C), the
partition P is finer than some partition of the formPv, and thus has at leastn parts.
Moreover,n of the parts ofP are selected parts of the formπ(O) for someO ∈ Pv. It
is not hard to see that then domain elements ofI that correspond to the selected parts
areR-successors ofc that belong to (D1 ⊔ D2)I, which is an easy consequence of rules
(i) and (ii) together with the assumed model-theoretic correspondences for axioms in
K{d}⊑D2. ⊓⊔

Lemma 10. Consider a constant c, and a concept C= >n R.D1⊔D2 such that D1 ∈ DB,
D2 ∈ D+m! with m< n of the form D2 = ({c1} ⊓C1) ⊔ . . . ⊔ ({cm} ⊓Cm).

Assume that, for every i∈ {1, . . . ,m} and every knowledge baseKB ∈ K{ci }⊑Ci , there
is a datalog programdatalog(KB) that semantically emulatesKB.

Then we can effectively construct a datalog programdlga({c} ⊑ C) that semantically
emulates{c} ⊑ C.

Proof. For eachi = 1, . . . ,m, let l i ≥ 1 be the least number such that 2l i ≥ #K{ci }⊑Ci ,
and consider a setSi of fresh constantsSi ≔ {ai1, bi1, . . . , ail i , bil i }. Let Vi denote the
set of all sets of the form{x1, x2, . . . , xl i } with xh ∈ {aih, bih} for all h ∈ {1, . . . , l i}. Let
φi : Vi → K{ci }⊑Ci be an arbitrary surjective function (which exists due to thechoice of
a sufficiently largel i).

Consider fresh constantsd1, . . . , dn−m (note thatn−m≥ 1) and a fresh concept name
B. We construct the following datalog rules and programs:

(i) dlgB(¬B ⊑ D1)
(ii) for every i ∈ {1, . . . , n−m}:

R(c, di),
B(di)→ ⊥ for a fresh concept nameA,

(iii) for every i, j ∈ {1, . . . , n−m}, i , j:
di ≈ d j → ⊥,

(iv) for everyi ∈ {1, . . . , n−m} and j ∈ {1, . . . ,m}:
di ≈ c j → ⊥,

(v) for everyi ∈ {1, . . . ,m} andh ∈ {1, . . . , l i}:
R(c, aih),
R(c, bih),
aih ≈ bih → ⊥,

(vi) for everyi ∈ {1, . . . ,m} andv = {xi1, xi2, . . . , xil i } ∈ Vi :
B(xi1) ∧ . . . ∧ B(xil i)→ A(ci) for a fresh concept nameA,
A(ci)→ ci ≈ xi1,
datalog(φi(v))|A(ci),

(vii) for every i, j ∈ {1, . . . ,m}, i , j, for everye∈ Si and f ∈ S j ∪ {d1, . . . , dn−m}:
e≈ f → e≈ d1.

Now dlga({c} ⊑ C) is defined as the union ofPInv and all rules and programs constructed
above.

It remains to show thatdlga({c} ⊑ C) semantically emulates{c} ⊑ C. For the one
direction, consider any modelI of {c} ⊑ C. Selectn distinctR-successorsδ1, . . . , δn of
cI such thatδi ∈ (D1 ⊔D2)I for all i = 1, . . . , n. By Proposition4, for all i ∈ {1, . . . ,m},
if cIi ∈ CIi then there is an extended interpretationIi such thatIi |= KB i for some
KB i ∈ K{ci }⊑Ci . SinceIi extendsI only over fresh symbols that occur in oneK{ci }⊑Ci ,
all interpretationsIi can be combined into a single extensionI′ of I. By the assumption
of the lemma, we find an extensionJ ′ of I′ such thatJ ′ |= datalog(KB i).

A modelJ of dlga({c} ⊑ C) is defined by further extendingJ ′. For the auxiliary
conceptB of (i), defineBJ ≔ (¬D1)I and letJ be such thatJ |= dlgB(¬B ⊑ D1)
(which is possible by Lemma6). For eachi ∈ {1, . . . , n − m}, selectdJi ∈ {δ1, . . . , δn}

such that rules (ii)–(iv) above are satisfied. This is alwayspossible since at mostm
elements of{δ1, . . . , δn} can be in (¬D1)I. Without loss of generality, we assume that
dJi = δi .

Now select an injective functionψ : {1, . . . ,m} → {2, . . . , n} such thatψ(i) = j if
cIi = δ j for some j ∈ {1, . . . , n} and there is noi′ < i such thatcIi′ = δ j ; andψ(i) ∈ DI1
otherwise. Again, it is not hard to see that this is always possible. Now for eachi ∈
{1, . . . ,m}, interpretations for constants inSi are defined as follows. IfcIi ∈ CIi , then let
v ∈ Vi be such that KBi = φi(v). Otherwise, letv ∈ Vi be arbitrary. For allh ∈ {1, . . . , l i}
andx ∈ {aih, bih}, definexJ ≔ δψ(i) if x ∈ v, andxJ ≔ δ1 otherwise. It is not hard to
see thatJ satisfies rules (v) and (vii). For the auxiliary conceptsA introduced in (vi)
for some setw ∈ Vi , setAJ ≔ {cIi } if w = v andδψ(i) ∈ (¬D1)I (which also implies
cIi = δψ(i)), and setAJ ≔ ∅ otherwise. Thus, there is at most one such auxiliary concept
for i that is non-empty, corresponding to the setv ∈ Vi for which KBi = φi(v). The
construction ofJ ′ ensures that the remaining rules of (vi) are satisfied as required. It
should be observed that this construction also works in the case thatcIi = cIj for some
i , j.

For the other direction, consider any modelI of dlga({c} ⊑ C). The rules of (i)–
(iv) obviously establishn − m distinct R-successorsd1, . . . , dn−m of c that are inD1.
According to rules (vii), for everyi ∈ {1, . . . ,m} and everyk ∈ {1, . . . , l i}, somexik ∈

{aik, bik} is unequal to all constants inS j∪{d1, . . . , dm−n} for all j , i with j ∈ {1, . . . ,m}.
Hence, if the premise of the first rule of (vi) is false for allv ∈ Vi , then there must be
somek ∈ {1, . . . , l i} such thatxIik < BI and hence, by (i),xIik ∈ DI1 , yielding the required
distinct R-successor fori. Otherwise, if the premise of the first rule of (vi) is true for
somev ∈ Vi , thencIi ≈ xi1 is the required successor, sincecIi ∈ DI2 is ensured by the
rules of (vi) together with the assumptions of the lemma. ⊓⊔

Lemma 11. Consider a constant c, and a concept C= >n R.D1 ⊔ D2 ⊔ D3 such that
D1 ∈ Da, D2 ∈ D+m! of the form D2 = ({c1} ⊓ C1) ⊔ . . . ⊔ ({cm} ⊓ Cm), D3 ∈ D+l! of the
form D3 = ({cm+1} ⊓Cm+1)⊔ . . .⊔ ({cm+l} ⊓Cm+l), and for r≔ n− (m+ l) we have r> 0
and r(r − 1) ≥ m.

Assume that, for every constant e,dlga({e} ⊑ D1) semantically emulates{e} ⊑ D1,
and that, for everyKB ∈ K{ci }⊑Ci (i ∈ {1, . . . ,m+ l}), datalog(KB) semantically emulates
KB.

Then we can effectively construct a datalog programdlga({c} ⊑ C) that semantically
emulates{c} ⊑ C.

Proof. Let s ≥ 1 be such that 2s ≥
∏m

i=1 #K{ci }⊑Ci . Consider the following sets of fresh
constants:

– {di | i = 1, . . . , r},
– {ei j | i = 1, . . . ,m, j = 1, . . . , s},
– { fi | i = 1, . . . , l}.

Now, for eachi = 1, . . . ,m, let φi : {1, 2}s → K{ci }⊑Ci be a surjective function froms-
ary binary numbers toK{ci }⊑Ci , which exists due to our choice ofs. Moreover, for each
i = 1, . . . ,m, let ψi = 〈h, k〉 be a pair of distinct numbersh, k ∈ {1, . . . , r}, h , k such
thatψi , ψ j wheneveri , j. This choice is possible since there arer(r − 1) such pairs
andr(r − 1) ≥ m was assumed. Given anyj-ary tupleθ, we useθ(k) to denote thekth
component ofθ for k = 1, . . . , j. In particular, we use the notationψi(ν(j)) (i = 1, . . . ,m,
j = 1, . . . , s) with tuplesν ∈ {1, 2}s below.

Let B be a fresh concept name – we will use it to mark certain distinct R-successors
that the datalog program must ensure to exist. We construct the following datalog rules
and programs:

(i) for all e, f ∈ {d1, . . . , dr , c1, . . . , cm+l} with e, f :
B(e) ∧ B(f) ∧ e≈ f → ⊥,
B(e)→ R(c, e),

(ii) for all i ∈ {1, . . . , r}:
B(di),
dlga({di} ⊑ D1),

(iii) for all i ∈ {1, . . . ,m}, ν ∈ {1, 2}s, h ∈ {1, . . . , s}:
R(c, eih),
dlga({eih} ⊑ D1),
for all j ∈ {1, . . . , r}, j , ψi(1), j , ψi(2): eih ≈ d j → ⊥,
ei1 ≈ dψi(ν(1)) ∧ . . . ∧ eis ≈ dψi(ν(s)) → A(ci) for a fresh concept nameA,
A(ci)→ B(ci),
datalog(φi(v))|A(ci),

(iv) for all i, j ∈ {1, . . . ,m} with i , j, for all h ∈ {1, . . . , s}:
if there isk ∈ {1, 2} such thatψi(k) = ψ j(k): eih ≈ ejh → eih ≈ dψi(k),
otherwise:eih ≈ ejh → ⊥,

(v) for all i ∈ {1, . . . , l}, j ∈ {1, . . . , r}:
R(c, fi),
dlga({ fi} ⊑ D1),
fi ≈ d j → A(cm+i) for a fresh concept nameA,
A(cm+i)→ B(cm+i),
dlga({cm+i} ⊑ Cm+i)|A(cm+i),

(vi) for all e ∈ { f1, . . . , fl , e11, . . . , e1s, . . . , em1, . . . , ems}:
for all f ∈ { f1, . . . , fl} with e, f : f ≈ e→ f ≈ d1,
for all f ∈ {c1, . . . , cm+l}: B(f) ∧ f ≈ e→ ⊥.

Now dlga({c} ⊑ C) is defined as the union ofPInv and all rules and programs con-
structed above.

It remains to show thatdlga({c} ⊑ C) that semantically emulates{c} ⊑ C. For the
one direction, consider any modelI of {c} ⊑ C. Selectn distinctR-successorsδ1, . . . , δn

of cI such thatδi ∈ (D1 ⊔ D2 ⊔ D3)I for all i = 1, . . . , n. By Proposition4, for all
i ∈ {1, . . . ,m}, if cIi ∈ CIi then there is an extended interpretationIi such thatIi |= KB i

for some KBi ∈ K{ci }⊑Ci . As in the proof of Lemma10 above, we can find an extended
interpretationJ ′ such thatJ ′ |= KB i . Using a similar argument, we can choseJ ′ such
thatJ ′ |= dlga({c j} ⊑ C j) for eachj ∈ {m+ 1, . . . ,m+ l} for whichcIj ∈ CIj .

A modelJ of dlga({c} ⊑ C) is defined by further extendingJ ′. At leastr elements
δ ∈ {δ1, . . . , δn} must satisfyδ ∈ DI1 – w.l.o.g. we assume that this is the case for
δ1, . . . , δr . Then setdJi ≔ δi for all i ∈ {1, . . . , r}.

