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Abstract. Extending ontology querying facilities with epistemic features pro-
vides practically useful additional functionalities for ontology management tasks.
In this paper, we motivate the benefits of such a formalism for expressing integrity
constraints on ontologies.
We present a practical system called EQuIKa capable of epistemic inferencing on
OWL 2 DL ontologies. It implements our recently developed reduction to stan-
dard reasoning along with several novel performance optimizations. First experi-
ments demonstrate practical feasibility of our system. For convenience of use, we
developed querying and constraint checking front-ends for Protégé and the NeOn
Toolkit.

1 Introduction

OWL 2 DL is the most expressive yet decidable dialect of the Web Ontology
Language (OWL) [10]. It is based on the description logic (DL) SROIQ [5].
Being a decidable first-order logic fragment, reasoning in SROIQ is inherently
monotonic; addition of information to the ontology never invalidates entailed
conclusions. Nevertheless, certain variants of non-monotonicity are sometimes
desired in various semantic applications. As one example, [4] discusses the inad-
equacy of DLs for the task of matching semantic services and presents a solution
based on a non-monotonic extension of DLs.

A mild form of non-monotonicity which can still be handled rather conve-
niently while being sufficient for many purposes arises when only the querying
language is endowed with non-monotonic constructors. In the early 1980s, Hec-
tor J. Levesque was the first to present the idea of enriching the query language
with the epistemic operator K [6]. Also Raymond Reiter made a similar argu-
ment [11] and discussed why a language enriched with an epistemic operator is
desirable for integrity constraint (IC) checking. Also in the DL community, ex-
tensions by epistemic operators have been considered [1–3, 9]. In epistemic ex-
tensions of DLs, the epistemic operator, also called K-operator and paraphrased
as “known to be”, is allowed to occur in front of concepts and roles to represent



the set of individuals (or of pairs of individuals) known by an ontology to pos-
sess the property described by the concept or role, respetively. In other words, a
query language with K-operators allows for ontology introspection.

In this paper, we present a system called EQuIKa1 which allows for epis-
temic querying and IC checking. It basically implements and significantly im-
proves the algorithm devised in our prior work [8, 7]. For the application in
practice, we have also implemented Protégé and NeOn Toolkit plugins that al-
low a convenient deployment of epistemic querying and IC checking during the
ontology design phase. Our paper is organized as follows: In the next section,
we motivate the need for an epistemic query language and demonstrate via ex-
amples the flexibility we get by epistemic querying approach to IC checking in
ontologies. Notions that we use in the sequel are introduced in Section 3, where
we also discuss our reduction method for epistemic query answering. Toward
a major performance improvement, we developed several optimization rewrit-
ing rules in order to ensure the feasibility of EQuIKa in practice, as described
in Section 4. Implementation issues and evaluation results of EQuIKa are pre-
sented in Section 5 and Section 6. We compare our approach to the one used
in Pellet ICV2 in Section 7. Finally, we conclude our work in Section 8 and
identify some lines of future work.

2 Ontological Integrity Constraints

We now discuss diverse specific types of epistemic consequences in order to
both make the reader familiar with the expressivity of epistemically extended
OWL and argue for its practical relevance.

The K-operator allows for querying for known class or role instances. E.g.,
by performing an instance retrieval for the concept expression

KWhiteWine u ¬∃KlocatedIn.{FrenchRegion}

on the Wine ontology, we ask for “known white wines that are not known to be
produced in French regions”. This concept represents all the wines that are ex-
plicitly excluded from being French wines but additionally also those for which
there is just no evidence of being French wines (neither directly nor indirectly
via deduction). For an ontology containing

{WhiteWine(MountadamRiesling),

locatedIn(MountadamRiesling, AustralianRegion)}

1 Epistemic Querying Interface Karlsruhe
2 http://clarkparsia.com/pellet/icv/



and no additional location information, the query would yield MountadamRiesling

as a result, since it is known to be a white wine (stated explicitly in the ontology)
and not known to have a French region as location. On the other hand, querying
for the instances of the concept

WhiteWine u ¬∃locatedIn.{FrenchRegion}

yields an empty result since – due to the open world assumption – it cannot be
excluded that MountadamRiesling does not also have a French location.

We will now focus on a specific purpose for which epistemic reasoning
seems particularly useful, viz. a specific type of integrity constraints on on-
tologies. On a logical level, it is helpful to subdivide integrity constraints into
two groups, depending whether they address ill-specification (the presence of
wrong or contradicting information) or under-specification (the absence of re-
quired information). While the first type can be handled well within the classical
framework of standard reasoning in OWL (e.g. by detecting inconsistencies), the
second type can be modeled satisfactorily only by requiring an extension of the
standard OWL language.

We will illustrate our argument using the example ontology O displayed in
Table 1. In words, O specifies that persons are partitioned in males and females,
it enumerates all EU members, specifies EU citizens as citizens of EU member
states and provides the information that (at each time point) exactly one member
of the EU has the presidency.

Table 1. Example ontology O

Person v Male t Female
Male u Female v ⊥

EUMember ≡ {austria, belgium, . . . , uk}
EUMember ≡ ∃memberOf .{eu}

EUCitizen ≡ Person u ∃citizenOf .EUMember
EUCitizen ≡ ∃citizenOf .{eu}

{eu} v =1.hasPresidencyOf −.>
EUPresidency ≡ ∃hasPresidencyOf .{eu}
EUPresidency v EUMember

EUCitizen(denny) ¬Female(denny)
citizenOf (nadeschda, germany) Female(nadeschda)

Integrity constraints related to under-specification often can be seen as a
demand for explicitness of information. For instance, disjunctive explicitness for
the concepts C1, . . . ,Cn of concepts requires that whenever a named individual
is known to be in one of these classes, it must also be known in which. This can



be expressed by the axiom

K(C1 t . . . tCn) v KC1 t . . . t KCn.

