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Abstract. Complex Event Processing (CEP) deals with processing of continu-
ously arriving events with the goal of identifying meaningful patterns (complex
events). In existing stream database approaches, CEP is manly concerned by tem-
poral relations between events. This paper advocates for a knowledge-rich CEP
with Stream Reasoning capabilities. Secondly, we address the problem of revi-
sion in event processing. Events are often assumed to be immutable and therefore
always correct. Revision in event processing deals with the circumstance that cer-
tain events may be revoked. This necessitates to reconsider complex events which
might have been computed based on the original, flawy history as soon as part of
that history is corrected.

In this paper, we present a novel approach for knowledge-based CEP and
Stream Reasoning, including revisions of events too. We present a rule-based
language for pattern matching over event streams with a precise syntax and the
declarative semantics. We devise an execution model for the proposed formal-
ism, and provide a prototype implementation. Extensive experiments have been
conducted to demonstrate the efficiency and effectiveness of our approach.

1 Introduction

While existing semantic technologies and reasoning engines are constantly being im-
proved in dealing with time invariant domain knowledge, they lack in support for pro-
cessing real-time streaming data. Real-time data on Web is valuable only if it is cap-
tured, processed, and delivered instantly. Examples include traffic monitoring, real-time
financial services, web click analysis and advertisement, various social web and real-
time collaboration tools, and so forth.

Complex Event Processing (CEP) is a set of techniques and tools that help us in
understanding and controlling real-time and event-driven systems [[L1l]. As such, it is
a technology that can help in processing real-time data on the Web too. CEP deals
with processing continuously arriving events with the goal of identifying meaningful
event patterns (complex events). An event represents something that occurs, happens,
or changes the current state of affairs. For example, an event may represent a stock price
change, a complied transaction, a new piece of information, knowledge made available
by a Web service, and so forth. In all these situations, to structure the course of affairs
and describe more complex dynamic situations, we compose simple (atomic) events
into complex events. Today’s CEP systems [1113/4], however, focus on high throughput
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and timeliness as two important characteristics, while they do not meet the complexity
requirements of event-driven applications. Pattern matching over streams poses two
new challenges directly impacting the complexity of CEP systems:

Knowledge-based CEP & Stream Reasoning. According to [[L1], the time critical ac-
tions are supposed to be taken upon complex events. The question is, however, whether
event patterns detectable by today’s CEP systems are expressive enough to capture
complex (business) events in all their aspects. How likely is that critical decisions are
taken merely on event patterns of type, e.g., “event a is followed by event b in last
10 seconds”? For some applications such patterns are expressive enough; however, for
knowledge-rich applications, they are certainly not. In such applications real-time ac-
tions are triggered not only by events, but also upon additional knowledge. This knowl-
edge captures the domain of interest, or context related to business critical actions and
decisions. Its purpose is to be evaluated during detection of complex events in order to
enrich events with background information (context); or to detect more complex situa-
tions. The task of reasoning over streaming data (events) and the background knowledge
constitutes a new challenge known as Stream Reasoning [[15].

The Linked Open Data (LOD) initiativ has made available on the Web hundreds
of datasets and ontologies. Examples also include the New York Times dataseﬂ, fi-
nancial ontologiesﬁ, encyclopedic data (e.g., DBpedia), Linked-GeoDat:ﬂ, and so forth.
This knowledge is commonly represented as structured data (e.g., using RDFS). Struc-
tured data enable machines to reason over explicit knowledge in order to infer new
(implicit) information. However, current CEP systems [[1J13l4] cannot utilize the struc-
tured knowledge, and they cannot do stream reasoning.

To achieve the aforementioned goal, various approaches have been proposed [[6/5/10].
They are capable to process either additional background or structured knowledge
(though varying in Complex Event Processing capabilities they provide). In this pa-
per, we propose an approach that is capable to do both, Complex Event Processing and
Stream Reasoning. Moreover, the goal of this paper is to provide an additional feature
(in comparison to [[6)5010]]), namely, event revision.

Non-blocking event revision. CEP systems such as [1/13l4] detect complex events
based on reported atomic events. Once a complex event has been detected, typically
there is no chance to revise this event later. Events are assumed to be immutable and
therefore always correct. In practice, there is a number of reasons requiring revisions
in event stream processing. For example, an event was reported by mistake, but did not
happen in reality (and the mistake was realized later); an event happened, but it was not
reported (due to failure of either a sensor, or failure of the event transmission system);
or an event was triggered and later revoked due to the transaction failure. Also very
often streaming data sources contend with noise (e.g., financial data feeds, Web stream-
ing data, updates etc.) resulting in erroneous inputs and, therefore, erroneous complex
event results. As recognised in [14]], event stream sources may issue “revision tuples”

! such as e.g.,http://linkeddata.org/

2 Linked Open Data from the New York Times http://data.nytimes.com/
3 Financial ontology: http: //www. fadyart.com/
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(revision events) that amend previously issued events. A CEP system should therefore
be capable to take these revisions into account and produce correct revision outputs.
There exist approaches for dealing with revision in event processing [9l12]). However,
these approaches (as rooted in stream databases) cannot do Stream Reasoning.

