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Abstract 
Open multi-agent systems (OMASs) allow auton-

omous agents (AAs) to collaborate in coalitions to ac-

complish complex tasks (e.g., swarm robots exploring 

new terrain). In OMASs, AAs can arbitrarily join and 

leave the network. Thus, AAs must often collaborate 

with unknown AAs that may corrupt coalitions, lead-

ing to less robust systems. However, measures to im-

prove robustness of OMASs are subject to challenges, 

decreasing their effectiveness. To understand how to 

improve coalition robustness in OMASs and address 

challenges of existing robustness measures, we car-

ried out a literature review and revealed three types of 

robustness measures (i.e., collaboration coordination, 

normative control, and reliability prediction). Moreo-

ver, we found 21 challenges for the identified robust-

ness measures and 24 corresponding solutions. By 

carrying out this literature review, we forge new con-

nections between existing measures and identify chal-

lenges and measures that apply to multiple existing 

measures. Hereby, our work supports more robust col-

laborations between AAs in open systems.  

1. Introduction 

Autonomous agents (AAs) can generate, retrieve, 

and process data to serve specific purposes, like 

speech recognition to control smart homes. AAs are 

essentially software programs that respond to states 

and events in their environment without immediate in-

structions (i.e., instructions from their creators or users 

for every action in response to predefined events) [1]. 

AAs can collaborate with other AAs in multi-agent 

systems (MASs) to accomplish tasks that are difficult 

or even impossible for single AAs [2]. For example, 

AAs in autonomous driving can alleviate traffic con-

gestions and accelerate transportations when exchang-

ing real-time traffic data with other AAs in the MAS 

[3]. In such settings, MASs must provide a high level 

of openness so that even unknown AAs can arbitrarily 

join and leave the MAS network. MASs with a high 

level of openness are referred to as open MASs 

(OMASs) [4]. 

The number of AAs, their identities, and their func-

tionalities are usually not specified for OMASs and 

AAs often collaborate ad-hoc in coalitions with other 

AAs. In this way, OMASs enable very dynamic coop-

eration between AAs that can be (partially) unknown 

to each other. The need for AAs to collaborate with 

agents, whose behavior in coalitions is unknown, 

poses special challenges to the robustness and success 

of collaborations. Robustness of collaborative work 

refers to the extent to which the performance of a sys-

tem remains stable despite the occurrences of faults or 

failures. For example, robust coalitions can compen-

sate AAs that crash during collaboration or even sab-

otage the common effort. Insufficient robustness of 

coalitions can lead to abandonment of work, failure to 

achieve goals, and can have detrimental effects, such 

as traffic accidents [5]. 

To improve robustness of coalitions in OMASs, 

various measures have been presented, including rep-

utation systems to indicate the reliability of AAs [4], 

rule-sets to identify and punish malicious agents [6], 

and fault-tolerant consensus mechanisms to achieve 

coalition agreements, even if not all AAs are available 

[7]. Nevertheless, the presented measures have short-

comings that can decrease their effectiveness. For ex-

ample, reputation systems accumulate ratings on past 

actions of AAs to predict their future reliability in col-

laborative works. In this way, AAs can better decide 

whether other AAs are reliable enough to be part of 

coalitions. However, the effectiveness of reputation 

systems is limited, because a minimum number of rat-

ings on an AA are required before its reliability can be 

predicted with sufficient accuracy (i.e., cold-start 

problem [8]). 

To address the shortcomings of extant robustness 

measures, technological advances have been applied, 

including distributed ledger technology (DLT) [9, 10], 

semantic web technology [11], and machine learning 

[12]. For instance, DLT-based reputation systems can 

store ratings in a tamper-resistant way and make 
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ratings publicly verifiable [13, 14]. Using such tech-

nologies has revealed a multitude of potential solu-

tions to address challenges related to robustness 

measures, for example, using distributed ledger tech-

nology (DLT) to store rating on AAs in a tamper-re-

sistant way [13]. To understand how coalition robust-

ness in OMASs can be improved through solutions 

based on such technologies that address challenges of 

robustness measures, developers require a thorough 

understanding of the individual measures and their 

shortcomings and a thorough understanding of pro-

posed solutions. 

Extant works on robustness measures for coalitions 

in OMASs can be found in three major research fields: 

social systems, psychology, and computer science. 

The social systems field compares coalitions of AAs 

with human coalitions. It introduces the concepts of 

organizations and institutions to model agent societies. 

