
Top-k Linked Data Query Processing

Andreas Wagner, Thanh Tran, Günter Ladwig, and Andreas Harth

Institute AIFB, Karlsruhe Institute of Technology, Germany
{a.wagner,ducthanh.tran,guenter.ladwig,harth}@kit.edu

Abstract. In recent years, top-k query processing has attracted much
attention in large-scale scenarios, where computing only the k “best”
results is often sufficient. Top-k query processing has been dealt with in
different contexts. One line of research targets the so-called top-k join
problem, where the k best final results are obtained through joining par-
tial results. In this paper, we study top-k join in a Linked Data setting,
where partial results to be joined are located at different sources and can
only be accessed via URI source lookups. We show how existing work on
top-k join processing can be adapted to the Linked Data setting. We
elaborate on strategies for a better estimation of scores of unprocessed
join results (to obtain tighter bounds for early termination) and for a
more aggressive pruning of results. Based on experiments on real-world
Linked Data, we show that the proposed top-k join processing technique
substantially improves runtime performance.

1 Introduction

In recent years, the amount of Linked Data has increased rapidly. According to
the Linked Data principles1, dereferencing a Linked Data URI via HTTP should
return a machine-readable description of the entity identified by the URI. Each
URI therefore represents a virtual “data source” (see Fig. 1).

In this context, researchers have studied the problem of Linked Data query
processing [6, 3, 10, 5, 11, 16]. Processing structured queries over Linked Data can
be seen as a special case of federated query processing. However, instead of re-
lying on endpoints that provide structured querying capabilities (e.g., SPARQL
interfaces), only HTTP URI lookups are available. Thus, entire sources have to
be retrieved. Even for a single trivial query, hundreds of sources have to be pro-
cessed in their entirety [10]. Aiming at delivering up-to-date results, sources often
cannot be cached, but have to be fetched from external hosts. Thus, efficiency
and scalability are essential problems in the Linked Data setting.

A widely adapted strategy for dealing with these problems is to perform top-
k processing. Instead of computing all results, top-k query processing approaches
produce only the top-k results [8]. This is based on the observation that results
may vary in “quality” (which can be quantified through a ranking function), and
users, especially on the Web, are often interested in only a few relevant results.
We illustrate the problem of top-k Linked Data query processing in the following
example:

1 http://www.w3.org/DesignIssues/LinkedData.html

2

Src. 1. ex:beatles

ex : b e a t l e s
f o a f : name

”The Beat l e s ” ;
ex : album ex :

sg t pepper .
ex : album ex : he lp ;

Src. 2. ex:sgt pepper

ex : sg t pepper
f o a f : name
”Sgt . Pepper” ;

ex : song ”Lucy” .

Src. 3. ex:help

ex : he lp
f o a f : name ”Help ! ” ;
ex : song ”Help ! ” .

Fig. 1. Linked Data sources describing “The Beatles” and their songs “Help!” and
“Lucy”.

1 SELECT ?name WHERE
2 {
3 ex : b e a t l e s ex : album ?album .
4 ?album ex : song ? song .
5 }

ex:beatles

?album

?song

ex:album
ex:song

Fig. 2. Example query returning names of songs in Beatles’ albums. The query com-
prises two triple patterns q1 (line 3) and q2 (line 4).

Example 1. For the query in Fig. 2, the URIs ex:beatles, ex:help and ex:

sgt_pepper are dereferenced to produce the results “Lucy” and “Help!”, respec-
tively, for ?name. The results are retrieved from different sources, which vary
in “quality” (i.e., ex:help provides the precise name for the song “Help!”, while
ex:sgt_pepper merely holds “Lucy” as name for a song, which is actually called
“Lucy in the Sky with Diamonds”). Such differences are captured by a ranking
function, which is used in top-k query processing to measure the result quality,
and to output only the k best results. Here, a ranking function could assign
ranks to triples based on their data quality, e.g., triples in ex:beatles (s1) have
score 1, triples in ex:sgt_pepper (s2) score 2 and those in ex:help (s3) score 3 .

