
1

Modal Change Logic (MCL):
Specifying the Reasoning of Knowledge-based Systems

Dieter Fensel1, Rix Groenboom2 and G. R. Renardel de Lavalette2

1 University of Karlsruhe, Institute AIFB, D-76128 Karlsruhe, Germany. E-mail:
dieter.fensel@aifb.uni-karlsruhe.de

2 University of Groningen, Department of Computing Science, P.O. Box 800, 9700 AV Groningen, the
Netherlands. E-mail: {rix | grl}@cs.rug.nl

Abstract. We investigate the formal specification of the reasoning process of
knowledge-based systems in this paper. We analyze the corresponding parts of
the KADS specification languages KARL and (ML)2 and deduce some general
requirements. The essence of these languages is that they integrate a declarative
specification of inferences with control information. The languages differ in the
way they achieve this integration and each of them has shortcomings. We propose
a unifying semantical framework that integrates the core of the different solutions
and overcomes their problems. We define a semantics and axiomatization with
the Modal Change Logic (MCL). The main contribution of the paper is not to
introduce yet another specification language. Instead we aim at four goals: (1)
defining a framework for describing the dynamic reasoning behavior of
knowledge-based systems which integrates existing approaches; (2) defining a
semantics for the specification of the dynamic reasoning behavior of a
knowledge-based system within the states as algebras setting that overcomes
several shortcomings and ad-hoc solutions of existing approaches; and (3)
providing an axiomatization that enables the development of mechanized proof
support. (4) Through conceptual and semantical clarity, we investigate the
relationships to similar work in software engineering and database engineering
opening possibilities for further cross-fertilization of these fields.

1 Introduction

The model of expertise as developed in the KADS-I [Schreiber et al., 1993] and
CommonKADS projects [Schreiber et al., 1994] has become a widely used framework for
developing and describing knowledge-based systems (KBSs). Such a model of expertise can
be used to describe the reasoning process and the knowledge required by this process in an
implementation-independent manner. During the last years a couple of formal or executable
specification languages have been developed for describing KBSs. Most of them are based on
the KADS model of expertise or define their conceptual model as a modification of this
model. A survey of these languages can be found in [Treur & Wetter, 1993], [Fensel & van
Harmelen, 1994], [Fensel, 1995c]. Supplementing conceptual modelling techniques like the

Data and Knowledge Engineering, 26(3):243-269, 1998

2

KADS model by formal specification languages has three well known advantages:

• Formal specification languages can be used to resolve ambiguity and missing details of
specifications stated in natural language.

• Executable specification languages enable the evaluation of the specification by
prototyping (i.e. testing).

• Proof calculi of the languages can be used to check relevant properties of a specification.

Common to all formal specification approaches for KBSs is that a formal semantics has to
cover three aspects: the specification of static aspects of a KBS, the specification of the
dynamics of a KBS (i.e., its reasoning), and the combination of both, i.e. its overall semantics.
For our study we restrict our attention to the second and third parts, because we think that the
main improvements are necessary in the dynamic part. This part also introduces the main
distinction from many specification languages of software engineering which aim only at a
pure functional description of a software system (cf. [Fensel, 1995c]). In general, most
problems tackled with KBSs are inherently complex and intractable ([Bylander, 1991],
[Bylander et al., 1991], [Nebel, 1996], [Fensel & Straatman, 1996]). Besides a precise
functional specification (i.e., the definitions of the goals that should be achieved by the KBS)
it is therefore necessary to specify the reasoning process and its use of knowledge which
enable reasonable problem-solving for the expected cases. An important part of the
knowledge that must be specified is therefore knowledge about the way to achieve a solution
and not just declarative knowledge about what a solution should be.

In this paper, we will discuss a semantic framework for specifying the dynamic reasoning
process of a KBS. We start with an analysis of the existing approaches to come up with a
framework that integrates these approaches. In fact, we take an analysis of the two KADS-
languages KARL [Fensel, Angele & Studer] and (ML)2 [van Harmelen & Balder, 1992] as
our point of departure. The language (ML)2 describes the reasoning behavior by combining
first-order logic, meta-logic and quantified dynamic logic [Harel, 1984]. The language KARL
was developed as part of the MIKE project [Angele et al., 1993] and provides a variant of
Horn clause logic and a restricted version of dynamic logic for this purpose. We have chosen
KARL and (ML)2 for our exercise as both languages rely on dynamic logic to represent the
dynamics of the reasoning process. As the technical core of the semantics of KBSSF [Spee &
in 't Veld, 1994] is close to that of KARL, most of the results of the paper can also be applied
to it. The other specification languages for KBSs use different means for specifying the
dynamics of a KBS: Petri nets (MoMo [Voss & Voss, 1993]), process algebra (TFL [Pierret-
Golbreich & Talon, 1996]), or temporal logic with linear time (DESIRE [Treur, 1994]). We
will discuss some of them in the comparison section.

A serious shortcoming of all of the specification languages for KBSs appears when taking a
closer look at the third advantage of formal specification languages: Proof calculi can be used
to formally prove properties of specifications. Up to now, none of these languages provides
such a support. We make a step in this direction by providing an axiomatization for our
approach.

We achieve this by reusing work done in software engineering. Our starting point in software
engineering is the wide-spectrum specification language COLD, which can be used to specify
static and dynamic aspects of a system. COLD, Common Object-oriented Language for
Design, was developed at Philips Research Eindhoven in several ESPRIT-projects. The main

3

ideas for the language originated from Hans Jonkers. The formal definition of COLD-K and
its semantics was given in 1987 in [Feijs et al., 1987]. The semantics is based on the many-
sorted partial infinitary logic MPLω, see [Koymans & Renardel de Lavalette, 1989]. The
textbook [Feijs & Jonkers, 1992] gives a good introduction to COLD-K, the kernel language
of COLD. For the concept of state, COLD and the specification formalism Evolving
Algebras1 [Gurevich, 1994] use what we could call the states as algebras approach. In this
approach, a state is modelled by a (many-sorted) algebra. State transitions are performed by
procedures, and consist of the modification of functions and predicates and the creation of
new objects. To reason about these kinds of formalisms a variant of Dynamic Logic [Harel,
1984] was studied. This resulted in the Modal logic of Creation and Modification (MLCM)
[Groenboom & Renardel de Lavalette, 1994], a multi-modal logic for reasoning about state
modifications. In this paper, we discuss MCL (Modal Change Logic), which generalizes
MLCM. Basically, we introduce new elementary state transition types in MLCM which cover
the grainsize of state transitions in knowledge-based reasoning. A predecessor of MCL is
MLPM (Modal Logic of Predicate Modification) [Fensel & Groenboom, 1996], which
introduces some of these new state transition into a subset of MLCM. However, MCL
generalizes these transition types and integrates them in the general framework of MLCM. As
a consequence, we get an approach that integrates existing proposals, that overcomes several
of their shortcomings and ad-hoc solutions, that provides an axiomatization and enables the
development of mechanized proof support. Finally we get a scalable approach that covers
existing approaches of knowledge engineering and other areas of system specification,
opening possibilities for further cross-fertilization of these fields.

The structure of this paper is as follows. In Section 2, we introduce the knowledge
specification languages KARL and (ML)2 focusing on their dynamics. We use the experience
with these languages to derive requirements for an appropriate semantic framework for the
specifications of the dynamics of the reasoning of KBSs. We discuss the logic MCL in
Section 3. We provide syntax, semantics and an axiomatization. In Section 4, we use MCL to
formalize the inference and control constructs of the KADS languages MLPM, (ML)2 and
KARL; the Evolving Algebras approach [Gurevich, 1994] of software engineering and the
languages PDDL [Spruit et al., 1995] and DDL [Spruit et al., 1993] for specifying database
updates. Finally, in Section 5 we provide a comparison with work that uses different solutions
and we outline directions for future research in Section 6.

2 Specification Languages for Knowledge-based Systems

This section introduces the formal languages that form the basis of the paper. We sketch the
KADS model of expertise and the two languages KARL and (ML)2.

2.1 The Model of Expertise

The KADS languages KARL and (ML)2 use variants of the KADS model of expertise as their
conceptual framework for specifying a KBS. We will use a simple diagnostic task as an
example to illustrate this model (see Figure 1). The task of the KBS consists of finding the

1. Now called Abstract State Machines (ASMs).

4

diagnosis with the highest preference for a given set of symptoms.

The task layer introduces the goal that should be achieved by the system and it decomposes
the overall task into subtasks and defines control over them. It combines a functional
specification with the specification of the dynamic reasoning process that realizes the
functionality. The inference layer specifies the inference process that realizes the subtasks of
the task layer. In our example it consists of two inference actions:

• generate, which creates possible hypotheses based on the given findings and the causal
relationships at the domain layer; and

• select, which assigns a preference to hypotheses and selecting the diagnosis with the
highest preference.

The knowledge role finding provides input to the inference action generate, the knowledge
role hypothesis delivers the results of the reasoning of generate to select, and the knowledge
role diagnosis provides the results of select as output.2 The two knowledge roles causality
and preference provide knowledge necessary for the inference process. It is mapped from the
domain layer, which provides causal knowledge which can be used to relate findings to
diagnoses and knowledge which can be used to assign preferences to possible diagnoses. A
simple control flow at the task layer is defined by first executing generate and applying select
to its output.