For instance, a reasonable integrity constraint for a knowledge base may demand
that if an entity is known to have a gender, it should be known which. This can be
expressed by the axiom K(MaletFemale) v (KMaletKFemale). That this integrity
constraint is satisfied by O can be checked as follows: the only individuals in
O known to have a gender are nadeschda and denny (by virtue of being EUCitizens,
and thus Persons). For nadeschda, the gender is explicitly given, whereas for denny

it can be derived from the given information (which is also OK). Hence the IC
is satisfied.

As another case, sometimes, it might be in place to require that for every
named individual known to be iin an R-relationship to an individual satisfying
some concept C, there must be a named “witness” for this. However, depend-
ing on what kind of information precisely is required to be explicit, there are
several options for an according integrity constraint exhibiting subtle semantic
differences:

K(∃R.C) v ∃KR.KC (1)

K(∃R.C) v ∃KR.C (2)

K(∃R.C) v ∃R.KC (3)

For illustration, consider the following constraints on O:

K(∃citizenOf .EUMember) v ∃KcitizenOf .KEUMember (IC1)

K(∃citizenOf .EUMember) v ∃citizenOf .KEUMember (IC2)

K(∃citizenOf .EUMember) v ∃KcitizenOf .EUMember (IC3)

K(∃memberOf−.EUPresidency) v ∃KmemberOf−.KEUPresidency (IC4)

K(∃memberOf−.EUPresidency) v ∃memberOf−.KEUPresidency (IC5)

K(∃memberOf−.EUPresidency) v ∃KmemberOf−.EUPresidency (IC6)

For instance, we find that the integrity constraint (IC1) is violated due to denny

as it is not known which EU state he is a citizen of. On the other hand, the con-
straint (IC2) is satisfied, since we know that all EUMembers are known by name,
hence also the one denny is a citizen of must be. Conversely (IC3) is violated,
since no guaranteed specific citizenship relationship can be derived from the
knowledge base.

Finally, consider the integrity constraint (IC4). Clearly, this is violated, since
in our example, no membership of a concrete state in the class EUPresidency can



be inferred. For the same reason, also the relaxed constraint (IC5) is violated.
However, the constraint (IC6) is satisfied since O guarantees that one of the
named individuals whose membership in the eu is inferrable must have its pres-
idency.

Arguably, these examples demonstrate that by means of putting or not putting
K in front of concept expression constituents, one can fine-tune integrity con-
straints toward the actual explicitness requirements. This is particularly useful
in scenarios where some information is supposed to remain unknown e.g., due
to privacy issues. Moreover, note that current state-of-the-art approaches to ICs
in ontologies based on querying cannot tackle these scenarios adequately.

3 Preliminaries

In this section, we present an introduction to the description logic SROIQ [5]
and its extension with the epistemic operator K.

3.1 Description Logics SROIQ

We start by presenting the syntax and semantics of SROIQ. It is an extension of
ALC [12] by inverse roles(I), role hierarchies(H), nominals(O) and qualifying
number restrictions(Q). Besides it also allows for several role constructs and
axioms.

Definition 1. For the signature of SROIQ we have countably infinite disjoint
sets NC , NR and NI of concept names, role names and individual names respec-
tively. Further the set NR is partitioned into two sets namely, Rs and Rn of simple
and non-simple roles respectively. The set R of SROIQ roles is

R := U | NR | N−R

where U is a special role called the universal role. Further, we define a function
Inv on roles such that Inv(R) = R− if R is a role name, Inv(R) = S if R = S − and
Inv(U) := U.

The set of SROIQ concepts (or simply concepts) is the smallest set satisfy-
ing the following properties:

– every concept name A ∈ NC is a concept;
– >(top) and ⊥ (bottom) are concepts;
– if C,D are concepts, R is a role, S is a simple role, a1, . . . , an are individual

names and n a non-negative integer then following are concepts:



¬C (negation)
∃S .Self (self)
C u D (conjunction)
C t D (disjunction)
∀R.C (universal quantification)
∃R.C (existential quantification)
≤ nS .C (at least number restriction)
≥ nS .C (at most number restriction)
{a1, . . . , an} (nominals / one-of)

An RBox axiom is an expression of one the following forms:

1. R1 ◦ · · · ◦ Rn v R where R1, . . . ,Rn,R ∈ R and if n = 1 and R1 ∈ Rs then
R < Rn,

2. Ref(R) (reflexivity), Tra(R) (transitivity), Irr(R) (irreflexivity), Dis(R,R′) (role
disjointness), Sym(R) (Symmetry), Asy(R) (Asymmetry) with R,R ∈ R.

RBox axioms of the first form i.e., R1 ◦ · · · ◦ Rn v R are called role inclusion
axioms (RIAs). An RIA is complex if n > 1. Whereas the RBox axioms of the
second form e.g., Ref(R), are called role characteristics. A SROIQ RBox R is
a finite set of RBox axioms such that the following conditions are satisfied:3

– there is a strict (irreflexive) partial order ≺ on R such that
• for R ∈ {S , Inv(S )}, we have that S ≺ R iff Inv(S ) ≺ R and
• every RIA is of the form R ◦ R v R, Inv(R) v R, R1 ◦ . . .Rn v R,

R ◦ R1 ◦ · · · ◦ Rn v R or R1 ◦ · · · ◦ Rn ◦ R v R where R,R1 . . . ,Rn ∈ R
and Ri ≺ R for 1 ≤ i ≤ n.