While being intuitively appealing, top-k processing has not been studied in
the Linked Data (and the more general RDF) context before. Aiming at the
adaption of top-k query processing to the Linked Data setting, we provide the
following contributions:

– Top-k query processing has been studied in different contexts [8]. Closest
to our work is top-k querying over Web-accessible databases [19]. However,
the Linked Data context is unique to the extent that only URI lookups are
available for accessing data. Instead of retrieving partial results matching
query parts from sources that are exposed through the query interfaces (of
the corresponding database endpoints), we have to retrieve entire sources
via URI lookups. To the best of our knowledge, this is the first work towards
top-k Linked Data query processing.

– We show that in a Linked Data setting, more detailed scoring information is
available. We propose strategies for using this knowledge to provide tighter
score bounds (and thus allow an earlier termination) compared to top-k
processing in other scenarios [13, 2, 17]. Further, we propose an aggressive

3

technique for pruning partial query results that cannot contribute to the
final top-k result.

– We perform an experimental evaluation on Linked Data datasets and queries
to show that top-k processing leads to increased performance (of 35 % on
average) in the Linked Data setting, when only a number of top-k results
are produced. We also show that our proposed tighter bounds increase the
performance of top-k processing compared to a baseline implementation by
12 % on average.
Outline. In Section 2 we introduce the problem of Linked Data query pro-

cessing. In Section 3 we show how we adapt top-k join processing methods to the
Linked Data setting. In Sections 3.3 & 3.4 we propose two optimizations: tighter
bounds on future join results and a way to prune unnecessary partial results. We
present our evaluation in Section 4 and discuss related work in Section 5, before
concluding in Section 6.

2 Linked Data Query Processing

Data. We use RDF [9] as our data model. However, for clarity of presentation,
we do not consider the special RDF semantics (e.g., RDF blank nodes) and focus
on the main characteristics of RDF. Namely, RDF can be considered as a general
model for graph-structured data encoded as 〈s, p, o〉 triples:

Definition 1 (RDF Triple, RDF Graph). Given a set of URIs U and a set
of literals L, t = 〈s, p, o〉 ∈ U ×U × (U ∪L) is an RDF triple, and a set of RDF
triples is called a RDF graph.

The Linked Data principles used to access and publish RDF data on the Web,
mandate that (1) HTTP URIs shall be used as URIs and that (2) dereferencing a
URI returns a description of the resource identified by the URI. Thus, a URI can
be seen as a Linked Data source, whose content, namely a set of RDF triples T d,
is obtained by dereferencing d. Triples in d contain other HTTP URI references
(links), connecting d to other sources. The union set of sources in U forms a
Linked Data graph G = {t|t ∈ T di ∧ di ∈ U}.

Queries. The standard language for querying RDF is SPARQL [15]. Previous
work on Linked Data query processing focused on processing basic graph patterns
(BGP), which is a core feature of SPARQL.

Definition 2 (Triple Pattern, Basic Graph Pattern). A triple pattern has
the form q = 〈s, p, o〉, where s, p and o is either a URI, a literal or a variable.
A basic graph pattern is a set of triple patterns Q = {q1, . . . , qn}.

Result. Often, every triple pattern in a BGP query Q shares a common
variable with at least one other pattern such that Q forms a connected graph.
Computing answers to a BGP query over G amounts to the task of graph pattern
matching. Basically, a result to a query Q evaluated over G (given by µG(Q)) is
a subgraph of G that matches Q. The set of all results for query Q is denoted
by Ω(Q).

4

Query Processing. Traditionally, a query Q is evaluated by obtaining bind-
ings for each of its triple patterns and then performing a series of joins between
bindings obtained for patterns that share a variable. In the Linked Data con-
text, BGP queries are evaluated against all sources in G. While some sources
may be available locally, others have to be retrieved via HTTP dereferencing
during query processing.

For this, exploration-based link traversal [6, 5] can be performed at runtime.
This strategy assumes that Q contains at least one URI d as “entry point” to G.
Starting from triples in T d, G is then searched for results by following links from
d to other sources. Instead of exploring sources at runtime, knowledge about
(previously processed) Linked Data sources in the form of statistics has been
exploited to determine and rank relevant sources [3, 10] at query compilation
time. Existing approaches assume a source index, which is basically a map that
associates a triple pattern q with sources containing triples that match q. Let a
lookup in the source index for q be denoted as source(q).

