
No Size Fits All – Running the Star Schema
Benchmark with SPARQL and RDF Aggregate

Views

Benedikt Kämpgen and Andreas Harth

Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany
benedikt.kaempgen@kit.edu, harth@kit.edu

Abstract. Statistics published as Linked Data promise efficient extrac-
tion, transformation and loading (ETL) into a database for decision sup-
port. The predominant way to implement analytical query capabilities
in industry are specialised engines that translate OLAP queries to SQL
queries on a relational database using a star schema (ROLAP). A more
direct approach than ROLAP is to load Statistical Linked Data into
an RDF store and to answer OLAP queries using SPARQL. However,
we assume that general-purpose triple stores – just as typical relational
databases – are no perfect fit for analytical workloads and need to be
complemented by OLAP-to-SPARQL engines. To give an empirical argu-
ment for the need of such an engine, we first compare the performance of
our generated SPARQL and of ROLAP SQL queries. Second, we measure
the performance gain of RDF aggregate views that, similar to aggregate
tables in ROLAP, materialise parts of the data cube.

Keywords: Linked Data, OLAP, Star Schema Benchmark, View

1 Introduction

Analytical queries using SPARQL on RDF have gained interest since large
amounts of statistics have been published as Linked Data1 and promise effec-
tive Extract-Transform-Load pipelines for integrating statistics. Online Analy-
tical Processing (OLAP) has been proposed as a decision support method for
analysing Linked Data describing data cubes [12, 6].

OLAP engines translate OLAP queries into a target query language of a
database storing the multidimensional data. The predominant way in indus-
try is ROLAP since 1) it can be deployed on any of the widely-used relational
databases, 2) industry-relevant data such as from accounting and customer re-
lationship management often resemble star schemas [17] and 3) research has
focused on optimising ROLAP approaches [15]. Instead of storing the data in a
relational database, we have proposed to collect Statistical Linked Data reusing
the RDF Data Cube Vocabulary (QB) and to transform OLAP into SPARQL
queries [14]. Yet, there is little work on evaluating and optimising analytical

1 http://wiki.planet-data.eu/web/Datasets

2

queries on RDF data [4, 5]. We expect that, similar to general-purpose rela-
tional databases, a “one size fits all” [17] triple store will not scale for analytical
queries. In this paper, we intend to give an empirical argument in favor of creat-
ing a specialised OLAP engine for analytical queries on Statistical Linked Data.
Contributions of this paper are centered around four analytical query approaches
listed in the following table:

No Materialisation Materialisation
Relational data / SQL RDBMS / ROLAP ROLAP-M
Graph data / SPARQL OLAP4LD-SSB/-QB [14] OLAP4LD-QB-M

– We compare the performance of traditional relational approaches (RDBMS /
ROLAP) and of using a triple store and an RDF representation closely resem-
bling the tabular structure (OLAP4LD-SSB). We compare those approaches
with our OLAP-to-SPARQL approach [14] reusing a standard vocabulary
for describing statistics (OLAP4LD-QB). To use a credible benchmark, we
extend our approach for multi-level dimension hierarchies.

– We measure the performance gain of the common ROLAP query optimi-
sation approach to precompute parts of the data cube and to store those
“views” in aggregate tables, since they do not fit in memory [15, 10] (ROLAP-
M). We apply materialisation to our approach, represent views in RDF
(OLAP4LD-QB-M) and evaluate their performance gain.

In Section 2, we introduce an OLAP scenario and present our OLAP-to-
SPARQL approach. Our optimisation approach of using RDF aggregate views we
present in Section 3. In Section 4, we evaluate both OLAP-to-SPARQL approach
and RDF aggregate views. In Section 5, we discuss the results, after which we
describe related work in Section 6 and conclude in Section 7.

2 OLAP-to-SPARQL Scenario and Approach

We now shortly introduce an OLAP scenario, taken from the Star Schema Bench-
mark (SSB) [16]. We then use this scenario to explain our extended OLAP-to-
SPARQL approach [14] for multi-level hierarchies. In Section 4, we will use the
scenario and benchmark for a performance evaluation.

SSB describes a data cube of lineorders. Any lineorder (fact) has a value
(member) for six dimensions: the time of ordering (dates), the served customer,
the product part, the supplier, the ordered quantity and granted discount. De-
pending on the member for each dimension, a lineorder exhibits a value for mea-
sures having a certain aggregation function with which to compute its value,
e.g., sum profit, computed by sum revenue minus sum supplycost.

Dimensions exhibit hierarchies of levels that group members and relate them
to higher-level members, e.g., dates can be grouped starting from the lowest
dateLevel over yearmonthLevel to yearLevel. Since a week can be spread over
two months or years, there is a separate hierarchy where dates can be grouped
by weeknuminyear, e.g. “199322”. Customers and suppliers can be grouped into

3

cities, nations, and regions and parts into brands, categories and manufactur-
ers. Any hierarchy implicitly has a special-type ALL member, which groups all
members into one special-type ALL level.

SSB provides a workload of 13 queries on the data cube. Each query is orig-
inally provided in SQL. For instance, Q2.1 computes per year the revenues (in
USD) for product brands from product category MFGR#12 and of suppliers
from AMERICA. Results from this query usually are shown in pivot tables such
as the following:

Year\Brand MFGR#121 MFGR#1210 . . . MFGR#129
1992 667,692,830 568,030,008 . . . 614,832,897
.
1998 381,464,693 335,711,347 . . . 319,373,807

Filter: partCategory = “categoryMFGR#12”
AND supplierRegion = “AMERICA”

More information about the benchmark we provide on our benchmark web-
site [13]. In subsequent sections we present and compare different logical rep-
resentations of the SSB data cube on Scale 1. First, we describe SSB using an
extended OLAP-to-SPARQL approach and sets of multidimensional elements
such as Dimension and Cube [14]. Then, we describe an engine that translates
OLAP queries on SSB into SPARQL queries.