The model of expertise separates domain knowledge and control knowledge. The domain
layer contains the static knowledge from the application domain and its terminology. The
inference layer and the body of the task layer describe the dynamics of the system. The
inference layer defines the elementary inference steps, the relations between them, and the
role of the domain knowledge for the reasoning process. In our example, the causal
relationship is used by the generate inference step and the knowledge about probabilities is
used by the select step. The description at the task layer provides the definition of control
over the execution of the inference steps.3 This distinction between the domain-specific
knowledge at the domain layer and the domain-independent description of the reasoning
process at the inference and task layers enables the reuse of domain knowledge for different
task and reasoning strategies and the reuse of reasoning strategies (called problem-solving
methods [Schreiber et al., 1994]) in different domains.

If formal specification languages are not used, the semantics of the elementary elements of a
model of expertise have to be defined by using natural language. KARL and (ML)2 have been
developed to formalize some of these elements. As a consequence of our focus on dynamics
we abstract from some aspects of the languages. In the case of KARL we abstract from all
syntactical extensions of Horn logic by semantical data modelling primitives, and in the case
of (ML)2 we abstract from the object-meta relationship between the domain and the inference
layers. These abstractions help to focus on the relevant aspects and simplify the formal parts
of this paper.

2.2 (ML)2

The sub-language of (ML)2 [van Harmelen & Balder, 1992] used to model a domain layer is

2. Following the naming convention for types and sorts we give singular names to knowledge roles independent of whether
they contain one or several elements.
3. The inference layer defines the data flow between inferences but not the order in which they are executed.

5

order-sorted first-order logic extended by modularization. Instances are modelled by
constants, and sorts can be used to model concepts. Sorts and therefore concepts can be
arranged in an is-a hierarchy. Relationships between instances of concepts are modelled by
predicates of the according sorts. Attributes of instances of concepts are modelled by
functions. Arbitrary first-order theories can be used to further specify the defined
relationships. The specification of a domain layer can be divided into several modules. Such a
module or theory defines a signature (i.e., sorts, constants, functions, and predicates) and
consists of axioms (i.e., logical formulae). These modules, i.e. sub-theories, can be combined
by a union operator.

Each inference action (called primitive inference action in (ML)2) is modelled by a predicate
and a theory which further specifies this predicate. In our running example, the inference
actions generate and select are modelled by two predicates:

piagenerate(finding(X), causality(finding(X),hypothesis(Y)), hypothesis(Y))

piaselect(hypothesis(X), preference(Z), diagnosis(Y))

The descriptions of the inference actions generate and select are given in Figure 2.

It remains to define the different knowledge roles. Causality and preference provide domain
knowledge and finding the case data for the inference layer. The inference layer is modelled
as a meta-language of the domain layer in (ML)2. This meta-relation enables the inference-

symptom disease

caused-by probability
[0,1]

finding generate hypothesis select

preferencecausality

diagnosis

Domain Layer

Inference Layer

hypothesis := generate(finding, causality);
diagnosis := select(hypothesis, preference)

Task Layer

Goal: Find the diagnosis which explains the reported findings
and which has the highest preference.

Body:

Fig. 1. A model of expertise for a simplified diagnostic task.

Legend:

knowledge
role

inference
action

knowledge and

data flow

Legend:
concept relation

6

layer to specify properties of relations over domain-layer expressions (predicates and

Fig. 2. Inference actions generate and select in (ML)2.

theory generate

input roles finding, causality;

output roles hypothesis;

signature

sorts finding-value, finding-name, causality-name, hypothesis-value, hypothesis-name;

variables X : finding-value, Y : hypothesis-value;

functions

finding : finding-value → finding-name,

causality : finding-name * hypothesis-name → causality-name,

hypothesis : hypothesis-value → hypothesis-name;

predicates piagenerate : finding-name * causality-name * hypothesis-name;

axioms

piagenerate(finding(X), causality(finding(X),hypothesis(Y)),hypothesis(Y)) ←

inputfinding(finding(X)) ∧ inputcausality(causality(finding(X),hypothesis(Y)))

endtheory

theory select
input roles hypothesis, preference;
output roles diagnosis;
signature

sorts
hypothesis-value, hypothesis-name,
diagnosis-value, diagnosis-name,
 preference-pairs, preference-pair-set-value, preference-pair-set-name;

variables X : hypothesis-value, Y : diagnosis-value, Z : preference-pairs;
functions

hypothesis : hypothesis-value → hypothesis-name,

preference : preference-pair-set-value → preference-pair-set-name,

diagnosis : diagnosis-value → diagnosis-name,

pref : hypothesis-name * hypothesis-name → preference-pairs;
predicates

piaselect : hypothesis-name * preference-pair-set-name * diagnosis-name;

axioms
piaselect(hypothesis(X), preference(Z),diagnosis(X)) ←

inputhypothesis(hypothesis(X)) ∧

inputpreference(preference(Z)) ∧
¬(∃Y : inputhypothesis(hypothesis(Y)) ∧ pref(hypothesis(Y),hypothesis(X)) ∈ Z)

endtheory

7

functions). The expressions of object- and meta-language are connected by a naming relation
and the truth values of formulae are connected by reflection rules. The input predicates
inputfinding, inputcausality, and inputpreference used in the logical theories of the inference
actions piagenerate and piaselect are defined by reflection rules that connect truth in object- and

meta-logic. As we abstract from this aspect of (ML)2 we will not go into any detail of this
topic (cf. [van Harmelen & Balder, 1992]). The knowledge role hypothesis, however, does
not provide domain knowledge for the inference actions. It collects the output of the inference
action generate and provides it as an input to the inference action select. This dynamic
character of hypothesis makes it necessary to define the input predicate inputhypothesis at the
task layer. The knowledge role diagnosis is used as an output role only and therefore requires
no input predicate definition at all.

Quantified dynamic logic is used to specify dynamic control at the task layer. The pia-
predicates, together with the test operator (of the form pianame ?), are the elementary program

statements. A history variable is defined for each inference action that stores the

input-output pairs for every execution step.

Four types of task-layer operations are available for each inference action pianame: checking
whether an instantiation exists (has-solution-pianame), checking whether an instantiation has
already been computed (old-solution-pianame), checking whether more instantiations exist
(more-solution-pianame), and actually computing and storing a new instantiation (give-
solution-pianame):

has-solution-pianame (I,O) =def pianame(I,O)
old-solution-pianame (I,O) =def ((I,O) ∈)
more-solution-pianame(I,O) =def (has-solution-pianame(I,O) ∧ ¬old-solution-pianame(I,O))

The most important program is give-solution-pianame which gives one possible solution:

give-solution-pianame (I,O) =def (more-solution-pianame(I,O)?; := <(I,O) | >

The key idea is to non-deterministically choose a value binding of a logical variable by the
test operator and store this value in a state variable. Note that old-solution-pianame and hence

 is an administration for the non-deterministic execution of give-solution-pianame

which is necessary to ensure the derivation of new instantiations of the predicate.

These primitive programs and predicates can be combined using sequential composition,
non-deterministic iteration and non-deterministic choice.

For our example, we have to define the input predicate inputhypothesis and the control flow
between the inference actions. The knowledge role hypothesis collects the output of the
inference action generate and provides it as input to the inference action select. The following

V pianame

V pianame

V pianame
V pianame

V pianame

Fig. 3. A task layer in (ML)2.

while more-solution-piagenerate(finding(X),causality(finding(X),hypothesis(Y)),hypothesis(Y))
do give-solution-piagenerate(finding(X),causality(finding(X),hypothesis(Y)),hypothesis(Y))
enddo
give-solution-piaselect(hypothesis(X),preference(Z),diagnosis(X))

8

definition of the input predicate is the way in which (ML)2 can be used to define data flow
between inferences.

inputhypothesis(X) =def ∃ I1,I2 with (I1,I2,X) ∈

The task layer of our example is given in Figure 3.

Dynamic Logic [Harel, 1984] uses Kripke structures to define a semantics for programs. A
structure has the form S = (D,F,P) consisting of a domain D, an interpretation F of the
function symbols and an interpretation P of the predicate symbols. A state over S is a function
s interpreting variables as elements of D. The interpretation of functions and predicates is
fixed for all states. Let W denote the set of all states. Programs p are interpreted by binary
relations between states. Formulas ϕ are interpreted by the collection of states for which they
are true. For example,

I(p;q) = I(p) I(q) = {(s0,s2) | s0,s2 ∈ W ∧ ∃ s1∈ W with (s0,s1) ∈ I(p) ∧ (s1,s2) ∈ I(q)}

I(ϕ?) = {(s,s) | s ∈ W ∧ ϕ is true in s}

I(Y := X) = {(s0,s1) | s0,s1 ∈ W ∧ s1(Y) = s0(X) ∧ ∀ Z (Z ≠ Y → s0(Z) = s1(Z))}

The most important program in (ML)2 is give-solution-piai which gives one possible solution.

