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ABSTRACT
In recent years, electronic markets have gained much atten-
tion as institutions to allocate goods and services efficiently
between buyers and sellers. However, calculating suitable
allocations between buyers and sellers in such markets can
easily become very tricky, particularly if the services and
goods involved are complex and described by multiple at-
tributes. Since such trading objects typically provide various
configurations with different corresponding prices, complex
pricing functions and purchase preferences have to be taken
into account when computing allocations. In this paper,
we present a policy description framework that draws from
utility theory to capture configurable products with multi-
ple attributes. The framework thus allows the declarative
description of seller pricing policies as well as buyer prefer-
ences over these configurations. As part of the framework,
we present a machine-processible representation language
for the policies and a method to evaluate different trading
object configurations based on these policies. In addition,
we show how policies can be aggregated and how the frame-
work can be applied in a Web service selection scenario.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce;
F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages; H.3.5 [Information Storage and Re-
trieval]: Online Information Services

General Terms
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1. INTRODUCTION
Electronic markets are institutions that allow the exchange

of goods and services between multiple participants through
global communication networks, such as the Internet. The
design of market platforms mainly involves two components
[27]: a communication language which defines how bids (i.e.
offers and requests) can be formalized and submitted to
the market mechanism, and an outcome determination by
means of an allocation (i.e. who gets which service), a pric-
ing schema and a payment component. The design of the
communication language is a non-trivial task since it re-
quires mutual understanding between different participants
in the market and it involves trading object which are of-
fered by multiple parties (sellers) with different attributes
and under different conditions. This is particularly true
for configurable goods and services, such as computers and
Web-based services. Consider, for example, a route plan-
ning web service, which offers the service of computing a
road route between two locations. Various configurations of
the service may take into account the current traffic situa-
tion or weather situation when computing the route, or the
service may be configured to compute the shortest or quick-
est route, one that avoids small roads and so on. Naturally,
each configuration may have a different price attached. De-
cision making in markets with such complex services and
goods generally requires that both seller pricing functions
as well as buyer scoring (preference) functions be taken into
account. In the remainder of this paper, we denote rules
that define the relation between configurations and prices
defined by a seller as pricing policies and rules that define
how much a buyer is willing to pay for a certain configura-
tion as scoring policies (or buyer preferences).

In this paper, we consider the problem of designing a pol-
icy framework that enables the expression of such pricing
as well as scoring policies. The framework has to meet sev-
eral requirements (emphasized): First, since we are dealing
with various configurable products, the policy framework
must be able to describe multi-attribute requests and of-

fers, i.e. requests and offers that involve multiple attributes
beyond just the price, such as quality criteria. Second, pric-
ing as well as scoring policies require the expression of

functions that map configurations to a pricing or a pref-
erence structure, respectively. Note that preferences have
to be measured on a cardinal scale, so that one can specify
both an ordering between offers and an acceptance thresh-
old for offers that satisfy the request to a certain degree.



Third, since pricing policies have to be communicated to the
buyer and/or scoring policies to the seller (e.g. in a procure-
ment auction), standards-based interoperability becomes
a crucial issue. Standardized syntax and semantics is par-
ticularly essential in open markets, where participants may
use highly heterogenous information formats, where buyers
and sellers dynamically join or leave the market, and where
products and services are highly differentiated and change
frequently. For meeting the interoperability requirement our
technology of choice are ontologies. Ontologies are also pow-
erful enough to meet the requirements “multi-attribute re-
quests and offers” and “expression of functions” because of
the underlying logic and rule mechanism. This prevents us
from using additional languages and technologies and sim-
plifies our framework without loss of functionality or expres-
sivity.

In the following, we introduce a policy framework that
meets the requirements above. The key contribution of this
work is to show how quantitative preferences can be mod-
eled within a declarative framework to include them in the
reasoning process. The approach should be as expressive as
possible while adhering to internet standards. Before pre-
senting the framework we review related work to determine
the extent to which the requirements are already supported
by existing work (Section 2). Since our approach is based
on Utility Function policies we briefly sketch the fundamen-
tals of utility-based policy representation in Section 3. Sub-
sequently, in section 4, we present the ontology formalisms
and ontology framework, before discussing how such policies
can be declaratively represented by means of ontologies and
how policies can be enforced using a semantic framework in
Section 5. In Section 6 we show how policies expressed in
our framework can be aggregated, before we come up with
a concrete application of the approach in Section 7. The
implementation introduces an architecture for the dynamic
selection of Web services based on our policy framework.
Section 8 concludes the paper with a brief outlook.

2. RELATED WORK
In this section, we present various existing approaches in

electronic markets for modeling buyer preferences and seller
offerings and discuss the extent to which they meet the re-
quirements specified in Section 1. Table 1 summarizes the
approaches discussed in terms of which of the four require-
ments they support (indicated by check marks).

One of the first attempts to exchange order information
within electronic markets was the Electronic Data Inter-
change (EDI) protocol, which serializes request and offer
information according to a predefined format agreed upon
by both communication parties. Thus, EDI could poten-
tially be used to describe multi-attributive requests and of-
fers with preference and pricing functions. However, these
pairwise agreements were rarely based on any standards and
turned out to be effort-intensive, highly domain-dependent
and inflexible, thus not addressing the interoperability re-
quirement.

More recent approaches, such as WS-Policy[10], EPAL [9]
and WSPL[8], use XML (eXtensible Markup Language) [35]
as a domain-independent syntax, to define constraints on at-
tributes of configurable trading objects within the context
of web service agreements. However, they are not suitable
for our purposes, because they only allow the expression of
attribute value pairs and thus cannot be used to express

seller pricing and buyer scoring functions. In addition, the
meaning of XML annotations is defined in a natural lan-
guage specification, which is not amenable to machine in-
terpretation and supports ambiguous interpretation. WS-
Agreement [1] is another XML-based specification that can
be used to express different valuations for configurations,
however, only with discrete attributes. An approach to ex-
tend WS-Agreement for expressing continuous functions is
presented in [31]. However, the XML-annotations still lack
formal semantics.