Now select an injective functionσ : {1, . . . ,m+ l} → {1, . . . , n} such thatσ(i) = j
if cIi ∈ CIi , cIi = δ j for some j ∈ {1, . . . , n} and there is noi′ < i such thatcIi′ = δ j ;
andσ(i) ∈ DI1 otherwise. Such a function clearly exists. Consider somei ∈ {1, . . . ,m}.
If δI

σ(i) ∈ DI1 , then seteJih ≔ σ(i) for eachh ∈ {1, . . . , s}. Otherwise,δσ(i) = cIi and

cIi ∈ CIi . In this case, letν ∈ {1, 2}s be such that KBi = φi(ν), and defineeJih ≔ dJ
ψi(ν(h))

for eachh ∈ {1, . . . , s}. Finally, for i ∈ {1, . . . , l}, definefJi ≔ δσ(m+i).
By the assumption of the lemma, for each program of the formdlga({e} ⊑ D) that

is constructed in rules (ii), (iii), and (v), we can extendJ to symbols ofdlga({e} ⊑ D)
so that the respective programs are satisfied. ForB we select the smallest extensions
BJ for which the rules of (ii), (iii), and (v) that useB are satisfied. It is easy to check
that the rules of (i) are satisfied. Similarly, we assign minimal extensions to all auxiliary
concept namesA introduced in (iii) and (v). Now it is not hard to check thatJ satisfies
all rules of (i)–(vi) as required.

For the other direction, consider any modelI of dlga({c} ⊑ C). The rules of (ii)
establishr distinct R-successorsd1, . . . , dr of c that are inD1. For anyi ∈ {1, . . . , l},
the rules of (iv) ensure thatfi is not equal to anyc j in B. The rules of (v) leave two
possibilities. Eitherfi is equal to some constantd j, in which casecm+i is anR-successor
of c that is inCm+i , and that is distinct from all otherch anddh by (i). Or fi is not equal
to any constantd j or fh (h , i), and thus not equal to anyehk either (vi); sofi constitutes
a newR-successor ofc that is inD1.

For anyi ∈ {1, . . . ,m}, if someeih is not equal todψi(1) or dψi(2), then the rules of
(iii) and (iv) ensure thateih is not equal to any other constant of the formd j or ejk.
Rules (iv) ensure thateih is also not equal to any constant of the formf j , and thuseih

constitutes an additionalR-successor ofc that is in D1. If no sucheih exists, then a
rule of (iii) applies for someν ∈ {1, 2}s, implying thatcIi ∈ AI for the respective fresh
concept nameA. But then the rules of (iii) together with the assumptions ofthe lemma
imply thatI |= φi(ν) ∈ K{ci }⊑Ci . By Proposition4, we find thatcIi ∈ CIi . Rules (i) and
(iv) ensure thatci is distinct from the remainingR-successors. Overall, we thus obtain
r +m+ l = n distinctR-successors ofc that belong toD1 ⊔ D2 ⊔ D3. ⊓⊔

Lemma 12. Consider a concept C∈ Da and constant c such that every datalog pro-
gram dlga({c} ⊑ D) (dlgH(X ⊑ D)) on the right hand side of Fig.9 semantically em-
ulates{c} ⊑ D (X ⊑ D). Then the datalog programdlga({c} ⊑ C) as defined in Fig.9
semantically emulates{c} ⊑ C.

C dlga({c} ⊑ C)

D ∈ DH dlgH(X ⊑ D) ∪ {X(c)}

D1 ⊓ D2 dlga({c} ⊑ D1) ∪ dlga({c} ⊑ D2)

D1 ⊔ D2 ∈ (Da ⊔DB) dlgB(¬X ⊑ D2) ∪ dlga({c} ⊑ D1)|X(c)

>n R.⊤ {R(c,a1), . . . ,R(c,an)} ∪ PInv

>n R.D (D , ⊤) dlga({c} ⊑ C) as defined in Lemma9, 10, and11

X a fresh concept name,ai fresh constants

Fig. 9.Transforming axioms{I } ⊑ Da to datalog

Proof. The proof proceeds by induction. The complex cases have already been estab-
lished in Lemma9, 10, and11. The remaining induction steps are very similar to the
steps in Lemma6 and7. ⊓⊔

We can now complete our induction by summarising the previous lemmata.

Proposition 5. Consider concepts C∈ DH , D ∈ Da, a concept name A, and a constant
symbol c. Lemma6, 7, 9, 10, 11, and12 together define a recursive construction pro-
cedure for datalog programsdlgH(A ⊑ C) anddlga({c} ⊑ D) that semantically emulate
A ⊑ C and{c} ⊑ D, respectively.

Proof. The mentioned results are the basis for establishing an inductive argument to
proof the claim. Lemma9, 10and11 require the existence of certain datalog programs
datalog(KB). For this proof, we definedatalog(KB) ≔ {dlgB(¬A ⊑ E) | ¬A ⊑ E ∈
KB} ∪ {dlgH(A ⊑ E) | A ⊑ E ∈ KB} ∪ {dlga({ f } ⊑ E) | { f } ⊑ E ∈ KB} (we provide a
more general definition ofdatalog(KB) for other forms knowledge bases at the end of
this section). According to Lemma8 this definition is well and covers all axioms that
can occur in KB.

It remains to show that the preconditions of each induction step are indeed satisfied
by applying the induction hypothesis that the claim hold forproper subconcepts of the
considered concepts. This is obvious whenever preconditions require the claim to hold
for programs of the formdlgH(A′ ⊑ C′) or dlga({c′} ⊑ D′) whereC′ andD′ are proper
subconcepts ofC andD, respectively.

The induction steps fordlga({c} ⊑ D), however, need to use Lemma9, 10 which
11 additionally require that, for a proper subconceptD′ of D and some KB∈ K{c′}⊑D′ ,
the claim holds for all programsdlgH(A ⊑ E) with A ⊑ E ∈ KB and for all programs
dlga({ f } ⊑ E) with { f } ⊑ E ∈ KB (the translationsdlgB(¬A ⊑ E) are always given
by Lemma6). Inspecting Definition10, we find that most axioms in knowledge bases
of K{c′}⊑D′ are of the formC ⊑ D′′ with D′′ a proper subconcept ofD′, so that the
induction hypothesis applies. However, all cases other than (1), (2), and (3c) also intro-
duce additional axioms that are not referring to subconcepts. By checking the recursive
definitions of these axioms, it is easy to see that the claim holds for all axioms of this
form. ⊓⊔

We still need to show that the “propositional” concepts inD=n can also be emulated
in datalog.

α dlg(α) \ PInv

Ref(R) {R(x, x)}

Irr(R) {R(x, x)→ ⊥}

Sym(R) {R(x, y)→ R(y, x)}

Asy(R) {R(x, y) ∧ R(y, x)→ ⊥}

Dis(R1,R2) {R1(x, y) ∧R2(x, y)→ ⊥}

Tra(R) {R(x, y) ∧ R(y, z)→ R(x, z)}

R1 ◦ R2 ◦ . . . ◦ Rn ⊑ R {R1(x0, x1) ∧ . . . ∧ Rn(xn−1, xn)→ R(x0, xn)}

Fig. 10.TransformingSROIQ RBox axioms to datalog

Lemma 13. For every concept C∈ D=n for some n≥ 1, one can construct a datalog
programdatalog(C) that semantically emulates C.

Proof. C is of the form ({c1} ⊓C1) ⊔ . . . ⊔ ({cn} ⊓ Cn) with C1 ∈ Cp
H andCi ∈ C=i

⊥ for
i = 2, . . . , n. It is not hard to see thatC is semantically equivalent to{c1} ⊓ C1. This
is shown by induction overn. Clearly, all models ofC have domains with at mostn
elements. By Lemma5, for all n > 2, ({c1} ⊓ C1) ⊔ . . . ⊔ ({cn} ⊓ Cn) is semantically
equivalent to ({c1} ⊓C1) ⊔ . . . ⊔ ({cn−1} ⊓Cn−1), as required.

All models of {c1} ⊓ C1 have a unary domain, so that further simplifications are
possible. Given any conceptD in DLP normal form, letφ(D) be the concept that is
obtained by exhaustively applying the following rules:

– If D has a subconcept>1R.E, replace this subconcept byE ⊓ ∃R.Self.
– If D has a subconcept>m R.E with m> 1, replace this subconcept by⊥.
– If D has a subconcept6m R.¬E with m> 1, replace this subconcept by⊤.

It is easy to check thatD ∈ Cp
B implies DLPNF(φ(D)) ∈ DB, and thatD ∈ Cp

H
implies DLPNF(φ(D)) ∈ DH . Clearly, {c1} ⊓ C1 is semantically equivalent to{c1} ⊓

φ(C1), which is in turn equivalent to the knowledge base{⊤ ⊑ {c1}, {c1} ⊑ φ(C1)}.
Thus, by Proposition5, C is semantically emulated bydatalog(C) ≔ {x ≈ c1} ∪

dlga({c1} ⊑ DLPNF(φ(C1))) as long asDLPNF(φ(C1)) < {⊤,⊥}. If DLPNF(φ(C1)) = ⊤
setdatalog(C) ≔ {}. If DLPNF(φ(C1)) = ⊥ setdatalog(C) ≔ {⊤ → ⊥} (the unsatisfiable
rule with empty body and head). ⊓⊔

To obtain the main result of this section, it remains to show that RBox and ABox
axioms inDLP can also be emulated in datalog.

Theorem 3. For everyDLP axiomα as in Definition9, one can construct a datalog
programdatalog(α) that semantically emulatesα.

Proof. If α is a TBox axiom of the formC ⊑ D, then setE ≔ DLPNF(¬C ⊔ D). If
E = ⊤ thendatalog(α) ≔ {}. If E = ⊥ of E ∈ C,⊤ thendatalog(α) ≔ {⊤ → ⊥}
(the unsatisfiable rule with empty body and head). It is easy to see, that concepts of the
form C,⊤ are indeed unsatisfiable when used as axioms. IfE ∈ D=n for somen ≥ 1

then setdatalog(α) ≔ datalog(E) as defined in Lemma13. Finally, if E ∈ DH then
setdatalog(α) ≔ dlgH(A ⊑ E) ∪ {A(x)} as defined in Proposition5, whereA is a fresh
concept name.

If α is an ABox axiom of the formC(a) with DLPNF(C) ∈ Da then setdatalog(α) ≔
dlga({a} ⊑ DLPNF(C)) as given in Proposition5.

If α is an RBox axiom thendlgR(α) is obtained as the union ofPInv and the rules
given in Fig.10. Setdatalog(α) ≔ dlgR(α). It is easy to see that this datalog program
satisfies the claim. ⊓⊔

7 Model Constructions for Datalog

In this section, we introduce constructions on first-order logic interpretations which will
be essential for showing that certain formulae cannot be in DLP. The general approach
is to find operations that preserve models for datalog programs, i.e. operations under
which the set of models of any datalog program must be closed.A well-known model
construction in logic programming is the intersection of two Herbrand models, and it
is well-known that Horn logic is closed under such intersections. The next definition
generalises intersections in two ways: on the one hand, it uses functions to allow for
interpretations with different (non-Herbrand) domains; on the other hand, it allows us
to construct additional domain elements as feature combinations of existing elements.

Definition 11. Consider a first-order logic signatureS and two interpretationsI1 and
I2 over that signature. Consider a set∆ and functionsµ : ∆ → ∆I1 andν : ∆ → ∆I2

such that, for each constant c inS , there is exactly one elementδc ∈ ∆ for which
µ(δc) = cI1 and ν(δc) = cI2. Theproduct interpretationJ = I1 ×µ,ν I2 is defined as
follows:

– ∆J ≔ ∆,
– for each constant c inS , set cJ ≔ δc,
– for each n-ary predicate symbol p and n-tupleδ̄ ∈ ∆n, setδ̄ ∈ pJ iff µ(δ̄) ∈ pI1 and
ν(δ̄) ∈ pI2, whereµ(δ̄) andν(δ̄) denote the tuples obtained by applyingµ andν to
each component of̄δ.

The previous definition does not imply that constants have distinct interpretations:
δc = δd if and only if cI1 = dI1 andcI2 = dI2. As the definition of equality in product
models is similar to the definition of predicate extensions,it is convenient to formulate
Definition11for first-order logic without equality, assuming that≈ is introduced by the
well-known axiomatisation of its properties. A direct definition for FOL= is straight-
forward.

The essential property of product interpretations is the following:

Proposition 6. Consider a signatureS , interpretationsI1 andI2, and functionsµ :
∆ → ∆I1 andν : ∆ → ∆I2 as in Definition11. Then, for every datalog program P over
S , we find thatI1 |= P andI2 |= P impliesI1 ×µ,ν I2 |= P.