– any role characteristic of the form Irr(S ), Dis(S , S ′) or Asy(S ) is such that
S , S ′ ∈ Rs i.e., we allow only for simple role in these role characteristics.

A general concept inclusion axiom (GCI) is an expression of the form C v
D, where C and D are SROIQ concepts. A TBox is a finite set of GCIs.

An ABox axiom is of the form C(a), R(a, b), a � b or a 6� b for the individual
names a and b, a role R and a concept C. A ABox is a finite set of ABox axioms.

A SROIQ knowledge base is a tuple (T ,R,A) where T , R and A are
SROIQ TBox, RBox and ABox respectively. ^

To define the semantics of SROIQ, we introduce the notion of interpreta-
tions.

3 These conditions are enforced to avoid cycles in the RBoxes, which, if not taken care, would
lead to undecidability. We usually call an RBox to be regular because of the first condition.



Definition 2. A SROIQ interpretation I = (∆I, ·I) is composed of a non-
empty set ∆I, called the domain of I and a mapping function ·I such that:

– AI ⊆ ∆I for every concept name A;
– RI ⊆ ∆I × ∆I for every role name R ∈ NR;
– aI ∈ ∆I for every individual name a.

Further the universal role U is interpreted as a total relation on ∆I i.e., UI =

∆I × ∆I. The bottom concept ⊥ and top concept > are interpreted by ∅ and ∆I

respectively. Now the mapping .I is extended to roles and concepts as follows:

(R−)I = {(x, y) | (y, x) ∈ RI}
(¬C)I = ∆I \CI

(∃S .Self)I = {x | (x, x) ∈ S I}
(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C)I = {p1 ∈ ∆
I | ∀p2.(p1, p2) ∈ RI → p2 ∈ CI}

(∃R.C)I = {p1 ∈ ∆
I | ∃p2.(p1, p2) ∈ RI ∧ p2 ∈ CI}

(≤ nS .C)I = {p1 ∈ ∆
I | #{p2 | (p1, p2) ∈ S I ∧ p2 ∈ CI} ≤ n}

(≥ nS .C)I = {p1 ∈ ∆
I | #{p2 | (p1, p2) ∈ S I ∧ p2 ∈ CI} ≥ n}

{a1, . . . , an}
I = {aI1 , . . . , a

I
n } ^

where C,D are concepts, R, S are roles, n is a non-negative integer and #M rep-
resents the cardinality of the set M.

Given an axiom α (TBox, RBox or ABox axiom), we say the an interpreta-
tion I satisfies α, written I |= α, if it satisfies the condition given in Table 2.
Similarly I satisfies a TBox T , written I |= T , if it satisfies all the axioms in
T . The satisfaction of an RBox and an ABox by an interpretation is defined in
the same way. We say I satisfies a knowledge base Σ = (T ,R,A) if it satisfies
T , R and A. We write I |= Σ. We call I a model of Σ. A knowledge base is
said to be consistent if it has a model.

We now present the extension of the DL SROIQ by the epistemic operator
K. We call this extension SROIQK .

3.2 K-extensions of SROIQ

The embedding of the epistemic operator K into the description logicALC was
first proposed in [1]. The logic obtained is called ALCK . A similar approach



Table 2. Semantics of SROIQ axioms

Axiom α I |= α, if

R1 ◦ · · · ◦ Rn v R RI1 ◦ · · · ◦ RIn ⊆ RI

Tra(R) RI ◦ RI ⊆ RI

Ref(R) (x, x) ∈ RI for all x ∈ ∆I

Irr(S) (x, x) < S I for all x ∈ ∆I

Dis(S,T) (x, y) ∈ S I implies (x, y) < TI for all x, y ∈ ∆I

Sym(S) (x, y) ∈ S I implies (y, x) ∈ S I for all x, y ∈ ∆I

Asy(S) (x, y) ∈ S I implies (y, x) < S I for all x, y ∈ ∆I

C v D CI ⊆ DI

C(a) aI ∈ CI

R(a, b) (aI, bI) ∈ RI

a � b aI = bI

a 6� b aI , bI

has been taken in [2], which we follow in this work, although we extend the
DL SRIQ rather thanALC i.e., we consider SROIQ as the basis DL and call
its K-extension SROIQK . In SROIQK we allow K in front of the concepts
and roles. In the following we provide the formal syntax and semantics of such
language where NC , NR, NI , R are as in Definition 1.

Definition 3. A SROIQK role is defined as follows:

– every R ∈ R is a SROIQK role;
– if R is a SROIQK role then so are KR and R−.

We call a SROIQK role an epistemic role if K occurs in it. An epistemic role is
simple if it is of the form KS where S is a simple SROIQ role. Now SROIQK
concepts are defined as follows:

– every SROIQ concept is an SROIQ concept;
– if C and D are SROIQK concepts, and S and R are SROIQK roles with

S being simple, then the following are SROIQK concepts:

KC | ¬C | C u D | C t D | ∀R.C | ∃R.C |≤ nS .C |≥ nS .C ^

The semantics for SROIQK is based on the possible world semantics. As
the traditional semantics leads to unintuitive effects when employed for ex-
pressive languages like SROIQK , we adopt our revised semantics introduced
in [7]. Unlike the traditional semantics, our semantics enforces neither the com-
mon domain assumption(CDA) nor the rigid term assumption(RTA). Hence, the
domain we consider in a possible world can be of arbitrary size, (non-empty
essentially) composed of arbitrary elements and different individual names can
stand for different elements in each possible world i.e., we interpret individual
names non-rigidly. As in traditional semantics, by the extension of an epistemic



concept KC we mean all the elements which belong to the extension of C in
every possible world, this justifies intersecting of the interpretation of C under
each interpretation. Nevertheless, in our semantics as we don’t enforce any of
the assumptions i.e., CDA or RTA, interpreting KC in this manner leads to unsat-
isfiability. For example, in a world, we can interpret C by the set of individuals
in way that none of these individual occurs in the extension of C in any other
world. As intersecting all these extensions yields to an empty set, therefore, to
unsatisfiability of the concept KC. To overcome this problem, we propose the
notion of designators. The idea here is to extend a standard interpretation I by
a mapping from the set NI ∪N to the domain ∆I of I. To this end, we define the
notion of an extended interpretation.

Definition 4. An extended SROIQ interpretation I is a tuple (∆I, ·I, ϕI) such
that

1. (∆I, ·I) is a standard SROIQ interpretation,
2. ϕI is a surjective function ϕI : NI ∪ N → ∆I, such that for all a ∈ NI we

have that ϕI(a) = aI.

We extend the definition of ϕI to subsets of NI∪N. For a set S , ϕI(S ) := {ϕI(t) |
t ∈ S }. Similarly we extend ϕI to order pairs and set of order pairs on NI ∪N as
follows:

– ϕI((s, t)) := (ϕI(s), ϕI(t)) for some ordered-pair (s, t) ∈ (NI ∪ N)2.
– ϕI(T ) := {ϕI((s, t)) | (s, t) ∈ T } for some set T ⊆ (NI ∪ N)2. ^

We also define the inverse ϕI−1 of the mapping ϕI for an extended interpretation
I as follows:

– ϕI
−1(x) := {t ∈ NI ∪ N | ϕI(t) = x} for every x ∈ ∆I.

– ϕI
−1(E) := {ϕI−1(x) | x ∈ E} for E ⊆ ∆I.

– ϕI
−1((x, y)) := ϕI

−1(x) × ϕI−1(y) = {(x′, y′) | x′ ∈ ϕI−1(x) and y′ ∈ ϕI−1(y)} for
any ordered-pair (x, y) ∈ ∆I × ∆ϕI .

– ϕI
−1(H) :=

⋃
(x,y)∈H ϕI

−1((x, y)) for any H ⊆ ∆I × ∆I.

Note that for any extended interpretation I, the definition of ϕI guarantees
that each individual name a is the designator of the interpretation of a under I.
For the rest of the elements of ∆I, we use elements of N as their designators.
Based on the notion of extended interpretation we now provide a new semantics
for SROIQK .

Definition 5. (extended semantics for SROIQK)
An extended epistemic interpretation for SROIQK is a pair (I,W), where

I is an extended SROIQ interpretation and W is a set of extended SROIQ



interpretations. Similar to epistemic interpretations, we define an extended in-
terpretation function ·I,W:

aI,W = aI for a ∈ NI

AI,W = AI for A ∈ NC

RI,W = RI for R ∈ NR

>I,W = ∆I (the domain of I)
⊥I,W = ∅

(C u D)I,W = CI,W ∩ DI,W

(C t D)I,W = CI,W ∪ DI,W

(¬C)I,W = ∆I \CI,W

(∀R.C)I,W = {p1 ∈ ∆
I | ∀p2.(p1, p2) ∈ RI,W → p2 ∈ CI,W}

(∃R.C)I,W = {p1 ∈ ∆
I | ∃p2.(p1, p2) ∈ RI,W ∧ p2 ∈ CI,W}

(≤ nR.C)I,W = {d | #{e ∈ CI,W | (d, e) ∈ RI,W} ≤ n}
(≥ nR.C)I,W = {d | #{e ∈ CI,W | (d, e) ∈ RI,W} ≥ n}

(KC)I,W = ϕI
(⋂
J∈W ϕJ

−1
(
CJ ,W

))
(KR)I,W = ϕI

(⋂
J∈W ϕJ

−1
(
RJ ,W

))
For an epistemic role (KR)−, we set [(KR)−]J ,W := (KR−)J ,W. Note that KKR
and KR are interpreted identically under an epistemic interpretation. Hence, it
suffices to consider only epistemic roles of the form KR, with R being non-
epistemic. ^

The semantics of GCI, assertion, role hierarchy, ABox, TBox, RBox and
knowledge base under an extended epistemic interpretation can be defined in a
straight forward way like in Definition 2. Here, instead |= as the symbol of the
satisfaction relation, we use the symbol ||=. We now introduce the notion of an
extended epistemic model of a knowledge base.

Definition 6. An extended epistemic model of a SROIQK knowledge base
Ψ = (T ,R,A) is a maximal non-empty set W of extended SROIQ interpre-
tations such that (I,W) satisfies T , R and A for each I ∈ W. A SROIQK
knowledge base Ψ is satisfiable (under the extended semantics) if it has an ex-
tended epistemic model. Similarly the knowledge base Ψ entails an axiom α,
written Ψ ||= α, if for every extended epistemic model W of Ψ , we have that
for every I ∈ W, the extended epistemic interpretation (I,W) satisfies α. Like
in case of the current semantics, a standard DL-knowledge base Σ, one without
any occurence of K, admits a unique extended epistemic model, which is the set
of all models of Σ extended by all possible surjective mappings that map indi-
viduals names and elements of N to the elements of their domain. We denote
this model byM(Σ).