Member All 3,094 dates, 30,280 customer, 201,030 part and 2,280 supplier
members from each level are represented as URIs. Any member, e.g., rdfh:cat-
egoryMFGR-35, links to members on the next lower level via skos:narrower,
e.g., rdfh:brand1MFGR-3527. 51 quantity and 11 discount members we en-
code as RDF Literal values. Also, we define URIs representing the special-
type ALL member for each dimension, e.g., customer rdfh:lo custkeyAllAll.
Those ALL members will later be needed for representing aggregate views.

Level Every level is represented as a URI, e.g., rdfh:lo orderdateDateLevel, has a
xkos:depth within its hierarchy and links to a set of members via skos:member.
The vocabulary XKOS 2 allows to represent hierarchy levels.

Hierarchy Each dimension has one or two (dates) hierarchies. Every hierarchy
is represented as a URI, e.g., rdfh:lo orderdateCodeList. Levels with a depth
link to the hierarchy via skos:inScheme.

Dimension Every dimension such as dates is represented as an object property,
e.g., rdfh:lo orderdate and defines its hierarchy via qb:codeList. The simple
dimensions quantity, discount are represented as datatype properties.

Measures Every measure such as the sum of revenues is represented as a
datatype property, e.g., rdfh:lo revenue. The component specification of a
measure defines the aggregation function, e.g., SUM, via qb4o:hasAggregate-
Function, as proposed by Etcheverry and Vaismann [7]. Since there is no
recommended way to represent more complex functions, for formulas, we
use String Literals using measure URIs as variables.

DataCubeSchema The data cube schema of the SSB data cube is represented
as an instance rdfh-inst:dsd of qb:DataStructureDefinition and defines the
dimensions and measures of the data cube.

2 https://github.com/linked-statistics/xkos

4

Fact Every possible lineorder can be represented as a qb:Observation. Any ob-
servation links for each dimension property to the URI of a member or a
Literal value (quantity, discount), and for each measure property to a Lit-
eral value. Whereas base facts with each dimension on the lowest level are
given by the SSB dataset, aggregated facts on higher levels of dimensions of
the cube need to be computed.

DataCube The SSB data cube is identified by the dataset rdfh-inst:ds. The
dataset defines the schema rdfh-inst:dsd and has attached via qb:dataSet all
base facts.

All queries of SSB can be formalised as OLAP queries on single data cubes
with multi-level hierarchies as per Definition 1, e.g., Q2.1 as follows with abbrevi-
ated names: ({yearLevel, ALL, brand1Level, ALL, ALL, ALL}, {category-
Level = categoryMFGR-12, s regionLevel = s regionAMERICA}, {lo reve-

nue}). Q2.1 slices dimensions customer, supplier, discount, quantity, rolls up
dates to years and part to product brands, dices for a specific product part
category and supplier region and projects the revenues.

Definition 1 (OLAP Query). Given a data cube c = (cs, C) ∈ DataCube,
with cs = (?x,D,M) ∈ DataCubeSchema, C ∈ 2Fact. D = {D1, D2, . . . Dd} ⊆
Dimension is an ordered list of dimensions with a set of levels Li = {l1, l2, . . .} ⊆
Level, including the special-type ALL level. Each level li has memberno(li) mem-
bers. M ⊆ Measure is an ordered list of measures. We define an OLAP query
on this cube with OLAP Query = SC×2Fact with (c, SlicesRollups,Dices, Pro-
jections) ∈ SC, with SlicesRollups ⊆ L1×L2× . . .×Ld a level for each dimen-
sion in the same order (for roll-ups), including the special-type level ALL (for
slices), with Dices a set of conditional terms on members of levels (for dice)
and with Projections ⊆ M a set of selected measures from a data cube (for
projection). An OLAP query results in a set of facts from the data cube.

Given Member, Level, Hierarchy, Dimension, Measure, DataCubeSchema,
Fact, and DataCube as sets of multidimensional data, we define OLAP Engine
⊆ OLAP Query × Target Query with OLAP Query as per Definition 1, Tar-
get Query a query in a target query language such as SQL and SPARQL. The
following pseudocode algorithm implements an OLAP engine that transforms
an OLAP query into a SPARQL query. The algorithm separately creates the
WHERE, SELECT and GROUP BY clause. Note, in this pseudocode we dis-
regard translating multidimensional elements to URI representations and vari-
ables, more efficient filters, complex measures and ordering:

1 Algorithm 1: OLAP -to-SPARQL
2 Input: OLAP Query (cube , SlicesRollups , Dices , Projections)
3 Output: SPARQL query string
4 begin
5 whereClause = "?obs qb:dataSet " + cube.ds.uri.
6 for level ∈ SlicesRollups do
7 levelHeight = level.getHeight ()
8 dimension = level.getHierarchy ().getDimension ()
9 dimVar = makeUriToParameter(dimension)