Given a source index, Linked data query processing can be conceived as a
series of operators. We identify the source scan as a distinctive operator in Linked
Data query processing. Given a source d, scan(d) outputs all triples in T d. A
selection σTd(q) is performed on T d to output triples that match a triple pattern
q. Two triple patterns qi and qj that share a common variable are combined via
a join operator qi 1 qj . In general, Qi 1 Qj joins any subexpression Qi ⊂ Q with
one other Qj ⊂ Q (Qi∩Qj = ∅). Also, we have

⋃
(I1, . . . , In), which outputs the

union of its inputs Ii. For clarity of presentation, we assume triple patterns form
a connected graph such that a join is the only operator used to combine triples
from different patterns. Then, Linked Data query processing can be modeled as
a tree-structured plan as exemplified in Fig. 3 (a).

Fig. 3. (a) Query plan providing a sorted access, query execution and the scheduler.
Note, the numbering denotes the order of selection. (b) Rank join operator with data
from our “Beatles” example.

Query plans in relational databases generally consist of access plans for indi-
vidual relations. Similarly, Linked Data query plans can be seen as being com-

5

posed of access plans at the bottom-level (i.e., one for each triple pattern). An
access plan for q is a tree-structured query plan constructed in the following
way: (1) At the lowest level, leaf nodes are source scan operators, one for every
source that is relevant for q (one for every d ∈ source(q)). (2) The next level
contains selection operators, one for every scan operator. (3) The root node is
a union operator

⋃
t(σTd1 (q), . . . , σTdn (q)), which combines the outputs of all

selection operators for q. At the next levels, the outputs of the access plans (of
their root operators) are successively joined to process all triple patterns of the
query, resulting in a tree of operators.

Example 2. Fig. 3 (a) shows an example query plan for the query in Fig. 2.
Instead of scan and join, their top-k counterparts scan-sort and rank-join are
shown (explained in the next section). There are three source scan operators,
one for each of the sources ex:beatles (s1), ex:sgt_pepper (s2), and ex:help (s3).
Together with selection and union operators, they form two access plans for the
patterns q1 and q2. The outputs of these access plans are then combined using
one join operator.

Push-based Processing. In previous work [10, 11], push-based execution
using symmetric hash join operators was shown to have better performance than
pull-based implementations (such as [6]). In a push-based model, operators push
their results to subsequent operators instead of pulling from input operators,
i.e., the execution is driven by the incoming data. This leads to better behavior
in network settings, because, unlike in pull-based execution models, the query
execution is not blocked, when a single source is delayed [11].

3 Top-k Join Linked Data Query Processing

Top-k query processing [14, 7, 17] aims at a more efficient query execution by
focusing on the k best results, while skipping the computation of remaining re-
sults. This early termination can lead to a significant reduction in the number
of inputs to be read and processed, which translates to performance improve-
ment. We now discuss how existing top-k join (also called rank join) strategies
can be be adopted to the Linked Data query processing problem as presented
before. Further, we present an optimization towards tighter bounds and a more
aggressive result pruning.

3.1 Preliminaries

Besides the source index employed for Linked Data query processing, we need a
ranking function as well as sorted access for top-k processing [14, 7, 17].

Ranking Function. We assume the existence of a ranking function for
determining the “importance” of triples and (partial) query results in G:

Definition 3 (Ranking Function). Let a ranking function υ : G 7→ [0, 1]
assigns scores to triples in G. Given Q as a query over G and Ω(Q) as its
results, then υ ranks results in Ω(Q) (i.e., υ : Ω(Q) 7→ [0, 1]) as an aggregation
of their triple scores: µ ∈ Ω(Q): υ(µ) = ∆(υ(t1), υ(t2), . . . , υ(tn)), ti ∈ µ, where
∆ is a monotonic aggregation function.

6

For instance, scores for triples can be obtained through PageRank inspired rank-
ing [4] or witness counts [1].

Sorted Access. In the traditional database setting, a sorted access can be
efficiently provided by using an index over the input data. In particular, while
work on top-k join processing over Web-accessible databases [19] aims at a similar
setting, it also assumes such a complete index. However, in the Linked Data
context, only source statistics are assumed to be available, while the contained
triples are not indexed (e.g., for the sake of result freshness). Following this
tradition, we only assume that score bounds are known for the sources, while
their triples are sorted on-the-fly.