The goal of this work is to provide a fundamental framework for processing event
streams, exceeding the capabilities of today’s CEP systems. We propose a formalism
featuring an expressive declarative and rule-based semantics. As such, the formalism
enables effective Complex Event Processing and Stream Reasoning. Apart from this,
our approach naturally captures revision of acquired knowledgeﬁ. Extensive experi-
ments have been conducted to demonstrate the practical efficiency and effectiveness
of our approach.

2 Formal Model for Knowledge-Based Event Processing with
Revision

We have defined a basic language for CEP in [3]. In this section, we extend the language
to handle retractions. In order to keep the presentation of the overall formalism self-
contained, we will also recall basics of the language from [3].

2.1 Event Processing Language Syntax

In this section, we present the formal syntax of our language for event processing, while
in the remaining sections of the paper, we will gradually introduce other aspects of the
language (i.e., the declarative and operational semantics as well as the performance of
a prototypical implementation based on the language).

The syntax of our language allows for the description of time and events. We repre-
sent time instants as well as durations as nonnegative rational numbers ¢ € Q. Events
can be atomic or complex. An atomic event refers to an instantaneous occurrence of
interest. Atomic events are described by ground atoms (i.e., predicates followed by
arguments which are terms not containing variables). Intuitively, the arguments of a
ground atom describing an atomic event denote information items (i.e., event data) that
provide additional information about that event.

Atomic events can be composed to form complex events via event patterns. We use
event patterns to describe how events can (or have to) be temporally situated relative
to other events or absolute time points. The language P of event patterns is formally
defined by

P ::=pr(t1,...,t,) | P WHERE? | q | (P).q
| P BIN P | NOT(P).[P, P]

Thereby, pr a predicate name with arity n, ¢; denote terms, ¢ is a term of type
Boolean, g is a nonnegative rational number, and BIN is one of the binary operators
SEQ, AND, PAR, OR, EQUALS, MEETS, DURING, STARTS, or FINISHES. As a side con-
dition, in every expression p WHERE ¢, all variables occurring in ¢ must also occur in
the pattern p. Finally, an event rule is defined as a formula of the following form:

5 We focus on revision of events. Revision of background knowledge is out of scope.
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pr(ti,...,tn) < p
where p is an event pattern containing every variable occurring in pr(¢1, . . ., t,,) at least
once outside any function application.
Figure [Tl demonstrates the various ways of constructing complex event descriptions
from simpler ones in our language for event processing. Moreover, the figure informally
introduces the semantics of the language, which will be formally defined in Section2.3]

P :
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Ps — o . _ i
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>
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Fig. 1. Language for Event Processing - Composition Operators

It is worth noting that the language captures the set of all possible 13 relations on
two temporal intervals as defined in [2] and can therefore be used for extensive temporal
reasoning.

2.2 Examples

Let us briefly review the modeling capabilities of the presented pattern language.

General examples. One might be interested in defining an event matching stock market
working days:
workingDay() «— NOT(marketCloses())[marketOpens(), marketCloses()].

Moreover, we might be interested in detecting the event of two bankruptcies happening
on the same market working day:

dieTogether(X,Y)« (bankrupt(X)SEQ bankrupt(Y’)) DURING workingDay().
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This event rule also shows how event information (about involved institutions, prove-
nance, etc.) can be “passed” on to the defined complex events by using variables. Fur-
thermore, variables may be employed to conditionally group events into complex ones
if they refer to the same entity:

indirectlyAcquires(X,Y) « buys(Z,Y) AND buys(X, Z)

Knowledge-based patterns. Let us consider an example demonstrating knowledge-
based pattern detection. Suppose that we want to detect the stock price increase in a
supply chain system of companies. The following pattern monitors two stock price in-
creases in two companies (occurred within certain time window), and checks whether
the companies are parts of the supply chain system.

trendIncrease() « (stockIcr(CompanyA) SEQ stockIcr(CompanyB)).10
AND inSupChain(CompanyA, CompanyB).