(e.g., [6]). Social systems approaches (e.g., social cir-

cles [15]) draw on concepts from law and economics 

to improve social structures (e.g., [16]). The psycho-

logical field is concerned with how AAs can estimate 

the performance of unknown AAs (e.g., [8]). To give 

AAs necessary tools, approaches from the field imple-

ment human interaction concepts, such as trust and 

signaling. Approaches associated with the computer 

science field are concerned with creating infrastruc-

tures and solving computational complexity problems 

(e.g., [17]). Research associated with these research 

streams is scattered across diverse disciplines and out-

lets, which poses a barrier to improve robustness of 

coalitions in OMASs. To improve understanding of 

the relationships and synergies among disjointed ro-

bustness measures and to improve collaboration 

among AAs in OMAS, existing measures need to be 

consolidated. To this end, we ask the following re-

search question: What are the challenges and corre-

sponding solutions of robustness measures for coali-

tions in OMASs? 

To answer our research question, we reviewed sci-

entific literature on robustness challenges in OMASs. 

Using thematic analysis [18], we revealed three key 

robustness measures (i.e., collaboration coordination, 

normative control, and reliability prediction) to im-

prove robustness of coalitions in OMASs. Linked to 

the three key measures, we identified 15 subthemes 

that comprise 21 challenges related to robustness 

measures and 24 corresponding solutions. 

Our work contributes to practice by deepening the 

understanding of robustness of coalitions in OMASs 

by presenting a catalog of challenges and correspond-

ing solutions for key robustness measures. Thereby, 

we support developers in choosing suitable robustness 

measures for coalitions under consideration of their in-

dividual benefits and drawbacks. We contribute to 

research by presenting consolidated knowledge about 

the improvement of robustness of coalitions in 

OMASs. Thereby, this work can serve as a starting 

point for the targeted improvement of the identified 

key robustness measures and the investigation of the 

individual measures’ effectiveness for different use 

cases (e.g., collaborative machine learning). 

2. Background  

2.1. Autonomous agents 

AAs can be characterized as weak or strong, de-

pending on five properties: internal control, reactivity, 

persistence, pro-activeness, and goal orientation 

(see Table I) [19, 20]. Internal control describes the 

ability of AAs to have authority over their internal 

state. The internal state of an AA corresponds to the 

recording of its environment. Reactivity is concerned 

with the ability of an AA to respond to a stimulus from 

its environment [20]. Environments of AAs comprise 

signals (e.g., message receival), conditions (e.g., grav-

itation and physical rules), and entities (e.g., agents 

and objects) in their surroundings. AAs can perceive 

and interact with their environments, for example, by 

using sensors and effectors [21]. Persistence describes 

the ability of an AA to constantly operate and autono-

mously shut itself down.to store its current state at a 

time of choice and deactivate itself. When the agent is 

activated again, it resumes working from the stored 

state. 

AAs that have internal control, reactivity, and per-

sistence are considered weak AAs [22]. Strong AAs 

have the properties of weak AAs and are also pro-ac-

tive and goal-oriented. A pro-active AA can anticipate 

a stimulus from the environment before receiving it 

and can perform actions based on predictions [23]. An 

AA is goal-oriented when it is motivated to perform 

actions to achieve a particular state of its environment 

or itself [22].  

Challenges, such as data governance and hardware 

costs, can result in single AAs not having enough data 

or computing power to solve complex problems on 

their own. To address this challenge, multiple AAs can 

collaborate in coalitions. To collaborate, AAs in 

Table I. Properties of principal types of AAs 
in multi-agent systems  

Property Weak AAs Strong AAs 

Internal control X X 

Reactivity X X 

Persistence X X 

Pro-activeness  X 

Goal orientation  X 

Example Motion-controlled light Autonomous cars 
 



coalitions need to be able to communicate with each 

other (e.g., to negotiate with other AAs). 

2.2 Multi-agent systems 

Each MAS comprises a set of agents (i.e., its pop-

ulation) and provides an environment to its population 

with which agents can interact [24]. Properties of the 

population and the environment mainly differentiate 

MASs (see Table II). Population diversity refers to the 

presence of different types of AAs. Populations diver-

sity increases with an increasing heterogeneity among 

AAs and decreases with an increasing number of ho-

mogeneous AAs [25]. Populations become heteroge-

neous when the comprised AAs have different designs 

or norms applied.  