One way to enable machine interpretation of buyer re-
quests and seller offers is to specify them using a machine-
interpretable ontology. Such an ontology consists of a set
of vocabulary terms, with a well-defined semantics provided
by logical axioms constraining the interpretation and well-
formed use of the vocabulary terms. This is the approach
followed by KAoS [34] and REI [20], which are policy lan-
guages that allow the definition of multi-attributive policies
with constraints on attributes. However, these approaches
are limited in that they always evaluate either to true or
false and thus cannot express the scoring or pricing func-
tions required for configurable products. In this context,
more expressivity is provided by SweetDeal [14] and DR-
NEGOTIATE [33]. Both are rule-based approaches that use
defeasible reasoning (i.e. Courteous Logic Programs or de-
feasible logic) to specify contracts or agent strategies, respec-
tively. Similar to our approach they feature automatic rea-
soning based on a formal logic. However, although RuleML
is available as a standard syntax, the semantic of the syn-
tax is not yet standardized which obstructs interoperabil-
ity. In addition, while the underlying rule language might
be capable of expressing utility-based policies, they do not
provide the required policy specific modeling primitives di-
rectly, rather the rules for interpreting such policies have to
be added manually by the user. In the DR-NEGOTIATE
approach qualitative preferences are expressed via defeasible
rules and priorities among them. While such an approach
is suitable for ranking of alternatives, it is not possible to
assess the absolute suitability of an alternative, which is im-
portant in case the best alternative is still not good enough
(cf. Section 3).

A separate stream of work has focussed on developing
highly expressive bidding languages for describing various
kinds of attribute dependencies and valuations, particularly
in the context of (combinatorial) auctions (cf. [28], [5]).
However, they assume a closed environment and therefore,
even if they do use XML-based bidding languages [3], they
do not deal with interoperability issues. Many B2B scenar-
ios use standardized product and service taxonomies, such
as UN/SPSC1, CPV2 or the MIT Process Handbook [24].
However, these taxonomies are static and require the in-
troduction of a new subclass in the hierarchy for each new
product configuration. They are therefore clearly inapplica-
ble in our context.

Our approach draws from utility theory to express scor-
ing and pricing functions of market participants within an
ontology-based policy framework. Our policy framework is
based on existing Internet standards, namely XML for se-
rializing request and offer documents, OWL (Web Ontol-

1United Nations Standard Products and Services Code
(http://www.unspsc.org)
2Common Procurement Vocabulary (http://simap.eu.
int/nomen/nomenclature\_standards\_en.html)



Approach Requirement
Multi-attributive Functions Standards-based Interoperability

EDI/EDIFACT (X) (X) -
XML-based Languages X - (X)
KAoS/REI X - X

SweetDeal/DR-NEGOTIATE X (X) (X)
Product/Service Catalogs - - X

Bidding Languages for CA X X -
CPML X X (X)
Our Approach X X X

Table 1: Languages for specifying offers and requests.

ogy Language) [36] and DL-safe SWRL rules (Semantic Web
Rule Language) [16, 26] to formalize ontology axioms. Thus,
the exchanged documents can be interpreted by standard
inference engines. Furthermore, to facilitate integration be-
tween offer/request specifications that use heterogenous on-
tology concepts, we base our policy ontology on the founda-
tional ontology DOLCE [25]. DOLCE provides a high degree
of axiomatisation (exact definition) of the policy ontology
terms, advantages which carry over to the policy ontology
we present.

3. UTILITY-BASED POLICY REPRESENTA-
TION

Policies are declarative rules that guide the decision mak-
ing process by constraining the decision space, i.e. they
specify which alternatives are allowed and which are not.
Kephart et. al. [30, 22] refer to such policies as Goal poli-
cies. However, when making a decision it is often not enough
to know which alternatives are allowed, but rather which is
the best alternative and how good the alternative is (e.g.
the best alternative might still be not good enough). There-
fore, we suggest combining a declarative policy approach
with utility theory [21], which quantifies preferences by as-
signing cardinal valuations to each alternative. With such
Utility Function policies, detailed distinctions in preferences
can be expressed, providing improved decision making be-
tween conflicting policies compared to traditional Goal poli-
cies by explicitly specifying appropriate trade-offs between
alternatives [22].

In the context of electronic markets, Utility Function poli-
cies can be used on the buyer-side to specify preferences,
assess the suitability of trading objects and derive a rank-
ing of trading objects based on these preferences. Further,
they allow the exchange of preferences with sellers which
might be required, for instance, in procurement auctions or
exchanges. Since Utility Function policies enable the com-
pact representation of the pricing or cost function on the
seller-side, pricing information can be communicated to the
customers in a very efficient way, i.e. with only one message.

For our policy language we use the following simple utility
model. Assume alternatives (e.g. configurable trading ob-
jects) are described by a set of attributes X = {X1 . . . Xn}.
Attribute values xj of an attribute Xj are either discrete,
xj ∈ {xj1, . . . , xjm}, or continuous, xj ∈ [minj , maxj ]. Then
the cartesian productO = X1×· · ·×Xn defines the potential
configuration space, where o ∈ O refers to a particular con-
figuration. Based on these definitions a preference structure
is defined by the complete, transitive, and reflexive relation
�. For example, the configuration o1 ∈ O is preferred to

o2 ∈ O if o1 � o2. The preference structure can be derived
from the value function V (o), where the following condition
holds: ∀oa, ob ∈ O : oa � ob ⇔ V (oa) ≥ V (ob). In order
to calculate the valuations V (o) we apply an additive utility
model, where the value functions defined in equation 1 be-
low are applied to aggregate the valuations derived from the
individual attributes X1, . . . , Xn. The weighting factor λj

is normalized in the range [0, 1] and represents the relative
importance of an attribute j.