Proof. Let J ≔ I1 ×µ,ν I2. Consider any ruleB → H in P, and a variable assign-
mentZ for J such thatJ ,Z |= B. Define a variable assignmentZ1 for I1 by set-
ting Z1(x) ≔ µ(Z(x)). By Definition 11, it is easy to see thatI1,Z1 |= B, and thus
I1,Z1 |= H. Analogously, we construct a variable assignmentZ2 such thatI2,Z2 |= B
andI2,Z2 |= H. It is easy to see that this impliesJ ,Z |= H as required. ⊓⊔

A well-known special case of the above product constructionis obtained for∆ =
∆I1 × ∆I2 with µ andν being the projections to the first and second component of each
pair in∆. It turns out that this canonical product construction is not sufficient to detect
all cases of knowledge bases that cannot beFOL=-emulated in datalog. For example,
the set of models of the non-DLP axiom{a} ⊑ >2R.(¬{b} ⊔ 61S.¬A) is closed under
canonical products. The more general construction above isneeded to address such
cases.

When using Proposition6 to show that a knowledge base cannot beFOL=-emulated
in datalog, it must be taken into account thatFOL=-emulation is not as strong as se-
mantic equivalence. It is not sufficient to show that the models of a knowledge base are
not closed under products. For example, the DLP axiom{a} ⊑ >1R.⊤ has a modelI
with domain∆I ≔ {a, x}, aI ≔ a, andRI ≔ 〈a, x〉. Yet, the functionµ : {a} → {a, x}
with µ(a) = a can be used to construct an interpretationI ×µ,µ I that is not a model
of the axiom. Note that all preconditions of Definition11 are satisfied. Proposition6
allows us to conclude that there is no datalog program that issemantically equivalent
to {a} ⊑ >1R.⊤, but not that there is no such programFOL=-emulatingthe axiom. To
show that a knowledge base cannot even be emulated in datalog, we therefore use the
following observation.

Lemma 14. Consider a knowledge baseKB over some signatureS . If there areFOL=
theories T1 and T2 overS such that:

– KB ∪ T1 andKB ∪ T2 are satisfiable, and
– for every pair of modelsI1 |= KB ∪ T1 andI2 |= KB ∪ T2, possibly based on an

extended signatureS ′, there are functionsµ andν such thatI1 ×µ,ν I2 6|= KB,

thenKB cannot beFOL=-emulated in datalog.
If T1 = T2 then this conclusion can also be obtained if the precondition only holds

for pairs of equal modelsI1 = I2.

Proof. For a contradiction, suppose that the preconditions of the lemma hold and there
is a datalog programP thatFOL=-emulates KB. ThenP∪KB ∪Ti is satisfied by some
modelIi of P for eachi = 1, 2, where the relevant signature ofP may be larger than the
signature of KB. LetJ = I1 ×µ,ν I2 denote the product interpretation from the second
condition. Applying Proposition6, we find thatJ is a model ofP that is not a model of
KB. But then the union ofP with aFOL= formula ofS that is semantically equivalent
to the negation of the conjunction of all axioms in KB is satisfiable, contradicting the
supposed emulation. The last part of the claim is obvious. ⊓⊔

The optional extension of the signature in the previous lemma can be important
since the preconditions of Definition11 require that the domain of the constructed
model contains elements for all constant symbols.

As a simple example for this approach, we show that KB= {⊤ ⊑ A ⊔ B} cannot
beFOL=-emulated in datalog. Define auxiliary knowledge bases KB1 = {A ⊑ ⊥} and
KB2 = {B ⊑ ⊥}. Clearly, KB∪KB1 and KB∪KB2 are satisfied by some modelsI1 and
I2, respectively. However, it is easy to see that no product ofI1 andI2 can be a model
of KB – independent of the choice ofµ andν – since the extensions ofA andB must
always be empty in such a product.

Of course there are other examples for whichµ andνmust be chosen more carefully.
In particular, it is sometimes necessary to restrict the amount of new elements that are
introduced by the product. The following definition provides a useful notation for such
a restricted form of products that will be sufficient for most applications:

Definition 12. Consider interpretationsI1 andI2 over a signatureS , and letI be the
set of constants inS . Given a set S⊆ I × I , functionsµ : ∆ → ∆I1 andν : ∆ → ∆I2

are defined as follows:

– ∆ ≔ S ∪ {〈c, c〉 | c ∈ I },
– µ(〈c, d〉) ≔ cI1,
– ν(〈c, d〉) ≔ dI2.

I1 ×S I2 denotes the product interpretationI1 ×µ,ν I2 for these functions.

A special aspect of the previous definition is that it restricts attention to named ele-
ments – elements that are represented by some individual name – in the original models.
It is an easy corollary of Proposition6 that all other elements are indeed irrelevant for
satisfying a datalog program.

8 Showing Structural Maximality of DLP

In this section, we show that the earlier definition ofDLP is indeed maximal for the
underlying principles. The proof mainly uses the principleof structurality (DLP 6) due
to which it suffices to show that structural concept expressions that are notinDLP can-
not beFOL=-emulated in datalog. To this end, we generally use the strategy suggested
by Lemma14. The below discussions often use datalog rules or DL axioms in the con-
text of first-order logic to conveniently denote an arbitrary FOL= theory of the same
semantics, as obtained by any of the standard translations.Especially, this abbreviated
form never refers to the more complexdatalog transformation ofDLP concepts, and it
is only used when syntactic details are not relevant. Moreover, we assume that≈ always
denotes the equality predicate, and do not explicitly provide an axiomatisation for it.

The outline of the proof is as follows. We start by specifyingsome useful kinds of
auxiliary datalog programs in Definition13and14. The first major class of concept ex-
pressions is excluded by Proposition7 which shows that concepts that are not inD+a can
usually not be emulated in datalog. This result is prepared by Lemma15, Lemma16,
and Lemma17. These lemmata also are of some utility later on, since they can be used
to exclude most forms of existential statements from DLP.

The second main ingredient of the maximality proof is Corollary 1. It extends
Proposition7 by establishing that concepts can typically not be emulatedin datalog if

they are not inDH . The chief insight that leads to this result is formulated inLemma18
which sports the most complex proof of this section. After this, it is comparatively easy
to establish Lemma19 to treat some pathological cases that had been excluded from
the earlier considerations. In particular, it includes the“propositional” case where a DL
concept enforces a unary interpretation domain.

The outcomes of Proposition7, Corollary1, and Lemma19are finally summarised
in the main Theorem4.

To pursue the proof strategy outlined by Lemma14, our main work consists in
specifying suitable auxiliary theoriesT1 andT2. To simplify this task, we first define
some auxiliary theories that will be used frequently. Many of these constructions have
the additional advantage of being in datalog – with the important consequence that they
are still satisfied by product interpretations (Proposition 6). Often this is relevant for
showing that said product interpretations cannot satisfy agiven non-DLP concept.

Whereas many concept expressionsC cannot beFOL=-emulated in datalog, it is
usually possible to specify a datalog program that entails{c} ⊑ C for a given constantc
by specifying sufficient properties thatc must satisfy for this to be true. This only fails if
C is structurally unsatisfiable. The below construction generalises this idea to any num-
ber of constants, and to the dual case where{c} ⊑ ¬C is entailed. The constructions in
Definition13and14should be compared to the simpler cases discussed in Definition5
which serve essentially the same purpose forALC.

Definition 13. Consider a structural concept C in positive normal form, andindividual
names c0, . . . , cn for n ≥ 0. If C < L≤n the datalog program~c0, . . . , cn ∈ C� is defined
recursively as follows:

– If C = ⊤ or C = >0R.D then~c0, . . . , cn ∈ C� ≔ ∅.
– If C = {d} then n= 0 and~c0 ∈ C� ≔ {c0 ≈ d}.
– If C is of the formA, ¬A, ¬{I }, ∃R.Self, or ¬∃R.Self, then~c0, . . . , cn ∈ C� ≔
⋃

0≤i≤n datalog({ci} ⊑ C).
– C = D1 ⊓ D2, then Di < L≤n for i = 1, 2, and~c0, . . . , cn ∈ C� ≔ ~c0, . . . , cn ∈

D1� ∪ ~c0, . . . , cn ∈ D2�.
– If C = D1 ⊔ D2 with D1 < L≤n, then~c0, . . . , cn ∈ C� ≔ ~c0, . . . , cn ∈ D1�.
– If C = D1 ⊔ D2 with D1 ∈ L≤m′ and D1 ∈ L≤m′′ such that m′ + m′′ = n− 1, then
~c0, . . . , cn ∈ C� ≔ ~c0, . . . , cm′ ∈ D1� ∪ ~cm′+1, . . . , cm′+m′′+1 ∈ D2�.

– If C = >m R.D with m≥ 1, consider fresh constants d0, . . . , dm, and set~c0, . . . , cn ∈

C� ≔ ~d0, . . . , dm ∈ D� ∪ {R(ci , d j) | 0 ≤ i ≤ n, 0 ≤ j ≤ m} ∪ {di ≈ d j → ⊥ | 0 ≤
i < j ≤ m}.

– If C = 6m R.¬D, then~c0, . . . , cn ∈ C� ≔ {x ≈ ci ∧ R(x, y)→ ⊥ | 1 ≤ i ≤ n}.

If C < L≥ω−n, define a datalog program~c0, . . . , cn < C� ≔ ~c0, . . . , cn ∈ pNNF(¬C)�.

Note that the given cases directly follow the definition ofL≤n in Fig. 4. Also note
that ~c0, . . . , cn ∈ C� and~c0, . . . , cn < C� are satisfiable, even if we additionally re-
quire that all constantsci are mutually unequal (which is not implied by the datalog
programs).

Definition 13 can be viewed as a way to entail statements of the form{c0} ⊔ . . . ⊔

{cn} ⊑ C if C < L≤n. For cases whereC is not in L≤n for any n ≥ 0 this approach

can be generalised to entail statements of the formD ⊑ C for a more general class of
conceptsD. The necessary construction is provided by the following definition which
is very similar to Definition13. We provide an alternative perspective and specify the
dual case – entailingC ⊑ D in cases whereC < L≥ω−n for all m≥ 0 – which is the only
case that is needed in our subsequent arguments.

Definition 14. Consider a structural concept C in positive normal form, anda concept
D ∈ DH .

If C < L≥ω−m for any m≥ 0, the datalog program~C ⊑ D�≤ is defined recursively
as follows:

– If C = ⊥ then~C ⊑ D�≤ ≔ ∅.
– If C is of the formA, {I }, or ∃R.Self, then~C ⊑ D�≤ ≔ datalog(C ⊑ D).
– If C is of the form¬A, or ¬∃R.Self, then~C ⊑ D�≤ ≔ datalog(C ⊑ ⊥).
– If C = D1 ⊔D2, then Di < L≥ω−m for any m≥ 0 (i = 1, 2), and~C ⊑ D�≤ ≔ ~D1 ⊑

D�≤ ∪ ~D2 ⊑ D�≤.
– If C = D1 ⊓ D2 with D1 < L≥ω−m for any m≥ 0, then~C ⊑ D�≤ ≔ ~D1 ⊑ D�≤.
– If C = 6m R.¬E, then consider fresh constants d0, . . . , dm, and define~C ⊑ D�≤ ≔
~d0, . . . , dm < E� ∪ {di ≈ d j → ⊥ | 0 ≤ i < j ≤ m} ∪

⋃

0≤i≤m datalog(>1R.{di}).
– If C = >m R.E, then~C ⊑ D�≤ ≔ datalog(>1R.⊤ ⊑ D).

It should be noted that the cases of the definition are indeed exhaustive. Also observe
that ~C ⊑ D�≤ is always satisfiable, whereD , ⊥ is important to ensure that this is
actually true for cases like~{c} ⊑ D�≤. This also shows that~C ⊑ A�≤ ∪ {A ⊑ ⊥}
cannot be assumed to be satisfiable in general.

Some further observations should be made in order to understand how Defini-
tions13 and14 can be used when discussing datalog emulation. The constructions in
both cases do certainly notFOL=-emulate the statement that they entail. For example,
~c ∈ C� enforces one particular case for which{c} ⊑ C; it does in general not describe
all such cases. Moreover, the program~C ⊑ D�≤ may enforce a much stronger condi-
tion such asC ⊑ ⊥ as in the case ofC = 6m R.¬E. This illustrates that the extension of
C can be constrained by~C ⊑ D�≤. Conversely, a knowledge base~A⊔B ⊑ D�≤ might
entail the stronger statementA ⊑ D.