10 hashMap.put(dimension , levelHeight)
11 for i = 0 to levelHeight - 1 do

5

12 rollUpsPath += dimVar + i + ". " + dimVar + i + " skos:narrower "
13 whereClause += "?obs " + dimension.uri + rollUpsPath + dimVar +

levelHeight + ". "
14 whereClause += dimVar + levelHeight + " skos:member " + level.uri
15 selectClause , groupByClause += " "+ dimVar + levelHeight
16 for member ∈ Dices.getPositions ().get(0).getMembers () do
17 if (diceslevelHeight > slicesRollupsLevelHeight) do
18 dicesLevelHeight = member.getLevel ().getHeight ()
19 slicesRollupsLevelHeight = hashMap.get(dimension)
20 dimension = member.getLevel ().getHierarchy ().getDimension ()
21 dimVar = makeUriToParameter(dimension)
22 for i = slicesRollupsLevelHeight to dicesLevelHeight - 1 do
23 dicesPath += dimVar + i + ". " + dimVar + i + " skos:narrower "
24 whereClause += "?obs " + dimension.uri + dicesPath + dimVar +

dicesLevelHeight + ". "
25 whereClause += " Filter("
26 for position ∈ Dices.getPositions () do
27 for member ∈ position.getMembers () do
28 dimVar =

makeUriToParameter(member.getLevel ().getHierarchy ().getDimension ())
29 memberFilterAnd += "AND " + dimVar + diceslevelHeight + " = " + member
30 memberFilterOr += "OR " + memberFilterAnd
31 whereClause += memberFilterOr + ") "
32 for measure ∈ Projections do
33 measVar = makeUriToParameter(measure)
34 selectClause += measure.getAggregationFunction () + "(" + measVar + ") "
35 whereClause += " ?obs " + measure.uri + " " + measVar + " ."
36 return selectClause + whereClause + groupByClause

We query for all observations of the cube (line 5). Then, for each level, we
create a property path starting with ?obs and ending with a dimension variable
at the respective level (line 6 to 14). Each level height we store in a map in order
to later check whether graph patterns need to be added for dices (10). Then,
we add the variables to the select and group by clause (15). Now, we add graph
patterns for dices (16 to 31). We assume that the set of conditional terms on
members of levels, Dices, can be translated into a set of positions with each
position describing a possible combination of members for each diced dimension
(16). Diced dimensions and levels are fixed for each position; therefore, we only
use the first position for adding graph patterns (16). We assume furthermore that
measures are only contained in Projections but not SlicesRollups and Dices.
We only need to add graph patterns if the height of the diced level is larger than
the level mentioned for the same dimension in SlicesRollups (17). Then, from
the positions in Dices, we filter for one (OR, 30) of all possible combinations
(AND, 29) of members for each diced dimension. Finally, for each measure in
Projections, we add a variable with the aggregation function of the measure to
the select clause and graph patterns to the where clause (34,35). The following
listing shows the relevant parts of the SPARQL query for Q2.1 :

1 SELECT ?rdfh_lo_orderdate ?rdfh_lo_partkey1 sum(? rdfh_lo_revenue) as
?lo_revenue

2 WHERE {
3 ?obs qb:dataSet rdfh -inst:ds; rdfh:lo_orderdate ?rdfh_lo_orderdate0.
4 ?rdfh_lo_orderdate1 skos:narrower ?rdfh_lo_orderdate0.
5 ?rdfh_lo_orderdate2 skos:narrower ?rdfh_lo_orderdate1.
6 ?rdfh_lo_orderdate skos:narrower ?rdfh_lo_orderdate2.
7 rdfh:lo_orderdateYearLevel skos:member ?rdfh_lo_orderdate.
8 ?obs rdfh:lo_partkey ?rdfh_lo_partkey0.
9 ?rdfh_lo_partkey1 skos:narrower ?rdfh_lo_partkey0.

10 ?rdfh_lo_partkey skos:narrower ?rdfh_lo_partkey1.
11 rdfh:lo_partkeyCategoryLevel skos:member ?rdfh_lo_partkey.

6

12 ?obs rdfh:lo_suppkey ?rdfh_lo_suppkey0.
13 ?rdfh_lo_suppkey1 skos:narrower ?rdfh_lo_suppkey0.
14 ?rdfh_lo_suppkey2 skos:narrower ?rdfh_lo_suppkey1.
15 ?rdfh_lo_suppkey skos:narrower ?rdfh_lo_suppkey2.
16 rdfh:lo_suppkeyRegionLevel skos:member ?rdfh_lo_suppkey.
17 ?obs rdfh:lo_revenue ?rdfh_lo_revenue.
18 FILTER (? rdfh_lo_partkey = rdfh:lo_partkeyCategoryMFGR -12 AND

?rdfh_lo_suppkey = rdfh:lo_suppkeyRegionAMERICA).
19 } GROUP BY ?rdfh_lo_orderdate ?rdfh_lo_partkey1 ORDER BY ?rdfh_lo_orderdate

?rdfh_lo_partkey1

Here, Dices, {categoryLevel = categoryMFGR-12, s regionLevel = s -

regionAMERICA}, is translated into one position with one member for part cate-
gory level and one member for supplier region level. The SPARQL query queries
for all facts within the data cube (line 3), adds skos:narrower paths up to year-
Level, categoryLevel and s regionLevel (4 to 16), selects lo revenue as measure
(17), filters for a certain member of part category and of supplier region (18)
and groups by yearLevel and brand1Level (19). We assume all RDF data stored
in a default graph.

3 RDF Aggregate Views

We now apply a common optimisation technique to the OLAP engine imple-
menting our OLAP-to-SPARQL approach: data cube materialisation, i.e., pre-
computing of certain facts from the entire data cube and storing them for reuse.