V (x) =
nX

j=1

λjvj(xj),with
nX

j=1

λj = 1 (1)

For the additive value function above, we assume mu-
tual preferential independence between the attributes [21].
Under this assumption, we can easily aggregate the util-
ity functions vj(xj) of the individual attributes j to ob-
tain the overall valuation of a configuration. However, in
real markets often the preferential independency does not
hold. In order to capture this dependency the dependent at-
tributes Xk, . . . , Xl ∈ X are treated as one single attribute
j∗ in our model, where the utility function is modeled as a
complex (higher dimensional) function vj∗(xk, . . . , xl). Note
that while this approach allows modeling of dependent at-
tributes in a simple way using our policy language, the spec-
ification of the function vj∗ might be complicated. However,
we assume extensive methodology and tool support in the
preference elicitation process (cf. [7]).

In the next sections, we show how such an utility-based
approach can be declaratively modeled within a system,
where both available trading objects as well as policies are
stored in a knowledge base and then queries are issued to
derive relevant information (e.g. prices, product rankings,
etc.).

4. A POLICY DESCRIPTION FRAMEWORK
FOR ELECTRONIC MARKETS

For declaratively modelling our utility-based approach we
apply ontologies as the state of the art for meeting require-
ment 3 (standard-based interoperability). Before introduc-
ing our ontology for representing Utility Function policies
in section 5, we first discuss the underlying formalisms as
well as the upper-level modules the ontology is based on.
Therefore, section 4.1 presents the ontology as well as rule
language and section 4.2 the general ontology framework
which is based on the foundational ontology DOLCE.



Module Concept label Usage

DOLCE Endurant Static entities such as objects or substances
Perdurant Dynamic entities such as events or processes
Quality Basic entities that can be perceived or measured
Region Quality space (in this work implemented as datatypes)

DnS Description Non-physical objects like plans, regulations, etc. defining Roles,
Courses and Parameters

Role Descriptive entities that are played by Endurants (e.g. a customer that is
played by a certain person)

Course Descriptive entities that sequence Perdurants (e.g. a service invocation
which sequences concrete communication activities)

Parameter Descriptive entities that are valued by Regions like the age of customer
Situation Concrete real world state of affaires using ground entities from DOLCE

OoP Task Course that sequences Activities
Activity Perdurant that represents a complex action

OIO InformationObject Entities of abstract information like the content of a book or a story

Table 2: Upper level concepts from DOLCE, Descriptions and Situations (DnS), Ontology of Plans (OoP)
and Ontology of Information Objects (OIO) that are used as modeling basis.

4.1 Ontology formalism
In recent years, ontologies became an important tech-

nology for knowledge sharing in distributed, heterogeneous
environments, particularly in the context of the Semantic
Web3. An ontology is a set of logical axioms that formally
define a shared vocabulary [15]. By committing to a com-
mon ontology, sotware agents can make assertions or ask
queries that are understood by the other agents.

In order to guarantee that these formal definitions are un-
derstood by other parties (e.g. in the web), the underlying
logic has to be standardized. The Web Ontology Language
(OWL) standardized by the World Wide Web Consortium
(W3C) is a first effort in this direction [36]. OWL-DL is
a decidable fragment of OWL and is based on a family
of knowledge representation formalisms called Description
Logics (DL) [2]. Consequently, our notion of an ontology
is a DL knowledge base expressed via RDF/XML syntax
to ensure compatibility with existing World Wide Web lan-
guages. The meaning of the modeling constructs provided
by OWL-DL like concepts, relations, datatypes, individuals
and data values is formally defined via a model theoretic se-
mantics, i.e. it is defined by relating the language syntax to
a model consisting of a set of objects, denoted by a domain,
and an interpretation function, which maps entities of the
ontology to concrete entities in the domain [18]. Thereby,
the meaning of an axiom defines certain constraints on the
model. For example, we can define that the concept Book
is a subconcept of Product (i.e. Book ⊑ Product). In this
case, the interpretation of Book has to be a subset of the
interpretation of Product, i.e. the set of objects that are
books is a subset of the set of objects that are products
(BookI ⊆ ProductI).

In order to define our policy ontology, we require addi-
tional modeling primitives not provided by OWL-DL. For
example, we have to model triangle relations between con-
cepts, such as the isAssignedTo relation that says an At-
tribute Value is assigned to a Valuation in case there is a
Function with Attribute Value as domain and Valuation as
range. In contrast to OWL, rule languages can be used to
express such triangle relation. The Semantic Web Rule Lan-

3http://www.w3.org/2001/sw/

guage (SWRL) [16, 17] allows us to combine rule approaches
with OWL. Since reasoning with knowledge bases that con-
tain arbitrary SWRL expression usually becomes undecid-
able [16], we restrict ourself to DL-safe rules [26]. DL-safe
rules keep the reasoning decidable by placing constraints on
the format of the rule, namely each variable occurring in the
rule must also occur in a non-DL-atom in the body of the
rule. This means the identity of all objects referred to in
the rule has to be known explicitly. Thus, the rule in the
example above can be formalized as follows:

isAssignedTo(x, y)← AttributeValue(x),Valuation(y),

Function(z), domain(z, x), range(z, y)

Obviously, this rule is not DL-safe, since x, y, and z occur
only in DL-atoms. However, the rule can be made DL-safe
by adding the non-DL-atoms O(x),O(y), and O(z) to the
body, which ensure that the variables refer only to known
objects, i.e. individuals in the knowledge base. Since we
deal only with known instances in our application, we do
not explicitly mention the non-DL-atoms O(x) in the fol-
lowing. To query and reason over a knowledge base contain-
ing OWL-DL as well as DL-safe SWRL axioms we use the
KAON2 inference engine4.

For the reader’s convenience we define DL axioms infor-
mally via UML class diagrams5, where UML classes corre-
spond to OWL concepts, UML associations to object prop-
erties, UML inheritance to subconcept-relations and UML
attributes to OWL datatype properties [6]. For representing
rules we rely on the standard rule syntax as done in [17, 26].
In the following, SWRL rules are labelled by R1, . . . , Rn.