In MASs, AAs can form multiple coalitions to col-

laborate. Coalitions can be formed by AAs ad-hoc in a 

dynamic fashion (e.g., between cars in VANET-based 

traffic applications) or pre-defined by actors control-

ling a set of AAs (e.g., in a robotic soccer team). Coa-

lition control refers to the organization of AA collab-

oration in coalitions. AA collaborations can be orga-

nized in a centralized or decentralized way. A cen-

trally organized coalition involves a central AA that 

determines the current state of the environment 

(i.e., the current perception of the environment), based 

on data gathered by the AAs in the coalition. The cen-

tral AA makes decisions on behalf of the AAs in the 

coalition. In coalitions with decentralized organiza-

tion, AAs coordinate themselves without central con-

trol (e.g., in peer-to-peer communication) [26].  

The goal structure in a coalition specifies the num-

ber of goals to be achieved by AAs in the coalition. 

AAs in a coalition can either work together toward a 

single goal or each AA can pursue their own goals 

[26]. Depending on the goal structure, AAs decide on 

their cooperativity with other AAs. 

Cooperativity describes an AA’s level of collabo-

rative engagement to achieve a shared goal. AAs in a 

coalition can work in a cooperative (i.e., AAs help 

other AAs to achieve goals), competitive (i.e., AAs 

work on their own goals and never collaborate at their 

expense), or independent (i.e., AAs separately work to 

achieve individual goals) way [24]. 

The cardinality of a population refers to the num-

ber of objects in a MAS that can either be affected or 

perceived by its population [25]. The cardinality of a 

population can be finite, countable, or uncountable. 

Environments provided by MASs to AAs can be 

static or dynamic. In static environments, only AAs in 

the population can change the environment. In dy-

namic environments, changes can also be caused by 

objects outside of the population's control. 

In MASs with a high degree of openness, AAs can 

arbitrarily join and leave the population. In conven-

tional MASs, the population is closed, and only known 

AAs can join the population [4]. OMASs can provide 

a high level of openness to their population by allow-

ing AAs to arbitrarily join and leave the population at 

any time without informing other AAs.  

The environments provided by MASs can respond 

to actions of AAs in a deterministic or non-determin-

istic way. Determinism of environments is established 

when identical actions of AAs cause identical re-

sponses from the environment under identical condi-

tions. In a non-deterministic environment, the action 

of an AA can cause uncertain responses. 

 

To make collaborations between AAs more robust, 

different measures have been presented in prior works 

(e.g., FIRE [27], AA monitoring [28], and policies for 

system management [29]). However, presented ro-

bustness measures have individual challenges that 

must be gauged and potentially addressed by develop-

ers to achieve high robustness in AA coalitions. To 

support the development of more robust AA coali-

tions, a thorough understanding of existing robustness 

measures as wells as their individual challenges and 

corresponding solutions is required. 

3. Method 

To identify measures to improve robustness of 

coalitions in OMASs, we carried out an extensive 

literature review, following established guidelines [30, 

31]. We first searched for literature in six scientific 

databases (i.e., ACM Digital Library, AIS Library, 

EBSCOhost, IEEEXplore, ProQuest, and 

Table II. Types of multi-agent systems 

Property Description Attribute 

Cardinality The number of objects and AAs 
that are part of the MAS 

Finite 

Countable 

Uncountable 

Coalition 

control 

The design of authority in the 

MAS 

Centralized 

Decentralized 

Cooperativity The way how AAs work with 

other AAs to achieve their 
goal(s) 

Cooperative 

Competitive 

Independent 

Prioritized 

Determinism The environment of an AA re-

sponds identically to identical 

AA actions in identical contexts 

Deterministic 

Non-determinis-

tic 

Dynamism Changes in the environment be-
yond the control of AAs 

Static 

Dynamic 

Goal 

structure 

The number of goals in the 

MAS 

Single goal 

Multiple goals 

Openness Possibilities to enter and leave 

the system 

Open 

Closed 

Population 

diversity 

The presence of different types 

of AAs 

Homogeneous 

Heterogeneous 
 



ScienceDirect). For the search, we applied the search 

string “multi-agent* AND open*” to the documents’ 

titles, abstracts, and keywords. The search revealed a 

set of 1,956 documents that were potentially relevant 

to answer our research question.  

Next, we evaluated the relevance of the retrieved 

documents in two rounds. First, we examined the title, 

keywords, and abstracts of each document and only 

kept journal articles and conference papers that were 

written in English and tackled at least one measure to 

improve robustness of OMASs. Second, we closer 

evaluated the relevancy of the remaining documents 

by reading their full texts, which led to the final selec-

tion of 167 relevant documents. 