The essence of this elementary state transition in (ML)2 is to apply the test operator ? to the
predicate pianame which defines an inference action. pianame(I,O)? has as successor state a
state that interprets (i.e., substitutes) the variables I,O in a way that fulfils pianame(I,O). In the
successor state, this variable substitution is stored in the history variable of the inference
action. Slightly simplified, we have the following pattern:

I(P(X)?;Y := X)
= {(s0,s1) | s0 ∈ I(P(X)) ∧ (s0,s1) ∈ I(Y := X)}
= {(s0,s1) | P(X) is true in s0 ∧ s1(Y) = s0(X) ∧ ∀ Z (Z ≠ Y → s0(Z) = s1(Z))}

2.3 KARL

The language KARL ([Fensel, 1995b], [Fensel, Angele & Studer]) provides a formal and
executable specification language for the KADS model of expertise by combining two types
of logic: Logical-KARL (L-KARL) and Procedural-KARL (P-KARL). L-KARL, a variant of
Frame Logic [Kifer et al., 1995], is provided to specify domain and inference layers. It
combines first-order logic with semantic data modelling primitives (see [Brodie, 1984] for an
introduction to semantic data models). A restricted version of dynamic logic is provided by P-
KARL to specify a task layer. Executability is achieved by restricting Frame logic to Horn
logic with stratified negation [Przymusinski, 1988] and by restricting dynamic logic to
regular and deterministic programs. Again, we will sketch the domain layer and discuss the
inference and task layers in KARL and sum up with a discussion of the semantics of
dynamics.

L-KARL is used to describe the domain layer. It provides predicates, classes, class
taxonomies, single- and set-valued attributes with domain and range restrictions, as well as
multiple attribute inheritance for modelling terminological domain knowledge.

L-KARL is also used for specifying inference actions and knowledge roles at the inference
layer. KARL distinguishes three types of knowledge roles. Views define an upward

V piagenerate

9

translation from the domain layer to the inference layer (giving read-access). These roles are
only accessible as input roles by inference actions. Terminators define a downward
translation from the inference layer to the domain layer (giving write-access). These roles are
only accessible as output roles by inference actions. Stores provide the input or output of
inference actions. Therefore, they can be used as input and output roles by inference actions.
Whereas views and terminators are used to link a domain layer with a generic inference layer,
stores are used to model the data flow dependencies between inference actions. The
definitions of the inference actions, stores, views, and terminators in our example are given in
Figure 4.

P-KARL provides procedural control constructs for the task-layer. The primitive programs
correspond to calling an inference action. Atomic formulae indicate whether knowledge roles
contain elements of a given class. Such primitive programs and atomic formulae can be
arranged into sequences, loops, and alternatives. Programs may be combined to form
subtasks like procedures in programming languages. The task layer of our example looks like
this:

hypothesis := generate(finding);
diagnosis := select(hypothesis)

Each inference action defines a function symbol used in assignments. Each store and
terminator is modelled by a (program) variable. Views do not have a counterpart at the task
layer because they do not have a dynamic interpretation (i.e., their interpretation is the same
in each state). The value assignments of the variables that model stores and terminators are
used to represent the current state of the reasoning process.

The logical language L-KARL has a minimal Herbrand model semantics [Lloyd, 1987].
Because we allow stratified negation in rules bodies we use a specific minimal model, i.e., the
perfect Herbrand model, as the semantics of a set of clauses, cf.[Przymusinski, 1988].
Therefore, L-KARL does not use classical negation but a variant of the closed-world
assumption that is common in approaches to logic programming and deductive databases.

P-KARL is a variant of dynamic logic using Kripke structures as semantics. A signature in
dynamic logic consists of a set of function symbols and predicate symbols. An interpretation
provides a domain or universe D, some functions F = {fA1, fA2,...} over the domain used to
interpret the function symbols, and some relations P = {PA

1, PA
2,...} over the domain used to

interpret the predicate symbols. The set of inference actions pianame appears as a function
symbol in the signature and each store storename appears as a predicate symbol ∅(storename)
in the signature.

The integration of the modal semantics of the task layer and the Herbrand models of L-KARL
is as follows: the models of L-KARL are used to define an interpretation for a P-KARL
language, i.e., the perfect Herbrand model of the set of clauses which define an inference
action pianame is used to interpret a function symbol pianame occurring in assignments in P-
KARL. Each store and each terminator is modelled by a (program) variable. The current state
is represented by an assignment s of these variables. Notice, that a set of ground facts is
assigned to each program variable. Slightly simplified, a transition is defined as:

I(output-role(X) := pianame(input-role)) =
{(s0,s1) | s1(output-role) = perfect-Herbrand-model(PIAname ∪ so(input-role))}
where PIAname is the set of Horn clauses describing pianame.

10

Finally ∅(storename) is determined to be true for all states s with s(storename) = ∅. The

Fig. 4. An inference layer in KARL.

11

domain D is defined by the Herbrand base of the L-KARL language.

2.4 Design Rationales for MCL

In the following, we discuss our design rationales and their relations to the existing
approaches. We discuss the following aspects for characterizing a reasoning process: (1) The
state of a reasoning process, (2) the history of a reasoning process, (3) the elementary state
transitions, (4) the connection of states and state transitions, and (5) composed state
transitions.

2.4.1 The State of the Reasoning Process

Three choices arise in regard to the representation of a state of a reasoning process. First,
whether its characterization is necessary at all, second whether its characterization is syntactic
or semantic, and third whether its characterization should be local or global.

Is There a Notion of States. Abstract data types were developed in software engineering for
the functional specification of software artifacts [Wirsing, 1990]. They should not make any
commitments to the algorithmic process that realises the functionality. They define the
functionality as a relation between input and output but have neither syntactically nor
semantically the notion of a state. However, other approaches in software engineering, like
VDM [Jones, 1990], Z [Spivey, 1992], and evolving algebras [Börger, 1995], use the notion
of states for specifications. In Artificial Intelligence, problem solving is viewed as a search
process through a state space. The problems tackled either do not have a complete functional
specification or the functional specification defines a computationally hard problem that
additionally requires the specification of a heuristic procedure that partly solves it. Therefore,
approaches like ATMS [de Kleer, 1986] and situation calculus [McCarthy & Hayes, 1969]
use states to specify the dynamics of a reasoning process.

Is This Notion Syntactic or Semantic. The situation calculus reifies the notion of state
within first-order logic through the use of a special class of terms. Simplified, a predicate p(x)
is enriched by an argument that denotes states, i.e. p(x,state), and the truth values of p(x,state)
can therefore be distinguished from the truth values of p(x,succ(state)). States are syntactical
elements of the language in situation calculus. Conversely, dynamic logic provides a
semantical notion of states. A state is characterized through a value assignment of all free
variables. There is no syntactical notion that refers to a state. Therefore its semantics has to
extend first-order models to a set of worlds that are used to interpret states.

Syntactical reification of states in the situation calculus is achieved by assigning names (i.e.,
terms that denote states) to them. This brings about the effect that two states that are identical
except for having different names are regarded as different. In semantic-based approaches
like dynamic logic, two states that have the same variable assignments to all variables cannot
be distinguished, i.e., they are treated as equal. Syntactical versions like situation calculus
require complex equality axioms to achieve the same.

Is the Characterization of States Local or Global. The global representation of states is
quite natural for a monolithic sequential problem solver with a procedural control. Procedural
control assumes one unique state at each moment of the entire reasoning process. Local
representation of states is used for distributed problem-solving agents that cooperate during
problem solving without a central control. Here, each component has an internal state. These

12

internal states need not be uniquely related to internal local states of other components. Such
approaches can be found in the areas of complex informations systems, distributed AI, and
multi-agent systems (see [Jungclaus, 1993], [Weiß, 1995], [Brazier et al., 1995]).

Resume: (ML)2 and KARL make the following choices according to our criteria: Both
approaches are state-based, both approaches use the semantical notion of states in accordance
with dynamic logic, and both approaches have one global state of the reasoning process.
MCL makes precisely the same design decisions. However, it differs in the way a state is
represented. As mentioned above, a state is represented in dynamic logic by value
assignments of all open variables. MCL uses a richer structure to represent a state in
accordance to the states-as-algebras setting of MLCM. In this setting, an algebra (i.e., a rich
data structure) instead of a flat list of variables is used to present a state. A state is
characterized by an interpretation of all predicates and functions. One advantage of this is that
it allows us to overcome a non-intuitive aspect of dynamic logic where the same variables are
used in a logical and in a dynamic (i.e., state-based) sense (see Section 2.4.4).

In Section 5 we will also discuss approaches in knowledge engineering that made different
design decisions: TFL [Pierret-Golbreich & Talon, 1996], which does not use the notion of
states at all, and DESIRE [van Langevelde et al.,1993], which uses a local representation of
states to express composed and distributed problem solving.

2.4.2 The History of the Reasoning Process

Two states are equal in a state-based approach if they do not differ in any property. In a
history-based approach they are different if they were achieved through different paths of the
reasoning process, i.e. the history of the reasoning process is part of the state description. The
history of the reasoning process is necessary for software that models real-world processes,
like in robotics and work-flow management systems, or in strategical reasoning about
different choices. When modelling the movement of a robot it is not only necessary to end up
in a proper terminal state. There are also important constraints on intermediate states and their
proper sequence. The situation is similar in work-flow management systems, where
decentralised processes need to be synchronised properly. Finally, in strategic reasoning we
reason about different paths of the reasoning process. For example, when a system runs into a
dead end in its reasoning process it needs the information about the path that lead to this dead
end in order to choose more appropriate reasoning possibilities. Examples for history-based
approaches are situation calculus, which reifies history information syntactically using term
structures, Transaction logic [Bonner & Kifer, 1993], which provides a path semantics to
express history, and DESIRE [Treur, 1994], which uses temporal models as the semantics of
reasoning paths.