Definition 4 (Source Upper Bound). Given a source d ∈ U , its upper
bound score υu(d) is defined as the maximal score of the triples contained in
d, i.e., υu(d) = max{υ(t)|t ∈ T d}. Conversely, the lower bound score is defined
as υl(d) = min{υ(t)|t ∈ T d}.

For each triple pattern in the source index, we store its list of relevant sources
in descending order of their upper bound scores υu. This allows sources for each
union operator to be retrieved sequentially in the order of their upper bound
scores. Further, as triples for a given source are not sorted, we replace each scan
operator with a scan-sort operator. A scan-sort operator, after retrieving a
source d, sorts its triples T d according to their scores. However, if two (or more)
sources di, dj have overlapping bound scores (i.e., υl(di) < υu(dj) < υu(di)), and
both are inputs for the same union, the output of the union will not be ordered if
these sources are sorted individually. We address this problem by treating both
sources di and dj as “one source”. They are combined, and then are scanned and
sorted via scan-sort. Fig. 3 (a) shows an access plan with scan-sort operators,
which provide a sorted access to the bindings of q1 and q2.

3.2 Push-based Top-k Join Processing

Based on the ranking function, source index, and our sorted access mechanism,
we can now adapt top-k strategies to the Linked Data setting. However, previous
work on the top-k join problem uses pull-based processing, i.e., join operators
actively “pull” their inputs in order to produce an output [7, 19, 17]. In compli-
ance with [17], we adapt the pull/bound rank join (PBRJ) algorithm template
for a push-based execution in the Linked Data setting. For simplicity, the fol-
lowing presentation of the PBRJ algorithm assumes binary joins (each join has
two inputs).

In a pull-based implementation, operators call a next method on their in-
put operators to obtain new data. In a push-based execution, the control flow
is inverted, i.e., operators have a push method that is called by their input op-
erators. Algorithm 1 shows the push method of the PBRJ operator. The input
from which the input element r was pushed is identified by i ∈ {1, 2}. Note,
by input element we mean either a triple (if the input is a union operator) or
a partial query result (if the input is another rank join operator). First, the
input element r is inserted into the hash table Hi (line 3). Then, we probe the
other input’s hash table Hj for valid join combinations (line 4), which are then

7

added to the output queue O (line 5). Output queue O is a priority queue such
that the result with the highest score is always first. The threshold Γ is updated
using the bounding strategy B, providing an upper-bound on the scores of future
join results (result combinations of as yet “unseen” input elements). When a
join result in queue O has a score equal to or greater than the threshold Γ , we
know there is no future result having a higher score. Thus, the result is ready to
be reported to a subsequent operator. If output O contains k results, which are
ready to be reported, the algorithm stops reading inputs (early termination).

As reported in [17], the PBRJ has two parameters: its bounding strategy B and
its pulling strategy P. For the former, the corner-bound is commonly employed
and is also used in our approach. The latter strategy, however, is proposed for
a pull-based execution and is thus not directly applicable. Similar to the idea
behind the pulling strategy, we aim to have control over the results that are
pushed to subsequent operators. Because a push-based join has no influence
over the data flow, we introduce a scheduling strategy to regain control. Now,
the push method only adds join results to the output queue O, but does not push
them to a subsequent operator, instead the pushing is performed in a separate
activate method as scheduled by the scheduling strategy.

Algorithm 1: PBRJ.push(i, r)

Input: Pushed input element r on input i ∈ {1, 2}.
Data: Bounding strategy B, output queue O, threshold Γ , hash tables H1, H2

if i = 1 then j = 2;1

else j = 1;2

Insert r into hash table Hi;3

Probe Hj for valid join combinations with r ;4

foreach valid join combination j do Insert j into O;5

Γ ← B.update();6

Bounding Strategies. A bounding strategy is used in a rank join to update
the current threshold (i.e., the upper bound on scores of future join results). As
only those results in the output queue can be reported that have a score equal
to or greater than the threshold Γ , it is essential that the upper bound is as low
(tight) as possible. The most common choice for B is the corner bound strategy:

Definition 5 (Corner-Bound). For a rank join operator, we maintain an up-
per bound αi and a lower bound βi on the scores of its input elements from
i ∈ {1, 2}, where αi is the score of the first (highest) element rmax

i received on
input i, αi = υ(rmax

i), and βi is the score of the most recently received input
element r̂i, βi = υ(r̂i). Then, the threshold Γ for unseen join results is given by
max{∆(α1, β2), ∆(α2, β1)}, i.e., the score for the join between rmax

1 and r̂2 or
between r̂1 and rmax

2 .