4.2 Modeling Basis
Our policy description framework consists of several on-

tology modules. These modules are arranged in three layers:
(i) As a modeling basis, we rely on the domain-independent
upper-level foundational ontology DOLCE [25]. By captur-
ing typical ontology design patterns (e.g. location in space
and time), foundational ontologies provide basic concepts

4available at http://kaon2.semanticweb.org/
5The entire ontology is also available in RDF/XML serial-
ization at http://ontoware.org/projects/emo
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-patternIdentifier:String (xsd)

-patternParameter1:Float (xsd)

-...

-patternParameterN:Float (xsd)


PatternBasedFunction
 PointBasedFunction
PiecewiseLinearFunction


-policyValue:datatype(xsd)

-valuation:float(xsd)


Point


constitutedBy


next


constitutedBy


-


OIO:InformationObject


Figure 1: Modeling value functions

and associations for the structuring and formalization of ap-
plication ontologies. Furthermore, they provide precise con-
cept definitions and a high axiomatization. Thereby, foun-
dational ontologies facilitate the conceptual integration of
different languages and thus ensure interoperability in het-
erogenous environments. Because of space restrictions we
omit a detailed description of DOLCE. The DOLCE con-
cepts that are directly used for alignment of our ontology
are briefly introduced in Table 2. A detailed description of
DOLCE and its modules is given in [25, 12]. (ii) As a sec-
ond layer we introduce the Core Policy Ontology that ex-
tends the upper-level ontology modules by introducing con-
cepts and associations that are fundamental for formalizing
policies. (iii) While the first two layers contain domain-
independent off-the-shelf ontologies, the third layer com-
prises ontologies for customizing the framework to specific
domains (e.g. an ontology for modeling products and their
attributes).

In the next section, we focus on the Core Policy Ontology
and show how policies and configurations are modeled based
on DOLCE and the logical formalism introduced above.

5. CORE POLICY ONTOLOGY
In the following, an ontology for modeling policies is in-

troduced that meets the requirements discussed in section 1.
The remainder of this section is structured as follows: First,
we extend the DOLCE ground ontology by modeling prim-
itives required for representing functions between attribute
values and their individual valuation by a user. Secondly,
based on these functions, we show how the DOLCE ontology
module Description & Situation is applied to model product
configurations and policies. Finally, we introduce interpre-
tation rules that evaluate the configurations according to
the specified policies.

5.1 Valuation Functions
As discussed in Section 3, preferences as well as pricing

information are expressed via functions that map configura-
tions to a corresponding valuation between 0 (or −∞) and
1, where a valuation of −∞ refers to forbidden alternatives
and a valuation of 1 to the optimal alternative [23]. We now
show how the fundamental concepts formalized in DOLCE
can be extended to allow expressing valuation functions.

As depicted in Figure 1, a Function6 is a specialization of

6Concepts and relations of the ontology are written in ital-
ics. All concepts and relations imported from other ontolo-
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OIO:InformationObject which represents abstract informa-
tion that exists in time and is realized by some entity [13].
Currently our framework supports three ways of defining
functions: (i) Functions can be modeled by specifying sets
of points in R

2 that explicitly map attribute values to valu-
ations. This is particularly relevant for nominal attributes.
(ii) We allow to extend these points to piecewise linear value
functions, which is important when dealing with continuous
attribute values, like in the case of Response Time. (iii)
Thirdly, we allow reusing typical function patterns, which
are mapped to predefined, parameterized valuation rules.
Note that such patterns are not restricted to piecewise lin-
ear functions since all mathematical operators contained in
the SWRL specification can be used. The different ways of
declarative modeling functions are discussed next in more
detail.

5.1.1 Point-based Functions
As depicted in Figure 1, PointBasedFunctions are Func-

tions that are constitutedBy a set of Points. Thus, the prop-
erty policyValue refers to exactly one attribute value and
the property valuation to exactly one utility measure that is
assigned to this attribute value.7 Both properties are mod-
eled by OWL datatypes. OWL datatypes mainly rely on the
non-list XML Schema datatypes [4]. Depending on the at-
tribute, policyValue either points to a xsd:string, xsd:integer
or xsd:float. A valuation is represented by a xsd:float be-
tween 0 and 1 or by −∞.

In our route planing example introduced in Section 1, a re-
quester might specify her preferences w.r.t. the service prop-
erty Weather by a PointBasedFunction, which is constitut-
edBy two instances of Point with (”yes”, 1) and (”no”, 0.2).
Thus, the requester would highly prefer weather information
to be taken into account, but has some small use for routes
calculated without weather information. Similarly, the pref-
erences for the attribute route calculation can be defined
with Points (”quickest”, 1) and cheapest (”cheapest”, 0.4).
These mappings are illustrated in Figure 2.

5.1.2 Piecewise Linear Functions
In order to support definition of Functions on continuous

properties too, we introduce PiecewiseLinearFunctions as

gies are labelled with the corresponding namespace. Some-
times concept names in the text are used in plural to improve
the readability.
7Note that in case we have dependent attributes and
thus complex value functions vj∗(xk, . . . , xl) (cf. Sec-
tion 3) we require more than one datatype property, i.e.
policyValuek, . . . , policyValuel.
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shown in Figure 1. To express PiecewiseLinearFunctions, we
extend the previous approach by the relation next between
two Points with adjacent x-coordinates.

Such adjacent Points can be connected by straight lines
forming a piecewise linear value function as depicted in Fig-
ure 3. For every line between the Points (x1, y1) and (x2, y2)
as well as a given PolicyValue x, we calculate the valuation
υ as follows.