The KADS model of expertise represents the control of the reasoning process of a KBS at the
task layer. A simple procedural control language is provided for this purpose (cf. [Schreiber
et al., 1994]). The restriction to simple control also implies that we will not aim at specifying
the history of the reasoning process with MCL. Like KARL, MCL has no notion of history.
This restricts our abilities for an elegant representation of strategic reasoning including the
reasoning about earlier states of the problem-solving process, but this goal is beyond the
scope of our approach. This type of knowledge was allocated at a different layer (the strategic
layer) in earlier versions of the KADS model of expertise.

The decisions in (ML)2 to characterize a state by the set of the local histories of all inference

13

actions and the syntactic integration of histories via lists that implement state traces in the
state-oriented semantical framework of dynamic logic are rather non-standard and are not
integrated into MCL.4

2.4.3 Elementary State Transitions

Inference actions are modelled as relations in (ML)2 (see Section 2.2) and as functions in
KARL (see Section 2.3). In (ML)2, each inference action defines a relation that is used to
interpret a predicate symbol used in a test operation in dynamic logic. In KARL, each
inference action defines a function which is used to interpret a function symbol used in an
assignment in dynamic logic. (ML)2 changes a state by selecting precisely one new
instantiation of a predicate (i.e. for the given state the predicate is true for one ground variable
assignment and false for all others). KARL changes a state by determining all instantiations
of a predicate to be true that follow from the logical theory of an inference actions and its
input. Both types of inferences appear in formalized KADS models. We see this in our
running example. The inference action generate should generate all possible hypotheses and
the inference action select should select one of them as a diagnosis. It is possible to express
one inference type by the other type but it results in an artificial modelling. A loop of updates
at the task layer in (ML)2 is required to simulate an update in KARL. KARL needs a random-
selection predicate in the definition of an inference action to simulate an update in (ML)2 that
non-deterministically selects one instantiation of a predicate. As a consequence, MCL
provides both types of state transitions.

We call both update types bulk updates as they change the complete extension of a predicate
in one step. Each ground literal of a predicate symbol is reevaluated by such a state transition.
MLCM provided only point-wise modification of constants, functions, and predicates. The
extension to MCL is precisely concerned with introducing elementary state transitions of a
higher grainsize that can directly express such bulk-updates.

2.4.4 Connecting State Transitions with States

(ML)2 uses the history variables in the definition of the input predicates and the test operator
? of dynamic logic that transform a formula into a state transition to combine the value
assignments of logical and program variables. collects the results of an inference action
and can provide them to another inference action via the definition of an corresponding input
predicate. This solution relies on the identification of logical and dynamic (state-dependent)
variables in dynamic logic. Take as an example the following formula from dynamic logic;
the evaluation of the existential quantification more or less “undoes“ the states modification
of the program within the modal operator.

[x := 3] (∃ x (x = 2))

A further problem is that (ML)2 requires modelling constructs that are not mentioned in the
conceptual modelling context of the KADS model of expertise like has-solution-pia, old-
solution-pia, more-solution-pian, give-solution-pia, as well as history variables and
complex input predicate definitions for each inference action to connect the specification
static specifications with dynamic state change.

4. The history information for inference actions stored in the history variables is used in (ML)2 to prevent inference

actions from always deriving the same output and is not used for strategic reasoning (compare Sections 2.2 and 4).

V pia i

V pia

V pia

14

KARL uses a somewhat non-standard approach to achieve the combination of the functional
specification of state transitions and states. The minimal model semantics of the set of clauses
that define a state transitions is used as an interpretation of the corresponding function symbol
in the dynamic logic.

An important motivation of our exercise is to find a better solution for this integration. We
want to separate logical variables used in the definition of elementary transitions and program
variables which express the dynamic state of the reasoning process without externalizing the
definition of a state transition as an interpretation of function symbols. In part we will follow
the intuition of KARL, where logical variables used to characterize inference actions and
program variables used to memorize a state are distinguished. Part of a state characterization
are the literals that hold. However, this is not achieved by assigning a set of true literals to a
program variable but by directly using an algebra to express a state. State changes are
expressed by changes of this algebra. We will use the states as algebras approach for this
purpose. As a consequence, we do not even need program variables in our framework.

2.4.5 Composed State Transitions

The task layer of a KADS model of expertise defines sequence, alternative, and loops of
inference actions. A specification language has to provide these means to form composed
transitions.

2.4.6 Resume

A language for specifying the reasoning process of KBSs, based on the KADS model of
expertise must provide the following:

• It must be possible to express the global state of the reasoning process.
• It is not required to represent the history of the reasoning process.
• It must be possible to only characterize complex sub-steps functionally without making

commitments to their algorithmic realization.
• The description of state transitions must be easily and intuitively related to state changes.
• Finally, it must be possible to express algorithmic control over the execution of sub-steps.

In the following we present our solution for these goals.

3 Modal Change Logic (MCL)

MCL is a new version of MLCM (Modal logic of Creation and Modification, see
[Groenboom & Renardel de Lavalette, 1994], [Groenboom, 1997]). MLCM was developed
for reasoning about dynamic aspects of the specification language COLD (see [Feijs &
Jonkers, 1992]); MCL is a generalization where local (i.e. point-wise) modification of
functions and predicates is generalized to global modification (also called bulk update) and a
choice quantifier is added. This generalization was necessary to express complex state
transitions that are defined by an inference actions in the KADS model of expertise.

First, we put MCL in the perspective of multimodal dynamic logics. Modal logic is an
extension of (propositional or predicate) logic with the unary sentential operator , where A

15

traditionally has the informal meaning it is necessary that A. An early reference is [Lewis &
Langford, 1932]. In [Kripke, 1959], Kripke developed the possible-worlds semantics,
according to which the formula A is true in some world w iff A holds in all worlds that are
accessible from w via the relation R. There are many modal logics, each corresponding with a
particular class of accessibility relations: e.g., the logic axiomatized by A → A corresponds
with reflexive relations (satisfying ∀x (xRx), and A → A with transitive relations, where
∀x,y,z (xRy ∧ yRz → xRz).

Multimodal logics are logics with more than one modal operator. Examples are temporal
logics (with two modalities, one for the future, one for the past), multi-agent epistemic logic
(one modality for the knowledge of each of the agents), and dynamic logic. In the latter,
modalities are associated with programs, with the intended meaning after the execution of the
program. The first formulation is by Pratt (in [Pratt, 1976]) using an idea of his student R.C.
Moore. They investigated Floyd-Hoare logic, which features the expression A{α}B with the
intended meaning if A, then after doing α B holds. In dynamic logic, this becomes A → [α]B.
Surveys of dynamic logic are [Goldblatt, 1992] and [Harel, 1984].

Dynamic logic is often presented with the variable assignments x:=t as its atomic programs.
In MCL however, the atomic programs are f:=λx.t, p:=λx.A (changing the interpretation of a
function and a predicate, respectively) and NEW (which creates a new object and makes new
refer to it). The first two types of programs generalize the program statements f(s) := t, p(s)
:↔ A for point-wise function and predicate modification, which were introduced in MLCM
(see [Groenboom & Renardel de Lavalette, 1994]), inspired by the definition of the
specification language COLD (see [Feijs et al., 1987], [Feijs & Jonkers, 1992]). Point-wise
function modification was already dealt with in [Pratt, 1976] (where it was called array
assignment) and it is also a vital ingredient of Evolving Algebras (see [Gurevich, 1994]).

For the composition of programs, most dynamic logics (including MCL) contain the
constructs of sequential composition (;), non-deterministic choice (∪), iteration (*) and test
(A?, where A is some formula). Some usual program statements can be defined using these
constructs:

if A then α else β = (A?;α) ∪ (¬A?;β)

while A do α = (A?;α)*;¬A?

Moreover, MCL contains the choice quantifier ∪x. When applied to some program α, the
meaning of the resulting program is: do α for some non-deterministically chosen value of x.

In the following we introduce the syntax, semantics, and axiomatization of MCL.

3.1 Syntax of MCL

Signatures Σ are collections of (function or predicate) symbols σ, with arity #σ ∈ N. Predicate
symbols are denoted by p,q,r,..., function symbols by f,g,h,..., and nullary function symbols
(usually called constants) by a,b,c,.... VAR is a countably infinite set of variable symbols,
denoted by x,y,z,.... The syntax of MCL, consisting of the syntactical categories TERM
(terms), PROG (programs) and FORM (formulae), is defined by:

TERM t ::= x | ↑ | new | f(t1,..., t#f)

16

PROG α ::= NEW | f := λx1,..., x#f.t | p := λx1,..., x#p.A |
A? | α;α | α ∪ α | α* | ∪ x.α

FORM A ::= (t = t) | p(t1,..., t#p) | A ∧ A | ¬A | ∀xA | [α]A

For the sake of simplicity, we assume here and later that functions f and predicates p are
unary.