Luckily, as long as structurality is assumed, the knowledgebases of Definition13
and14hardly semantically interact with concept expressions other than those that they
are constructed from. Yet, it must be noted that~c0, . . . , cn ∈ C�may introduce mutually
unequal individualsdi for the caseC = >m R.D, and that two distinct individuals are
already required ifC = ¬{d}. This effect can occur for all of the above constructions.
Logical theories inFOL= can restrict the maximum size of the domain, and the same
is accomplished by DL axioms that correspond to concept expressions inL≤m for some
m≥ 0. We need to exclude this possibility when using the above definitions.

The previous discussion shows that it is important to carefully check all uses of
Definitions13 and14 to avoid undesired semantic ramifications. A useful intuition is
that the constructed theories enforce a simplification uponC that allows us to disregard
the concept’s internal structure. As an example of a typicalusage of these constructions,
consider the axiomα = {a} ⊑ C1 ⊔ C2 with C2 < L⊤. Thenα ∪ ~a < C2� implies

{{a} ⊑ C1}.5 So~a < C2� allowed us to dismiss an “uninteresting”C2 to focus on the
impact ofC1.

The following lemmata use the product construction to create elements that are
not in a given concept’s extension, where we usually use the abbreviated product con-
struction of Definition12. In the weakest case, elements outside the extension must be
provided to achieve this (Lemma15). With stronger side conditions, some or even all
of the elements can be part of the concept extension (Lemma16and17). The lemmata
are essential ingredients for showing that subconcepts that are not inD+a cannot occur in
any DLP concept that is in normal form, and the assumptions ofthe lemma are therefore
motivated by the definition ofD+a .

Lemma 15. Consider a structural concept C in DLP normal form such that C, ⊥ and
C < D≥ω−n for all n ≥ 0 (in particular C , ⊤). Let c0, . . . , cn be fresh constants. There
is a consistent datalog program~c0, . . . , cn < C�× such that

– ~c0, . . . , cn < C�× |= ¬(ci ≈ c j) for all i , j ∈ {0, . . . , n} with i , j,
– ~c0, . . . , cn < C�× |= {ci} ⊑ ¬C for all i = 0, . . . , n,
– for all modelsI1, I2 of ~c0, . . . , cn < C�×, and any set of constants N⊆ I with
{c0, . . . , cn} ⊆ N, the productJ = I1 ×(N×N) I2 is such that〈ci , c j〉 < CJ for all
i, j ∈ {0, . . . , n}.

Proof. Using a fresh concept nameA, we define~c0, . . . , cn < C�× ≔ ~C ⊑ ¬A�≤ ∪
{A(ci) | 0 ≤ i ≤ n} ∪ {ci ≈ c j → ⊥ | 0 ≤ i < j ≤ n}. Given modelsI1 and
I2 of ~c0, . . . , cn < C�×, andJ = I1 ×(N×N) I2, we find that〈ci , c j〉 ∈ AJ for all
i, j ∈ {0, . . . , n}. Since~c0, . . . , cn < C�× is in datalog, it is satisfied byJ, and thus we
conclude〈ci , c j〉 < CJ for all i, j ∈ {0, . . . , n} as required. ⊓⊔

The next lemma considers conceptsC < D+B. The lemma is also stated for sets of
individuals, and additional care is now needed to ensure that it is possible forC to have
a set of (distinct) instances. It is not enough to assumeC < D≤n for some or alln ≥ 0
since this pre-condition cannot be preserved by all recursive constructions. Namely, the
recursion in the caseC = D1 ⊔ D2 must be based on the one subconceptDi for which
we haveDi < D+B, but there is no reason forDi < D≤n to hold for anyn ≥ 1 (onlyn = 0
is excluded sinceC is in DLP normal form). This explains why the lemma considers
multiple individualsc0, . . . , cn only in cases where this problem can be avoided.

Lemma 16. Consider a structural concept C in DLP normal form such that C< D+B,
and C does not have a subconcept D< D+a . Let n≥ 0 be such that n= 0 if C is a dis-
junction or C∈ D≤k for some k≥ 0, and consider fresh constants c0, . . . , cn, d0, . . . , dm.
There is a consistent datalog program~c0, . . . , cn ∈ C, d0, . . . , dm < C�× and according
set M≔ {c0, . . . , cn, d0, . . . , dm} ∪ {c ∈ I | c occurs in~c0, . . . , cn ∈ C, d0, . . . , dm < C�×}
such that

– ~c0, . . . , cn ∈ C, d0, . . . , dm < C�× |= ¬(e ≈ f) for all e, f ∈ {c0, . . . , cn, d0, . . . , dm}

with e, f ,

5 This implication is not quite aFOL=-emulation since~a < C2� can require a minimal domain
cardinality, as discussed above.

– ~c0, . . . , cn ∈ C, d0, . . . , dm < C�× |= {ci} ⊑ C for all i = 0, . . . , n,
– ~c0, . . . , cn ∈ C, d0, . . . , dm < C�× |= {di} ⊑ ¬C for all i = 0, . . . ,m,
– for all modelsI1, I2 of ~c0, . . . , cn ∈ C, d0, . . . , dm < C�×, and any set of constants

N ⊆ I with M ⊆ N, the productJ = I1 ×(N×N) I2 is such that〈ci , d j〉 < CJ for all
i ∈ {0, . . . , n} and j ∈ {0, . . . ,m}.

Proof. Note that the conditions imply thatC ∈ D+a , and henceC < {⊤,⊥}. SetP≔ {e≈
f → ⊥ | e, f ∈ {c0, . . . , cn, d0, . . . , dm}, e , f }. We define~c0, . . . , cn ∈ C, d0, . . . , dm <

C�× recursively based on the structure ofC, and we inductively show that it has the
required properties. Both parts can conveniently be interleaved. Thus, in each of the
following cases, letI1 andI2 be models of the~c0, . . . , cn ∈ C, d0, . . . , dm < C�× just
defined, and letJ be the product interpretation as in the claim:

– If C has the formA, {I } or ∃R.Self, then~c0, . . . , cn ∈ C, d0, . . . , dm < C�× ≔
P∪ ~c0, . . . , cn ∈ C� ∪ ~d0, . . . , dm < C�.
It is easy to see thatJ satisfies the claim. Note that the pre-conditions of the lemma
imply n = 0 wheneverC ∈ {I }.

– If C = D1 ⊓ D2 with D1 < D+B, then ~c0, . . . , cn ∈ C, d0, . . . , dm < C�× ≔
~c0, . . . , cn ∈ D1, d0, . . . , dm < D1�×.
SinceI1 andI2 are models of~c0, . . . , cn ∈ D1, d0, . . . , dm < D1�×, the claim
follows immediately by induction.

– If C = D1 ⊔ D2 with D1 < C+B andD2 < D≥ω−k for all k ≥ 0, thenn = 0 is required.
Define~c0 ∈ C, d0, . . . , dm < C�× ≔ ~c0 ∈ D1, d0, . . . , dm < D1�× ∪ ~D2 ⊑ {c0}�≤.
I1 andI2 are models of~c0, . . . , cn ∈ D1, d0, . . . , dm < D1�× and we can apply the
induction hypothesis. The desired result follows since theproductJ also satisfies
the datalog program~D2 ⊑ {c0}�≤.

– If C = >k R.D with k ≥ 1, then~c0, . . . , cn ∈ C, d0, . . . , dm < C�× ≔ P∪ {R(ci, ej) |
0 ≤ i ≤ n, 1 ≤ j ≤ k} ∪ ~e1, . . . , ek ∈ D� ∪ {R(di , x) → ⊥ | 0 ≤ j ≤ m} for fresh
individual namese1, . . . , ek.
It is again easy to see thatJ satisfies the claim.

– If C = 60R.¬D with D < D+B, then, for a fresh constante, define~c0, . . . , cn ∈

C, d0, . . . , dm < C�× ≔ P∪ {R(ci , x) → x ≈ e,R(ci, e) | 0 ≤ i ≤ n} ∪ {R(di, f) | 0 ≤
i ≤ m} ∪ ~e∈ D, f < D�×.
We find that〈〈ci , d j〉, 〈e, f 〉〉 ∈ RJ for all i ∈ {0, . . . , n} and j ∈ {0, . . . ,m}. The
claim follows from the induction hypothesis.

– If C = 61R.¬D with D < D≥ω−k for all k ≥ 0, then consider fresh individuals
e, f , g. Define~c0, . . . , cn ∈ C, d0, . . . , dm < C�× ≔ P∪ {R(ci, x) → x ≈ e,R(ci, e) |
0 ≤ i ≤ n} ∪ {R(di, f),R(di, g) | 0 ≤ i ≤ m} ∪ ~e, f , g < D�×. Note that the last
component of this union also requires that the individuals denoted bye, f , g are
mutually distinct.
We find that〈〈ci , d j〉, 〈e, f 〉〉 ∈ RJ and〈〈ci , d j〉, 〈e, g〉〉 ∈ RJ for all i ∈ {0, . . . , n}
and j ∈ {0, . . . ,m}. The claim follows from Lemma15.

It should be verified that the given cases are exhaustive. In particular,C = 61R.¬D
with D < D≥ω−k for all k ≥ 0 is the only case whereC = 6k R.¬D for somek ≥ 1 –
all other forms are either inD+B or not inD+a . Moreover, all recursive applications of the
construction satisfy the necessary pre-conditions, especially the requirements forn ≥ 1
are preserved. ⊓⊔

The third and final lemma in this series is only needed for two individuals so that
we can simplify our presentation slightly. However, the construction now becomes more
complex since we can no longer use an auxiliary datalog theory, and since more care is
needed in selecting a suitable product interpretation.

Lemma 17. Consider a structural concept C in DLP normal form such that C< D+H ,
and C does not have a subconcept D< D+a . Let c0, c1 be fresh constants. There is a
consistent first-order theory~c0, c1 ∈ C�× and a set of constants N⊆ I such that

– ~c0, c1 ∈ C�× |= ¬(c0 ≈ c1),
– ~c0, c1 ∈ C�× |= {ci} ⊑ C for i = 0, 1,
– for all modelsI of ~c0, c1 ∈ C�×, the productJ = I×(N×N) I is such that〈c0, c1〉 <

CJ .

Proof. The conditions again imply thatC ∈ D+a , and henceC < {⊤,⊥}. Moreover,
C < D+H andC ∈ D+a implies thatC < D≤1. Indeed,C < D≤0 sinceC is in DLP normal
form, and thusC ∈ D≤1 would imply thatC is of the form{I } ⊓ C+a ⊆ D+1! ⊆ D+H . This
property is inherited by subconceptsD of C as long asD < D+H .

We define~c0, c1 ∈ C�× recursively based on the structure ofC, and we inductively
show that it has the required properties. Both parts can conveniently be interleaved. In
addition, we also specify a suitable setN of constant symbols to use in the product
construction in the recursion. Thus, in each of the following cases, letI be a model
of the~c0, . . . , cn ∈ C�× just defined, and letJ be the product interpretation as in the
claim.

– If C = D1⊔D2 with D1,D2 < D+B then~c0, c1 ∈ C�× ≔ ~c0 ∈ D1, c1 < D1�×∪~c1 ∈

D2, c0 < D2�× and the setN is defined as in Lemma16.
Using Lemma16, it is easy to see thatJ satisfies the claim.

– If C = D1 ⊔ D2 with D1 < D+H andD2 ∈ D+B then consider a fresh concept nameA.
SinceC < D≥ω−n for all n ≥ 0, the same holds forD1 andD2. Moreover,D1 < D≤1

as discussed initially. We thus can define~c0, c1 ∈ C�× ≔ ~c0, c1 ∈ D1�× ∪ ~D2 ⊑

¬A�≤ ∪ {A(c0),A(c1)}. The setN is defined to be the same as for~c0, c1 ∈ D1�×.
I is a model of~c0, c1 ∈ D1�× and we can apply the induction hypothesis. The
desired result follows since the productJ also satisfies the datalog program~D2 ⊑

¬A�≤ ∪ {A(c0),A(c1)} (Proposition6).
– If C = D1 ⊓ D2 then we can assumeD1 < D+H . Clearly,C < D≤1 impliesD1,D2 <

D≤1. Thus we can set~c0, c1 ∈ C�× ≔ ~c0, c1 ∈ D1�× ∪ ~c0, c1 ∈ D2�, whereN is
again taken to be the set of constants as defined for~c0, c1 ∈ D1�×.
We can again apply the induction hypothesis sinceI |= ~c0, c1 ∈ D1�×, and use the
fact thatJ |= ~c0, c1 ∈ D2�.