For a detailed discussion on the extended semantics we recommend the in-
terestred readers to [7], where a method of translating epistemic concept expres-
sions into equivalent K-free ones is also presented. Since EQuIKa implements
this method, we recall the translation function in the following. Note that the
translation itself requires to check entailment of (K-free) axioms, hence it is not
strictly syntactical and depends on the underlying knowledge base.

Definition 7. Given a SROIQ knowledge base Σ, we define a function Φ̃Σ
mappingSROIQK concept expressions toSROIQ concept expressions (where
we let {} = ∅ = ⊥):

C 7→ C if C is an atomic or one-of concept, > or ⊥;

KD 7→
{
> if Σ |= Φ̃Σ(D) ≡ >
{a ∈ NI | Σ |= Φ̃Σ(D)(a)} otherwise

∃KS .Self 7→
{
∃S .Self if Σ |= > v ∃S .Self
{a ∈ NI | Σ |= S (a, a)} otherwise

C1 uC2 7→ Φ̃Σ(C1) u Φ̃Σ(C2)
C1 tC2 7→ Φ̃Σ(C1) t Φ̃Σ(C2)
¬C 7→ ¬Φ̃Σ(C)
∃R.D 7→ ∃R.Φ̃Σ(D) for non-epistemic role R

∃KP.D 7→



⊔
a∈NI
{a} u ∃P.({b ∈ NI | Σ |= P(a, b)} u Φ̃Σ(D))

t∃P.
(
{b ∈ NI | Σ |= > v ∃P.{b}} u Φ̃Σ(D)

)
t {a ∈ NI | Σ |= > v ∃P−{a}} u ∃P.Φ̃Σ(D)

t

{
Φ̃Σ(D) if Σ |= > v ∃P.Self
⊥ otherwise

∀R.D 7→ ∀R.Φ̃Σ(D) for non-epistemic role R;
∀KP.D 7→ ¬Φ̃Σ(∃KP.¬D)
>nS .D 7→ >nS .Φ̃Σ(D) for non-epistemic role S ;

>nKS .D 7→



⊔
a∈NI
{a} u >nS .({b ∈ NI | Σ |= S (a, b)} u Φ̃Σ(D))

t {a ∈ NI | Σ |= > v ∃S −.{a}} u >nS .Φ̃Σ(D)
t>nS .({b ∈ NI | Σ |= > v ∃S .{b}} u Φ̃Σ(D))

t


>(n − 1)S .

(
{b ∈ NI | Σ |= > v ∃S .{b}} u Φ̃Σ(D)

)
u

Φ̃Σ(D) u ¬{a | a ∈ NI} if Σ |= > v ∃S .Self
⊥ otherwise

6nS .D 7→ 6nS .Φ̃Σ(D) for non-epistemic role S ;
6nKS .D 7→ ¬Φ̃Σ(>(n+1)KS .D)
ΞKR.D 7→ ΞR.Φ̃Σ(D) for Ξ ∈ {∀, ∃, >n, 6n} and Σ |= R ≡ U ^

EQuIKa implements this translation function. In the next section we discuss sev-
eral optimization rules that we devised in order to ensure the run-time feasibility
of EQuIKa.

4 Optimization

A naive implementation of the translation function presented in Definition 7
does not need to be feasible in practice, in particular when dealing with ontolo-



gies containing relatively large number of individuals. We came up with several
optimization rules. As we will see in the next section, these rules speed up the
computation time of EQuIKa in retrieving instances of an epistemic concept.
Basically, every rule checks the structure of a given epistemic concept and re-
duces either the number of K’s occurring in the concept or the number of calls
to the core reasoner during the translation of the concept such that the correct-
ness of the answers is preserved. For the proof of the correctness of the answers
via translation based upon the optimization rules, we show that for an epistemic
concept C, the extensions of the translation of C coincide when the translation
is done with and without the optimization rules.

In the following we discuss each of these rules and provide the proof of
their correctness, where by Φ̂Σ we mean the translation function based on the
optimization rules.

– Rule 1 (Nominals): For individual names a1, . . . , an we have

Φ̂Σ(K{a1, . . . , an}) 7→ {a1, . . . , an}

Proof. For the left to right direction, let x ∈ K{a1, . . . , an}
I,M(Σ). By seman-

tics, therefore,
x ∈ ϕI

( ⋂
J∈M(Σ)

ϕJ
−1({a1, . . . , an}

J )
)

In other words, x ∈ ϕI(ϕJ−1({a1, . . . , an}
J )) for each J ∈ M(Σ). In particu-

lar, x ∈ ϕI(ϕI−1({a1, . . . , an}
I)). Since ϕI is a surjective mapping, we get that

x ∈ {a1, . . . , an}
I = {a1, . . . , an}

I,M(Σ).
For the right to left direction, let x ∈ {a1, . . . , an}

I,M(Σ) and suppose that
x < K{a1, . . . , an}

I,M(Σ). Note that by definition of ϕJ , we have that ai ∈

ϕJ
−1(aJi ) for each J ∈ M(Σ) and 1 ≤ i ≤ n. It means that {a1, . . . , an} ⊆

ϕJ
−1({a1, . . . , an}

J ) for each J ∈ M(Σ) i.e.,

{a1, . . . , an} ⊆
⋂

J∈M(Σ)

ϕJ
−1({a1, . . . , an}

J )

Applying ϕI we get

ϕI({a1, . . . , an}) ⊆ ϕI
( ⋂
J∈M(Σ)

ϕJ
−1({a1, . . . , an}

J )
)

In other words,

ϕI({a1, . . . , an}) ⊆ K{a1, . . . , an}
I,M(Σ)

By assumption, since x < K{a1, . . . , an}
I,M(Σ), consequently we get that x <

ϕI({a1, . . . , an}) = {ϕI(a1), . . . , ϕI(an)}. By definition of ϕI we have that



ϕI(a) = aI for each a ∈ NI . Therefore we get that x < {a1
I, . . . , an

I} =

{a1, . . . , an}
I,M(Σ), which is a contradiction. Hence, x ∈ K{a1, . . . , an}

I,M(Σ)

must hold.