Scheduling Strategies. Deciding which input to pull from has a large effect
on operator performance [17]. Previously, this decision was captured in a pulling

8

strategy employed by the join operator implementation. However, in push-based
systems, the execution is not driven by results, but by the input data. Join op-
erators are only activated when input is actively being pushed from operators
lower in the operator tree. Therefore, instead of pulling, we propose a schedul-
ing strategy that determines which operators in a query plan are scheduled for
execution. That is, we move the control over which input is processed from the
join operator to the query engine, which orchestrates the query execution.

Algorithm 2 shows the execute method that takes a query Q and the number
of results k as input and returns the top-k results. First, we obtain a query plan
P from the plan method (line 1). We then use the scheduling strategy S to
obtain the next operator that should be scheduled for execution (line 2). The
scheduling strategy uses the current execution state as captured by the operators
in the query plan to select the next (scan-sort or rank join) operator. We then
activate the selected operator (line 4). We select a new operator (line 5) until
we either have obtained the desired number of k results or there is no operator
to be activated, i.e., all inputs have been exhausted (line 3).

Algorithm 2: execute(Q, k)

Input: Query Q, #results k
Data: Query plan P , scheduling

strategy S
Output: Query results Ω
P ←plan(Q,Ω);1

op← S.nextOp(P);2

while |Ω| < k ∧ op 6= null do3

op.activate();4

op← S.nextOp(P);5

return Ω6

Algorithm 3: PBRJ.activate

Data: Output queue O, threshold
Γ , subsequent operator out

while O.peek() ≥ Γ do1

r ← O.dequeue();2

out.push(r);3

Algorithm 3 shows the activate method (called by execute) for the rank
join operator. Intuitively, the activate method triggers a “flush” of the opera-
tor’s output buffer O. That is, all computed results having a score larger than
or equal to the operator’s threshold Γ (line 1) are reported to the subsequent
operator (lines 2-3). An activate method for a scan-sort operator of a source d
simply pushes all triples in d in a sorted fashion. Note that only scan-sort and
join are considered for scheduling, while selection and unions simply push their
outputs to subsequent operators.

Now, the question remains how a scheduling strategy should select the next
operator. We can apply the idea behind the state-of-the-art pulling strategy [17]
to perform corner-bound-adaptive scheduling. Basically, we choose the input
which leads to the highest reduction in the corner-bound:

Definition 6 (Corner-Bound-Adaptive Scheduling). Given a rank join
operator and upper and lower bound scores αi, βi, i ∈ {1, 2} on its inputs, we
prefer the input that could lead to a future join results with higher upper bounds.

9

That is, we prefer input 1 if ∆(α2, β1) > ∆(α1, β2), otherwise we prefer input
2. The scheduling strategy then selects the operator that provides input elements
for the preferred input.

An example of the scheduling strategy is given in Fig. 3 (a).

Example 3. Assume we have k = 1 and let ti,j denote the jth triple in source
i (e.g., t1,2 = 〈ex:beatles,ex:album,ex:sgt_pepper〉). First, our corner-bound-
adaptive scheduling strategy prefers the input union(q1) and scan-sort(s1) is
selected. Note, also union(q2) respectively scan-sort(s3) would have been a valid
choice, as the threshold (i.e., α, β) is not set yet. Then, the rank join reads t1,2
and t1,3 as new inputs elements from union(q1), and both elements are inserted
into H1 (α1 = β1 = 1). The scheduler now selects and activates scan-sort(s3),
because it has triples with higher scores than scan-sort(s2) and union(q1) has
no further scan-sort operators. Note, if there would have been an additional
scan-sort operator for union(q1), also both union() operators could be selected
(respectively their first scan-sort operator) as reading inputs from either one of
them, would reduce the current threshold (formally, α1+β0 = 1 = α0+β1). Now,
union(q2) pushes t3,2 and α2 respectively β2 is set to υ(t3,2) = 3. Employing a
summation as ∆, the upper-bound Γ is set (max{1 + 3, 1 + 3} = 4). Then, t3,2 is
inserted into H2 and the joins between t3,2 and elements in H1 are attempted;
t1,3 1 t3,2 yields µ(Q), which is then inserted into the output queue. Finally,
as υ(µ(Q)) = 4 ≥ Γ = 4 is true, µ(Q) is reported as the top-1 result and the
algorithm terminates. Note, not all inputs have been processed, i.e., t2,2 has not
been read. For an overview, see Fig. 3 (b).