– If C = >n R.D thenD < D+n! ∪D≤n−1∪ {⊥}. Since all subconcepts ofC are assumed
to be in D+a , we conclude thatD < D≤n. Thus we can introduce fresh individ-
ual symbolsd0, . . . , dn and set~c0, c1 ∈ C�× ≔ ~d0, . . . , dn ∈ D� ∪ {¬(e ≈ f) |
e, f ∈ {c0, c1, d0, . . . , dn}, e , f } ∪ {∀x.R(c0, x) ↔

∨

0≤i<n x ≈ di} ∪ {∀x.R(c1, x) ↔
∨

0<i≤n x ≈ di}. DefineN ≔ {c0, c1}.
We claim that〈c0, c1〉 ∈ ∆J is such that〈c0, c1〉 < CJ . Consider any element
〈e, f 〉 ∈ ∆J such that〈〈c0, c1〉, 〈e, f 〉〉 ∈ RJ . By the construction ofJ, we have that

〈cI0 , e
I〉, 〈cI1 , f I〉 ∈ RI, and thuseI = dIi and f I = dIj for somei ∈ {0, . . . , n−1}, j ∈

{1, . . . , n}. Since the constantsdi are unequal toc0, c1, this implies thate, f < N,
and thuse= f = di = d j . Therefore,〈e, f 〉 is equal todJi for somei ∈ {1, . . . , n−1}
whenever〈〈c0, c1〉, 〈e, f 〉〉 ∈ RJ , as required for〈c0, c1〉 < CJ .

– If C = 60R.¬D with D < D+H then define~c0, c1 ∈ C�× ≔ ~c0, c1 ∈ D�× ∪
{R(c0, c0),R(c1, c1)}, whereN is defined as for~c0, c1 ∈ D�×.
The claim follows by induction as before.

– If C = 61R.¬D with D < DB ∪ {⊥} then~c1, c0 ∈ C�× ≔ ~c0 ∈ D, c1 < D�× ∪
{R(c0, c0),R(c0, c1),R(c1, c0),R(c1, c1)}, whereN is defined to be the setM as given
in Lemma16.
The claim is a consequence of Lemma16.

– If C = 6n R.¬D with n ≥ 2 then consider fresh individual symbolsc2, . . . , cn and
define~c0, c1 ∈ C�× ≔ ~c0, c1 < D�× ∪ ~c2, . . . , cn < D� ∪ {R(ci , c j) | i ∈ {0, 1}, j ∈
{0, . . . , n}, i , j} ∪ {¬(ci ≈ c j) | 0 ≤ i < j ≤ n}, whereN is defined to be the setM
as given in Lemma15.
It is easy to see that〈c0, c1〉 in J has at leastn distinct R-successors〈ci , ci〉 (i =
2, . . . , n) and〈c1, c0〉. The former are not inD sinceJ satisfies the datalog program
~c2, . . . , cn < D�. The latter are not inD by Lemma15.

Atomic concepts, nominals,Self restrictions, and their negations do not occur since
C < D+H . ⊓⊔

The previous result is used in the following proposition to show that certain kinds
of atmost-concepts are generally excluded from DLP, even ifthey occur as subconcepts
only.

Proposition 7. Given a structural concept C< {⊤,⊥} in DLP normal form, the follow-
ing three statements are equivalent:

– C < D+a ,
– C has a subconcept D< D+a ,
– C contains a subconcept6k S.¬F such that F∈ D+a and F < D≥ω−l for all l ≥ 0

and:
(a) k= 0 and F < D+H ∪ {⊥}, or
(b) k= 1 and F < D+B ∪ {⊥}, or
(c) k≥ 2.

If these statements hold and, in addition, C< D≤n for all n ≥ 0, and C< C,⊤, then C
cannot beFOL=-emulated in datalog.

Proof. Note that the preconditions onC imply that{C} is satisfiable. The claimed equiv-
alence is easily verified by considering the grammar forD+a given in Fig.5, where
it should be noted that some cases are inherited fromD+H andD+B. Also observe that
F ∈ D+a is thus equivalent to saying thatF has no subconceptE < D+a .

First, we define an auxiliary theory that requires6k S.¬F to be non-empty in order
for C to be satisfied. As before, we sometimes mix first-order logicand DL to denote
an arbitraryFOL= theory that represents the first-order semantics of this combination.
Given a constant symbolc, and a subconceptD of C such that6k S.¬F is a subconcept
of D, we recursively construct aFOL= theoryT(c,D):

– If D = 6k S.¬F, thenT(c,D) ≔ ∅.
– If D = D1 ⊓ D2 with 6k S.¬F a subconcept ofD1, thenT(c,D) ≔ T(c,D1).
– If D = D1 ⊔ D2 with 6k S.¬F a subconcept ofD1, thenT(c,D) ≔ T(c,D1) ∪ ~c <

D2�.
– If D = >n R.D′, then consider fresh constantsc1, . . . , cn and defineT(c,D) ≔
{∀x.R(c, x)→

∨

1≤i≤n ci ≈ x} ∪ T(c0,D′).
– If D = 6n R.¬D′ (with R , S), then consider fresh constantsc0, . . . , cn and set

T(c,D) ≔ {
∧

0≤i≤n R(c, ci) ∧
∧

0≤i< j≤n¬(ci ≈ c j)} ∪ ~c1, . . . , cn < D� ∪ T(c0,D′).

Note thatT(c,D) is satisfiable, due to structurality ofC and the fact that the subcon-
cept6k S.¬F cannot be part of a subconcept of the formL⊤ or L⊥ sinceC is in DLP
normal form. Now the theoryT is defined asT ≔ T(c,C) for some fresh constantc. It
is easy to see thatT∪{C} is satisfiable, and thatT∪{C}∪{6k S.¬F ⊑ ⊥} is unsatisfiable.

Consider the casek = 0. Let a andb be fresh constants. We use the construction
of Lemma17 to ensure that every element in the respective product interpretations has
anS-successor〈a, b〉 in ¬F, andN denotes the according set of constant symbols as in
the definition of~a, b ∈ F�×. Some care is needed to ensure that the auxiliary theoryT
remains true in any such product interpretation. Thus defineT′ ≔ T ∪ {¬(c ≈ d) | c ∈
N, d occurs inT}∪{∀x.S(x, a)∧S(x, b)}∪~a, b ∈ F�×. It is not hard to see thatT′∪{C}
is satisfiable. For an arbitrary modelI of T′ ∪ {C}, consider the product interpretation
J ≔ I ×(N×N) I. SinceJ satisfies∀x.S(x, a) ∧ S(x, b) (by Proposition6), we find
〈δ, 〈a, b〉〉 ∈ SJ for all δ ∈ ∆J . Thus Lemma17entailsJ |= 60S.¬F ⊑ ⊥.

Moreover,J satisfiesT. This is a consequence of Proposition6 for all axioms of
T that are in datalog. The only axioms for which this is not the case are of the form
∀x.R(c, x) →

∨

1≤i≤n ci ≈ x. Consider any element〈e, f 〉 ∈ ∆J such that〈cJ , 〈e, f 〉〉 ∈
RJ . By the construction ofJ, we have that〈cI, eI〉, 〈cI, f I〉 ∈ RI, and thuseI = cIi
and f I = cIj for somei, j ∈ {1, . . . , n}. Since all constants inN must be unequal to
constantsci , this implies thate, f < N, and thuse = f = ci = c j . Therefore,〈e, f 〉 is
equal tocJi for somei ∈ {1, . . . , n} whenever〈cJ , 〈e, f 〉〉 ∈ RJ , so that the considered
axiom ofT is indeed satisfied.

SinceT∪{C}∪{6k S.¬F ⊑ ⊥} is unsatisfiable, this impliesJ 6|= {C}. This establishes
the preconditions for Lemma14(for the caseT1 = T2) and thus shows the claim.

The other casesk = 1 andk ≥ 2 are very similar, using constructions~a ∈ F, b <
F�× and~c1, . . . , ck < F�× of Lemma16and15. Fork = 1, it is admissible thataI < FI

is anS-successor of all elements. Fork ≥ 2, k suchS-successorscI1 , . . . , c
I
k < FI are

allowed. In either case, the product construction generates furtherS-successors that
require6k S.¬F to be empty. ⊓⊔

Observe how the previous proof depends on using the second pre-condition of
Lemma14where a single model is multiplied with itself. This is essential to ensure that
the auxiliary theoryT is satisfied in the product, even though it contains non-datalog
axioms. The above result also marks a case where we really need product constructions
that are different from the canonical product that uses all pairs of (named) individu-
als as the new interpretation domain. The auxiliary theoryT in the above case would
not generally be satisfied in a canonical product: the non-datalog axioms introduced
for atleast-restrictions require a fixed set of successor individuals, whereas a canonical

product contains additional successors that correspond topairs of the original individu-
als.

For the remaining steps of the proof, we use some additional auxiliary constructions.
The datalog programs of Definitions13and14are not suitable to isolate properties that
exclude a concept from DLP: to the contrary, they simply enforce certain entailments to
override any complex semantic effects. The following definition therefore provides us
with knowledge bases that can be used to “measure” information about the extension of
a conceptC without enforcingC ⊑ ⊥. The underlying intuition is that non-emptiness
of some concepts can be ensured to entailpositiveinformation. The construction thus
can be viewed as a generalisation of the construction in Lemma3 to the more complex
case ofSROIQ.

We provide two cases:~c ∈ C{ A�B is used to detect whether a constantc is in C,
while ~C{ A�B≤ is used to detect ifC is generally non-empty. Both constructions can
only work (inDLP) if C “contains” positive information, i.e. if it is not inDB. Note
that the constructions can be considered as specialisations of~a < C� and~C ⊑ A�≤.

Definition 15. Consider a structural concept C in DLP normal form such that C<
DB ∪ {⊥,⊤} ∪ D≥ω−k for some k≥ 0. For individual names c0, . . . , ck and concepts
A0, . . . ,Ak ∈ DH , a datalog program~c0, . . . , ck ∈ C { A0, . . . ,Ak�B is defined recur-
sively as follows:

– If C has the formA, {I } or ∃R.Self, then ~c0, . . . , ck ∈ C { A0, . . . ,Ak�B ≔
⋃

0≤i≤k datalog({ci} ⊓C ⊑ Ai).
– If C = D1 ⊓ D2 with D1 < DB, then w.l.o.g. D1 is not a conjunction and thus

D1 < D≥ω−m for all m ≥ 0. Define~c0, . . . , ck ∈ C{ A0, . . . ,Ak�B ≔ ~c0, . . . , ck ∈

D1{ A0, . . . ,Ak�B.
– If C = D1 ⊔ D2 with D1 < DB, then D1,D2 < D≥ω−k. Set~c0, . . . , ck ∈ C {

A0, . . . ,Ak�B ≔ ~c0, . . . , ck ∈ D1{ A0, . . . ,Ak�B ∪ ~c0, . . . , ck < D2�.
– If C = >n R.D with n ≥ 1, then~c0, . . . , ck ∈ C { A0, . . . ,Ak�B ≔ {R(ci, x) →

Ai(ci) | 0 ≤ i ≤ k}.
– If C = 60R.¬D, then, for a fresh constant d and fresh concept name B, define
~c0, . . . , ck ∈ C{ A0, . . . ,Ak�B ≔ ~d ∈ D{ B�B ∪ {R(ci , d), B(d)→ Ai(ci) | 0 ≤
i ≤ k}.

– If C = 6n R.¬D with n ≥ 1, then consider fresh constants di (i = 0, . . . , n). Define
~c0, . . . , ck ∈ C { A0, . . . ,Ak�B ≔ {R(ci , d j) | 0 ≤ i ≤ k, 0 ≤ j ≤ n} ∪ {d j ≈ dl →

Ai(ci) | 0 ≤ j < l ≤ n, 0 ≤ i ≤ k} ∪ ~d0, . . . , dn < D�.