– Rule 2 (Conjunction): Let C1, . . . ,Cn be concepts where each Ci is either
an epistemic concept of the form KD for some concept D or a one-of concept
for 1 ≤ i ≤ n. By C′i we denote the concept obtained from Ci by dropping K
or C′i = Ci otherwise. Then,

Φ̂Σ(C1u, . . . ,uCn) 7→ K(C′1u, . . . ,uC′n)

Proof. For a one-of concept {a1, . . . , ak}, it follows from the proof of Rule 1
that {a1, . . . , ak} is equivalent to K{a1, . . . , ak}. Hence, we assume that each
concept in C1 u · · · uCn is of the form KD for some concept D. Now
x ∈ [KD1 u . . .KDn]I,M(Σ)

⇔ x ∈ (KDI,M(Σ)
1 ∩ · · · ∩ KDI,M(Σ)

n )
⇔ x ∈ ϕI(

⋂
J∈M(Σ) ϕJ

−1(DJ1 )) ∩ · · · ∩ ϕI(
⋂
J∈M(Σ) ϕJ

−1(DJn ))
⇔ x ∈ ϕI

(⋂
J∈M(Σ)

(
ϕJ
−1(DJ1 ) ∩ · · · ∩ ϕJ−1(DJn )

))
⇔ x ∈ ϕI

(⋂
J∈M(Σ) ϕJ

−1((D1 u · · · u Dn)J
))

⇔ x ∈ [K(D1 u · · · u Dn)]I,M(Σ) �

– Rule 3 (Existential Quantification):
By Definition 7, for a concept ∃KR.D we get that

∃KP.D 7→


⊔

a∈NI
{a} u ∃P.({b ∈ NI | Σ |= P(a, b) u Φ̃Σ(D)})

t∃P.
(
{b ∈ NI | Σ |= > v ∃P.{b}} u Φ̃Σ(D)

)
t {a ∈ NI | Σ |= > v ∃P−{a}} u ∃P.Φ̃Σ(D)

t

{
Φ̃Σ(D) if Σ |= > v ∃P.Self
⊥ otherwise

Suppose Inst(D) returns the set of instances of a concept D and let OUTP =

Inst(∃P.Φ̃(D)) and INP = Inst(∃P−.>). Now Rule 3 is as follows

Φ̂Σ(∃KP.D) 7→


⊔

a∈OUTP
{a} u ∃P.({b ∈ INP | Σ |= P(a, b) u Φ̃Σ(D)})

t∃P.
(
{b ∈ INP | Σ |= > v ∃P.{b}} u Φ̃Σ(D)

)
t {a ∈ OUTP | Σ |= > v ∃P−{a}} u ∃P.Φ̃Σ(D)

t

{
Φ̃Σ(D) if Σ |= > v ∃P.Self
⊥ otherwise

Note that without the optimization, translating a concept of the form ∃KP.D
requires at least |NI |×|NI |+2|NI |+1+ (No. of calls needed to translate D) calls
to the core reasoner. With the optimization Rule 3, such a translation reduces
the number of calls when |Inst(∃P.Φ̃(D))| < |NI | or |Inst(∃P−.>)| < NI .

Proof. We introduce the following abbreviations,



• C1 =
⊔

a∈NI {a} u ∃P.({b ∈ NI | Σ |= P(a, b) u Φ̃Σ(D)})
• C′1 =

⊔
a∈OUTP{a} u ∃P.({b ∈ INP | Σ |= P(a, b) u Φ̃Σ(D)})

• C2 = ∃P.
(
{b ∈ NI | Σ |= > v ∃P.{b}} u Φ̃Σ(D)

)
• C′2 = ∃P.

(
{b ∈ INP | Σ |= > v ∃P.{b}} u Φ̃Σ(D)

)
• C3 = {a ∈ NI | Σ |= > v ∃P−{a}} u ∃P.Φ̃Σ(D)
• C′3 = {a ∈ OUTP | Σ |= > v ∃P−{a}} u ∃P.Φ̃Σ(D)

We first show that for an extended interpretation I ∈ M(Σ) and x ∈ ∆I,
x ∈ CI,M(Σ)

1 iff x ∈ C′I,M(Σ)
1 . For this note that if b′ ∈ Inst({b ∈ NI |Σ |=

P(a′, b)}) for individuals a′ and b′ then it immediately follows that b′ ∈
Inst({b ∈ INP|Σ |= (a′, b)}) and vice versa. Now for x ∈ ∆I, x ∈ CI,M(Σ)

1
if and only if there is an individual a′ ∈ NI such that x = a′I,M(Σ) and
x ∈ ∃P.({b ∈ NI | Σ |= P(a′, b) u Φ̃Σ(D)})I,M(Σ). This is the case if and only
if x ∈ ∃P.({b ∈ INP | Σ |= P(a′, b) u Φ̃Σ(D)})I,M(Σ) which is equivalent to
x ∈ C′I,M(Σ)

1 .
In the same way, we can prove that x ∈ CI,M(Σ)

2 if and only if x ∈ C′I,M(Σ)
2 .