3.3 Improving Threshold Estimation

We now present two modifications to the corner-bound bounding strategy that
allow us to calculate a more precise (tighter) threshold Γ̃ , thereby achieving
earlier result reporting and termination.

Star-shaped Entity Query Bounds. A star-shaped entity query is a
set of triple patterns p ∈ Qs that share a common variable at the subject
position. We observed that in Linked Data query processing, every result to
such a query is contained in one single source. This is because a result here
is an entity, and information related to that entity comes exclusively from
the one source representing that particular entity. Exploiting this knowledge,
a more precise corner-bound for joins of a star-shaped query (part) can be cal-
culated. Namely, we can derive that, in order to be relevant, sources for Qs

must satisfy all triple patterns in Qs (because they must capture all infor-
mation for the requested entities). Given relevant sources for Qs are denoted
as D and the source upper bound is given by υu(d) for d ∈ D, the upper
bound score υu(Qs) for results matching Qs can be derived based on the max-
imum source upper bound υu(dmax) = max{υu(d)|d ∈ D}. More precisely,
υu(Qs) = ∆(υu(t1) = υu(dmax), . . . , υu(t|Qs|) = υu(dmax)), because the up-
per bound for every triple that contributes to the result must be contained in a
source in D, and thus have a score that is equal to or lower than υu(dmax). Note,

10

this bound still holds in the case of redundancy, where information about one
specific entity i (originally published in di), is republished in another source (dj).
Namely, it is still correct when the scores of triples in dj are lower than or equal
to the scores of the same triples in the “original” source di (υu(di) ≥ υu(dj)).

Look-Ahead Bounds. The corner-bound strategy uses the last-seen scores
βi of input elements to calculate the current threshold. We observed that when
an input element ri is received by an operator on input i, the next input element
rnexti (and its score υ(rnexti)) is often already available in the pushing operator.
The next element is available because (1) scan-sort operators materialize their
complete output before pushing to subsequent operators, and (2) rank join op-
erators maintain an output queue that often contains more than one result with
scores greater than or equal to the current threshold Γ . By using the score of the
next instead of last-seen input element, we can provide a more accurate thresh-
old Γ , because we can estimate the maximal score of unseen elements from that
particular input more accurately. If available, we therefore define β̃i = υ(rnexti)
as the score of the next input element. Otherwise, we use the last-seen score βi
(i.e., β̃i = βi). See Fig. 3 (b) for an example.

Threshold Calculation. By applying both strategies, we can now refine
the bound as Γ̃ = max{min{∆(α1, β̃2), υu(Qs)},min{∆(α2, β̃1), υu(Qs)}} for a
join that produces results for Qs ⊆ Q. The following theorem allows to use Γ̃
for top-k processing:

Theorem 1. Γ̃ is correct (i.e., there is no future join result µ such that υ(µ) >

Γ̃) and more precise than Γ (i.e., Γ̃ ≤ Γ holds at all times).

Sketch of Proof. First, let us show the correctness of Γ̃ . Given a query Q, Γ̃
is correct iff (i) υu(Q) provides a valid upper-bound for all results of Q and (ii)
β̃i is a valid upper-bound for all unseen input elements from input i.

Considering the former constraint, if Q does not adhere to the form of an
entity query, υu(Q) = ∞ and min{∆(αj , β̃i), υu(Q)} = ∆(αj , β̃i). If Q is an
entity query, and assuming there is a result µ(Q) with υ(µ(Q)) > υu(Q). Then,
µ(Q) can not come from one single source, but must be distributed over multiple
sources, as υu(Q) is composed of υu(dmax), which provides an valid upper-bound
for all triple pattern bindings in µ(Q) that come for the same source d (and
υu(d) ≤ υu(dmax) must hold per definition). However, µ(Q) being distributed
over multiple sources contradicts our initial assumption (i.e., all results of Q are
located at one source). Therefore, constraint (i) holds for every µ(Q).