υ =

(
y1−y2

x1−x2

(x− x1) + y1, if x1 ≤ x < x2

0, otherwise

This equation is formalized using rule R1. To achieve this
we exploit the math as well as the comparison built-in pred-
icates provided by SWRL8.

calυ(υ, x, x1, y1, x2, y2)←

subtract(t1, y1, y2), subtract(t2, x1, x2), divide(t3, t1, t2),

subtract(t4, x, x1), multiply(t5, t3, t4), add(υ, t5, y1),

lessOrEqualThan(x1, x), lessThan(x, x2) (R1)

As an example, let us assume the Function for the attribute
Response Time of the route planing service is given by a
PiecewiseLinearFunction with the Points (0, 1), (10, .8),
(30, .3), (60, 0) as depicted in Figure 3. Now, we can easily
find out which valuation v a certain policyValue x is as-
signed to. The predicate calv(v, x, x1, y1, x2, y2) is true iff
the policyValue x is between two adjacent Points (x1, y1)
and (x2, y2) and the valuation equals v. For instance, for
a Response Time of 20 sec. calv evaluates the straight line
connecting the adjacent Points (10, .8) and (30, .3), which
results in a Valuation v of .675.

5.1.3 Pattern-based Functions
Alternatively, value functions can be modeled by means

of PatternBasedFunctions. This type refers to functions
like up1,p2

(x) = p1e
p2x, where p1 and p2 represent param-

eters that can be used to adapt the function. In our on-
tology, these Functions are specified through parameterized
predicates which are identified by patternIdentifiers. A pat-
ternIdentifier is a xsd:string that uniquely refers to a specific
SWRL predicate. A patternParameter is a xsd:float that de-
fines how a specific parameter of the pattern-predicate has
to be set. For allowing an arbitrary number of parameters in

8For the sake of readability, we use a predicate with arity
five. Techniques for reifying higher arity predicates are well
known [19].
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Figure 4: Example of a pattern-based valuation
function

a rule, universal quantification over instances of patternPa-
rameter would be necessary. Since universal quantification
in rule bodies is not expressible in SWRL, the different pa-
rameters are modeled as separate properties in the ontology,
viz. patternParameter1,. . . , patternParameterN. Of course,
this restricts the modeling approach as the maximal number
of parameters has to be fixed at ontology design time. How-
ever, we believe that keeping the logic decidable justifies this
limitation.

As shown in the example below (rule R2), each pattern is
identified by a hard-coded internal string. This is required
to specify in the ontology, which pattern is assigned to a
certain attribute. Thus, in order to find out which pattern-
predicate is applicable, the patternIdentifer specified in the
policy is handed over to the pattern-predicate by using the
first argument and then it is compared to the internal iden-
tifier. If the two strings are identical the predicate is applied
to calculate the corresponding valuation of a certain policy-
Value.

As an example, we again focus on the attribute response
time of the route planning service. In many scenarios the
dependency between configurations and prices or valuations
are given by functions. Assume the preferences for Response
Time are given by the exponential function up1,p2

(x) =
p1e

p2x with the patternParameters p1 = 1.03 and p2 = −.04
(Figure 4). Axiom R2 formalizes the pattern. The inter-
nal identifier in this example is ‘id:exp’. The corresponding
comparison is done by the SWRL built-in equal, which is
satisfied iff the first argument is the same as the second ar-
gument.

pattern(id, x, p1, . . . , pn, v)←

String(id),PolicyValue(x),Valuation(v),

equal(id, ”id : exp”),multiply(t1, p2, x),

pow(t2, ”2.70481”, t1),multiply(v, p1, t2) (R2)

SWRL supports a wide range of mathematical built-in pred-
icates (cf. [17]) and thus nearly all functions can be sup-
ported. As in our example, these functions are typically
parameterized only by a rather small number of parame-
ters. Therefore, we believe that there are few practical im-
plications of defining the maximal number of parameters at
ontology design time.

5.2 Modeling Policies and Configurations
As discussed in Section 3, we formalize preferences of a

user as well as pricing information of a provider by means of
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Figure 5: Policy description framework. To improve the readability we illustrate certain relations by plotting
UML classes within other UML classes: The class PolicyDescription has a DnS:defines-relation and the class
Configuration a DnS:settingFor-relation to each contained class.

policies. For instance, a price-conscious user might prefer a
cheap service although the service has a rather slow response
time, whereas a time-conscious user might accept any costs
for a fast service. Hence, policies can be seen as different
views on a certain configuration. For modeling such views
we use and specialize the DOLCE module Descriptions &
Situations (DnS) which provides a basic theory of contextu-
alization [11]. Such a theory is required to reflect the fact
that a certain configuration can be considered as more or
less desirable depending on the scoring policies of a buyer
or that a certain configuration can be priced differently de-
pending on the pricing policies of a seller.

When using DnS with DOLCE, we distinguish between
DOLCE ground entities that form a DnS:Situation and de-
scriptive entities composing a DnS:Description, i.e. the con-
text in which Situations are interpreted. As depicted in Fig-
ure 5, we specialize the DnS:Description to a PolicyDescrip-
tion that can be used to evaluate concrete Configurations
which are modeled as Situations. This distinction enables
us, for example, to talk about products as roles on an ab-
stract level, i.e. independent from the concrete entities that
play the role. For instance, a certain product configuration
can be evaluated in the light of either a pricing policy of the
seller or the preferences of a user depending on the point of
view.

In the following, we describe how such Configurations and
PolicyDescriptions are modeled and then show how the eval-
uation of policies is carried out.

5.2.1 Configuration
In a first step, we define the ground entities that describe

a DnS:Situation. In our context, such DnS:Situations re-
flect configurations of concrete goods or services. Hence,
we model Configuration as a subclass of DnS:Situation as
shown in Figure 5. Since there are different ways of defin-
ing goods and services, a generic approach is used in this
work, where a concrete Good is represented by an instance of
DOLCE:Endurant and a service by a combination of
DOLCE:Endurants and OoP:Activities as done in [11]. Spe-
cializations of OoP:Activities capture ServiceActivities like
RoutePlanning. Specializations of DOLCE:Endurants rep-
resent the objects involved in such a ServiceActivity (e.g.
inputs and outputs). Moreover, DOLCE:Endurants as well
as OoP:Activities have DOLCE:Qualities with a datatype
property situationValue.