The supply chain system is represented as a set of explicit links between companies,
e.g., with 1inked(A, B) we represent two interconnected businesses involved in the
ultimate provision of a product. We assume that such explicit relationships are con-
tinuously being updated via information events as, for instance, our data mining tool
processes different information sources, delivering events of the form:

linked(CompanyA, CompanyB)

linked(CompanyY, CompanyZ)

The above set of 1inked relations can be represented, with no restriction, as a set
of RDF triples too. Our prototype implementation (see Section ) uses Semantic Web
Libraryﬁ to represent an RDFS ontology as a set of Prolog rules and facts.

The following transitive closure pattern can then be used to span over semantic rela-
tionships between companies scenario where direct supply relationships are represented
explicitly, and hence discover implicit relationships, i.e., whether two stock price in-
creases also covered the whole supply chain system.

inSupChain(X,Y) « linked(X,Y).
inSupChain(X, Z) < linked(X,Y) AND inSupChain(Y, 7).

To generalize, for a given set of events that satisfy certain temporal relationships,
our approach may be used to additionally check whether these events satisfy certain
semantic relationships with respect to domain knowledge that itself may be dynamically
collected. Semantic relationships between occurring events is an important dimension,
neglected in today’s CEP systems. It helps discovering the context in which events
occurred by combining knowledge management techniques (e.g., deductive reasoning)
with event stream processing.

Event revision. To illustrate how event revision can be useful in practise, let us con-
sider the following example. An automated stock brokerage system sells stocks to its
clients. The system emits an event described by availableStockto a client every time

6 SWI-Prolog: http://www.swi-prolog.org/pldoc/package/semweb.html
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when the respective stocks become available. The event contains information about the
company’s stock I D, the current price Pri, and the available amount of stocks Amdt.
A client (identified by C'I D) may now signal the request to buy the offered stocks by
sending an event trChecked back to the system, stating the wanted amount Amt; of
stocks. Event availableStock followed by event trChecked will trigger a complex
event buyStocks according to the following rule:

buyStocks(CID, ID, Pri, Amt,) «— availableStock(ID, Pri, Amt)
SEQ trChecked(CID,ID, Pri, Amt;) WHERE Amt; < Amt.

Upon detection, event buyStocks will trigger two transactions: the first transaction
transfers money from the client’s account to the broker’s account, the second transaction
maintains the balance of available stocks, by subtracting Amt; from Amt. The mainte-
nance is necessary as available stocks are also offered to other interested clients. Since
the stock trading is carried out in real-time, it is important that execution in the stock
brokerage system is automated and that the transaction of one client does not block exe-
cutions of other clients (as long as Amt > 0). Now, suppose that event balanceChange
is triggered whenever the balance of available stocks changes from Amts to Amis by
customer identified as C'I D (i.e., whenever the second transaction completes). For ex-
ample, these events may be used for transaction execution monitoring, statistical anal-
ysis, etc. Let us furthermore assume that the following pattern is used to detect stock
trades of suspiciously large volume, which may hint at a potential fraud.

bigTrade(CID,ID, Amt;) < buyStocks(CID,ID, Pri, Amt;)
SEQ balanceChange(CID, Amts, Amts) WHERE (Amity — Amts) > 10000.

Many transactions concurrently change the balance, and after each change, event
balanceChange is triggered. Now let us suppose that an event bigTrade has been
detected, and a fraud investigation was initiated. Just a second afterwards, the money
transfer transaction fails (due to insufficient account balance of a customer). In this
situation, the amount of available stocks will be restored by executing a compensation
transaction. Moreover, the corresponding balanceChange event needs to be retracted.
Finally, the bigTrade complex event needs to be revoked too, leading to the cancelation
of the fraud investigation.

The automated stock brokerage system operates with flexible policies, allowing cus-
tomers to cancel their transaction within certain time. If after detection of event
bigTrade, a customer cancels her transaction (by retracting event trChecked) the
atomic event buyStocks will be revoked too, which in turn will necessitate the retrac-
tion of event bigTrade.

2.3 Declarative Semantics

We define the declarative formal semantics of our language for event processing in a
model-theoretic way.

Note that we assume a fixed interpretation of the occurring function symbols, i.e., for
every function symbol f of arity n, we presume a predefined function f* : Con™ —
Con. That is, in our setting, functions are treated as built-in utilities.
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As usual, a variable assignment is a mapping p : Var — Con assigning a value to
every variable. We let 1* denote the extension of y to terms defined in the usual way:

v = p(v) ifv e Var,
uwr e if c € Con,
flr, .o tn) — fS(u*(t1),. .., u"(t,)) otherwise.