Just as Harinarayan et al. [11], we assume that the cost of answering an OLAP
query is proportional to the number of facts that need to be scanned, e.g., for
validating a filter or calculating an aggregation. So far, any OLAP query to the
SSB data cube needs to scan the 6,000,000 base facts. Intuitively, materialisation
pre-computes facts with dimensions on higher levels, so that views contain fewer
and already aggregated facts to be examined for filtering or further aggregation.

Definition 2 (Aggregate View). We define a view in a data cube c as an OLAP
query per Definition 1 (c, SlicesRollups,Dices, Projections) with SlicesRollups
⊆ L1 × L2× . . .× Ld, Dices the empty set, and Projections a set of measures.
Thus, any fact within the view gives a value for each of its measures for a certain
combination of level members. A view may be sparse and not contain facts for
each possible combination of members. The maximum number of facts within
a view is given by

∏
memberno(li), li ∈ Li. The number of views in the data

cube is given by
∏
|Li|. The facts from an aggregate view can be generated by

executing the OLAP query using an OLAP engine.

The SSB data cube contains 6∗5∗5∗5∗2∗2 = 3, 000 views with dates having
six levels since the two hierarchies of dates contain the same lowest and ALL
level. The advantage of aggregate views as per Definition 2 is that the entire set
of views of a data cube with multi-level hierarchies can be represented as a data
cube lattice [11], see Figure 1 for an illustration of the lattice of the SSB cube. Any
view is represented by the level of each dimension, omitting any ALL levels. The
single view on the lowest level corresponds to the OLAP query that contains all

7

base facts, i.e., the view returns all non-aggregated facts from the SSB dataset.
The view contains maximum 2, 555∗30, 000∗200, 000∗2, 000∗51∗11 ≥ 1.7∗1019

facts, however, SSB provides a sparse data cube with 6, 000, 000 facts. From this
lowest view one can reach higher views via roll-up operations on dimensions, e.g.,
the next higher view on the right side rolls up to the ALL level of quantity. The
single view on the highest level in Figure 1 corresponds to the OLAP query that
returns one single fact grouping by the special-type level ALL with the single
member ALL for each dimension.

Fig. 1. Illustration of data cube lattice of SSB

The higher the view on a path in the lattice, the fewer facts it contains,
since higher levels group lower-level members into groups of fewer members.
For distributive aggregation functions such as SUM , and algebraic formulas
such as SUM(rdfh:lo revenue - rdfh:lo supplycost), we do not run into
summarisability problems [9] and a view can be computed from any view on
a lower level that can be reached via a roll-up path; for instance, the view
grouping by quantity on the right upper corner can be computed from the
view grouping discount and quantity, s region and quantity, their collective
child view grouping by s region, discount, and quantity as well as from any
other reachable lower level view not displayed. The holistic aggregation function
SUM(rdfh:lo extendedprice * rdfh:lo discount) is not further aggregated
from views, thus, Q1.1 to Q1.3 return correct results.

Summing up for each dimension the number of members on the lowest level,
the numbers of members on each level per hierarchy, and the special-type mem-

8

ber ALL, we can calculate the maximum number of facts in the entire data
cube: 3095 ∗ 30281 ∗ 201031 ∗ 2281 ∗ 52 ∗ 12 > 2.6 ∗ 1019. As materialising the
entire data cube would 1) take too much time and 2) require too much hard disk
space, we are concerned with deciding which views to materialise. We define
for a given OLAP query (c, SlicesRollups, Dices, Projections) as per Defini-
tion 1 a single closest view in the lattice from which we can create the results
by only scanning the facts in the view [11]: We create a view (c, SlicesRollups′,
Dices′, P rojections′) on the same cube that contains in SlicesRollups′ for each
dimension the lowest level mentioned in SlicesRollups and Dices, contains an
empty set for Dices′ and M ′ = M . The following term describes the closest
view for Q2.1, the other views are translated, accordingly: ({yearLevel, ALL,

brand1Level, s regionLevel, ALL, ALL}, ∅, {lo revenue}). The view con-
tains maximum 35, 000 facts and as such is considerably smaller than the SSB
dataset with 6, 000, 000 facts. Note, Q2.2 and Q2.3 can use the same view as
Q2.1 and Q3.3 can use the same view as Q3.2, resulting in less time and less
space for creating the views. Though some views can contain as many facts as
there are base facts in the data cube, they often do not due to sparsity, e.g., Q4.3
with 4, 178, 699 facts. For views may still be large, in ROLAP, views are stored
in aggregate tables. Similarly, we represent views as RDF aggregate views reusing
QB and store the triples together with the other multidimensional data in the
same triple store. See Figure 2 for an illustration of this approach for Q2.1.