To identify challenges of robustness measures and 

corresponding solutions, we applied thematic analysis 

[18] that comprises six phases. In the first phase (fa-

miliarize yourself with the data), we examined each 

documents’ meta-data and abstracts and took notes on 

the focus of each document to gain a general impres-

sion of the sample. 

In the second phase (generate initial codes), we 

coded the documents to extract measures that can im-

prove coalition robustness in OMASs, their chal-

lenges, and corresponding solutions. We harmonized 

the coding iteratively to avoid ambiguities and im-

prove exclusiveness for each code. The harmonized 

codes form a set of 15 subthemes that include multiple 

challenges of robustness measures and corresponding 

solutions. 

In the third phase (search for themes), we collated 

the identified subthemes into three preliminary themes 

(e.g., collaboration coordination). If a subtheme did 

not match an existing theme, we created a correspond-

ing new theme. For example, we assigned data scar-

city to the theme reliability prediction, while we as-

signed coalition construction to the theme collabora-

tion coordination. 

In the fourth phase (review themes), we discussed 

the three preliminary themes and associated sub-

themes with three colleagues. We refined identified in-

consistencies based on the collected feedback. After 

coding 43 relevant documents, we could not reveal any 

novel challenges or solutions in the past eight docu-

ments. Given the high ratio of eight documents in a set 

of 43, we are confident that we have reached theoreti-

cal saturation at that point and concluded our analysis. 

In the fifth phase (define and name themes), we de-

veloped concise descriptions for the three themes 

(see Table III) and 15 subthemes and assigned expres-

sive names to their descriptions. 

In the sixth phase (produce the report), we wrote 

detailed descriptions of each theme and subtheme, as 

presented in the following result section. 

4. Challenges and Solutions to Improve 

Robustness Measures in Coalitions 

Our literature review revealed three themes 

(see Table III) that represent groups of challenges of 

robustness measures and corresponding solutions: col-

laboration coordination, normative control, and relia-

bility prediction. These themes comprise 15 sub-

themes with a total of 21 challenges of robustness 

measures and 24 corresponding solutions. 

 

Collaboration coordination. Collaboration coor-

dination refers to the methods and resources involved 

in the construction of AA coalitions. Inadequate coor-

dination of AA cooperation can prevent coalitions 

from achieving their goals and even lead to coalition 

dissolution. We identified the following six subthemes 

associated with nine challenges and corresponding 

nine solutions related to collaboration coordination. 

Coalition construction: Coalition construction is 

concerned with the formation of coalitions for success-

ful collaboration. We identified three challenges re-

lated to coalition construction: resource distribution, 

goal development, and malicious coalitions. Resource 

distribution is concerned with the management of lim-

ited resources available to coalitions. AAs need to 

share resources so that their coalition can maximize its 

payoff. Suboptimal resource usage can reduce the co-

alition payoff. If the payoff is not worthwhile for AAs, 

they might leave the coalition, which can lead to the 

failure of the coalition [32]. Goal development refers 

to negotiations between AAs to agree on goals to be 

achieved by their coalition. These negotiations are dif-

ficult because AAs, especially strong AAs, pursue 

their individual goals which may oppose those of other 

AAs. Moreover, AAs can leave coalitions when their 

individual goals are at risk, thereby hindering success-

ful collaborations. These challenges complicate the 

design of robust coalitions that attract and keep AAs, 

while the goals of the coalition and its AAs align [33]. 

Malicious coalitions (i.e., hidden coalitions) include 

AAs that aim to compromise AAs, coalitions, or entire 

OMASs. Malicious AAs that work together pose new 

threats to successful coalitions by having more 

Table III. Identified themes of challenges for 
robustness of coalitions in OMASs 

Theme Description 

Collaboration 

coordination 

The methods and resources required to enable the 

construction of AA coalition for collaboration 

Normative 

control 

The processes and resources involved in manag-

ing coalitions or populations through rules that re-

strict their AAs’ actions 

Reliability 
prediction 

The resources (e.g., computational costs, data, 
and methods) associated with the creation of pre-

dictions about the reliability of an AA 
 



resources and the possibility to coordinate their attacks 

on the OMASs [34]. 