In addition to the set of rules R, we define an event stream S = (E, ev, occ, rev).
Thereby, E is a set of events, ev : E — Ground a function assigning a ground
atom (specifying the event type and possibly additional information) to every event
and occ, rev : E - QT partial functions assigning to events time points at which they
occur or are revoked, respectively. As a side condition, we presume that for all e € E
with rev(e) defined, occ(e) is defined as well and occ(e) < rev(e), i.e., an event can
only be revoked after it has occurred. Moreover, we require the event stream to be free
of accumulation points, i.e., for every ¢ € QT, the set {¢' € QT | ¢ < gandq =
occ(e) for some e € E} is finite.

Given an event stream S = (I, ev,occ, rev) and a time “viewpoint” v € QT, we
now define the auxiliary function €, : Ground — 20" from ground atoms into sets of
nonnegative rational numbers by

€y (at) == occ(ev™ ! (at) N (occ™ ([0, v]) \ rev*([0,0])) )

It thereby indicates at what time instants what event types occur according to all the
(occurrence and revocation) information obtained up to the time viewpoint v.

Now, we define an interpretation Z : Ground — 207 xQ" g5 a mapping from the
ground atoms to sets of pairs of nonnegative rationals, such that ¢; < gy for every
(q1,q2) € Z(g) forall g € Ground.

Given an event stream S and a viewpoint v € Q, we call an interpretation Z model
for a rule set R — written as Z =% R — if the following conditions are satisfied:

Cl1 (q,q) € Z(g) forevery g € Ground and q € €,(g).
C2 forevery rule atom « pattern and every variable assignment ;. we have Z,, (atom)
C 7, (pattern) where Z,, is inductively defined as displayed in Figure 2l

Given an interpretation Z and some ¢ € Q%, we let Z|, denote the interpretation
defined via Z|4(g9) = Z(9) N {(q1,42) | 2 — a1 < ¢}

Given two interpretations Z and J, we say that 7 is preferred to J if there exists a
g € Q" withZ|, C J|,.

A model 7 is called minimal if there is no other model preferred to Z. It is easy
to show that for every event stream S, viewpoint v € Q7, and rule base R there is a
unique minimal model ZS-¥"R

Finally, given an atom a and two rational numbers g1, g2, we say that the event alar-a2]
is a consequence of the event stream e and the rule base R at the viewpoint v (written
S,v, R = altv®l)if (g1, q2) € Z35R(a) for some variable assignment .

Clearly, the problem of deciding S, v, R = al?:%! is time polynomial with respect
to the combined size of R and S, given bounded arity of the used predicates and poly-
nomial computation time for the built-in functions. This result is a straightforward con-
sequence from the fact that there only polynomially many al?:%) to be considered
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pattern Z,.(pattern)

pr(ty, ... tn) |Z(pr(p™(t1), ..., 1" (tn)))
p WHERE ¢ Zu(p) if u*(t) = true

() otherwise.
q {(g,9)} forallg € QF
(p)-q Z.(p) N {{q1,¢2) | 2 — 1 = ¢}
P1SEQp2 a1, 1) | {@1,42) € Tu(pr) and {gs, qa) € T,.(p2) for some g2, g3 € QF with g2 < g3}
P1 AND p2 {(min(q1, g3), max(g2,¢a)) | {q1,42) € Zu(p1) and (g3, qa) € Lu(p2) for some g2, 3 € Q*}
D1 PAR p2 {{min(q1,¢3), max(qz, ¢1)) | (q1,92) € Zu(p1) and (g3, g1) € Lpu(p2)
for some g2, g3 € Q" with max(qi1,q3) < min(g, q4)}
P1 OR p2 Ty (p1) U Zu(p2)
P1EQUALS p2 |Zu(p )ﬂI( 2)
prMEETSp2  {(q1,43) | (@1,42) € Z,.(p1) and (go, g3) € Tpu(p2) for some go € Q*}
p1 DURING p2  |{{g3,q4) \ (q1,q2) € Z,.(p1) and (g3, 1) € Z,.(p2) for some g2, g3 € Q" withqs < q1 < g2 < qu}
p1STARTS 2 |{(q1,43) | (91,92) € Zu(p1) and (g1, ¢3) € Zy.(p2) for some g2 € Q" with g2 < g3}
P1LFINISHES p2 ({(q1,03) | {42, 43) € Zpu(p1) and (g1, q3) € L. (p2) for some g2 € QF with g1 < g2}

NOT(p1).[p2, ps]|Zu(p2 SEQ ps) \ Zp.(p2 SEQ p1 SEQ ps3)

Fig. 2. Definition of extensional interpretation of event patterns. We use p(, for patterns, g, for
rational numbers, ¢(,,) for terms, and pr for predicates .

and their validity can be computed in a bottom-up way with increasing interval length.
The computational overhead introduced by event revision is not measurable in terms of
worst-case complexity which is PTime with and without the revision component.