Fig. 2. Modelling RDF aggregate view rolling up to year level using QB

For dimensions on the ALL level, aggregate views only contain facts that fix
those dimensions to the ALL member, e.g., Q2.1 fixes customer. Therefore, we
can represent RDF aggregate views as instances of qb:Slice, e.g., rdfh-inst:query4-
aggview. qb:SliceKeys describe the structure of a slice, i.e., the sliced dimensions
(not shown in figure). Slices explicitly state to what member a sliced dimen-
sion is fixed, e.g., rdfh:lo custkey to ALL. In addition to base facts, e.g., fact1
with member date19921231 in the date level, facts are created that aggregate

9

on the specific levels of the view. For instance, the view of Q2.1 contains via
qb:observation a fact2 that rolls-up to the higher-level-member year1992 in the
year level of the dates hierarchy. The higher-level-member is connected to the
lower-level-member in a skos:narrower path. Also, fact2 rolls-up to the special-
type ALL member of customer. The datatype property xkos:depth states for
each level the depth of a level starting with 0 from the (implicit) ALL level. The
following listing shows the relevant parts of a SPARQL INSERT query on the
SSB data that populates the RDF aggregate view for Q2.1 :

1 INSERT {
2 rdfh -inst:query4 -aggview qb:observation _:obs.
3 _:obs rdfh:lo_orderdate ?d_year; rdfh:lo_custkey rdfh:lo_custkeyAllAll;

rdfh:lo_partkey ?p_brand1; rdfh:lo_suppkey ?s_region; rdfh:lo_quantity
rdfh:lo_quantityAllAll; rdfh:lo_discount rdfh:lo_discountAllAll;
rdfh:lo_revenue ?lo_revenue .}

4 WHERE {{
5 SELECT ?d_year ?p_brand1 ?s_region sum(? rdfh_lo_revenue) as ?lo_revenue

WHERE {
6 ?obs qb:dataSet rdfh -inst:ds.
7 ?obs rdfh:lo_orderdate ?d_date.
8 ?d_yearmonthnum skos:narrower ?d_date.
9 ?d_yearmonth skos:narrower ?d_yearmonthnum.

10 ?d_year skos:narrower ?d_yearmonth.
11 rdfh:lo_orderdateYearLevel skos:member ?d_year.
12 ?obs rdfh:lo_partkey ?p_part.
13 ?p_brand1 skos:narrower ?p_part.
14 rdfh:lo_partkeyBrand1Level skos:member ?p_brand1.
15 ?obs rdfh:lo_suppkey ?s_supplier.
16 ?s_city skos:narrower ?s_supplier.
17 ?s_nation skos:narrower ?s_city.
18 ?s_region skos:narrower ?s_nation.
19 rdfh:lo_suppkeyRegionLevel skos:member ?s_region.
20 ?obs rdfh:lo_revenue ?rdfh_lo_revenue.
21 } GROUP BY ?d_year ?p_brand1 ?s_region
22 }}

Here, we first create a SELECT query using our OLAP-to-SPARQL algo-
rithm on the OLAP query (line 5), then this SELECT query is made a subquery
of an INSERT query. Observations roll-up to members of specific levels and fix
sliced dimensions (3). Resulting triples are stored in the default graph. We can
now easily adapt our OLAP-to-SPARQL algorithm to use for an OLAP query
the RDF aggregate views instead of the base facts from the SSB dataset. The
following listing shows the SPARQL query for Q2.1.

1 SELECT ?d_year ?p_brand1 sum(? rdfh_lo_revenue) as ?lo_revenue
2 WHERE {
3 rdfh -inst:ds qb:slice ?slice.
4 ?slice qb:observation ?obs;
5 rdfh:lo_custkey rdfh:lo_custkeyAllAll;
6 rdfh:lo_quantity rdfh:lo_quantityAllAll;
7 rdfh:lo_discount rdfh:lo_discountAllAll.
8 ?obs rdfh:lo_orderdate ?d_year.
9 rdfh:lo_orderdateYearLevel skos:member ?d_year.

10 ?obs rdfh:lo_partkey ?p_brand1.
11 ?p_category skos:narrower ?p_brand1.
12 rdfh:lo_partkeyCategoryLevel skos:member ?p_category.
13 ?obs rdfh:lo_suppkey ?s_region.
14 rdfh:lo_suppkeyRegionLevel skos:member ?s_region.
15 ?obs rdfh:lo_revenue ?rdfh_lo_revenue.
16 FILTER (? p_category = rdfh:lo_partkeyCategoryMFGR -12 AND ?s_region =

rdfh:lo_suppkeyRegionAMERICA).
17 } GROUP BY ?d_year ?p_brand1 ORDER BY ?d_year ?p_brand1

10

Here, we query for observations from slices of rdfh-inst:ds that fix customer,
quantity and discount to the ALL member, as indicated in SlicesRollups of Q2.1
(lines 3 to 7). In comparison to the OLAP SPARQL query of Q2.1 without views,
we have a reduced set of triple patterns for rolled-up dimensions (skos:narrower
paths) (8 to 14). To distinguish between observations from views slicing the
same dimensions but rolling-up to different levels, we require for each member
the correct level (9, 12, 14). And we add filters on diced dimensions (16).

4 Evaluation

We now give an overview of tested approaches and the reasons for their selection,
then explain the design of the tests. See the benchmark website for this paper
[13] for more background information about the tests:

Name Data Format Metadata Query Language Engine/Database Pre-processing (s) Rows / Triples

RDBMS Relational - SQL MySQL 22 6,234,555

ROLAP-M Relational XML SQL MySQL, Mondrian 4,507 14,975,472

OLAP4LD-SSB Graph-based - SPARQL Open Virtuoso 5,352 108,021,078

OLAP4LD-QB Graph-based RDF/QB SPARQL Open Virtuoso 5,744 116,832,479

OLAP4LD-QB-M Graph-based RDF/QB SPARQL Open Virtuoso 26,032 190,060,632

RDBMS and ROLAP-M represent the traditional approaches with a widely-
used Open-Source relational database (MySQL 5.1 v5.1.63) and SQL. ROLAP-M
uses aggregate tables for optimising queries. The other tests represent graph-
based approaches with a widely-used Open-Source triple store (Open Virtuoso
v06.01.3127) and SPARQL 1.1 for aggregate and sub-queries. Whereas OLAP4-
LD-SSB represents SSB data without reusing a vocabulary, OLAP4LD-QB reuses
QB which allows us to materialise parts of the data cube as RDF aggregate views
in OLAP4LD-QB-M.