To improve goal development, social circles can be 

formed within coalitions [15]. Social circles are com-

munication network structures and are composed of 

AAs and their mutual social dependencies [35]. Social 

circles can facilitate information sharing and aim to 

enable robust long-term collaborations between AAs 

in coalitions. In addition to social circles, using incen-

tive mechanisms has been proposed to improve goal 

development [36]. Incentive mechanisms implement 

policies that specify the rewards (e.g., additional re-

sources) that can be received by AAs, the conditions 

for the reward payout, and the receivers of the reward. 

By assigning rewards to actions that favor the accom-

plishment of goals, the alignment of goals of individ-

ual AAs with those of the coalition can be fostered 

[36]. To hinder malicious coalitions from compromis-

ing AAs, blocking mechanisms can be implemented 

[34]. Using blocking mechanisms, AAs must ask the 

coalition for permission to perform actions. The block-

ing mechanism simulates the possible results of re-

quested actions. If actions result in an insecure state of 

the coalition, the mechanism does not permit the exe-

cution of the actions and, thus, prevents malicious 

AAs from harming the coalition. 

Organization structure: Hierarchical dependencies 

between AAs and their engagements in coalitions con-

stitute organizational structures of coalitions. Such or-

ganizational structures can be centralized (i.e., a rather 

strict hierarchy) or decentralized (i.e., a rather flat hi-

erarchy) [37]. We identified the challenge to decide on 

an appropriate degree of decentralization that achieves 

sufficient robustness while not violating performance 

requirements of a coalition. 

Developers must gauge the benefits and drawbacks 

of centralized and decentralized organizational struc-

tures. For example, centralized structures usually have 

less performance overhead (e.g., regarding communi-

cation and decision-making [33, 38]) compared to de-

centralized ones. However, decentralized structures 

can achieve better censorship resistance and direct 

communication between AAs [39]. 

Consensus finding: In coalitions with decentral-

ized organizational structures, AAs need to negotiate 

with each other to come to agreements (e.g., on the 

specification of common goals). To this end, consen-

sus mechanisms can be applied [40]. In OMASs, how-

ever, the availability of AAs in coalitions at a particu-

lar point in time is uncertain because of their high level 

of openness. Thus, consensus mechanisms that require 

responses from all AAs in a coalition may fail when 

indefinitely waiting for responses of currently unavail-

able AAs (e.g., because they left the coalition). 

To find consensus in coalitions, in which AAs can 

be arbitrarily unreachable, crash-fault tolerant consen-

sus mechanisms like RAFT [41] or Practical Byzan-

tine Fault-Tolerance (PBFT) [42] can be used.  

Information flow: Information flow refers to the 

methods and resources involved in information trans-

fers between AAs. AAs must be able to communicate 

with each other to form coalitions and to collaborate. 

Since AAs in OMASs often communicate with un-

known AAs, there is an increased risk of data being 

exposed or compromised by malicious AAs [17]. We 

identified two challenges regarding information flow: 

data confidentiality and data integrity. Data confiden-

tiality is concerned with the prevention of unauthor-

ized access to data exchanged between AAs [17] Data 

integrity refers to insufficient accuracy of data ex-

changed between AAs [43]. 

To improve data confidentiality, AAs can manage 

data locally and apply access control mechanisms 

[17]. However, access control mechanisms may not 

prevent data leaks in information flows. Data leaks can 

be uncovered by AAs that monitor information flows 

to identify information leaks [17]. To reduce transfers 

of confidential data, the compute-to-data paradigm can 

be applied (e.g., like applied in federated learning 

[44]). While the data-to-compute paradigm requires 

AAs (i.e., data donors) to make required data accessi-

ble to AAs that perform computations (i.e., data con-

sumer), the compute-to-data paradigm requires data 

consumers to transfer their computation models to data 

donors that locally process data and only return corre-

sponding results to the respective data consumers. To 

improve data integrity, digital signatures can be used 

[43]. To store data in a tamper-resistant way, distrib-

uted ledger technology (DLT) has been used in several 

solutions [45, 46] because DLT enables the operation 

of highly available, append-only databases (i.e., dis-

tributed ledger) [39]. 

Interaction: Interaction refers to AAs’ capabilities 

and resources that enable interoperable communica-

tion with other entities (e.g., AAs). The increasing het-

erogeneity of populations can increase the likelihood 

for incompatibilities between AAs. Incompatibilities 

between AAs can mislead or prevent communication, 

thereby hindering collaboration coordination [47]. 