In the sequel, we will see how this declarative, time-dependent semantics is realized
incrementally, as v proceeds, i.e., the “computed semantics” at some time viewpoint v
is revised to obtain the semantics at some latter stage, instead of computing everything
from scratch.

3 A Rule-Based Execution Model

This section starts with a brief explanation on how complex events can be computed
with event-driven backward chaining (EDBC) rules [3]]. This is our basic mechanism
for derivation of complex events in a data-driven fashion (with logic rules). Later on,
we extend the mechanism to handle event revision too.

Sequence with event revision. Let us consider a sequence of events represented as arule:
e «+— a SEQ b SEQ c. Event e is detected when event a{?] is followed by b and in turn fol-
lowed by event c. We can always represent the above pattern as e < ((a SEQ b) SEQ c¢).

We refer to this way of “coupling events” as binarization of events. Effectively, in bi-
narization we introduce two-input intermediate events (goals). For example this allows
us to rewrite the above sequence as ie; < a SEQ b, and e «+ ie; SEQ c. Every moni-
tored event (either atomic or complex), including intermediate events, will be assigned
with one or more logic rules, fired whenever that event occurs.

In the following, we give more details about assigning rules to each monitored event.
Algorithm 1 accepts as input a rule referring to a binary sequence e; < a SEQ b, and
produces executable rules for the sequence pattern. A detected sequence can also be
retracted by the given transformation. If this occurs, the retraction is further propagated
amongst other patterns (built upon that sequence).

7 More precisely, by “event a” is meant an instance of the event of type a.
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Algorithm 1. Sequence

Output: event-driven backward chaining rules for SEQ operator including revision.
Each event binary goal ie; < a SEQ b is converted into: {
a(ID,[T1,T»]) : — for_each(a,1,ID, [T1,T3]).
a(1,ID,[Th,T5]) : — assert(goal(b(., [, ]),a(ID, [T1,Tz]),iei (5, [, J))).
rev_a(lD,[T3,Ty4]) : — for_each(rev_a,1,ID, [T5,T4]).
rev_a(l,ID,[T3,T4]) : — goal(b(,, [, ]),a(ID,[T1,Tz]),
161 o ), retract (goal (b , [, 1), a(ID, [Ty, Ta]))).
rev_a(2,ID,[T5,T4]) : — (ie-1(ID, [Th, T3]),
retract(ie 1(ID,[T1,T2))), rev_ie;(ID,[T1,T3])); true.
b(ID,[T5,T4]) : — for_each(b, 1, ID,[T5,T4]).
b(1, 1D, [T5,T4]) : — goal(b(, [, ]),a(ID,[T1, T2]),
iei(s, [ ), To < Ts,ies(ID, [Th, T4)).
rev b(ID,[T5,Tg]) : — for_each(rev_a,1,ID, [T, Ts]).
rev db(1,ID,[T5,Ts]) : — (ie:(ID,[T1,T4]),
retract(ie:(ID, [T1,T4])), rev_iei(ID,[T1,T4])); true.
ie 1(ID,[T1,T4]) : — for_each(ie_1,1,1D, [Ty, Ty)).
ie 1(1,ID, [Ty, Ty)) : — assert(ie 1(ID,[T1,T4])).}
}

The binarization step must precede the rule transformation. We first consider rules
that handle sequence without event revision. These rules in Algorithm 1 do not have
prefix rev_event_name (e.g., rev_a(1, I D, [T5,Ty])), and belong to one of two differ-
ent classes of ruledl. We refer to the first class as to goal inserting rules. The second
class corresponds to checking rules. For example, the second rule in Algorithm 1 (i.e.,
with a(1, ID, [Ty, T5]) in the rule head) belongs to the first class of rules, as it inserts
goal(b(-, -),a(T1,Ts),ie1(-, ). This rule will fire when an event of type a occurs, and
the meaning of the inserted goal is as follows: “an event a has occurred at [T7, TQ]E
and we are waiting for event b to happen in order to detect event ie;.” Obviously, the
goal does not carry information about times for b and ie;, as we don’t know when they
will occur. In general, the second event in a goal always denotes the event that has just
occurred. The role of the first argument is to specify what we are waiting for, to detect
an event that is on the third position.