Moreover, if C< D≥ω−k for all k ≥ 0, then a datalog program~C { A�B≤ is defined
recursively as follows:

– If C has the formA, {I } or ∃R.Self, then~C{ A�B≤ ≔ datalog(C ⊑ A).
– If C = D1 ⊓ D2 with D1 < DB and D1 < D≥ω−n for all n ≥ 0, then~C { A�B≤ ≔

~D1{ A�B≤.
– If C = D1 ⊔ D2 with D1 < DB, then~C{ A�B≤ ≔ ~D1{ A�B≤ ∪ ~D2 ⊑ A�≤.
– If C = >n R.D with n≥ 1, then~C{ A�B≤ ≔ {R(x, y)→ A(x)}.
– If C = 60R.¬D, then, for a fresh constant c and fresh concept name B, define
~C{ A�B≤ ≔ ~c ∈ D{ B�B ∪ {R(x, c), B(c)→ A(x)}.

– If C = 6n R.¬D with n ≥ 1, then consider fresh constants ci (i = 0, . . . , n). Define
~C { A�B≤ ≔ {R(x, ci) | 0 ≤ i ≤ n} ∪ {ci ≈ c j → A(x) | 0 ≤ i < j ≤ n} ∪
~c0, . . . , cn < D�.

It should be noted that the cases in the previous definition are indeed exhaustive:
side conditions usually are only provided to specify a particular situation that can be
assumed without loss of generality. Conditions that followfrom the assumptions are
omitted. Observe that the necessary conditions for recursion are satisfied in all cases
of the definition. The choice ofD1 in the cases forC = D1 ⊓ D2 is possible since we
disregard the nesting order of⊔: if there is someD1 < DB, then there is some suchD1

that does not have aC≥ disjunct (which is inDB) while still D1 < DB. But then this
D1 < D≥ω−m for all m≥ 0 as required.

It is not hard to see that, given the preconditions of Definition 15, we find that
~c0, . . . , ck ∈ C { A0, . . . ,Ak�B |=

⋃

0≤i≤k
{

C ⊓ {ci} ⊑ Ai
}

and~C { A�B≤ |= C ⊑ A.
Notably, the caseC = 6n R.¬D uses a different approach than the other cases: the
positive information used to entail non-emptiness ofA is found in the equality relations
that are implied between auxiliary constantsdi .

Observe that the datalog programs of Definition15 again may significantly con-
strain the extension ofC. For example, ifC = 61R.¬⊥ then ~C { A�B≤ is only
satisfied by interpretations that entail eitherC ⊑ ⊥ or ⊤ ⊑ C. This may entail⊤ ⊑ A,
so we will only use~C { A�B≤ if ⊤ ⊑ A or C ⊑ ⊥ is satisfiable. Non-emptiness of
C might also be unavoidable, so one cannot assume that~C { A�B≤ ∪ {A ⊑ ⊥} is
satisfiable. Yet, the remaining freedom will generally suffice for our purposes.

Another noteworthy fact is that~c0, c1 ∈ C { A0,A1�B is not the same as~c0 ∈

C { A0�B ∪ ~c1 ∈ C { A1�B, which is the reason why the definition must explicitly
include cases withk > 0. To see this, considerC = (¬{a}⊓¬{b})⊔B. Then~c0, c1 ∈ C{
A0,A1�B = {B(c0) → A0(c0), B(c1) → A0(c1), c0 ≈ a, c1 ≈ b} but ~c0 ∈ C { A0�B ∪

~c1 ∈ C{ A1�B = {B(c0) → A0(c0), B(c1) → A0(c1), c0 ≈ a, c1 ≈ a}. The latter entails
the unwanted consequencec0 ≈ c1 since the auxiliary programs~ci < ¬{a} ⊓ ¬{b}� are
constructed independently fori = 0, 1 instead of using~c0, c1 < ¬{a} ⊓ ¬{b}�.

The following lemma provides some important ingredients for showing maximal-
ity of DLP, since it establishes the pre-conditions of Lemma14 for broad classes of
concepts.

Lemma 18. Let C ∈ D+a be a structural concept expression in DLP normal form, letI
be the set of constants of the given signature, and let a, b, c ∈ I be arbitrary constants
not occurring in C.

(1) If C < DH , then one of the following is true:
– There is a theory T and a set of constants N⊆ I with a, b ∈ N such that: given

an arbitrary modelI of {{a} ⊔ {b} ⊑ C} ∪ T, we find thatJ = I ×(N×N) I is
such that〈a, b〉 < CJ .

– There are theories T1, T2 such that: given arbitrary modelsIi of {{a} ⊔ {b} ⊑
C} ∪ Ti (i = 1, 2), we find thatJ = I1 ×(I×I) I2 is such that〈a, b〉 < CJ .

(2) If C < Da, then there are theories T1, T2 such that: given arbitrary modelsIi of
{{c} ⊑ C}∪Ti (i = 1, 2), we find thatJ = I1×(I×I)I2 is such that cJ = 〈c, c〉 < CJ .

In all cases, modelsI, I1 andI2 as described in the claims exist.

Proof. By Proposition7, C ∈ D+a impliesD ∈ D+a for all subconceptsD of C.

We start by considering claim (1). Claim (2) is shown independently below, so if
C < Da then we obtain theoriesT1 andT2 as in claim (2) for some fresh constantc. It
is easy to see that the theoriesT′i ≔ Ti ∪ {a ≈ c, b ≈ c} (i = 1, 2) suffice for establishing
claim (1). It remains to show claim (1) for cases whereC ∈ Da. An easy induction can
be used to show thatD+H ∩Da ⊆ DH . Hence, using our assumption thatC < DH , we can
also concludeC < D+H .

The only remaining cases for claim (1) therefore are such that C < D+H , so that
Lemma17 can be applied. DefineT1 ≔ T2 ≔ ~a, b ∈ C�×, and defineN as in the
lemma. The claim follows from Lemma17.

For claim (2), we construct theoriesT1 = T1(c,C) andT2 = T2(c,C) for a fresh
constantc as in the claim. The proof proceeds by induction over the structure ofC.
Note thatC cannot be an atomic class, nominal,Self restriction, or the negation thereof.

Consider the caseC = D1 ⊓ D2. Without loss of generality, we find thatD1 < Da.
Applying the induction hypothesis, we obtain theoriesTi(c,C) ≔ Ti(c,D1) (i = 1, 2)
that satisfy the claim.

Consider the caseC = D1 ⊔ D2. As a first case, assume thatD1 < Da. Then we can
define theoriesTi(c,C) ≔ Ti(c,D1) ∪ ~c < D2� (i = 1, 2). The claim then follows from
the induction hypothesis together with the fact that every product interpretation con-
structed from models ofTi(c,C) (i = 1, 2) must also satisfy~c < D2� by Proposition6.
The caseD2 < Da is similar.

Now assume thatC = D1⊔D2 with D1,D2 < DB. Using fresh concept namesA1,A2

and the construction of Definition15, defineTi(c,C) ≔ {Ai(c)→ ⊥}∪
⋃

j=1,2~c ∈ D j {

A j�B for i = 1, 2. Then any product interpretationJ of any two models ofTi(c,C)
(i = 1, 2) satisfies

⋃

j=1,2~c ∈ D j { A j�B ∪ {A j(c) → ⊥}, and henceJ 6|= {c} ⊔ Di

(i = 1, 2) as required.
Consider the caseC = 60R.¬D with D < DH . SinceC ∈ D+a we find D ∈ D+H .

Using D+H ∩ Da ⊆ DH as above, we conclude thatD < Da, which allows us to apply
the induction hypothesis. Consider a fresh individual named and defineTi(c,C) ≔
Ti(d,D) ∪ {R(c, d)} (i = 1, 2). Given modelsIi of Ti(c,C) (i = 1, 2), the induction
hypothesis implies thatJ ≔ I1 ×(I×I) I2 does not satisfy{d} ⊑ D. SinceJ |= R(c, d)
we concludeJ 6|= {c} ⊑ C.

Consider the caseC = 61R.¬D with D < DB andD < D≥ω−1. Using fresh sym-
bols c1, c2, A1, A2, we defineTi(c,C) ≔ {Ai(ci) → ⊥} ∪ ~c1, c2 ∈ D { A1,A2�B ∪

{R(c, c1),R(c, c2)} for i = 1, 2. Using similar arguments as in the last case ofC =
D1 ⊔ D2, we find that no product interpretation of models ofTi(c,C) (i = 1, 2) can
satisfy{c} ⊑ C.

Consider the caseC = 6n R.¬D with n ≥ 2 andD < D≥ω−n. Using fresh individuals
symbolsc0, . . . , cn, set T ≔ ~c0, . . . , cn < D� ∪ {R(c, ci | 0 ≤ i ≤ n}. We define
T1(c,C) ≔ T∪{ci ≈ c j → ⊥ | 1 ≤ i < j ≤ n} andT2(c,C) ≔ T∪{ci ≈ c j → ⊥ | 0 ≤ i <
j ≤ n−1}. Thus, any model of{{c} ⊑ C}∪T1(c,C) ({{c} ⊑ C}∪T2(c,C)) entailsc0 ≈ c1

(cn−1 ≈ cn), but this entailment is lost in every product interpretation. This shows the
desired result since product interpretations satisfyT by Proposition6.

Consider the caseC = >1R.D with D < D>1 . ThenD ∈ D+a andD < Da. For a fresh
constantd, defineTi(c,C) ≔ Ti(d,D)∪{R(c, x)→ d ≈ x} for i = 1, 2. The claim follows
from the induction hypothesis and the fact that every considered product interpretation
also satisfies{R(c, x)→ d ≈ x}.

Consider the caseC = >n R.D with n ≥ 2 andD < D>n . Without loss of generality,
we can assume thatD is of the formC1 ⊔ . . . ⊔ Cp ⊔ E (p ≥ 1) where noCi is a
disjunction,Ci < CB for i = 1, . . . , p, andE ∈ DB ∪ {⊥}. For the following argument,
we useE = ⊥ to cover the case where no suchE is given in the original DLP normal
form. Note thatE might be a disjunction but cannot be⊤.

First assume that there is someF ∈ {E,C1, . . . ,Cp} such thatF ∈ D≥ω−k for some
k ≥ 0. SinceF is in DLP normal form, it is a disjunction that contains some disjunct
in C¬m (m ≥ 1). All subconcepts ofD are assumed to be inD+a , so if m ≤ n2 − n then
D ∈ D>n ; a contradiction. ThusD is of the formD1⊔D2 with D1 ∈ C¬m andm> n2−n.
Moreover,D2 < Da since otherwise we would findD ∈ Da ⊂ D>n .

The set of constants inD1 is denoted asind(D1) = {c1, . . . , cm}. Let p1, p2, . . . , pn2−n

denote a sequence of all pairspi = 〈d1, d2〉 of constantsd1, d2 ∈ {c1, . . . , cn} with d1 ,

d2. The order is inessential, but some order is needed for notational purposes. Define
auxiliary theoriesTi(c,C) ≔

{

∀x.R(c, x)→
∨

1≤ j≤n c j ≈ x
}

∪
⋃

1≤ j≤m Ti(c j,D2) ∪ {c j ≈

di | n < j ≤ m, p j−n = 〈d1, d2〉}. Observe that the first component in this definition refers
only to the firstn constantsc1, . . . , cn, the second part is specified for allm constants,
and the third component refers to the lastm− n constantscn+1, . . . , cm only.

To see that these theories satisfy the claim, consider modelsIi of {{c} ⊑ C}∪Ti(c,C)
(i = 1, 2), and letJ = I1×(I×I)I2 denote their product. Observe that, by the construction
of Ti(c,C), the constantsc j (1 ≤ j ≤ m) are mutually unequal inJ. Now consider an
arbitrary elementδ ∈ ∆J such that〈cJ , δ〉 ∈ RJ . By definition of the product, there
must be a constant symbold – possibly an auxiliary constant that did not occur inC
– such thatδ = 〈d, d〉 and 〈cIi , dIi 〉 ∈ RIi for i = 1, 2. Since the modelsIi satisfy
∀x.R(c, x) →

∨

1≤ j≤n c j ≈ x, we conclude thatI1 |= d ≈ c j andI2 |= d ≈ ck for
some (possibly distinct!)j, k ∈ {1, . . . , n}. Thus, there are at mostn2 elementsδ ∈ ∆J

such that〈cJ , δ〉 ∈ RJ , since there are at mostn2 distinct ways of selectingj, k. Now
m of thosen2 elements are of the forcJj for some j = 1, . . . ,m, and by the induction

hypothesis we find thatcJj < DJ2 . SincecJj < DJ1 is immediate, we thus find that

cJj < DJ for all j = 1, . . . ,m. Summing up, we conclude thatJ can have mostn2 −m

distinctR-successors forc which are inD. Sincen2 −m < n2 − (n2 − n) = n, we find
thatJ 6|= {c} ⊑ >n R.D, as required.