, , ∨, →, ↔, ∃x, 〈α〉, are defined as usual. We also define weak equality and a definedness
predicate:

t↓ = (t = t)

s t = ((s ↓ ∨ t ↓) → s = t)

Substitution of a term for all free occurrences of a variable in a term, formula or program
(denoted (t/x)A etc.; so, e.g., ((f(y)/x)p(g(x,y)) = p(g(f(y),y))) is defined as usual (renaming
bound variables in order to prevent variable clashes). However, we have to be careful because
it may possible to substitute a term at an occurrence in the scope of a program that changes
one or more signature elements of that term (e.g. (c/x)([c:=f(c)](g(x)=x)). A substitution
where this does not occur is called safe.

3.2 Semantics of MCL

MCL is interpreted in models M = 〈U,V, ,W 〉, where U is the basic universe, V = {vn | n ∈
N} is the store of objects that can be created, is the undefined object, and W is a collection
of worlds. We assume that (U∪{ })∩V={v0} and define:

Vn =def {vm | m ≤ n}, as an initial segment of the state.

UM =def U ∪ V ∪ { }, as the full universe of M.

Every w ∈ W is of the form w = 〈nw,Iw 〉, with nw being the number of store elements and Iw
an interpretation of the signature elements in the local universe

Uw = = U ∪ ∪ { }.

We shall write σw for Iw(σ). Thus every world is a model of the first-order fragment of MCL.
Extensions and updates of a world w = 〈n,I〉 are defined as follows (F ∈ (Uw → Uw), P ⊆ Uw):

• w+ is the extended world 〈n+1,I+〉 where I+ satisfies I+(σ)(vn+1) = I(σ)(), I+(σ)(u) =
I(σ)(u) for all u ∈ Uw;

• w[f F] is the updated world 〈n,I'〉, satisfying I'(f) = F, I'(σ) = I(σ) if σ ≠ f;
• w[p P] is the updated world 〈n,I'〉, satisfying I'(p) = P, I'(σ) = I(σ) if σ ≠ p.

We postulate that W is closed under extensions and updates. Observe that any W can
always be extended to meet this requirement.

ASS = VAR → UM is the collection of assignments. Point-wise modification a[x u] (where
x ∈ VAR, u ∈ UM) of a ∈ ASS is defined as usual. An assignment a can be restricted in a
world w to aw : VAR → UM as follows:

aw(x) = a(x) if a(x) ∈ Uw

= if a(x) ∉ Uw

~

Unw
V nw

→
→

→

17

t w,a, the interpretation of term t in world w with assignment a, is defined by:

x w,a = aw(x)

↑ w,a =

new w,a =

ft w,a = fw(t w,a)

w,a A (the interpretation of formula A in world w with assignment a) and Rα,a (the
accessibility relation of program α w.r.t. assignment a) are defined simultaneously:

w,a (s = t) =def s w,a = t w,a ≠

w,a pt =def pw(t w,a) = true

w,a ¬A =def not (w,a A)

w,a A ∧ B =def w,a A and w,a B

w,a ∀xA =def forall u ∈ (Uw \ { }) (w,a[x u] A)

w,a [α]A =def forall w' ∈ W (wRα,aw' ⇒ w',a A)

One new element is added to the universe:
RNEW,a =def {(w,w+) | w ∈ W}

Modification of the values of a function:
Rf:=λ x.t,a =def {(w,w[f λu ∈ Uw. t w,a[x u]]) | w ∈ W}

Modification of the truth values of a predicate:
Rp:=λx.A,a =def {(w,w[p {u ∈ Uw | w,a[x u] A }]) | w ∈ W}

A program is executed for one value
R∪x.α,a =def {(w,w') | exists u ∈ Uw, wRα,a[x u]w'}

The following four transition relations are standard relations of dynamic logic

RA?,a =def {(w,w) | w,a A}

Rα;β,a =def Rα,a Rβ,a

Rα∪β,a =def Rα,a ∪ Rβ,a

Rα*,a =def R*α,a (i.e., the transitive closure of Rα,a)

3.3 Axiomatization of MCL

The axioms are:

Taut All tautologies of propositional logic

Eq x y → y x
x y → fx fy ∧ (px ↔ py) ∧ (x z ↔ y z)

Undef ¬(↑↓)

vnw

=

=

=

= =

= = =

= → =

= =

→ →

→ → =

→

=

~ ~
~ ~ ~ ~

18

Inst (∀xA ∧ x↓) → A

Atom [π]¬A ↔ ¬[π]A (π atomic)

C1 x = y ↔ [NEW](x = y ≠ new)

C2 px ↔ [NEW] px

C3 [NEW] (new↓ ∧ fx ≠ new ∧ f(new) f(↑) ∧ (p(new) ↔ p(↑)))

FM1 A ↔ [f:=λx.t] A for all f ∉ sig(A)

FM2 [f:=λx.t] fx = y ↔ t = y (y not free in t)

FM3 ∀y [f:=λx.t]A ↔ [f:=λx.t](∀y A) (x ≡ y or y not free in t)

PM1 B ↔ [p:=λx.A]B for all p ∉ sig(B)

PM2 [p:=λx.A]px ↔ A

PM3 ∀y [p:=λx.A]B ↔[p:=λx.A](∀y B) (x ≡ y or y not free in A)

?AX [A?]B ↔ (A → B)

;AX [α;β]A ↔ [α][β]A

∪AX1 [α∪β]A ↔ ([α]A ∧ [β]A)

AX [α]A ↔ (A ∧ [α][α*]A)

∪AX2 [∪x.α]A ↔ ∀x[α]A (x not free in A)

Γ A (A is derivable from Γ; Γ may be omitted when empty) is defined inductively by

AX A if A is a safe substitution instance of an axiom

MP A, A → B B

INF {[αn]A | n ∈ N} [α*]A

W if Γ A then Γ,∆ A

CUT if Γ A for all A ∈ ∆ and Γ,∆ B then Γ B

DED if Γ, A B then Γ A → B

UG if Γ, x↓ A and x does not occur free in Γ, then Γ ∀xA

NEC if Γ A then [α]Γ [α]A

Soundness is proved straightforwardly, although some lemmata involving substitution and
the frame property are needed. We claim that completeness also holds: a proof (a nontrivial
variant of the Henkin construction, see [Henkin, 1949]) will appear elsewhere.

4 Using MCL to Formalize Other Approaches

In the following, we discuss first how MCL can be used to formalize the reasoning behavior
of KBSs in a KADS-oriented style. We do this by showing for a number of KADS-oriented
languages how their state transitions can be expressed with the operators of MCL. Second, we

~

19

illustrate the generality and power of our approach by relating it with other areas of research.
We discuss how MCL can be used to formalize evolving algebras and database update
languages.

4.1 Formalizing KADS languages

In this subsection we will discuss the formalization of MLPM, (ML)2, and KARL with MCL.

4.1.1 MLPM

The Modal Logic of Predicate Modification (MLPM) was introduced by [Fensel &
Groenboom, 1996] for formalizing KADS languages like KARL and (ML)2. MLCM was
taken as a departure point for this exercise. For reasons of simplicity, only the predicate
modification operator of MLCM was taken. This predicate operator had to be generalized to
two types of bulk-updates because KADS inference action may modify a complete extension
of a singleton predicate whereas MLCM only offered a point-wise update. The two new
operators were:

• p:= λ.xA, that corresponds to the λ-operator of MCL restricted to unary predicates,
• p:= ε.xA, defining (non-deterministically) p true for exactly one x satisfying A.

The ε operator of MLPM can be expressed by the choice quantifier of MCL:

p:= ε.xA ≡ ∪x.(A?; p := λy.(x = y))

(y fresh); as a consequence, it has the following semantics:

Rp:= x.εA,a = {(w,w[p {u}]) | w ∈ W, u ∈ Uw, w,a[x u] A}

and the axioms are:

SP1 〈p :=εx.A〉 px ↔ A

SP2 [p :=εx.A] ∃!x px

SP3 (∃x A → B)↔ [p :=εx.A] B p ∉ sig(B)

SP4 ∀y [p :=εx.A]B ↔ [p :=εx.A](∀y B) y not free in A

The generalization of MLCM and MLPM which we achieved with MCL provides the
advantage that it reintegrates the generalizations of MLPM into the general setting of MLCM.
Therefore the introduction of new elements and (global) function updates can also be
expressed. In consequence, we get a unified approach that covers many existing approaches
from knowledge engineering and other research areas as shown below.

4.1.2 (ML)2

The choice quantifier (∪ x.α) with

α ≡ ((x/y)pianame(x,...)?; output-rolename := λy.(x = z))

of MCL captures the core of the state transitions in (ML)2. The singleton predicate modelling
the output role is true for one ground instantiation (modulo equality) and false for all others.
This can be used to model non-deterministic selection. We have decided not to hardwire the
mechanism give-solution-pia of (ML)2 directly in MCL because there are some problems

→ → =

20

related to this construct as it can behave in a non-intuitive manner. For example, a
deterministic inference action like multiplication fails if it gets the same input values a second
time.