The rule with b(1,ID, [T5,Ty4]) in the rule head (see Algorithm 1) belongs to
the second class (i.e., checking rule). This rule checks whether certain prerequisite
goals already have been asserted, in which case it triggers the more complex event.
In this example, the rule will fire whenever event b occurs. The rule checks whether
goal(b(, [, ]),a(ID, [Ty, Ts]), ie1(-, [, ])) already exists (i.e., a has previously hap-
pened), in which case the rule triggers ieq, by calling ies (I.D, [T1, T4]). After detection
of event iey, goal(b(., [, ]),a(ID, [Ty, Ts]),ie1(-,[- ])) could be removed from

8 There exist the third class of rules too (with for_each predicate). However these auxiliary
rules, implementing a sort of “for each” loop, and ensuring that whenever an event of certain
type happens, all rules with that event in the head fire.

® Apart from the timestamp, an event may carry other data parameters. They are omitted here
for the sake of readability.
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the database to free up memory (as it is “consumed”). However this is not the case, as
the goal still may be useful if the revision of event a takes place (see below the case
when event rev_a happens).

The time occurrence of ie; (i.e., [T1, T4]) is defined based on the occurrence of con-
stituting events (i.e., a(I D, [T1,Tz]), and b(ID, [T3,Ty]), see Section 2.3). By calling
ie (ID, [T, T4]), this event will be inserted as a fact (see Algorithm 1). If later on, the
revision process takes place, this fact will serve as a proof that event ie; occurred and
hence may be retracted. If event ie; is further used in composition of other complex
events, there will exist another rule with ie; in the rule head (apart from the current
rules). The purpose of those rules would be to propagate the occurrence of event ie;
upward (since it is an intermediate event).

Let us now explain how Algorithm 1 handles event revision in a sequence of two
events. If once detected, event ie; may be retracted by an occurrence of either event
rev_a or rev_b. That is why there are two sets of revision rules: rev_a and rev_b, see
Algorithm 1. Additionally, events rev_a and rev_b may retract other detected events, if
they were used in their detections and their / Ds match. The identification (ID) is used
to make a distinction between possible retractions of instances of the same event types.

If an event rev_a happens, rules rev_a(1l, ID, [T5,T4]) and rev_a(2,ID, T3, Ty])
aim to nullify a prior occurrence of an event a. In particular, if an event a has hap-
pened, a goal goal(b(_, [, ]),a(ID,[T1,T3]),ie1(,[-,-])) will be inserted into the
database. Therefore the subsequent occurrence of rev_a needs to delete that goal.
The rule rev_a(1, ID, [T3,Ty4]) does that. If the following sequence of events occurs:
a,rev_a, b, then event ie; will not be detected (as rev_a has nullified the occurrence
of a). If event rev_a happens after event b, event ie; will need to be retracted (as it has
already been detected). The rule with rev_a(2, I D, [T3,Ty]) in the head is used in the
latter scenario.

In the previously described algorithm, we assumed that all events in a binarized
pattern have the same 1D (i.e., ie1(ID) < a(ID) BIN b(ID)). It is worth noting that
some intermediate or complex events may be composed of events with different I Ds. In
such cases, an additional I D may be added, e.g., ie;(I D1, I D3). I Dy will then denote
an ID of the left-hand-side event (a(I D)), and I D5 will denote an 1D of the right-
hand-side event (b(ID3)). Checking these I Ds when certain events are retracted allows
to employ event revision using the presented algorithms with no further restriction.

Rules produced by the transformation in Algorithm 1 are executable rules (Prolog
rules). With no restriction these rules may be accompanied by other Prolog rules, used
for example to express the background or domain knowledge (see Example “Knowledge-
based patterns” from Section 2.2)). To also enable use of existing online knowledge
bases expressed as RDFS ontologies (e.g., from LOD initiative and other sources, see
Section[T)), we use existing tools for conversion of RDFS to Prolog, such as SWI-Prolog
Semantic Web Library. This conversion is done at design-time, and has no impact at
run-time characteristics of our framework.

Rule transformations for other language constructs — defined in Section[2]- are omit-
ted for space reasons.
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4 Experimental Results

As a proof of concept, we have provided a prototype implementation of the presented
framework for knowledge-based CEP with event revision capabilities. The implementa-
tion is part of our open-source engine for event processing called ETALISY. Since our
approach is based on deductive rules, it was convenient to provide the implementation
in Prolog The prototype automatically compiles the user-defined complex patterns,
written in the presented language (see Section[2)) into Prolog rules. Also, our engine can
automatically load an accompanied RDFS ontology (as a domain background knowl-
edge base) into Prolog. YAP Prolog version 5.1. 113 is then used to execute the compiled
rules. All tests were carried out on a workstation with Intel Core Quad CPU Q9400
2,66GHz, 8GB of RAM, running Windows Vista x64. To run tests on streaming data,
we have implemented an event stream generator that creates time series data with prob-
abilistic events. We present a test with real data set too.