For the remainder of the proof, assume thatF < D≥ω−k for all F ∈ {E,C1, . . . ,Cp}

andk ≥ 0. In particular, we can use the constructions of Definition14 and15. Now if
{{c} ⊑ C} ∪ ~E ⊑ 60R−.¬¬{c}�≤ is unsatisfiable, thenC1 ⊔ . . .⊔Cp ∈ D≤n−1. Since we
assumed thatC1 ⊔ . . .⊔Cp ∈ D+a , this again impliesD ∈ D>n . Hence,{{c} ⊑ C} ∪ ~E ⊑
60R−.¬¬{c}�≤ must be satisfiable (note that this includes the caseE = ⊥). It is easy
to see that{{c} ⊑ C} ∪ ~E ⊑ 60R−.¬¬{c}�≤ semantically emulates{{c} ⊑ >n R.C1 ⊔

. . . ⊔Cp}, and that the claim can thus be established by induction. So for the remaining
considerations we can assume thatE is not present at all, i.e. thatC = >n R.C1⊔. . .⊔Cp.

By the assumptions onCi , we can apply Definition15 and setT ≔
⋃

1≤i≤p
(

~Ci {

Ai�B≤ ∪ {R(x, y) ∧ Ai(y) → Bi(x)}
)

for fresh concept namesA1, . . . ,Ap, B1, . . . , Bp. It

is easy to verify that{{c} ⊑ C} ∪ T is consistent. Now consider the theoryT′ ≔ T ∪
{Bi(x) → ⊥ | T ∪ {{c} ⊑ C} ∪ {Bi ⊑ ⊥} is consistent}, where it should be noted how
the Bi are used to avoid inconsistencies that could arise immediately when requiring
Ai ⊑ ⊥. Consider the case (A) thatT′ ∪ {{c} ⊑ C} is inconsistent. Then there are two
disjoint subsetsI1, I2 ⊆ {1, . . . , p} for whichTk(c,C) ≔ T∪{Bi ⊑ ⊥ | i ∈ Ik} is such that
Tk(c,C) ∪ {{c} ⊑ C} is consistent fork = 1, 2, whileT1(c,C) ∪ T2(c,C) ∪ {{c} ⊑ C} is
inconsistent. Every product interpretation of models ofTk(c,C) (k = 1, 2) entailsT (by
Proposition6) andBi ⊑ ⊥ (by Definition11), and thus cannot be a model of{{c} ⊑ C},
as required.

Now consider the case (B) whereT′ ∪ {{c} ⊑ C} is consistent. Then there isBh such
thatT∪{{c} ⊑ C}∪{Bh ⊑ ⊥} is inconsistent. This implies that{{c} ⊑ C}∪{>1R.Ch ⊑ ⊥}

is inconsistent. SinceCh < C≥ ⊆ DB, we conclude that either
⊔

1≤i≤p,i,h Ci ∈ D≤n−1 or
this concept is empty, i.e.p = h = 1.

First consider the case (B.1) whereCh ∈ D≤1. ThenC1 ⊔ . . . ⊔Cp < D≤n−1 implies
p = n andCi ∈ D≤1 for all i , h, 1 ≤ i ≤ p. SinceC is not of theDH-form >n R.Dn!,
there isk such thatCk < Da. Now Ck ∈ D≤1 implies thatCk = {a} ⊓ C′k for some
individuala and conceptC′k < Da. As each model ofC requires oneR-successor ofc in
each concept of the formCi , we find that{{c} ⊑ C} semantically emulates{{a} ⊑ Ck}.
The claim follows by induction.

As a second case (B.2), assume thatCh < D≤1. ThenCh < D≤k for all k ≥ 0 sinceCh

is not a disjunction. Since this implies thatT ∪{{c} ⊑ C}∪ {Bi ⊑ ⊥ | i , h} is consistent,
this theory must be equal toT′ ∪ {{c} ⊑ C}.

Consider the case (B.2.1) whereCh < Da. For fresh individualsc1, . . . , cn define
T′′ ≔ T′ ∪ {∀R(c, x) →

∨

1≤i≤n ci ≈ x}. Note thatT′′ ∪ {{c} ⊑ C} is satisfiable by
interpretationsI that havecIi ∈ CIh as then distinctR-successors ofc. DefineTi(c,C) ≔
⋃

1≤ j≤n Ti(c j,Ch) ∪ T′′ (i = 1, 2).
To show that this satisfies the claim, consider modelsIi of {{c} ⊑ C} ∪ Ti(c,C)

(i = 1, 2). Since the induction hypothesis only applies to named individuals, we intro-
ducen2 fresh constants〈c j , ck〉 for j, k ∈ {1, . . . , n}. I1 is extended toI′1 over this ex-
tended signature by setting〈c j , ck〉

I′1 ≔ cI1
j , so thatI′1 |= 〈c j , ck〉 ≈ c j . The extended in-

terpretationI′2 is defined analogously for the second components. Due to the construc-
tions in this proof, for any constantse, f , we find thatTi(e,Ch) is the same asTi(f ,Ch)
with e uniformly replaced byf (i = 1, 2). Thus, we find thatI′i |= Ti(〈c j , ck〉,Ch) for
i = 1, 2 and all j, k ∈ {1, . . . , n}. Moreover,I′i |= {{〈c j , ck〉} ⊑ Ch} so the induction
hypothesis can be applied to obtainI′1 ×(I ′×I ′) I

′
2 6|= {〈c j , ck〉} ⊑ Ch whereI ′ denotes the

extended set of constants.
It is not hard to see that the interpretationsJ ′ = I′1×(I ′×I ′)I

′
2 andJ = I1×(I×I)I2 are

equal (possibly up to renaming of domain elements). In particular,J ′ entails〈c j , ck〉 ≈

〈〈c j , c j′〉, 〈ck′ , ck〉〉. Hence we find thatJ 6|= {〈c j , ck〉} ⊑ Ch. Moreover, sinceI1 andI2

satisfyT′′, we find that〈cJ , δ〉 ∈ RJ impliesδ = 〈c j , ck〉
J for some j, k ∈ {1, . . . , n}.

Thus we obtainJ 6|= {{c} ⊑ C} as required.
As the final case (B.2.2), assume thatCh ∈ Da. SinceD < D>n , we find D ,

Ch, i.e. p > 1. We concluded
⊔

1≤i≤p,i,h Ci ∈ D≤n−1 above for all sub-cases of (B).
HenceD is of the formDa ⊔ D+m! ⊔ Dl! – where we assume thatm is the least natural
number for whichD has this form – andm andl do not satisfy the relevant conditions

in the definition ofD>n . Accordingly, we denoteD asCh ⊔ M1 ⊔ . . . ⊔ Mm ⊔ L1 ⊔

. . . ⊔ Ll . SinceM1, . . . ,Mm, L1, . . . , Ll ∈ D≤1, they are each of the form{d} ⊓ C for
some individual named: let e1, . . . , em, f1, . . . , fl denote these individual names. Set
r ≔ n − (m + l), and consider fresh individual namesc1, . . . , cr . Define a setX ≔
{c1, . . . , cr , e1, . . . , em, f1, . . . , fl} of all constants considered asR-successors ofc. Using
the induction hypothesis, define

Ti(c,C) ≔ ~e1, . . . , em, f1, . . . , fl < Ch�× ∪

~c1, . . . , cr ∈ Ch, e1, . . . , em, f1, . . . , fl < Ch�× ∪
⋃

1≤ j≤m Ti(ej,M j) ∪ {∀x.R(c, x)→
∨

d∈X d ≈ x}

for i = 1, 2. Note that the construction of Lemma15 is possible: ifCh would be inD+B,
thenC ∈ Da would implyC ∈ DB, which cannot be.

To show that this satisfies the claim, consider modelsIi of {{c} ⊑ C} ∪ Ti(c,C)
(i = 1, 2), and letJ = I1 ×(I×I) I2 be the corresponding product interpretation. By
the constructions ofTi(c,C), we obtain that〈cJ , δ〉 ∈ RJ impliesδ = 〈a, b〉J for some
a, b ∈ X. We distinguish various cases:

– If a, b ∈ {e1, . . . , em, f1, . . . , fl} anda , b, then〈a, b〉J < EJ for all E = M1, . . . ,Mm,

L1, . . . , Ll can be concluded from〈a, b〉J , dJ for all d = e1, . . . , em, f1, . . . , fl .
Moreover,〈a, b〉J < Ch by Lemma15.

– If a = b = ej for some j = 1, . . . ,m, then〈a, b〉J < Ch again by Lemma15. As
above,〈a, b〉J < LJi for all i = 1, . . . , l. A similar argument shows〈a, b〉J < MJi
for all i = 1, . . . ,m with i , j, whereas〈a, b〉J < MJj follows by the induction
hypothesis.

– If a ∈ {e1, . . . , em, f1, . . . , fl} andb ∈ {c1, . . . , cr }, then〈a, b〉J < Ch follows from
Lemma16. The conclusion〈a, b〉J < EJ for all E = M1, . . . ,Mm, L1, . . . , Ll fol-
lows as before.

In each of these cases, we thus find that〈a, b〉J < DJ . Therefore, the only elements
〈a, b〉J that might be inDJ are such that eithera = b ∈ { fi , . . . , fl} or a, b ∈ {c1, . . . , cr }.
This yields a maximum ofl + r2 R-successors forcJ . SinceD < D>n , we find that
r(r − 1) < m (the caser ≤ 0 cannot occur for any case under (B)). Equivalently,
r2 − r < mwhich in turn is equivalent tor2 − n+m+ l < m. But thenr2

+ l < n, and we
findJ 6|= {c} ⊑ C, as required. ⊓⊔

The previous lemma already suffices to exclude a significant amount of axioms from
DLP:

Corollary 1. Let C be a structural concept expression in DLP normal form, let A be a
fresh concept name, and let c be a fresh constant symbol.

(1) If C < DH∪{⊤,⊥}, then A⊑ C cannot beFOL=-emulated by any datalog program.
(2) If C < Da∪{⊤,⊥}, then{c} ⊑ C cannot beFOL=-emulated by any datalog program.
(3) If C < DH ∪ {⊤,⊥}, and C < D≤n for all n ≥ 0, and C < C,⊤, then C cannot be

FOL=-emulated by any datalog program.

Proof. If C < D+a , then the result follows from Proposition7 in all cases. Thus assume
thatC ∈ D+a for the remainder of the proof.

For claim (1), consider fresh individual symbolsa andb, and constructT1 andT2 as
in Lemma18(1). DefineT′i ≔ Ti ∪ {A(a),A(b)} for i = 1, 2. ThenT1 andT2 satisfy the
preconditions of Lemma14 for the knowledge base KB= {{a} ⊑ A, {b} ⊑ A,A ⊑ C}. In
particular,Ti ∪ {A ⊑ C} is satisfiable sinceC is in DLP normal form andC , ⊥. This
suffices to establish the claim.

For claim (2) and (3), we can directly use the theoriesT1 andT2 of Lemma18 (2)
and (1), respectively. To ensure that the preconditions of Lemma14hold for claim (3),
we need to ensure that{C} ∪ Ti is satisfiable fori = 1, 2. To this end,C < C,⊤ ∪
{⊥} ensures that{C} is satisfiable.C < D≤n for all n ≥ 0 ensures thatC is satisfiable
by interpretations of arbitrary domain sizes, and it is not hard to see that{C} ∪ Ti is
consistent when considering the construction in Lemma18. ⊓⊔

The previous result already covers a significant amount of concept expressions that
are not in{⊤,⊥}∪DH∪D=n∪C,⊤. It remains to show that concepts inD≤n\(D=n∪C,⊤)
for somen ≥ 1 cannot belong to DLP.