Regarding the latter constraint, β̃i is a valid upper-bound over input elements
from i, if there is no unseen element r in input i with υ(r) > β̃i = υ(rnexti).
However, υ(rnexti) < υ(r) can not hold, as we have a sorted access over input i.
Thus, constraint (i) holds for input element in i. Overall, as constraints (i) and

(ii) hold at all times, Γ̃ is correct.

Second, we show the preciseness (i.e., Γ̃ ≤ Γ) of Γ̃ . Γ̃ is defined as
max{min{∆(α1, β̃2), υu(Qs)},min{∆(α2, β̃1), υu(Qs)}}. Therefore, in order for

Γ̃ ≤ Γ to hold, either (i) υu(Qs) ≤ ∆(αi, βj), or (ii) ∆(αi, β̃j) ≤ ∆(αi, βj) must
always be true. Considering the former, as υu(Qs) merely provides a (valid)

11

upper-bound over scores of query results for an entity query Qs, there may be
join inputs for which υu(Qs) > ∆(αi, βj) is true. Thus, Γ̃ ≤ Γ can only hold

at all times, if ∆(αi, β̃j) ≤ ∆(αi, βj) always holds. Recall that β̃j is always set
to the “next” possible score, i.e., the score of the next input element seen in
input j. As we have a sorted access on each input, the “next” possible score is
guaranteed to be smaller, thus, β̃j ≤ βj holds for every input element. Overall,

as (ii) holds at all times, Γ̃ is precise. �

3.4 Early Pruning of Partial Results

Knowledge about sources can also be exploited to prune partial results from the
output queues to reduce the cost of a join as well as the memory space needed
to keep track of input elements in a join operator. The idea of pruning has been
pursued by approximate top-k selection [18] approaches. However, we do not
approximate, but only prune those partial results that are guaranteed not to
be part of the final top-k results. Intuitively, we can prune a partial result, if
its score together with the maximal possible score for the “unevaluated” query
part, is smaller than the lowest of the k so far computed complete results. Note,
the opportunity for pruning arises only when k (or more) complete results have
been produced (by the root join operator).

More precisely, let Q be a query and µ(Qf) a partial query result, with Qf as
“finished” part and Qr as “remaining” part (Qf ⊂ Q and Qr = Q\Qf). The up-
per bound υu(Q,µ(Qf)) on the scores of all final results based on µ(Qf) ∈ Ω(Qf)
can be obtained by aggregating the score of µ(Qf) and the maximal score υu(Qr)
of results µ(Qr) ∈ Ω(Qr). υu(Qr) can be computed as the aggregation of maxi-
mal source upper bounds obtained for every triple pattern in Qr = {q1, . . . , qm},
i.e., υu(Qr) = ∆(υu(q1), . . . , υu(qm)), where υu(q) = max{υu(d)|d ∈ source(q)},
and source(q) denotes that set of all relevant sources that can be retrieved for q.
A tighter bound for υu(Qr) can be obtained, if Qr contains one or more entity
queries (see previous section) and aggregating their scores in a greedy fashion.
Last, the following theorem can be established:

Theorem 2. A result µf ∈ Ω(Qf) cannot be part of the top-k results for Q
if ∆(υ(µf), υu(Qr)) < min{υ(µ)|µ ∈ Ωk(Q)}, where Ωk(Q) are the currently
known k results of Q.

Sketch of Proof. If µ(Qf) would constitute to a complete top-k result µ(Q),
υ(µ(Q)) > min{υ(µ(Q))|µ(Q) ∈ Ωk(Q)} must hold. That is, µ(Q) score must
be larger than the minimal score among the currently known complete results
Ωk(Q). From υ(µ(Q)) = υ(µ(Qf))∆υ(µ(Qr)) and υ(µ(Qr)) ≤ υu(Qr) follows
that the initial assumption υ(µ(Qf))∆υu(Qr) ≤ min{υ(µ(Q))|µ(Q) ∈ Ωk(Q)}
can not hold for µ(Q). Thus, there can not be a final result µ(Q) comprising
µ(Qf) and theorem 2 holds for every µ(Qf) �

4 Experimental Evaluation

In the following, we present our evaluation and show that (1) top-k processing
outperforms state-of-the-art Linked Data query processing, when producing only

12

a number of top results, and (2) our tighter bounding and early pruning strategy
outperform baseline rank join operators in the Linked Data setting.