Knowledge-based CEP test. As a concrete example, we show the evaluation of the
trendIncrease complex pattern from Section We varied the pool of companies
in the transitive closure, ranging from 100 to 100,000 linked companies. Figure B[a)
shows the throughputin thousands of events/second, obtained after detection of stockIcr
events. To prove the supply-chain connectivity between two companies, the system
needs to evaluate transitive closure rules, i.e., it needs to perform Stream Reasoning
(see inSupChain rules from Section 2.2). It can be seen that the computation of the
recursive relation inSupC'hain has a relatively small effect, ~10%, on the overall com-
plex processing execution time (even when the system needs to traverse 100,000 links
in between two stockIcr events). Our system detects more 20000 complex events per
second, where for each complex event, the system additionally needed to process back-
ground knowledge consisting of 100000 facts (or RDF triples).

3 Revision Flag off & Revision Flag on

——Throughput Change [ Revision Flag off - Revision Flag on
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Fig. 3. (a) CEP with Stream Reasoning (b) Throughput comparison (c) Negation and revision

Event revision CEP experiments. Figure[3[b) shows experimental results we obtained
for an event pattern represented by rule (I). In particular, Figure[3(b) shows the through-
put comparison with and without handling event revision. We did the measurement for
a pattern that exhibits different event operators (i.e., BIN instantiated by SEQ, AND,
OR ) of two events and the join operation on their I D attribute. The y-axis shows the

' ETALIS:http: //code.google.com/p/etalis/
' With similar effort, our revision model could be implemented in other rule languages too.
'2 YAP Prolog: http: //www.dcc. fc.up.pt/~vsc/Yap/
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event throughput achieved by our prototype when events are, and are not, retractable.
The x-axis shows different event operators in rule (). The performance loss when re-
vision is handled is moderate, and it happens mainly due to the fact that more events
(goals) are kept in memory; hence more data needs to be indexed and processed.

e(ID) « a(ID) BINb(ID). (1)

We also present an in-comparison throughput for negation. The tested pattern with
negation is depicted by rule @)). The pattern detects an event a followed by an event b,
with no occurrence of an event c in between (provided that all event instances must have
the same ID). Figure Blc) shows evaluation results for this pattern. We compare two
throughputs, one obtained by processing streams without retracted events; and another
with retracted events. The percentage of negated events (i.e., those of type c) in both
streams varies from 5% to 20%. Additionally, streams with retracted events contain
negated events with the same percentage (i.e., from 5% to 20%). The achieved results
are similar to those from other operators.

e(ID) «— NoOT(c(ID)).Ja(ID) SEQ b(ID)]. )

We have also tested the latency caused by retraction of a hierarchy of complex events
(i.e., not only complex events detected directly from an input stream). Complex events
in this tests are chained events, as represented by rule (3). That is, when event e; occurs,
it will trigger other n events in a chain. Also if event e, is retracted, all n chained events
will be retracted. We have created event chains of different sizes, ranging from 1000
events to 50000 events. Once the chains are created, we retract the first event in the
chain and measure the time required to retract all other triggered events. Figure[d shows
the experiment results. Retraction of 1000 event is done in 31 ms and all up to 10000
events the delay seems fairly negligible (less than a second). However to retract 20000
and specially for 50000 events, the time increases exponentially (i.e., approx. 3 s and 16
s). Note that this test is rather hard as we assumed that all 50000 events have the same
1D, so no goal could have been removed while computing and retracting all of them.
Obviously, this fact has its consequences on the performance.

92<ID) — el(ID)
??(ID) — ey(ID). 3)
ent1(ID) «— ey(ID).

All presented tests so far were carried out with probabilistic synthetic data streams.
We could not find available real data sets with revision tuples (as they are usually
kept proprietarily). Still to present a more realistic scenario, we took a stream of IBM
stocks from 1962 year up to now, provided by Yahoo Financd'l. We artificially inserted
5% of revision tuples to this stream. Format of events provided by Yahoo Finance is
stock(ID, Date, Opn, High, Low, Cls, Vol, Adj) where I D is a company ID; Date
is a current date; Opn, High, Low, Cls denote the opening, the highest, the lowest, and
closing price, respectively; Adj is the closing price adjusted for dividends and splits.