4.1.3 KARL

The λ-operator of MCL applied to a predicate can be used to model the bulk-update of
KARL. The call of an inference action in KARL, for example, the inference action generate

hypothesis := generate(finding)
with

∀x,y(finding(x) ∧ causality(x,y) → hypothesis(y))
as logical theory defining the inference.

can be expressed in MCL as

hypothesis :↔λy.(∃x(finding(x) ∧ causality(x,y))).

In the above statement the value of the output role is erased. If we would like to extend the
extension of a role, we can formulate this as:

role :↔ λy.(p(y) ∨ role(y))

KARL requires us to artificially introduce two inference actions (one select and one copy
step) and an additional placeholder when facts of an input role should be deleted. The KARL
statement

placeholder := select(input); input := copy(placeholder)

is formulated in MCL as:

input :↔ λx.(input(x) ∧ select(x))

However, a significant difference remains between MCL at the one hand and KARL at the
other hand. KARL uses minimal and perfect Herbrand model semantics [Lloyd, 1987],
[Przymusinski, 1988] to evaluate a set of clauses. Based on this reasoning with the closed-
world assumption, negative literals and (in the case of stratification) positive literals of higher
strata can be derived from a set of clauses in KARL which are not a logical consequence in
the standard model-theoretical framework of first-order logic upon which MCL is based.

Minimal-model semantics of a logical program can be expressed in MCL along the lines of
the operational semantics of fixpoint computation. When a fixpoint is reached after a finite
number of iterations (which is assumed in KARL, see [Fensel, Angele & Studer]), this can be
expressed in MCL as a finite number of applications of a program operator. For the unary
case this goes as follows: Let H be a logical program, the formula A the disjunction of all
clauses in H, p a unary predicate symbol of H, and λp.λx.A a new predicate operator
associated with H. Then p equals the fixpoint after termination of the following program αH

with:

(p := λx.); (p := λx.A)*

i.e. we have

fix(H)x ↔ <αH>px

In order to deal with non-unary predicate operators, MCL has to be extended by a kind of

21

parallel construct. We illustrate this with a binary predicate operator given by λp.λx.A,
λq.λy.B. The required program αH then becomes

(p := λx. , q := λy.); (p := λx.A, q := λy.B)*

The parallel construct is denoted by a comma (,). The idea is that it can be applied on two
programs which do not modify the same signature element(s) (cf. [Groenboom, 1997]).

4.2 Using MCL to Formalize Evolving Algebras

The two basic concepts of evolving algebras [Gurevich, 1994] are states and state transitions.
As in COLD, a state is modelled by one static algebra. Let ϒ be a signature, i.e. a finite
collection of function names with given arity (the 0-ary function names model constants). A
static algebra of a signature ϒ is a nonempty set S together with interpretations on S of
functions names in ϒ. Such a static algebra defines one possible world (i.e., possible state).
Transitions between states can be expressed by function updates of the form f(t1,...,tr) := t.
These updates can be qualified by guards which express preconditions for their application.
The point-wise modification corresponds to the grainsize of the transition in MLCM.
Evolving algebras also provide means to specify parallel algorithms that can be used to
express our type of bulk-updates (i.e. the choose and the range constructs, cf. [Gurevich,
1994]). The formalization of evolving algebras in MCL (see table 1) is inspired on the work
presented in Figure [Groenboom & Renardel de Lavalette, 1995].

An evolving algebra program is a set of rules αι. The execution of such a program (called a
run in [Gurevich, 1994]) is defined as the infinite execution of nondeterministically chosen
rules αι. We can encode this in MCL as:

EA = (∪x.αx)*

Although the presented formalization captures the core of evolving algebras, some
expressions in evolving algebras are not covered. MCL is an untyped logic, therefore we
cannot model the different universes of evolving algebra directly. This requires however only
a syntactic extension of MCL in order to mimic evolving algebras more directly. More
involved is the modelling of the concurrent assignment of evolving algebras. In [Groenboom
& Renardel de Lavalette, 1995] and [Groenboom, 1997] defines the parallel execution

Table 1. The elementary state transitions of evolving algebras

Evolving Algebras characterization MCL

f(s):=t sets f at s to t f:=λx.(if x=s then t else fx fi)

if A then r execution of r guarded by A A?;r

choose x in V do r execute r for a value x from V ∪x.r

import x in V do r modify universe V with new
object x and perform r

NEW;∪x(x=new)?;r

range x in V do f(x):=t let x range over the objects in V
and perform update of f

f:=λx.t

22

operator of evolving algebras “,“ is defined in terms of the simultaneous composition
operator . Currently, this operation in not supported by MCL.

Two main differences exist between evolving algebras and our approach. First, evolving
algebras do not aim at a formal specification with formal syntax, semantics, and automated
proof support. Instead, they provide a semiformal mathematical notation for definitions and
proofs in a textbook-like style (cf. [Börger, 1995]). Second, our approach provides procedural
vocabulary to express control over the execution of transitions. Evolving algebras do not
provide a vocabulary to specify such composed state transitions. The way control is specified
in evolving algebras is close to the spirit of production rule systems. To put it in simple
words, evolving algebras provide a set of local transitions rules and a rule interpreter built
into the semantics of evolving algebras that selects the next firing rules to be applied.

4.3 Using MCL to Formalize Database Update Languages

The declarative specification of the static aspects of databases is well-established field.
Ongoing work deals with the problem of defining clean and declarative characterizations of
updates of databases. PDDL [Spruit et al., 1995] and DDL [Spruit et al., 1993] use different
variants of dynamic logic for providing a logical characterization of the dynamics of
databases. In the following, we will show how MCL can be used to express the state
transitions introduced by these languages.

4.3.1 PDDL

Propositional dynamic database logic (PDDL) defines a variant of propositional dynamic
logic by restricting elementary state transitions (i.e., elementary programs) to two pre-defined
types. The (point-wise) update of the truth value of one proposition and the bulk update of the
truth values of a set of propositions according to the minimal Herbrand model of a set of
propositional Horn clauses. A state is described by the truth values of all propositions, and
complex transitions can be built using the normal means of dynamic logic. PDDL is close in
spirit to KARL when we abstract from all conceptual details and the fact that PDDL uses
propositional dynamic logic only. Like KARL, PDDL uses a minimal Herbrand model of a
set of clauses to define elementary updates and the operational fragment of KARL (see
[Angele, 1993], [Fensel, Angele & Studer]) is restricted to finite Herbrand models (aside
from some built-in types) and therefore has similar expressive power. Table 2 provides the
transition types of PDDL and their counterpart in MCL.

Table 2. The elementary state transitions of PDDL

PDDL characterization MCL

Ip sets the proposition p to true p:=

Dp sets the proposition p to false p:= ,

IH
p sets p to true and computes the minimal model of H ∪ {p} p:= ; αH

DH
p sets p to false and computes the minimal model of H ∪ {¬p} p:= ; αH

23

4.3.2 DDL

Dynamic database Logic (DDL) [Spruit et al., 1993] extends the ideas of PDDL to the first-
order case. Again two main types of predefined updates (i.e., elementary programs) are
provided:

• Updating the truth values of all ground literals over a predicate symbol according to the
truth values of the corresponding variable assignments of a first-order formula and

• the non-deterministic selection of one of the variable assignments that makes a formula
true.

Aside from some details, both types of updates are similar to the λ- and ε-operator of MLPM.
Complex transitions can be constructed using the normal means of dynamic logic. As in
MLPM, a state is described by an interpretation of the predicate symbols. [Spruit et al., 1993]
define DDL without function symbols and provide a complete axiomatization under the
domain closure and unique naming assumptions (thus the expressive power of the language is
restricted to the propositional case). Table 3 provides the transition types of PDDL and their
counterpart in MCL.

5 Related Work

The specification language TFL [Pierret-Golbreich & Talon, 1996] applies abstract data types
to specify the functionality and the reasoning process of a KBS. Abstract data types are
applied to specify domain and inference knowledge using loose semantics. Procedural control
is specified by so-called process modules which incorporate the control expressions as
operations into the framework of abstract data types. Test, sequence, choice, and iteration are
specified as operations and axioms are used to further specify these operators (see Figure 5)
as in process algebra [Baeten & Weijland, 1990]. The main difference to our approach is that
TFL neither provides a syntactical nor a semantical notion of the state of the reasoning
process and does not provide a predefined set of elementary state transitions. Therefore, TFL
has the frame problem as the situation calculus [McCarthy & Hayes, 1969]. For each
elementary action the specifier must specify what it changes and what it keeps unchanged. In

Table 3. The elementary state transitions of DDL

DDL characterization MCL

&xIpt where A inserts pt for all terms t that satisfy A p:=λy.(py ∨ ∃x(A ∧ y = t))

&xDpt where A deletes pt for all terms t that satisfy A p:=λy.(py ∧ ¬∃x(A ∧ y = t))

&xUpt→t´ where A replace pt by pt´ for all t´ for which A
is true

p:=λy.(
(py ∧ ¬∃x(A ∧ y = t)) ∨
∃x(pt ∧ A ∧ y = t´))

ft := t´ changes f for the argument t to t´ f:=λx.if x=t´ then t else fx fi

+x α where A execute α for one assignment for x
where A is true

∪x.(A?;α)

24

state-based approaches like dynamic logic and MCL this is already provided by the semantics
and axiomatization of elementary state transitions. That is, the semantics of an elementary
transition like p :↔λx.A ensures that the other predicates remain unchanged.