Lemma 19. Let C be a structural concept expression in DLP normal form such that
C < {⊤,⊥}, and C ∈ D≤n \ (D=n ∪ C,⊤ ∪ DH) for some n≥ 1. Then C cannot be
FOL=-emulated by any datalog program.

Proof. Observe that, for anym ≥ 1, we findCp
H ⊂ Dp

H ⊂ C=m
⊥ ⊂ C=m+1

⊥ . We define the
degree d(D) of a concept expressionD as follows. IfD ∈ C=m

⊥ for somem≥ 1, then let
d(D) be the largest suchm. Otherwise, ifD ∈ Dp

H , then defined(D) ≔ 1. Otherwise set
d(D) ≔ 0. Now sinceC ∈ D=n it is of the formC = ({c1} ⊓C1) ⊔ . . . ⊔ ({cn} ⊓Cn), and
we can assume thatd(Ci) ≤ d(Ci+1) for all i = 1, . . . , n− 1. Using this notation, it is not
hard to see thatC < D=n is equivalent to saying thatd(Ci) < i for somei = 1, . . . , n.

First consider the case thati > 1. We find thatC is semantically equivalent to
({c1} ⊓ C1) ⊔ . . . ⊔ ({ci} ⊓ Ci). To see this, assume thatn ≥ i. Every model ofC has
at mostn elements in its domain. Sinced(Cn) ≥ n by construction,Cn ∈ C=n

⊥ . By
Lemma5, we thus obtainCn ⊑ C as a consequence ofC, showing thatC is equivalent
to ({c1} ⊓C1) ⊔ . . . ⊔ ({cn−1} ⊓Cn−1). The claim thus follows by induction.

Now C j < C=i
⊥ holds for all j ≤ i. Using Lemma5, we thus find that{c j} ⊑ C j is

satisfiable by models of at mosti elements in their domain. By structurality ofC, we find
thatC is satisfiable, and clearlyC is only satisfied by models with exactlyi > 1 domain
elements. Finite domain sizes can be enforced byFOL= theories, and hence must be
preserved byFOL=-emulation. But domain sizes greater than 1 are not preserved by
the product construction of Definition11, so the fact thatC cannot beFOL=-emulated
in datalog is a consequence of Proposition6.

Consider the casei = 1. Using the same argument as above, we find thatC is
semantically equivalent to{c1} ⊓ C1. By construction,C1 < Dp

H . The claim is now
shown by a miniature version of the proof steps that were usedto establish Corollary1,
where relevant constructions and arguments largely collapse due to the requirement that
the domain of interpretation is unary. We first provide two auxiliary constructions for
the “propositional” variants of Definition13and15. Given a structural conceptD < Dp

⊤

and a constantd, recursively construct a datalog program~d < D�p as follows:

– If D ∈ C=1
⊥ then~d < D�p ≔ ∅.

– If D is of the formA, ¬A, ¬{I }, ∃R.Self, or¬∃R.Self, then we define~d < D�p ≔

datalog({d} ⊑ ¬D).
– If D = D1 ⊓ D2 with D1 < Dp

⊤, then~d < D�p ≔ ~d < D1�
p.

– If D = D1 ⊔ D2 with D1,D2 < Dp
⊤, then~d < D�p ≔ ~d < D1�

p ∪ ~d < D2�
p.

– If D = 60R.¬D′ with D′ < Dp
⊤, then~d < D�p ≔ {R(d, d)} ∪ ~d < D′�p.

– If D = >n R.D′ with n > 0, then~d < D�p ≔ {¬R(d, d)}.

If D < Dp
B then, for a concept nameA, we recursively construct a datalog program

~{d} ⊓ D ⊑ A�p
B as follows:

– If D has the formA or ∃R.Self, then~{d} ⊓ D ⊑ A�p
B ≔ datalog({d} ⊓ D ⊑ A).

– If D = D1 ⊓ D2 with D1 < Dp
B, then~{d} ⊓ D ⊑ A�p

B ≔ ~{d} ⊓ D1 ⊑ A�p
B.

– If D = D1 ⊔ D2 with D1 < Dp
B andD2 < Dp

⊤, then~{d} ⊓ D ⊑ A�p
B ≔ ~{d} ⊓ D1 ⊑

A�p
B ∪ ~d < D2�

p.
– If D = 60R.¬D′ with D′ < Dp

B, then~{d}⊓D ⊑ A�p
B ≔ ~{d}⊓D′ ⊑ A�p

B∪{R(d, d)}.
– If D = >1R.D′ with D′ < C=1

⊥ , then~{d} ⊓ D ⊑ A�p
B ≔ {R(d, x)→ A(x)}.

To establish the claim, we recursively construct theoriesT1 ≔ T1(c1,C1) andT2 ≔

T2(c1,C1) that satisfy the preconditions of Lemma14. Note thatC cannot be an atomic
class, nominal,Self restriction, or the negation thereof.

Consider the caseC = D1 ⊔ D2 with D1,D2 < Dp
B. It is easy to see thatTi(c1,C) ≔

Ti(c1,D1) ∪ {¬Ai(x)} ∪
⋃

j=1,2~{d} ⊓ D j ⊑ A j�
p
B (i = 1, 2) satisfy the claim for fresh

concept namesA1,A2. Furthermore, ifC = D1 ⊔ D2 with D1 < Dp
H andD2 ∈ Dp

B then
the claim is satisfied byTi(c1,C) ≔ Ti(c1,D1) ∪ ~d < D2�

p (i = 1, 2). Similarly, for the
caseC = D1 ⊓ D2 with D1 < Dp

H , the theoriesTi(c1,D1) (i = 1, 2) satisfy the claim.
Now consider the caseC = >n R.D. Thenn = 1 andD < Dp

H . SinceC is seman-
tically equivalent toD on singleton domains, the claim follows again by induction.A
similar reasoning is possible for the caseC = 6n R.¬D with n = 0 andD < Dp

H . ⊓⊔

We are now, finally, in a position to state the main theorem of this section.

Theorem 4. If C is a concept expression in DLP normal form such that C< DLP,
then C cannot be contained in any DLP description logic in thesense of Definition6.

Proof. By Definition 9, C < {⊤,⊥} ∪ CH ∪ D=n ∪ C,⊤ for all n ≥ 1. If C < D≤n for all
n ≥ 0 andC < D+a , then the result follows by Proposition7. If C < D≤n for all n ≥ 0
andC ∈ D+a , then the result follows by Corollary1. If C ∈ D≤n for somen ≥ 0, then the
result follows by Lemma19. ⊓⊔

9 Conclusions and Outlook

DLP provides an interesting example for the general problemof characterising syntactic
fragments of a logic that are motivated by semantic properties. We derived and moti-
vated a number of design principles for achieving such a characterisation for DLP, most
notably the principles ofmodularity (closure under unions of knowledge bases) and
structurality (closure under non-uniform renaming of signature symbols), and showed

that the presented DLP description logic is the largest one possible. Formalisms like our
maximal DLP are unnecessarily large for practical applications, but understanding over-
all options and underlying design principles is indispensable for making an informed
choice of DL for a concrete task.

Our work also clarifies the differences between DLP and the DLsEL and Horn-
SHIQ which can both be expressed in terms of datalog as well. Firstof all, neitherEL
nor Horn-SHIQ can beFOL=-emulated in datalog (DLP 2). The datalog obtained in
these cases still preserves satisfiability even when arbitrary ABox facts (without com-
plex concepts) are added. In other words,EL and Horn-SHIQ satisfy a weaker ver-
sion of DLP 2 based onFOLground

≈ -emulation of Definition2, whereFOLground
≈ is the

variable-free fragment ofFOL=. Under those weakened principles, a larger space of
possible DL fragments is allowed, but it is not clear whether(finitely many) maximal
languages exist in this case. There is clearly no largest such language, since bothEL
andDLP abide by the weakened principles whereas their (intractable) union does not.

Even when weakening the principles of DLP like this, Horn-SHIQ is still excluded
since it cannot be modular (DLP 5) by Proposition2. In the presence of transitivity,
Horn-SHIQ also is not strictly structural (DLP 6), but this problem could be overcome
by using distinct signature sets for simple and non-simple roles. Again, it is open which
results can be established for Horn-SHIQ-like DLs based on the remaining weakened
principles.

This work also explicitly introduces a notion of semanticemulationwhich appears
to be novel, though loosely related to conservative extensions. In essence, it requires
that a theory can take the place of another theory in all logical contexts, based on a
given syntactic interface. Examples given in this paper illustrate that emulation can
be very different from semantic equivalence. Yet, our criteria can be argued to define
minimal requirements for preserving a theory’s semantics even in combination with ad-
ditional information, so emulation appears to be a natural tool for enabling information
exchange in distributed knowledge systems. We expect that the explicit articulation of
this notion will be useful for studying the semantic interplay of heterogeneous logical
formalisms in general.

Finally, the approach of this paper – seeking a structural logical fragment that is
provably maximal under certain conditions – immediately leads to a number of further
research questions. For example, what is the maximal fragment of SWRL (“datalog
∪ SROIQ”) that can be expressed inSROIQ? Clearly, this fragment would contain
DL Rules [10] and maybe some form of DL-safe rules [12]. But also the maximalFOL=
fragment that can be expressed in a well-known subset such asthe Guarded Fragment
[2] or the two-variable fragment might be of general interest.We argue that ultimate
answers to such questions can indeed be obtained by a carefularticulation of basic
design principles. At the same time, our study indicates that the required definitions
and arguments can become surprisingly complex when dealingwith a syntactically rich
formalism like description logic. The main reason for this is that constructs that are
usually considered “syntactic sugar” have non-trivial semantic effects when considering
logical fragments that are structurally closed.

AcknowledgementsResearch reported herein was supported by the EU in the IST
project ACTIVE (IST-2007-215040), and by the German Research Foundation under
the ReaSem project.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu.Foundations of Databases. Addison Wes-
ley, 1994.

2. Hajnal Andréka, Johan F. A. K. van Benthem, and István Németi. Modal languages and
bounded fragments of predicate logic.Journal of Philosophical Logic, 27(3):217–274, 1998.

3. Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter, editors. Handbook of
Modal Logic, volume 3 ofStudies in Logic and Practical Reasoning. Elsevier Science,
2006.

4. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and ex-
pressive power of logic programming.ACM Computing Surveys, 33(3):374–425, 2001.

5. Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic
programs: combining logic programs with description logic. In Proceedings of the 12th
International Conference on World Wide Web (WWW’03), pages 48–57. ACM, 2003.

6. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistibleSROIQ. In Patrick
Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proceedings of the 10th In-
ternational Conference on Principles of Knowledge Representation and Reasoning (KR’06),
pages 57–67. AAAI Press, 2006.

7. Ulrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reasoning in very ex-
pressive description logics. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05),
pages 466–471. Professional Book Center, 2005.

8. Yevgeny Kazakov.Saturation-Based Decision Procedures for Extensions of the Guarded
Fragment. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 2006.

9. Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler.Complexity boundaries for Horn
description logics. InProceedings of the 22nd AAAI Conference on Artificial Intelligence
(AAAI’07), pages 452–457. AAAI Press, 2007.

10. Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Description logic rules. In Malik
Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis, andNikos Avouris, editors,Proceed-
ings of the 18th European Conference on Artificial Intelligence (ECAI’08), pages 80–84. IOS
Press, 2008.

11. Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. ELP: Tractable rules for OWL 2. In
Amit Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy Finin,
and Krishnaprasad Thirunarayan, editors,Proceedings of the 7th International Semantic Web
Conference (ISWC’08), volume 5318 ofLNCS, pages 649–664. Springer, 2008.

12. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL DL with rules.
Journal of Web Semantics, 3(1):41–60, 2005.

13. Andrea Schaerf. Reasoning with individuals in concept languages.Data Knowledge Engi-
neering, 13(2):141–176, 1994.

14. Stephan Tobies.Complexity Results and Practical Algorithms for Logics in Knowledge Rep-
resentation. PhD thesis, RWTH Aachen, Germany, 2001.

15. Raphael Volz. Web Ontology Reasoning with Logic Databases. PhD thesis, Universität
Karlsruhe (TH), Germany, 2004.