This means a concrete route planing service is represented
by an instance of the following ontology: we specialize Ser-
viceActivity to RoutePlanningActivity with the
DOLCE:Qualities WeatherInformationQuality, Response
TimeQuality and AvailabilityQuality. In addition, the Route
PlanningActivity involves a ServiceOutput which specializes
Good. ServiceOutput is associated to a RouteQuality that
defines whether the output is the cheapest or the quickest
route. Note that a DOLCE:Quality in a concrete configura-
tion has exactly one situationValue-property.



5.2.2 Policy Description
In a second step, the descriptive entities are specialized in

order to define policies that can be used to specify scoring
functions of the buyer as well as pricing functions of config-
urable trading objects. As depicted in Figure 5, policies are
modeled as specialization of DnS:Description, called Policy-
Description, which DnS:defines a DnS:Role representing the
Object on which the policy is defined, e.g. this could be a cer-
tain type of good or the output of a service. Since they are
modeled as DnS:Roles, policies can be defined on an abstract
level without referring to a concrete DOLCE:Endurant. For
instance, preferences can be defined for a certain product
category (DnS:Object) such as computers in general and
then all DOLCE:Endurants that play the role of computers
in a certain Situation are evaluated according to this pref-
erences. Furthermore, a PolicyDescription could also regu-
late a OoP:Task. This is for example the case when talking
about web services. A route planing service might execute a
RoutePlanningTask where the Input (specialization of Ob-
ject) is a certain destination and the Output (specialization
of Object) is the calculated route.

However, as discussed in section 3, the configurations are
preferred to varying degrees depending on the concrete prop-
erties of the trading object. We model this by introducing
the DnS:Parameter Attribute, which is a DnS:requisiteFor a
Object or OoP:Task. Attributes have a datatype property
policyValue pointing to all possible attribute values. Fur-
ther, each Attribute is assigned to a certain preference struc-
ture. As discussed above, preference structures on attributes
are imposed by Functions. Functions are
OIO:InformationObjects (cf. Figure 1) that play the role
of Preferences in a PolicyDescription and define how policy-
Values are mapped to valuations. In other words, a policy
defines which Function should be used in which context (i.e.
for which attribute). Besides Functions, Preferences also de-
fine the relative importance of the given Attribute.

After discussing how Configurations as well as PolicyDe-
scriptions are modeled, we introduce the rules for evaluating
concrete Configurations with respect to given policies. We
thus show how pricing policies are applied to determine the
price of a configuration or scoring policies to determine the
willingness to pay.

5.2.3 Policy Evaluation
With our approach, policies that contain Functions no

longer lead only to a pure boolean statement about the
conformity of a Configuration, but rather to a degree of
conformity of the Configuration. Therefore, the traditional
DnS:satisfies-relation between a DnS:Situation and
DnS:Description stemming from DnS is not sufficient any
more since additional information about the degree of con-
formity has to be captured. Ontologically, this requires
putting in relation the PolicyDescription, a concrete Config-
uration and an overallDegree that represents the valuation
to which the latter satisfies the former. As tertiary relations
cannot be modeled with the formalism at hand directly, the
OIO:InformationObject Satisfiability is introduced to link
the three entities. We use the relation refersTo to iden-
tify the PolicyDescription as well as the Configuration for
which the datatype property overallDegree represents the
valuation. Figure 5 sketches this modeling approach.

In line with the utility model defined in equation 1, we
first calculate the valuation for each attribute individually

and then aggregate the individual valuations to the over-
allDegree. For representing individual valuations for at-
tributes we introduce the concept LocalDegree which is also
an OIO:InformationObject in terms of DOLCE. LocalDegree
links each DOLCE:Quality of the Configuration to a certain
Attribute in the PolicyDescription by using the associations
relatedAttribute as well as relatedQuality.

On this basis, the property degree, which can be inter-
preted as the valuation a single attribute contributes to
the overall valuation, is calculated as follows: depending
on which Function DnS:plays the role of Preference for a
certain Attribute, one of the rules below is used. In order
to abbreviate the following rule definitions, we first define
the shortcut relation isDeterminedBy between a LocalDe-
gree and the Function that specifies the Preferences for the
Attribute related to the LocalDegree.

isDeterminedBy(x, f)←

relatedAttribute(x, a), isEvaluatedWRT(a, p),

DnS:playedBy(p, f) (R3)

In case of PointBasedFunctions we look up the situation-
Value in the Configuration and compare this value with the
policyValues of all Points defined by the Function. If the
policyValue of a Point p matches the situationValue, the
property valuation of p determines the degree. For instance,
if the situationValue for RouteQuality is determined by the
xsd:string ”quickest” and the PointBasedFunction is given
by (”quickest”, 0.6) and (”cheapest”, 0.4) we derive a degree
of 0.6 since only the policyValue ”quickest” matches the sit-
uationValue. This is formalized by Rule R4.

degree(ld, v)←

isDeterminedBy(ld, f),PointBasedFunction(f),

constitutedBy(f, po), policyValue(po, pv),

relatedQuality(ld, q), situationValue(q, y), equals(pv, y),

valuation(po, v) (R4)

Correspondingly, the Rules R5 and R6 can be used to
evaluate PiecewiseLinearFunctions and PatternBasedFunc-
tions, respectively. Rule R5 uses the calv-predicate (defined
in Rule R1) and Rule R5 the pattern-predicate (defined in
Rule R2) to determine allowed mappings between policyVal-
ues and valuations.