The language DESIRE [van Langevelde et al.,1993] uses the notion of meta-layered
compositional architecture to specify a KBS. A KBS is decomposed into several interacting
components. Each component contains a piece of knowledge at its object-layer and its own
control defined at its internal meta-layer. The interaction between components is represented
by transactions and the control flow between these modules is defined by a set of control
rules. The reasoning modules of DESIRE can be roughly identified with inference actions in
(ML)2 and KARL, but DESIRE provides much more sophisticated means to control the
reasoning process of an inference action. An important distinction between DESIRE and the
languages (ML)2 and KARL is that DESIRE uses its object/meta-level distinction to specify
and to reason about flexible control of object-level inferences whereas languages such as
(ML)2 and KARL define control of inferences by means of a procedural language. From a
semantic point of view one difference between DESIRE (see [Treur, 1994]) and (ML)2,
KARL, and MCL lies in the fact that the former uses temporal logic with linear time for
specifying the reasoning process whereas the latter use dynamic logic. In dynamic logic, the
semantics of the overall program is a binary relation between its input and output sets
(Mi,Mo). Two different paths for computing the same input-output tuple are not distinguished.
In DESIRE, the entire reasoning trace that leads to the derived output is used as the
semantics. DESIRE uses a sequence of models Mi,M1,...,Mn,Mo to define the semantics of a
specification. It therefore allows the expression of strategic reasoning about the history of the
derivation process.

Transaction Logic [Bonner & Kifer, 1993] was developed to define a declarative semantics
for state changes in logic programming and database updates. It also uses sequences of
models as a semantics for database queries and updates. In a recent version [Bonner & Kifer,
1995] introduce two types of oracles. Oracles that inform about the truth values of a state and
oracles that execute elementary state transitions. Transaction logic is used to construct
composed transitions. The usual constructs of dynamic logic for specifying procedural
control over the execution of transitions can be simulated in Transaction logic. In addition,
constraints can be used to restrict possible derivation paths. Such a semantics that includes
the derivation path by a sequence of models is also necessary when one wants to specify
dynamic integrity constraints on the reasoning process which not only restrict relations
between input and outputs but also define restrictions for the reasoning process itself.

 ∪ : process × process → process
 δ : process
 ; : process × process → process
 * : process → process

(p ∪ q) ∪ r = p ∪ (q ∪ r)
p ∪ q = q ∪ p
p ∪ p = p
p ∪ δ = p
(p ∪ q); r = (p;r) ∪ (q;r)
r; (p ∪ q) = (r;p) ∪ (r;q)

Fig. 5 Algebraic specification of the choice operator in TFL.

25

The semantics of states and elementary state transitions remain outside the scope of
Transaction logics. It is assumed to be provided by external oracles that can be seen as
parameters of a specification in Transaction logic. For us, that would imply that the logical
definition of the inference actions that define the elementary updates would remain outside
the scope of the language that specifies control, as the case in KARL. Therefore, it covers
only a part of our problem because we want to integrate the logical definition of inference
actions as elementary transitions into a language expressing control over their execution. In
contrast to Transaction logic, we integrate predefined elementary updates into the semantics
and axiomatization of our approach. Still, Transaction logic is a very interesting point of
reference when we extend our approach to a semantics based on model paths to express
strategical reasoning.

6 Conclusions and Future Work

We analyzed existing approaches for specifying the reasoning process of KBSs. We derived
general requirements for appropriate specification formalisms. The logic MCL which we
presented generalizes the gist of solutions that were chosen by languages like KARL and
(ML)2 and provides an adequate mathematical framework for their uniform formalization. In
a nutshell: our approach uses algebras to represent states of the reasoning process, bulk-
updates that change algebras to express state transitions, and procedural constructs to define
control over the execution of transitions. MCL defines a formal semantics and an axiomatic
semantics for specification languages for KBSs. This formalization has several advantages
compared to existing approaches in knowledge engineering:

• Different types of state transitions as provided by KARL and (ML)2 are integrated. The
datalog-like strategy of KARL that returns all answer substitutions and the Prolog-like
strategy of (ML)2 that returns one answer substitution are captured by two predefined
state transitions operators.

• Problems like the nonintuitive interaction of logical and state-dependent variables and
the use of interpreted logics are bypassed

• The formalization work on KBSs becomes comparable with related approaches in
software engineering and database engineering. MCL can be used to formalize many of
the existing approaches of other fields like evolving algebras and database update
languages like PDDL and DDL.

• The axiomatization of MCL takes a step in the direction of automated proofs of
reasoning processes of KBSs.

[Fensel et al., 1996] provide a case study using MLPM and extend it through the specification
of goals (i.e., declarative specification of the desired functionality of a knowledge-based
system). Proofs are provided that ensure that a specified reasoning strategy actually achieve
the goals as required by a task definition. The Karlsruhe Interactive Verifier (KIV) [Reif,
1995] is applied to support semi-automatic proof support. KIV is based on dynamic logic and
can be used to verify imperative programs against specifications in first-order logic. It
represents the state of a reasoning process by value assignments of dynamic variables
whereas MLPM and MCL apply the states as algebras approach. [Schönegge, 1995] provides
an extension of KIV for a subset of evolving algebras (i.e., sequential and deterministic) that

26

makes a step in overcoming this difference. A state is represented by the actual values of the
functions of the signature. The main problem in immediately applying KIV to MCL
specifications is that KIV is based on a point-wise modification of functions whereas MCL
provides bulk-updates that modify a complete predicate in one step. This problem will
disappear when KIV is extended to verify Evolving Algebras of parallel algorithms as this
extension also requires bulk-updates.

Acknowledgment

We would like to thank Joeri Engelfriet, Pascal van Eick, Frank van Harmelen, Arno
Schönegge, Yde Venema, Mark Willems, and two engaged anonymous reviewers for
valuable comments and Andrew Butterfield and Jeff Butler for proof reading.

References

[Angele, 1993] J. Angele: Operationalisierung des Models der Expertise mit KARL, Infix, St.
Augustin, 1993.

[Angele et al., 1993] J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer: Model-
Based and Incremental Knowledge Engineering: The MIKE Approach. In J. Cuena (ed.),
Knowledge Oriented Software Design, IFIP Transactions A-27, North Holland,
Amsterdam, 1993.

[Baeten & Weijland, 1990] J. C. M. Baeten and W. P. Weijland: Process Algebra, Cambridge
Tracts in Theoretical Computer Science, no 18, Cambridge University Press, Cambridge,
1990.

[Bonner & Kifer, 1993] A. J. Bonner and M. Kifer: Transaction Logic Programming. In
Proceedings of the 10th International Conference on Logic Programming (ICLP),
Budapest, Hungary, June 21-24, 1993.

[Bonner & Kifer, 1995] A. J. Bonner and M. Kifer: Transaction Logic Programming,
Technical Report CSRI-323, 1995.

[Börger, 1995] E. Börger: Why Use Evolving Algebras for Hardware and Software
Engineering. In M. Bartosek et al. (eds.), SOFSEM '95: Theory and Practice of
Informatics, LNCS 1012, Springer-Verlag, 1995.

[Brodie, 1984] M.L. Brodie: On the development of data models. In M.L. Brodie et al. (eds.),
On Conceptual Modeling, Springer-Verlag, Berlin, 1984.

[Brazier et al., 1995] F. Brazier, B. Dunin Keplicz, N. R. Jennings, and J. Treur: Formal
Specification of Multi-Agent Systems: a Real-World Case. In Proceedings of the 1st
International Conference on Multi-Agent Systems (ICMAS-95), San Fransisco, CA, June
12-14, 1995.

[Bylander, 1991] T. Bylander: Complexity Results for Planning. In Proceedings of the 12th
International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney, Australia,
August 1991.

27

[Bylander et al., 1991] T. Bylander, D. Allemang, M. C. Tanner, and J. R. Josephson: The
Computational Complexity of Abduction, Artificial Intelligence, 49, pages 25—60,
1991.

[de Kleer, 1986] J. de Kleer: An Assumption-based TMS, Artificial Intelligence, 28, 1986.

[Feijs & Jonkers, 1992] L.M.G. Feijs and H.B.M. Jonkers: Formal Specification and Design,
Cambridge Tracts in Theoretical Computer Science 35, 1992.

[Feijs et al., 1987] L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans and G.R. Renardel de
Lavalette: Formal definition of the design language COLD-K (Preliminary version),
ESPRIT document METEOR/t7/PRLE/7, April 1987 (Final version: August 1989).

[Fensel, 1995b] D. Fensel: The Knowledge Acquisition and Representation Language KARL ,
Kluwer Academic Publ., Boston, 1995.

[Fensel, 1995c] D. Fensel: Formal Specification Languages in Knowledge and Software
Engineering, The Knowledge Engineering Review, 10(4), 1995.

[Fensel, Angele & Studer] D. Fensel, J. Angele, R. Studer: The Knowledge Acquistion and
Representation Language KARL, to apear in IEEE Transactions on Knowledge and
Data Engineering.