Interoperable knowledge representations can be 

developed to enable communication between hetero-

genous AAs [47]. For example, semantic web technol-

ogies like ontologies can be applied. In this way, AAs 

can communicate in different languages [48]. 

Resilience: Resilience represents the challenge of 

coalitions to appropriately operate despite the occur-

rences of faults or complete failures of AAs or compo-

nents (e.g., the case of AA’s death [28]). 



AAs that are critical to the functioning of a coali-

tion can be redundantly operated [49] so that replicates 

of AAs can takeover tasks of suddenly unreachable 

ones. In this way, coalitions can compensate unreach-

able AAs if at least one replication of a critical AAs is 

functioning. 

 

Normative control. Normative control refers to 

the processes and resources involved in managing co-

alitions through rules that persuade included AAs to 

behave according to the coalition’s goals. Rules spec-

ify the allowed and prohibited actions of AAs. AAs are 

penalized when they do not adhere to their coalition’s 

active rules. We identified six subthemes associated 

with eight challenges related to normative control and 

eight corresponding solutions.  

Specification and modification: Norm specifica-

tion and modification describes the process of creating 

and modifying rules. Norms specify permitted, prohib-

ited, and obligatory, actions as well as the relations be-

tween AAs [50]. We identified two challenges related 

to norm specification: dynamic modification and reus-

ability. Dynamic modification refers to the refinement 

of norms and updates of the set of active norms in a 

coalition (e.g., by adding new norms). Dynamic mod-

ification is desirable when coalitions get into an unde-

sired state due to actions of AAs that are not regulated 

by active norms. The modification of norms mostly re-

quires switching off the coalition, publishing the re-

fined norms, and restarting the coalition. Such restarts 

interrupt collaborations between AAs and may even 

dissolve coalitions [51]. Reusability refers to the flex-

ibility of norms to be used in different situations [50]. 

To improve dynamic modification, specific action 

languages can be implemented to allow norms to be 

changed during run-time [50]. Reusability of norms 

can be improved by defining norms on a higher level 

of abstraction, similar to the concept of inheritance in 

object-oriented programming. Specifying norms on 

different levels of abstraction can increase their cus-

tomizability and improve software maintainability 

[51, 52]. 

Adoption: After norms have been specified and 

published, they are available to AAs in coalitions that 

need to adopt these norms. However, norms can be 

hard to distribute due to their complexity and the pos-

sibility that AAs may interpret them differently [47]. 

After norm distribution, AAs need to identify the 

norms and adopt them. The identification of norms can 

be hindered by the fact that norms are not always lo-

catable for AAs. For example, many OMASs do not 

have a central database for norms. 

To accelerate norm distribution, norms should be 

first distributed to AAs with high network value [47]. 

Such AAs can be identified through network analysis. 

To improve norm identification, we found one meas-

ure that applies machine learning techniques to ana-

lyze other AAs’ behaviors and infers their inherent 

norms [12, 52, 53].  

Conflict resolution: Collaborations between AAs 

can be hindered by norms that contradict each other. 

For example, when a rule prohibits an AA to com-

municate with unknown AAs and another rule requires 

the AA to achieve a goal in collaboration with other 

AAs, the AA may not be able to accomplish its goal. 

To assure that AAs can achieve their goals, norms 

must not be contradictory. However, analyses of 

norms regarding contradictions can cause high compu-

tational costs that can be difficult to provide [54]. 

To reduce computational costs for norm analyses, 

a measure has been developed that creates sets of 

norms and analyzes the sets to identify conflicting 

norms. Analyzing several norms at the same time cre-

ates sets of non-conflicting norms and reduces compu-

tation costs [54]. 

Monitoring: To identify AAs that violate rules, the 

actions of AAs in coalitions can be monitored and 

evaluated considering the set of active norms. We 

identified two challenges concerning norm monitor-

ing: responsibility assignment and costs. Responsibil-

ity assignment refers to the challenge of assigning re-

sponsibilities for norm monitoring to AAs in a coali-

tion in a way that. Costs refers to covering the mone-

tary efforts caused by monitoring AAs [55]. 

To motivate AAs to monitor each other, an incen-

tive mechanism can be implemented (e.g., identifying 

a norm-violating AA will give a reward) [36]. To en-

sure that monitoring costs are covered, an access fee 

for AAs that enter the coalition can be introduced. The 

access fee is used to compensate the costs of AAs for 

monitoring each other [55]. However, if not enough 

new AAs join the coalition, monitoring costs may not 

be covered in the long term. 