Similarly, x ∈ CI,M(Σ)
3 if and only if x ∈ C′I,M(Σ)

3 . Consequently, this estab-
lishes the proof of the correctness of Rule 3. �

– Rule 4 (Number Restriction):
Similar to Rule 3, Φ̂Σ maps the concept ≥ nKS .D to

⊔
a∈OUTP,n{a} u >nS .({b ∈ INP,n | Σ |= S (a, b) u Φ̃Σ(D)})
t {a ∈ OUTP,n | Σ |= > v ∃S −.{a}} u >nS .Φ̃Σ(D)
t>nS .({b ∈ INP,n | Σ |= > v ∃S .{b}} u Φ̃Σ(D))

t


>(n − 1)S .

(
{b ∈ INP,n−1 | Σ |= > v ∃S .{b}} u Φ̃Σ(D)

)
u

Φ̃Σ(D) u ¬{a | a ∈ NI} if Σ |= > v ∃S .Self
⊥ otherwise

where OUTP,n =≥ nP.Φ̃(D) and INP,n =≥ n.P−.>.

Proof. Similar to Rule 3. �

These rules suffice in the sense that for most of the remaining constructs, we use
their dual which correspond to one of the rules discussed above. After showing
that the rules preserve the semantics, we need to show that they indeed improve
the run time of EQuIKa. For this we performed several experiments, which are
discussed in Section 6.

5 Implementation

The EQuIKa system is implemented on top of the OWL-API.4 It can be used as
an API as well as within Protégé or NeOn Toolkit. The following considerations
and design decisions underly our implementation:

4 http://owlapi.sourceforge.net/



(a) Epistemic Querying in Protégé

(b) Integrity Constraint Checking within the NeOn Toolkit

Fig. 1. EQuIKa integration in ontology development tools.



Fig. 2. The EQuIKa-system extending the OWL-API

– Since the standard OWL-API does not support epistemic constructs, we ex-
tended several classes of the API. The K-operator syntactically behaves sim-
ilar like the complement construct (¬) for concepts and like the inverse role
construct for roles. We therefore followed the same implementation pat-
terns.

– For parsing we created an EpistemicSyntaxParser based on the Manches-
terOWLSyntaxOntologyParser. The K-operator is expressed by the token
KnownConcept for concepts and by the token KnownRole for the roles.

– We implemented the translation function in a recursive fashion. For this, we
implemented a visitor pattern by extending the OWLClassExpressionVisi-
tor class in order to handle the epistemic operator.

– In order to support epistemic querying within the Protégé editor, we imple-
mented an additional tab based on the DL Query tab. Figure 1(a) shows a
snapshot of epistemic querying in Protégé.

– In order to support epistemic querying within the NeOn Toolkit, we ex-
tended the unit testing component of the ontology evolution plugin CHRONOS5.
Figure 1(b) shows a snapshot of constraint checking in NeOn.

The class diagram for EQuIKa is displayed in Figure 2. The new types
OWLObjectEpistemicConcept and OWLObjectEpistemicRole are derived from

5 http://chronos-update.fzi.de



Table 3. Concepts used for instance retrieval experiments.

EC1 ∃KhasWineDescriptor.KWineDescriptor
EC2 ∃KhasWineDescriptor.KWineDescriptor u ∃KmadeFromFruit.KWineGrape
EC3 KRoseWine
EC4 KRoseWine u KWhiteWine
EC5 KRoseWine u KWhiteWine u {r1, . . . , r108}

EC6 KWine u ¬∃KhasSugar.{Dry} u ¬∃KhasSugar.{OffDry}
u ¬∃KhasSugar.{S weet}

the respective standard types OWLBooleanClassExpression and OWLObject-
PropertyExpression to fit the design of the OWL-API. As our translation method
depends on intermediate calls to a standard reasoner, the class EQuIKaRea-
soner implements the OWLReasoner interface. As already mentioned, EQuIKa
translates an epistemic concept into a K-free one in a recursive fashion using the
class Translator that implements the OWLClassExpressionVisitor.

Since Protégé and NeOn can utilize any reasoner that implements the OWL-
Reasoner interface, EQuIkaReasoner can be easily integrated. Last but not
least, EQuIKa has been shared on googlecode for testing purposes.6 The plugin
is provided as jar file7 that can be installed via the Protégé 4.1 plugin folder.

6 Evaluation

For the purpose of evaluation, we performed several experiments with the fol-
lowing setup:

– We used an IBM Thinkpad T60 dual core, with 2 GHz per core, Windows 7
(32-bit) as the operating system, and a total of 2 GB memory.

– For benchmark tests, we used a populated version of the Wine ontology8,
that contains 483 individuals and uses most of the OWL 2 DL constructs.
These ontologies can be downloaded along with EQuIKa.

– To evaluate the performance of EQuIKa, we constructed several epistemic
concepts and translated them into K-free ones. These concepts are given in
Table 3 where r1, . . . , r108 are individuals representing wine regions in the
ontologies.

To the best of our knowledge, EQuIKa is the only reasoner of its nature for
epistemic query answering, such that there is no other existing reasoner with

6 http://code.google.com/p/epistemicdl/
7 https://epistemicdl.googlecode.com/svn/EpistemicQueryTab/equika.protege.querytab.jar
8 https://code.google.com/p/epistemicdl/source/browse/trunk/EQuIK/wine 1.owl



these capabilities against which we could compare EQuIKa’s performance. To
give an impression about the runtime behavior, we performed two kind of exper-
iments and as a measure, we consider the time required to translate the epistemic
concepts (given in Table 3) to K-free equivalent ones and the instance retrieval
time of the translated concept. In the first series of experiments, we evaluated the

Table 4. Results of instance retrieval experiments.