degree(ld, v)←

isDeterminedBy(ld, f),PiecewiseLinearFunction(f),^
i∈{1,2}

(constitutedBy(f, poi), policyValue(poi, pvi),

valuation(poi, vi)),next(po1, po2), relatedQuality(ld, q),

situationValue(q, y), calv(v, y, pv1, v1, pv2, v2) (R5)

degree(ld, v)← isDeterminedBy(ld, f),

PatternBasedFunction(f), patternIdentifier(f, id),

relatedQuality(ld, q), situationValue(q, y),^
i∈{1,..,n}

(patternParameteri(f, pi)),

pattern(id, y, p1, . . . , pn, v) (R6)



The valuation derived from the individual attributes is
weighted according to their relative importance defined by
the concept Weight. The weights λi of the individual at-
tributes i have to be normalized between 0 and 1. This is
done by means of the formula 1

n

Pn

i=1
λi, which is evaluated

within rule R7. Based on the normalized weights, Rule R7
calculates the overallDegree by encoding equation 1.

overallDegree(s, v)←

PolicyDescription(d), refersTo(s, d),Configuration(c),

refersTo(s, c),
^

i∈{1,...,n}

(hasLocalDegree(s, ldi),

isDeterminedBy(ldi, fi),weight(fi, wi)),

sum(g, w1, . . . , wn),
^

i∈{1,...,n}

(div(ri, wi, g),

localDegree(ldi, vi),mul(ki, vi, ri)),

sum(v, k1, . . . , kn) (R7)

As an example, we assume the Configuration s of a route
planing service, which returns the quickest route while con-
sidering traffic information. Further, a response time of 20
sec. is guaranteed. Based on the example Functions above
this leads to local degrees of 1 for the Attribute Weather, 1
for Traffic, 0.47 for Response Time and 0.5 for Route, re-
spectively. Moreover, we assume that the PolicyDescription
contains the weights of 2, 2, 1, 1 for the individual Attributes.
Now, we can query the knowledge base containing the con-
figuration c as well as the PolicyDescription d (e.g. by using
SPARQL9) to get the overallDegree of a Satisfiability in-
stance that refersTo c and d. In the example this would
result in a overallDegree of 0.83. Alternatively, the follow-
ing SPARQL-query can be used to derive a ranking of all
Configurations in the knowledge base according to a certain
‘ScoringPolicy d’:

BASE <http://example.org/>

PREFIX poem:<http://ontoware.org/projects/emo/0.1/>

SELECT ?Configuration ?overallDegree

WHERE {

?Satisfiability rdf:type poem:Satisfiability .

?Satisfiability poem:refersTo ”ScoringPolicy d” .

?Configuration rdf:type poem:Configuration .

?Satisfiability poem:refersTo ?Configuration .

?Satisfiability poem:overallDegree ?overallDegree .}

ORDER BY DESC(?overallDegree)

6. POLICY AGGREGATION
Up to now we focused on scenarios where only one policy

was used by a single buyer or seller. However, since policy-
based approaches are usually applied in large-scale appli-
cations, typically more than one policy may be specified in
order to regulate a certain decision. For example, a Web ser-
vice selection process of a company might be regulated by
several scoring policies coming from different departments
of the company. The information systems department, for

9http://www.w3.org/TR/rdf-sparql-query/
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instance, might prefer a highly secure service, while the man-
agement might prioritize cheap services. Of course, differ-
ent scoring policies lead to different valuations as well as
rankings and thus to different selections of services. In the
remainder of this section, we present a method to derive a
coherent policy from such diverse policies. Therefore, poli-
cies are first evaluated and the results of this evaluation step
are then aggregated.

In traditional policy languages there are two major opera-
tors that can be used to combine policies [23, 10]: we can use
either a logical and-operator in order to define a conjunc-
tion of policies (i.e. the aggregated policy is admissible if all
contained policies are admissible) or a logical or -operator to
derive a disjunction of policies (i.e. the aggregated policy is
admissible if at least one contained policy is admissible).

However, since our policy language results in degrees of
satisfiability, this traditional interpretation of the logical op-
erators cannot be used. In order to define the semantics of
the logical operators for such multi-valued logics, we bor-
row ideas from fuzzy logic where the semantics of conjunc-
tion and disjunction is defined via T-norms and T-conorms.
In the following, we use the T-norm/T-conorm defined by
Zadeh [37] as follows:

⊤(a, b) = min(a, b) for and-operators

⊥(a, b) = max(a, b) for or -operators

We use the definitions above to make sure that if one of the
policies is evaluated to −∞, the overall valuation of the con-
junction of policies is also −∞. In case of disjunctions only
one policy has to be fulfilled and thus we take the maximal
valuation.

We next introduce the modeling primitives required for
representing conjunctions and disjunctions of policies, as
shown in figure 6. To be able to evaluate a certain
DnS:Situation with respect to a set of policies, we adapt the
Satisfiability concept in a way that it may not only referTo
a single PolicyDescription, but also to a PolicyCollection.
A PolicyCollection is defined as a DOLCE:Collection that
has exactly two memberPolicy-relations pointing either to
a PolicyDescription or to another PolicyCollection. This is
formalized using the following DL axioms:

PolicyCollcection ⊑ DOLCE:Collection ⊓

∃memberPolicy1.(PolicyDescription

⊔PolicyCollection) ⊓

∃memberPolicy2.(PolicyDescription

⊔PolicyCollection)



memberPolicy ⊑ DOLCE:member

memberPolicy1 ⊑ memberPolicy

memberPolicy2 ⊑ memberPolicy

The reason why we restrict a PolicyCollection to exactly
two memberPolicy-relations is the fact that SWRL does not
support universal quanitifcation in the rule body. Hence, we
cannot iterate about an arbitrary number of PolicyDescrip-
tions contained in the collection (e.g. the first order logic
term ‘∀y.memberPolicy(x, y)’ is not expressible in SWRL).
However, this is no limitation since an arbitrary number of
PolicyCollections with two memberPolicy-relations can be
nested which has the same effect as multiple memberPolicy-
relations within one PolicyCollection.