We use the Star Schema Benchmark [16], since SSB 1) refines the decision
support benchmark TPC-H by deriving a pure star schema from the schema
layout in order to evaluate analytical query engines [1], and 2) can be regarded
as a realistic data source since statistics published as Linked Data are typi-
cally highly structured [4, 3]. We run each approach on a Debian Linux 6.0.6,
2x Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz with 16 cores, 128GB RAM and
900GB RAID10 on 15k SAS disks for local data storage. We assume unlimited
amount of space but configure the databases to only use an amount of memory
clearly below 100% of the space the data files surmount to (400M for relational
approaches, < 650M for graph-based approaches), since storing all multidimen-
sional data in main memory is often too costly. For each approach we 1) translate
the SSB data cube at Scale 1 with 6,000,000 lineorders into the respective data
format for storage in the database, 2) simulate an OLAP engine translating the
SSB OLAP queries into the respective query language of the database 3) before
each test, shut-down all other applications not needed and run the test once to
populate the disk cache (warm-up) and 4) document the elapsed query time of
each query in turn. Note, we do not consider data refreshes. For running the
SSB benchmark and collecting the data about elapsed query times, we used the
Business Intelligence Benchmark (BIBM)3. BIBM also ensured identical results

3 http://sourceforge.net/projects/bibm/

11

for the approaches through qualification files (provided at website). We now de-
scribe for each approach how we stored SSB data in the database and translated
SSB OLAP queries to the database query language.

RDBMS. We created a schema file for dimension and fact tables and pop-
ulated the database with an SSB data generator. We setup column data types
as recommended by SSB and indexes for each foreign key in the fact table, pri-
mary keys for the fact table comprising the dimension keys and primary keys for
dimension tables in a standard Star Schema fashion. Loading of 6,234,555 rows
of data took 22s. The SQL queries of SSB could be reused with minor MySQL-
syntax-specific modifications. We switched off query cache so that MySQL after
a warm-up would not read all queries from cache. Note, we have compared those
SQL queries with SQL queries created by the widely-used Open-Source RO-
LAP engine Mondrian (v3.4.1). Mondrian stores data cube metadata in XML
and would for example deliberately query for more data than requested by the
query and cache the results for later use; however, SSB minimises overlap be-
tween queries, e.g., Q1.1 uses discounts between 1 and 3, Q2.1 between 4 and
6. Since the performance gain of using Mondrian-created SQL queries instead of
the original SSB SQL queries showed small, we only include a Mondrian test in
the benchmark website (ROLAP).

ROLAP-M. We created aggregate tables without indices and keys for the
closest view to each query using SQL INSERT queries on the original tables
from RDBMS. Time included 22s for preparing RDBMS with 6,234,555 rows
and 4,485s for creating the aggregate tables with another 8,740,917 rows. For
each OLAP query we created an SQL query using the closest aggregate table.
Similarly, Mondrian would choose the aggregate table with the smallest number
of rows and create an SQL query with comparable performance.

OLAP4LD-SSB. With BIBM we translated the SSB tabular data into RD-
F/TTL files using a vocabulary that strongly resembles the SSB tabular struc-
ture: A lineorder row is represented as a URI which links for each dimension
via an object property, e.g., rdfh:lo orderdate, to a URI representing a row from
the respective dimension table, e.g., rdfh:lo orderdate19931201. From this URI,
datatype properties link to Literal values for members, e.g., month “199312”.
Quantity and discount are directly given using datatype properties from a line-
order. Each measure is attached to the lineorder URI using a datatype property.
Translation took 48s, bulk loading of 108, 021, 078 triples 5,304s. For each SSB
OLAP query, we tried to build the most efficient SPARQL-pendant to the orig-
inal SSB SQL queries, e.g., reducing the number of joins.

OLAP4LD-QB. We created RDF metadata for the SSB data cube using
our extended OLAP-to-SPARQL approach and via a small script added links
from each lineorder of OLAP4LD-SSB to rdfh-inst:ds. Using SPARQL INSERT
queries for each dimension, we grouped dimension members into levels of hier-
archies, and added them to the triple store. Creating the OLAP4LD-SSB data
and adding links took 48s and 38s, the INSERT queries 14s; compressing and
bulk loading of 116, 832, 479 triples took 60s and 5,584s. Simulating our OLAP-
to-SPARQL algorithm, we manually translated the SSB queries to SPARQL.

12

OLAP4LD-QB-M. For each SSB query, we created a closest RDF ag-
gregate view using a SPARQL INSERT query. Setting up OLAP4LD-QB took
5,744s, the SPARQL INSERT queries 20,288s for another 73, 228, 153 triples.
Also, we created SPARQL queries that use the closest views.