13 Yahoo Finance: http://finance.yahoo.com/
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The event pattern is represented by rule (4). We monitored the price increase of two
successive stock updates w.r.t Adj data. Additionally a filter for the price increase was
specified by X, where X varied between 0% and 10%. Figure [5(b) compare results
obtained for the original stream and the one modified with revision tuples.

stockIncr(ID, Adjy, Adjs) —
stock(ID, Datey, Opny, Highy, Lowy, Clsy, Voly, Adjy)
SEQ 4)
stock(ID, Dates, Opna, Highsa, Lows, Clsa, Vola, Adjs)
WHERE (Adj; * X < Adjs).
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Fig. 5. Stock price change on a real data set

First, we see that the throughput without revision is lower than the one obtained from
a similar test (see Figure Blb)). Our closer investigation has shown that this difference
was not caused by the use of real data set. Instead it has to do with more efficient in-
dexing in the former test (Figure 3lb)). Note that in the real stream, all events are of
the same type (i.e., stock) whereas in the synthetic data set we have two types (i.e.,
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a and b). Our engine is more effective when events are discriminated upon their types
(rather than on data attributes, e.g., an I D). Second, we can observe that the throughput
without revision slightly increases as the filter condition gets tighter. This result is un-
derstandable, since in this case, less complex events, are computed and the throughput
(based on the input stream) raises up.

At the end, it is worth mentioning that costs of compilation of an event program
(written in the formalism, proposed in Section)) into Prolog rules are minor. Typically,
a program is compiled in few micro seconds, and the compilation is done only once at
the design-time. Hence, the compilation does not cause a significant overhead.

5 Related Work

Work related to ours goes in two directions. The first direction reviews existing ap-
proaches from Data Stream Management Systems (DSMS) that also handle event revi-
sion (retraction). The other discusses Knowledge-based CEP & Stream Reasoning. We
are not aware of any approach covering both aspects.

DSMS approaches. The Borealis CEP engine [9] features a mechanism for revision
processing. The mechanism handles erroneous input events by generating corrections
of previously output query results on data streams.

This work has been extended in [12] by proposing a revision model based on “replay”
of event history. The technique assumes that a stream engine maintains an archive of
recent data seen on each of its input streams. These archives are revised when revision
tuples occur, and reprocessing (replaying) the sequence of input tuples than generates
any of the query results invalidated by the revision.

While this technique is general and works well for all classes of patterns supported
by Borealis system [9], it requires the event history to be kept (persisted). The history
is kept as long as revision needs to be guaranteed. In our approach we also need to keep
extra data in order to enable revision. However we saw (in Section [3)) that we do not
need to keep the whole event history (i.e., during the period of time in which revision is
guaranteed). We keep only intermediate results (goals) relevant w.r.t detected complex
events. Moreover we do not need to replay the whole history when computing revisions.
The intermediate results (goals) represent partial results, hence they enable us to obtain
revisions without re-computing them from scratch.

In [7]] revision is considered as a problem caused by out of order events, i.e., it is
possible to revise the occurrence time as well as the time when an event is reported
to the system. We consider a general case where not only times can be revised, but
the whole event can be retracted. Moreover, the consequences of that retraction are
amended not only on detected patterns but also on complex patterns that are built out
of them (i.e., hierarchies of complex events). The work in [7] is based on buffering and
synchronization points. An input stream may be blocked in between synchronization
points until events are reordered. On the other hand, we propose an approach that never
blocks the input events. Further on, we never buffer the input stream and reorder it.

Knowledge-based CEP & Stream Reasoning. Continuous SPARQL (C-SPARQL)
[S]] is a language for continuous query processing over streams of RDF data. It extends
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the SPARQL language by adding support for window and aggregation operations. The
work in [8] introduces Streaming SPARQL. The approach is built on temporal relational
algebra, and the authors provide an algorithm to transform SPARQL queries to that
algebra. As in [3], the approach is lacking event processing capabilities, i.e., detecting
RDF triple sequences occurring in a specific time relatedness.

Finally, in [10] an approach for integrating sensor streams with LOD background
knowledge has been presented. As a part of this work, a continuous query language,
CQELS, has been proposed. The language supports sliding windows, aggregations, and
other operators supported by SPARQL language (which are now adapted to stream
processing).

Our work is similar to this and other, previously mentioned, approaches. We, how-
ever, follow completely a deductive rule-based paradigm, providing an effective so-
lution for CEP and Stream Reasoning. Additionally our approach handles revision in
event processing too.

6 Conclusions and Future Work

Complex Event Processing (CEP) deals with processing of continuously arriving events
with the goal of identifying meaningful patterns, (complex events). In existing CEP ap-
proaches complex events consist merely of more simple (temporally situated) events.
We proposed a knowledge-based event processing, advocating a richer formalism for
CEP, capable not only to match patterns based on temporal relations among events
but also to evaluate contextual knowledge and prove their semantic relations. More-
over, we proposed a framework which enables revision in pattern matching. We have
demonstrated that our deductive rule-based approach for CEP represents a natural way
to realize knowledge-based CEP with Stream Reasoning, and express routines required
for event revisions.
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