In order to define a relation between the members of a
PolicyCollection we introduce the two subclasses of Poli-
cyCollection, ConjunctivePolicyCollection and Disjunctive-
PolicyCollection. Then, for each of these subclasses a rule is
introduced that calculates the overallDegree of the collection
based on the overallDegrees of the elements contained. The
following rule does the calculation for a ConjunctivePolicy-
Collection where the individual elements are connected by a
logical and-relation based on the T-norm ⊤ defined above.

overallDegree(s, d)← Satisfiability(s),

refersTo(s, c),ConjunctivePolicyCollection(c),^
i∈{1,2}

(memberPolicyN(pi), refersTo−1(pi, si),

overallDegree(si, di)), min(d, d1, d2) (R8)

Note that rule R8 recursively calculates the overallDegree
of the elements contained in the collection. Rule R8 will
only be used if Satisfiability refers to a ConjunctivePolicy-
Collection. If it refers to a single PolicyDescription, rule R7
will be applied as before.

Analogously, we can define the rule R9 for DisjunctivePol-
icyCollections where the T-conorm ⊥ is used to calculate the
overallDegree.

overallDegree(s, d)← Satisfiability(s),

refersTo(s, c),DisjunctivePolicyCollection(c),^
i∈{1,2}

(memberPolicyN(pi), refersTo−1(pi, si),

overallDegree(si, di)),max(d, d1, d2) (R9)

Of course, DisjunctivePolicyCollections and Conjunctive-
PolicyCollections can be nested within each other provided
that the leafs of the emerging tree structure are always prim-
itive PolicyDescriptions.

7. APPLICATION: DYNAMIC
WEB SERVICE SELECTION

In this section, the policy language presented above is
used to implement a service bus architecture [32, 29]. A
service bus can be considered as a component that enables
dynamic Web service selection and thus avoids hard-wiring
of Web services within a service-oriented implementation of
a business process. Dynamic selection of services is a central
problem when dealing with service oriented architectures.
It provides a high flexibility of the implementation since
switching from one service to another can be done automat-
ically during run-time without changing code. This can lead

to more robust systems and to lower costs, since erroneous
and expensive services can be automatically replaced.

Figure 7 shows the architecture of our system. On the left
side, a company’s business process is visualized as a work-
flow of tasks that have to be accomplished by a Web ser-
vice. The company further defines general policies how the
business process should behave. These policies have to con-
tain scoring policies specifying the company’s preferences
about Web service properties. Once a Web service is re-
quired within the business process (step D), the following
steps have to be carried out:

1. Together with the first service request, scoring policies
including attribute weighting information are sent to
the service bus and stored in a knowledge base. More-
over, the company posts a classification rule like R10,
which defines a threshold value for acceptable service
configurations. In this example, the concept Accept-
able classifies all service configurations which lead to
difference between willingness to pay and price of at
least 0.2. This threshold should be realized for all fu-
ture service invocations.

Acceptable(x)← Configuration(x),PricingPolicy(pp),

Satisfiability(s2), refersTo(s2, pp), refersTo(s2, x),

ScoringPolicy(sp),Satisfiability(s1),

refersTo(s1, sp), refersTo(s1, x),

overallDegree(s1, score), overallDegree(s2, price),

sub(dif, score, price), greaterEqual(dif, 0.2) (R10)

Note that this initialization step only has to happen
once for the initialization of the system. Based on this
scoring policy, the service bus is able to take over the
responsibility of selecting between potential providers,
such as A and B.

2. Once a request from an application arrives, the service
bus first queries a UDDI registry for suitable providers.
Here only a very simple matching of the service func-
tionality is carried out. This means only the addresses
of those services are returned that provide the required
functionality.

3. In a next step, offers from the providers are collected
in parallel. These offers contain a list of provided con-
figurations together with the pricing policies of the
corresponding provider. The pricing policies are also
stored in the knowledge base of the service bus. Note
that technically, obtaining an offer is a two-step pro-
cess, where the provider’s policy is queried via the
WS Metadata Exchange interface and application spe-
cific attributes are obtained by calling some getOffer -
method.

4. Finally, the service bus queries the knowledge base for
all instances of Acceptable ranked according to the dif-
ference between score and price. Based on the ranking,
the best provider is selected and the respective service
invoked. In case this invocation fails the second best
service is chosen. This is repeated until the required
task is accomplished or no acceptable service remains.
In this case an error message is forwarded to the re-
quester.
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Note that based on rule R10, the inference engine auto-
matically classifies all configuration instances according to
the condition and a simple query can be used to derive all
acceptable services. Such automatic classification of configu-
rations is particularly important for implementing context-
aware decision making. For example, different contexts (cur-
rent location, time, etc.) may require different scoring poli-
cies. In our rule-based framework such context-rules can be
easily added to the knowledge base.

8. CONCLUSION
In this paper, we provide a formal representation of a

utility-based policy framework, which realizes the advan-
tages of Utility Function policies, such as preference mod-
eling and inherent conflict resolution, with a purely declar-
ative and standard-based approach. This is essential for
flexibility and interoperability of the system within elec-
tronic markets. As a use case, it is shown how such a policy
framework can be applied for the formal modeling of pricing
policies of a provider as well as preferences of a requester.
In order to exemplify this approach we present the architec-
ture of a service bus which enables dynamic selection of Web
services. We believe that expressing the relations between
product/service configurations and prices or the willingness
to pay is crucial in electronic markets for configurable trad-
ing objects. To the best of our knowledge, there are no
formal, declarative and standard-based languages available
yet that provide sufficient expressivity to support this.

In a next step, we plan to integrate the policy framework
into an larger ontology for expressing offers, requests and
agreements in a market. In this context, super- as well as
subadditive valuations should be supported through primi-
tives for representing bundles and substitutes. In addition,
we plan to extend the service selection scenario by includ-
ing negotiation approaches like double auctions. Hence, the
ontology has to be mapped to an allocation problem, which
efficiently encodes the winner and price determination in the
market based on pricing as well as scoring policies.
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