5 Presentation and Discussion of Results

In this section, we evaluate 1) the scalability of the OLAP-to-SPARQL approach
and 2) the performance gain of RDF aggregate views. Table 1 lists performance-
relevant SSB query features. Filter factor measures the ratio of fact instances
that are filtered and aggregated. Filter factors are computed by multiplying
the filter factors of each dice, e.g., for Q2.1 the filter factor is 1/25 for part
times 1/5 for supplier. View factor measures the ratio of fact instances that are
contained in a view in relation to the 6M base facts. For example, from the filter
factor and view factor, we see that query flight 4 (Q4) iteratively drills-down to
more granular levels (up to 4,178,699 facts) but filters for fewer, more specific
lineorders. With RDBMS joins we describe the number of joins between tables
in the SQL representation of a query. Note, ROLAP-M does not need joins. With
SSB, QB and QB-M joins we state the number of triple pattern joins, pairs of
triple patterns mentioning the same variable. Table 2 lists the elapsed query
times (s) which we now discuss.

Table 1. Overview of SSB queries and their performance-relevant features

Feature Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

Filter factor .019 .00065 .000075 .008 .0016 .0002 .034 .0014 .000055 .00000076 .016 .0046 .000091

View factor .00064 .0073 .0032 .0058 .0058 .0058 .0007 .0728 .0728 .5522 .0007 .0036 .6964

RDBMS joins 1 1 1 3 3 3 3 3 3 3 4 4 4

SSB joins 5 5 6 8 7 7 9 9 7 8 10 12 12

QB joins 8 6 6 15 13 14 16 16 16 12 22 22 22

QB-M joins 9 9 9 12 11 11 13 13 11 12 13 14 14

Table 2. Evaluation results with single and total elapsed query time (s)

Name Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 Total
RDBMS 1.6 1.1 1.1 16.1 15.7 15.4 10.4 7.8 7.6 3.1 11.0 5.3 5.0 101
ROLAP-M 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.1 0.8 2
OLAP4LD-SSB 22.5 0.8 0.2 16.1 0.9 0.2 28.5 2.1 1.0 0.4 N/A 36.8 9.6 119
OLAP4LD-QB 46.1 1.3 0.2 55.0 49.4 31.1 145.7 12.5 1.8 87.2 175.3 544.5 24.9 1175
OLAP4LD-QB-M 19.9 10.2 10.2 366.3 356.7 356.3 468.5 467.6 4.6 4.6 0.1 0.4 55.4 2121

ROLAP-M overall is 50 times faster than RDBMS for not requiring any joins
and a reduced number of facts to scan for aggregation. Whereas RDBMS has to
first scan 6M rows and then to aggregate, ROLAP-M only has to scan the view
and to aggregate from there. Affirmatively, the views of Q3.4 and Q4.3 with very
low selectivity show smaller benefits. However, preparing ROLAP-M takes 200
times longer than RDBMS.

Comparing OLAP4LD-SSB and RDBMS, we see that the graph database is
as fast as the relational alternative for some of the queries (e.g., Q1.2, Q2.1),

13

slower for other queries (e.g., Q1.1, Q3.1, Q4.2), and even faster for others (Q2.2,
Q3.3). Over all queries, OLAP4LD-SSB is only slightly worse, however, Q4.1 for
no known reason does not successfully complete. Differences can be explained by
the number of joins; for instance, whereas RDBMS requires for Q3.1 and Q4.2
three and four joins, OLAP4LD-SSB requires nine and twelve joins, respectively.
If the number of joins is less divergent, differences can be explained by the
filter factor and the fact that after filtering facts still need to be aggregated.
In general, the smaller the filter factor, the better the graph database seems in
comparison to the relational database, for instance Q2.2, Q2.3 and Q3.3. For
low-selective queries, the graph database performs worse, e.g., Q1.1, Q3.1, Q4.2.
This aligns with our expectations that a graph database is more optimised for
high-selectivity metadata queries without aggregations. OLAP4LD-SSB requires
243 times as much time for loading.

OLAP4LD-QB reusing QB requires up to twice as many joins than OLAP4LD-
SSB (Q2.3), since hierarchies are explicitly represented through skos:narrower
paths from higher-level to lower-level members, and consequently is 10 times
slower. Both approaches require similar pre-processing time. Yet, only OLAP4LD-
QB can represent hierarchies and be optimised using RDF aggregate views.

Although OLAP4LD-QB-M overall leads to 1.8 times slower queries and
performs considerably worse for query flights 2 and 3 (Q2/3), it succeeds in
optimising query flight 4 (Q4). Similar to ROLAP-M, the performance gain RDF
aggregate views can be explained by a reduced number of joins, e.g., for Q4.1,
Q4.2. However, for most queries OLAP4LD-QB-M performs worse, since RDF
aggregate views – different from ROLAP-M with separately created aggregate
tables – are stored in the same graph and do not reduce the number of facts
scanned for a query. Thus, whereas OLAP4LD-QB needs to scan for 6M facts,
OLAP4LD-QB-M also needs to scan over facts from the aggregate views, in total
14.98M facts. Queries need to compensate for the increased effort in scanning by
the reduced number of joins, in which Q2.1 to Q3.2 apparently do not succeed.

6 Related Work

In this section, we describe related work on 1) evaluating analytical query exe-
cution on RDF data, 2) representing multidimensional data as RDF and 3)
materialising aggregate views on RDF data.

In our OLAP-to-SPARQL approach we have chosen RDF reusing QB as
a logical representation, SPARQL as a query language for computation, and
materialised closest views from the data cube lattice that promise the largest
performance gain. We compare analytical queries on RDF with common alter-
natives in a realistic scenario, according to Erling [4] a prerequisite for successful
RDF use cases and targeted optimisations [5]. Most notably, the Berlin SPARQL
Benchmark BI Use Case allows quantifying analytical query capabilities of RDF
stores, but, so far, no work compares the RDF performance with the industry-
standard of relational star schemas.