Enforcement: After identifying AAs that violated 

rules, norms must be enforced, which mostly pertains 

to punishing those AAs. By enforcing norms, AAs can 

be incentivized to obey the rules. In OMASs, however, 

AAs that violate rules are hard to punish because AAs 

can leave coalitions to prevent fines [55]. Too severe 

punishments can discourage AAs from participating in 

coalitions, especially when potential punishments ex-

ceed the benefits for AAs [16]. 

The severity of punishments can be set in relation 

to the severity of the misbehavior by using retributive 

justice [16]. 

Removal: Deprecated norms should be removed 

from the set of norms to avoid conflicts. To remove a 

norm, all AAs in a coalition must delete the norm from 

their local norm set. However, norms can be deeply 

engrained into AAs, and removing such norms 



requires a collective belief-change of AAs in coali-

tions toward the norm to be removed [56]. 

To remove norms a five-step process can be ap-

plied [56]. First, AAs must start to recognize that a 

specific norm causes negative consequences. Second, 

a collective belief-change in the AAs coalition must 

occur. The beliefs of AAs start to change toward the 

norm that should be removed. Third, the AAs in a co-

alition collectively decide on whether to remove the 

norm. Fourth, if the coalition decided to remove the 

norm, an authority is chosen to impose sanctions on 

AAs that still apply the removed norm to be removed. 

Fifth, AAs in the coalition remove the norm from their 

local set of norms. 

 

Reliability prediction. Reliability prediction is a 

measure to improve robustness of coalitions by ena-

bling AAs to estimate the reliability of AAs regarding 

collaborations. In this work, reliability refers to the 

likelihood to which the actions of an AA will comply 

with the successful achievement of coalition goals. To 

increase the probability of successfully achieving 

goals, AAs can decline collaborations with potentially 

unreliable AAs. We identified three subthemes associ-

ated with four challenges and seven corresponding so-

lutions related to reliability prediction in OMASs. 

Prediction: Challenges related to prediction refer 

to methods and resources involved in estimating the 

reliability of AAs to avoid unsuccessful collabora-

tions. Accuracy refers to challenges related to finding 

data and measures to maximize the accuracy of relia-

bility estimations. Identity management refers to chal-

lenges related to the creation of identities for AAs and 

the management of associated information. Such In-

formation are required to predict the AAs’ reliability. 

Existing prediction approaches mostly use ratings as-

sociated with the identities of AAs. The identities and 

associated ratings are often stored in databases gov-

erned by central parties. Thereby, stored ratings are of-

ten prone to manipulations. Manipulated ratings re-

duce the performance of prediction approaches 

(e.g., in terms of accuracy), thereby decreasing their 

effectiveness for estimating the reliabilities of AAs. 

We identified three measures that can improve ac-

curacy: direct prediction approaches, indirect predic-

tion approaches, and hybrid prediction approaches. In 

direct prediction approaches, AAs predict the reliabil-

ity of other AAs based on their own experiences (e.g., 

past interactions). In indirect prediction approaches 

(e.g., reputation systems [57]), AAs acquire such ex-

periences from other AAs. Direct and indirect ap-

proaches can also be combined in hybrid approaches 

(e.g., in FIRE [27]). To address challenges related to 

identity management we identified one measure. To 

achieve tamper-resistance of stored ratings and ensure 

that the ratings are associated with the correct AA 

identities DLT-based approaches have been found 

promising [58]. Because DLT-based reputation sys-

tems provide a digital platform for the reliable compu-

tation and storage of direct and indirect predictions of 

AAs [58, 59]. 

Data Scarcity: When no or only a few ratings as-

sociated with an AA are available, meaningful relia-

bility predictions for that AA often cannot be com-

puted [8]. The insufficient availability of data for such 

predictions refers to the challenge of data scarcity. 

We identified two measures to address data scar-

city: archetyping (e.g., [8]) and collaterals (e.g., [59]). 

In archetyping, AAs classify their experiences with 

past collaborators into archetypes of AAs. To estimate 

the behavior of an unknown AA, AAs can use their 

previously learned archetypes. Thereby, AAs need 

less data about other AAs to predict their behaviors. 

The measure collaterals requires AAs to deposit a 

specified collateral prior to joining a coalition, for ex-

ample, an amount of coins of a cryptocurrency [14]. If 

an AA in the coalition turns out to be not reliable, its 

collateral can be distributed to other AAs in the coali-

tion or destroyed [59]. 