Concept EQuIKa-N EQuIKa-O
Ttrans Tinst #inst Ttrans Tinst #inst

EC1 4 192.7 132 21 97.8 132
EC2 9 198.9 3 3 37.5 3
EC3 110 110.1 3 26 26.5 3
EC4 203 211.7 0 122 122.1 0
EC5 206 400.6 0 121 121.9 0
EC6 13 − − 0.5 487.3 119

benefit of the optimization rules introduced in Section 4. We implemented two
versions of EQuIKa; a naive one called EQuIKa-N implementing the translation
function of Definition 7 as is and an optimized one called EQuIKa-O where the
optimization rules were used. The corresponding results are shown in Table 4
where Ttrans, Tinst and #inst represent the translation time, instance retrieval time
and the number of instances respectively. One can see that Tinst for EQuIKa-O
is far less than for EQuIKa-N. In particular for concept EC6, EQuIKa-N did not
responded for almost an hour and we stopped it, whereas EQuIKa-O translated
EC6 and retrieved its instances in few seconds. This shows that the optimiza-
tion rules introduced are of high importance toward the feasibility of EQuIKa in
practice.

In the second series of experiments, we evaluated the computation time of
EQuIKa-O in general to provide an impression of how the cost of epistemic
querying relates to standard reasoning tasks. For this purpose, we consider non-
epistemic concepts C1, . . . ,C6 where each Ci is obtained by dropping K in ECi

for 1 ≤ i ≤ 6. Note that an epistemic concept ECi and the corresponding Ci are
semantically different concepts. Table 5 shows the results of our experiments. It
can be seen that even when comparing to the K-free counterpart of the epistemic
concepts, the computation time of EQuIKa-O is roughly in the same order of
magnitude. This indicates that an explosion of reasoning runtime which often
occurs when nonmonotonic features are added to DLs can be avoided in our
case.



Table 5. Evaluation epistemic vs. standard instance retrieval

Concept t(Ci) |Ci| Concept tT(ECi) t(ECi) |ECi|

C1 2.18 159 EC1 20 95.7 132
C2 41.9 159 EC2 3 36.5 3
C3 10.7 3 EC3 10 10.8 3
C4 2.68 0 EC4 2 2.9 0
C5 0.2 0 EC5 2 2.9 0
C6 61.1 80 EC5 0.5 487.3 119

7 Related Work

In [13], another approach to IC checking is proposed based on the notion of
the so-called Minimal Equality models, where ICs are OWL axioms interpreted
under IC-interpretations. According to this approach, an ontology Σ satisfies a
set of constraints C if and only if Σ |=IC α for each α ∈ C i.e., I,ModME(Σ) |= α

for all I ∈ ModME(Σ), where ModME(Σ) is the set of all minimal equality
models of Σ (see [13] for details). Comparing to our semantics, note that for each
I ∈ ModME(Σ), by definition,M(Σ) (c.f. Section 3) contains all the extended
interpretations obtained by extending I with all possible surjective mappings
from NI ∪ N to ∆I. This allows us to define a translation function that converts
every IC α ∈ C into a SROIQK axiom αK by placing the K-operator in front of
every occurrence of concept names and role names in α, such that α is satisfied
by Σ, i.e., Σ |=IC α if and only if Σ ||= αK.

Thus our formalism is more general in the sense that IC as in [13] can be
expressed via SROIQK axioms, meanwhile we allow for non-epistemic (stan-
dard) concepts and roles in epistemic queries. This gives us the added value of
tuning ICs per requirement as discussed in Section 2. Another feature of our
semantics is that we do not enforce the unique name assumption(UNA) rather
we have weak UNA in the sense as discussed in [13]. The enforcement of UNA
and less expressiveness in traditional epistemic extension of DL (e.g., [2]), is a
serious limitation for using such formalisms in practice as pointed out in [13].
This, indeed is not the case for our approach thanks to our more flexible revised
semantics.

Despite the restricted expressiveness, we would have liked to compare Pellet
ICV – a system based on the approach of [13] – to our system EQuIKa. Unfor-
tunately, details of the tests conducted for Pellet ICV were not available at the
time of compiling this report.



8 Conclusion

In this paper, we have motivated the importance of epistemic querying of OWL
ontologies for purposes like ontology introspection, IC checking etc. We have
presented a system, called EQuIKa, implemented in conformance with the com-
mon OWL interfaces such that any off-the-shelf reasoner can be used as its
backbone. To support convenient deployment of our tool in the course of the
ontology development process, our system also features a user front-end real-
ized as a plugin for the Protégé and NeOn Toolkit ontology editors.

EQuIKa is based on a reduction of epistemic queries to standard reasoning.
In order to assure its practical feasibility, we have presented and implemented
several optimization rules leading to a speed-up of EQuIKa by one to several
orders of magnitude. We performed several experiments checking the computa-
tion time of EQuIKa and also evaluated EQuIKa against the standard reasoning
task of instance retrieval. We found that EQuIKa performs in the same scale as
the standard counter part, witnessing that epistemic querying can be efficiently
realized in practice.

Avenues for future research are manifold: we will carry out a more exten-
sive evaluation of our system with data stemming from ontology design scenar-
ios from industry projects’ use cases. These experiments will provide a clearer
view on which – already implemented or still to be defined – optimizations and
heuristics in EQuIKa pay off in practice. On the theoretical side, we want to in-
vestigate the practical benefits of epistemic constructors as part of the ontology
modeling language and try to extent our framework to this case. This is clearly
a non-trivial task, since favorable model-theoretic properties get lost.
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