14

Recent work discusses approaches to represent multidimensional data in RDF
[12, 7, 6], however, no approach deals with the computation and selection of data
cube slices and dices in RDF, in particular, considering the special-type ALL
members and levels for uniquely identifying all possible facts of a data cube.

Several authors discuss views over RDF data. Castillo and Leser [2] have
presented work on automatically creating views from a workload of SPARQL
queries. In the evaluation, they use a dataset with 10M triples and disregard
queries that exhibit a high selectivity. Also, Goasdoué et al. [8] have discussed
the creation and selection of RDF views. Their evaluation is done on a 35M triple
dataset. In contrast to these approaches, our approach considers more complex
views based on aggregation functions and hierarchies, materialises views as RDF
reusing QB in a triple store and evaluates the applicability for high- and low-
selectivity queries on a > 100M triple dataset.

7 Conclusion

We now give an empirical argument in favor of creating a specialised OLAP
engine for analytical queries on RDF. Although a triple store has shown almost
as fast as a relational database, OLAP scenarios such as from the Star Schema
Benchmark used in our evaluation require results in seconds rather than minutes.
Materialised views with aggregate tables overall reach 50 times faster queries.
Queries by our OLAP-to-SPARQL approach on data reusing the RDF Data
Cube Vocabulary (QB) overall are 10 times slower than queries on data without
reusing QB, for a large number of joins are required for rolling-up on dimensions;
yet, only QB metadata allows to explicitly represent dimension hierarchies and to
materialise parts of the data cube. RDF aggregate views show the capability to
optimise query execution, yet, overall still take six times longer for preprocessing
and not nearly reach the performance gain of aggregate tables in ROLAP. The
reason seems that the reduced number of joins for queries on RDF aggregate
views often cannot compensate for the increased number of facts that are stored
in the triple store and need to be scanned for query execution. We conclude
that the query optimisation problem intensifies in many OLAP scenarios on
Statistical Linked Data and that OLAP-to-SPARQL engines for selection and
management of RDF aggregate views are needed.

Acknowledgements. This work is supported by the Deutsche Forschungs-
gemeinschaft (DFG) under the SFB/TRR 125 - Cognition-Guided Surgery and
under the Software-Campus project. We thank Günter Ladwig, Andreas Wagner
and the anonymous reviewers for helpful support and feedback.

References

1. Bog, A., Plattner, H., Zeier, A.: A mixed transaction processing and operational
reporting benchmark. Information Systems Frontiers 13, 321–335 (2011)

2. Castillo, R., Leser, U.: Selecting Materialized Views for RDF Data. In: Daniel, F.,
Facca, F.M. (eds.) Proceedings of the 10th international conference on Current
trends in web engineering. Springer (2010)

15

3. Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and Oranges: a
Comparison of RDF Benchmarks and Real RDF Datasets. In: Proceedings of the
2011 ACM SIGMOD international conference on Management of data (2011)

4. Erling, O.: Directions and Challenges for Semdata. In: Proceedings of workshop
on Semantic Data Management (SemData@VLDB-2010) (2010)

5. Erling, O.: Virtuoso, a Hybrid RDBMS/Graph Column Store. IEEE Data Eng.
Bull. 35, 3–8 (2012)

6. Etcheverry, L., Vaisman, A.A.: Enhancing OLAP Analysis with Web Cubes. In:
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) Proceedings of
the 9th international conference on The Semantic Web: research and applications.
Springer (2012)

7. Etcheverry, L., Vaisman, A.A.: QB4OLAP: A Vocabulary for OLAP Cubes on the
Semantic Web. In: Proceedings of the third international workshop on Consuming
Linked Data (2012)

8. Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View Selection in Semantic
Web Databases. PVLDB 5, 97–108 (2011)

9. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generaliz-
ing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery
1, 29–53 (1997)

10. Gupta, A., Mumick, I.S.: Maintenance of Materialized Views: Problems, Tech-
niques, and Applications. In: Materialized Views. MIT Press (1999)

11. Harinarayan, V., Rajaraman, A.: Implementing Data Cubes Efficiently. In: Pro-
ceedings of the 1996 ACM SIGMOD international conference on Management of
data (1996)

12. Kämpgen, B., Harth, A.: Transforming Statistical Linked Data for Use in OLAP
Systems. In: Proceedings of the 7th international conference on Semantic systems
(2011)

13. Kämpgen, B., Harth, A.: Benchmark Document for No Size Fits All Running
the Star Schema Benchmark with SPARQL and RDF Aggregate Views (2012),
http://people.aifb.kit.edu/bka/ssb-benchmark/

14. Kämpgen, B., O’Riain, S., Harth, A.: Interacting with Statistical Linked Data via
OLAP Operations. In: Proceedings of workshop on Interacting with Linked Data
(2012)

15. Morfonios, K., Konakas, S., Ioannidis, Y., Kotsis, N.: ROLAP Implementations of
the Data Cube. ACM Computing Surveys 39 (2007)

16. O’Neil, P., O’Neil, E., Chen, X.: Star Schema Benchmark - Revision 3. Tech. rep.,
UMass/Boston (2009), http://www.cs.umb.edu/~poneil/StarSchemaB.pdf

17. Stonebraker, M., Bear, C., Cetintemel, U., Cherniack, M., Ge, T., Hachem, N.,
Harizopoulos, S., Lifter, J., Rogers, J., Zdonik, S.: One Size Fits All? Part 2:
Benchmarking Results. In: Proceedings of the Third International Conference on
Innovative Data Systems Research (2007)