Data believability: Data believability is concerned 

with the extent to which AAs can be sure that received 

data is credible. In large-scale OMASs, some AAs 

may never interact with each other. To however pre-

dict the reliability of AAs, AAs can share information 

about their previous interactions (e.g., for indirect pre-

diction approaches). Nonetheless, information about 

other AAs might be wrong or biased [45], ultimately 

decreasing the accuracy of reliability predictions. 

To improve data believability, incredible infor-

mation (e.g., sabotaged witness reports or inaccurate 

ratings) can be detected and filtered using similarity 

measures between witness reports. With increasing 

similarity between different witness reports, the credi-

bility of the reports rises [60].  

5. Discussion and conclusion 

In this work, we present three key measures that 

can improve robustness of AA collaboration in 

OMASs: collaboration coordination, normative con-

trol, and reliability prediction. We revealed that the 

three key measures are subject to 21 challenges, rang-

ing from data scarcity to norm enforcement. To im-

prove the effectiveness of the identified key measure 

by addressing the identified challenges, we presented 

24 solutions. 

As OMASs have a high degree of openness, 

OMASs can achieve a high degree of decentralization, 

independence from central parties that orchestrate the 

system, freedom in forming coalitions, and offers high 



flexibility for the formation of coalitions. Despite the 

benefits of OMASs, our results show that reliability 

predictions for actions of unknown AAs are a major 

challenge for the robustness measures. Less dominant 

challenges pertain to data security (e.g., confidential-

ity and integrity) and data scarcity. 

Due to the high frequency of published research 

and the number of different measures developed, we 

believe that the reliable identification of malicious 

AAs is the most pressing challenge that needs to be 

addressed to improve coalition robustness in OMASs. 

Follow-up measures, such as excluding malicious AAs 

from coalitions, require the previous identification of 

malicious AAs. 

Our study indicates that DLT is promising to im-

prove robustness of coalitions, for example, the provi-

sion of tamper-resistant storage for ratings in reputa-

tion systems and improved scalability regarding in-

creasing or decreasing requests for ratings stored in the 

distributed ledger [14]. However, several DLT charac-

teristics contradict the requirements of OMASs. For 

example, the public visibility of data stored on public 

distributed ledgers can be in conflict with data confi-

dentiality requirements of coalitions [53]. Moreover, 

the fees charged by many public distributed ledgers 

(e.g., Bitcoin and Ethereum) for transaction pro-

cessing can strongly increase costs to be paid by AAs. 

Especially, when AAs locally operate DLT clients, the 

energy consumption of these AAs will at least slightly 

increase [14]. Since our results show that the distribu-

tion of operational costs (e.g., for monitoring AAs) is 

a challenge, system designers must consider an in-

crease in costs caused by using DLT. 

Our work contributes to practice by deepening the 

understanding of robustness measures to improve col-

laboration in coalitions in OMASs. Furthermore, we 

support developers in choosing suitable robustness 

measures for coalitions by identifying potential short-

comings of existing robustness measures and provid-

ing knowledge on how to address them. We contribute 

to research by supporting the understanding of key ro-

bustness measures that can improve collaboration in 

OMASs. By providing a consolidated knowledge base 

for challenges and corresponding solutions, we un-

cover the shortcomings of existing robustness ap-

proaches. By deepening the understanding of current 

challenges of robustness measures and corresponding 

solutions, this work lays a cornerstone for the investi-

gation of effects of identified solutions on the robust-

ness coalitions and the corresponding OMAS. 

Our work has limitations that are caused by the ap-

plied qualitative study design. We chose a broad 

search string to gather relevant literature to answer our 

research problem. However, we focused on literature 

on OMASs and neglected research fields that may also 

support us in answering our research question. We it-

eratively discussed and refined the coding to avoid bi-

ases. However, we cannot guarantee to have fully pre-

vented bias in the literature analysis. Moreover, we as-

sume theoretical saturation after having coded 43 doc-

uments and cannot guarantee completeness of our re-

sults. 

The presented robustness measures and solutions 

to improve their drawbacks should be further investi-

gated regarding the possibilities to quantify their ef-

fects on the robustness of coalitions. Such quantifica-

tions can improve the comparability of the identified 

measures and solutions to address challenges of ro-

bustness measures. Building on an empirical compari-

son of robustness measures and solutions, use case-

specific recommendations for the use of particular 

measures and solutions can be made, taking into ac-

count the contexts in which they are used, thereby im-

proving the robustness of coalitions. 
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