[Fensel & Groenboom, 1996]D. Fensel und R. Groenboom: MLPM: Defining a Semantics
and Axiomatization for Specifying the Reasoning Process of Knowledge-based Systems.
In Proceedings of the 12th European Conference on Artificial Intelligence (ECAI-96),
Budapest, August 12-16, 1996.

[Fensel & Straatman, 1996]D. Fensel und R. Straatman: The Essence of Problem-Solving
Methods: Making Assumptions for Efficiency Reasons. In N. Shadbolt et al. (eds.),
Advances in Knowledge Acquisition, Lecture Notes in Artificial Intelligence (LNAI), no
1076, Springer-Verlag, Berlin, 1996.

[Fensel & van Harmelen, 1994] D. Fensel and F. van Harmelen: A Comparison of Languages
which Operationalize and Formalize KADS Models of Expertise, The Knowledge
Engineering Review, 9(2), 1994.

[Fensel et al., 1996] D. Fensel, A. Schönegge, R. Groenboom and B. Wielinga: Specification
and Verification of Knowledge-Based Systems. Proceedings of the ECAI-96 Workshop
on Validation, Verification and Refinement of Knowledge-Based Systems, 12th
European Conference on Artificial Intelligence (ECAI-96), Budapest, August 12-16,
1996.

[Goldblatt, 1992] R. Goldblatt: Logics of Time and Computation (2nd edition), CSLI
LectureNotes No. 7, Stanford, 1992.

[Goldblatt, 1982] R. Goldblatt: Axiomatising the Logic of Computer Science, LNCS 130,
Springer-Verlag, Berlin, 1982.

[Groenboom, 1997] R. Groenboom: Formalizing Knowledge Domains - Static and Dynamic
Aspects, PhD thesis, University of Groningen, Shaker Publ., 1997.

[Groenboom & Renardel de Lavalette, 1994] R. Groenboom and G.R. Renardel de Lavalette:
Reasoning about Dynamic Features in Specification Languages. In D.J. Andrews et al.
(eds.), Proceedings of Workshop in Semantics of Specification Languages, October

28

1993, Utrecht, Springer Verlag, Berlin, 1994.

[Groenboom & Renardel de Lavalette, 1995] R. Groenboom and G.R. Renardel de Lavalette:
A formalization of Evolving Algebras. In Proceedings of Accolade 95, Dutch Graduate
school in Logic, Amsterdam, 1995.

[Gurevich, 1994] Y. Gurevich: Evolving Algebras 1993: Lipari Guide. In E.B. Börger (ed.),
Specification and Validation Methods, Oxford University Press, 1994.

[Harel, 1984] D. Harel: Dynamic Logic. In D. Gabby et al. (eds.), Handook of Philosophical
Logic, vol. II, Extensions of Classical Logic, D. Reidel Publishing Company, Dordrecht
(NL), 1984.

[van Harmelen & Balder, 1992] F. van Harmelen and J. Balder: (ML)2: A Formal Language
for KADS Conceptual Models, Knowledge Acquisition, 4(1), 1992.

[Henkin, 1949] L. Henkin: The completeness of the first order functional calculus, The
Journal of Symbolic Logic, 14:159—166, 1949.

[Jones, 1990] C. B. Jones: Systematic Software Development Using VDM, 2nd ed., Prentice
Hall., 1990.

[Jungclaus, 1993] R. Jungclaus: Modeling of Dynamic Object Systems - A Logic-based
Approach, Vieweg Verlag, 1993.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented
and Frame-Based Languages, Journal of the ACM, vol 42, 1995.

[Koymans & Renardel de Lavalette, 1989] C.P.J. Koymans and G.R. Renardel de Lavalette:
The logic MPLω, In M. Wirsing and J.A. Bergstra (eds.), Algebraic Methods: Theory,
tools and applications, LNCS 394, Springer Verlag, 1989.

[Kripke, 1959] S.A. Kripke: A Completeness Theorem in Modal Logic, Journal of Symbolic
Logic, 24:1—14, 1959.

[Lewis & Langford, 1932] C.I. Lewis and C.H. Langford: Symbolic Logic, The Century Co.,
1932.

[van Langevelde et al.,1993] I. van Langevelde, A. Philipsen, and J. Treur: A Compositional
Architecture for Simple Design Formally Specified in DESIRE. In [Treur & Wetter,
1993].

[Lloyd, 1987] J.W. Lloyd: Foundations of Logic Programming, 2nd Editon, Springer-Verlag,
Berlin, 1987.

[McCarthy & Hayes, 1969] J. M. McCarthy and P. J. Hayes: Some Philosophical Problems
from the Standpoint of Artificial Intelligence. In B. Meltzer et al. (eds.), Machine
Intelligence, vol 4, Edinburgh University Press, 1969.

[Nebel, 1996] B. Nebel: Artificial intelligence: A Computational Perspective. In G. Brewka
(ed.), Principles of Knowledge Representation, CSLI publications, Studies in Logic,
Language and Information, Stanford, 1996.

[Pierret-Golbreich & Talon, 1996] C. Pierret-Golbreich and X. Talon: An Algebraic
Specification of the Dynamic Behaviour of Knowledge-Based Systems, The Knowledge
Engineering Review, 11(2), 1996.

29

[Pratt, 1976] V.R. Pratt: Semantical Considerations on Floyd-Hoare logic. In Proceedings of
the 17th annual IEEE Symposium on Foundations of Computer Science, 1976.

[Przymusinski, 1988] T. C. Przymusinski: On the Declarative Semantics of Deductive
Databases and Logic Programs. In J. Minker (ed.), Foundations of Deductive Databases
and Logic Programming, Morgan Kaufmann Publisher, Los Altos, CA, 1988.

[Reif, 1995] W. Reif: The KIV Approach to Software Engineering. In M. Broy and S.
Jähnichen (eds.): Methods, Languages, and Tools for the Construction of Correct
Software, LNCS 1009, Springer-Verlag, Berlin, 1995.

[Renardel de Lavalette, 1984] G.R. Renardel de Lavalette: Descriptions in Mathematical
Logic, Studia Logica, XLIII(3):281—294, 1984.

[Schönegge, 1995] A. Schönegge: Extending Dynamic Logic for Reasoning about Evolving
Algebras, research report 49/95, Institut für Logik, Komplexität und Deduktionssysteme,
University of Karlsruhe, 1995.

[Schreiber et al., 1993]A.T. Schreiber, B.J. Wielinga, and J. A. Breuker (eds.): KADS: A
Principled Approach to Knowledge-Based System Development, vol 11 of Knowledge-
Based Systems Book Series, Academic Press, London, 1993.

[Schreiber et al., 1994] A.T. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde, and
R. de Hoog: CommonKADS. A Comprehensive Methodology for KBS Development,
IEEE Expert, 9(6):28—37, 1994.

[Spee & in 't Veld, 1994] J. W. Spee and L. in 't Veld: The Semantics of KBSSF, A Language
For KBS Design, Knowledge Acquisition, 6(4), 1994.

[Spivey, 1992] J.M. Spivey: The Z Notation. A Reference Manual, 2nd ed., Prentice Hall,
New York, 1992.

[Spruit et al., 1993] P. A. Spruit, R. Wieringa, and J.-J. Meyer: Dynamic Database Logic: The
First Order Case. In V.W. Lipeck and B. Thalheim (eds.), Fourth International
Workshop on Foundations of Models and Languages for Data and Objects, Workshop in
Computing, Springer-Verlag, Berlin, 1993.

[Spruit et al., 1995] P. A. Spruit, R. Wieringa, and J.-J. Meyer: Axiomatization, Declarative
Semantics and Operational Semantics of Passive and Active Updates in Logic
Databases, Journal of Logic Computation, 5(1), 1995.

[Treur, 1994] J. Treur: Temporal Semantics of Meta-Level Architectures for Dynamic
Control of Reasoning. In L. Fribourg et al. (eds.), Logic Program Synthesis and
Transformation - Meta Programming in Logic, Proceedings of the 4th International
Workshops, LOPSTER-94 and META-94, Pisa, Italy, June 20-21, 1994, Springer Verlag,
LNCS 883, Berlin, 1994.

[Treur & Wetter, 1993] J. Treur and T. Wetter: Formal Specification of Complex Reasoning
Systems, Ellis Horwood, New York, 1993.

[Ullman, 1988] J. D. Ullman: Principles of Database and Knowledge-Base Systems, vol I,
Computer Sciences Press, Rockville, Maryland, 1988.

[Voss & Voss, 1993] H. Voss and A. Voss: Reuse-Oriented Knowledge Engineering with
MoMo. In Proceedings of the 5th International Conference on Software Engineering

30

and Knowledge Engineering (SEKE93), San Fransisco Bay, June 14-18, 1993.

[Weiß, 1995] G. Weiß: Adaption and Learning in Multi-Agent Systems: Some Remarks on a
Bibliography. In G. Weiß et al. (eds.), Adaption and Learning in Multi-Agent Systems,
Lecture Notes in Artificial Intelligence (LNAI), no 1042, Springer-Verlag, 1995.

[Wirsing, 1990] M. Wirsing: Algebraic Specification. In J. van Leeuwen (ed.), Handbook of
Theoretical Computer Science, Elsevier Science Publ., 1990.