Systems. In total, we implemented three different systems, all based on
push-based join processing. For all queries, we generated left-deep query plans
with random orders of join operators. All systems use the same plans and are
different only in the implementation of the join operator.

First, we have the push-based symmetric hash join operator (shj) [10, 11],
which does not employ top-k processing techniques, but instead produces all
results and then sorts them to obtain the requested top-k results. Also, there
are two implementations of the rank join operator. Both use the corner-bound-
adaptive scheduling strategy (which has been shown to be optimal in previous
work [17]) but with different bounding strategies. The first uses the corner-
bound (rj-cc) from previous work [17], while the second (rj-tc) employs our
optimization with tighter bounds and early result pruning. The shj baseline is
used to study the benefits of top-k processing in the Linked Data setting, while
rj-cc is employed to analyze the effect of the proposed optimization.

All systems were implemented in Java 6. Experiments were run on a Linux
server with two Intel Xeon 2.80GHz Dual-Core CPUs, 8GB RAM and a Segate
ST31000340AS 1TB hard disk. Before each query execution, all operating system
caches were cleared. The presented values are averages collected over three runs.

Dataset and Queries. We use 8 queries from the Linked Data query set
of the FedBench benchmark. Due to schema changes in DBpedia and time-outs
observed during the experiments (> 2 min), three of the 11 FedBench queries
were omitted. Additionally, we use 12 queries we created. In total, we have 20
queries that differ in the number of results they produce (from 1 to 10118) and
in their complexity in terms of the number of triple patterns (from 2 to 5). A
complete listing of our queries can be found in the Appendix.

To obtain the dataset, we executed all queries directly over the Web of Linked
Data using a link-traversal approach [6] and recorded all Linked Data sources
that were retrieved during execution. In total, we downloaded 681,408 Linked
Data sources, comprising a total of 1,867,485 triples. From this dataset we cre-
ated a source index that is used by the query planner to obtain relevant sources
for the given triple patterns.

Scores were randomly assigned to triples in the dataset. We applied three
different score distributions: uniform, normal (µ = 5, σ2 = 1) and exponential
(λ = 1). This allows us to abstract from a particular ranking and examine
the applicability of top-k processing for different classes of functions. We used
summation as the score aggregation function ∆.

We observed that network latency greatly varies between hosts and evaluation
runs. In order to systematically study the effects of top-k processing, we thus
decided to store the sources locally, and to simulate Linked Data query processing
on a single machine (as done before [10, 11]).

Parameters. Parameter k ∈ {1, 5, 10, 20} denotes the number top-k results
to be computed. Further, there are the three different score distributions d ∈
{u, n, e} (uniform, normal and exponential, respectively).

13

Overall Results. Fig. 4a shows an overview of processing times for all
queries (k = 1, d = n). We can see that for all queries the rank join approaches
perform better or at least equal to the baseline shj operator. On average, the
execution times for rj-cc and rj-tc were 23.13s and 20.32s, whereas for shj it was
43.05s. This represents an improvement in performance of the rj-cc and rj-tc
operators over the shj operator by factors of 1.86 and 2.14, respectively.

The improved performance of the rank join operators is mainly due to top-k
processing, because these operators do not have to process all input data in order
to produce the k top results, but can terminate early. The shj implementation
on the other hand, produces all results. Fig. 4b shows the average number of
retrieved sources for different values of k. We can see clearly that the rank join
approaches retrieve fewer sources than the baseline approach. In fact, rj-cc and
rj-tc retrieve and process only 41% and 34%, respectively, of the sources that
the shj approach requires. This is a significant advantage in the Linked Data
context, where sources can only be retrieved in their entirety.

However, we also see that the rank join operators sometimes do not perform
better than shj. In these cases, the result is small (e.g., Q18 has only two results).
The rank join operators also have to read all inputs and compute all results in
these cases. For example, for Q20 the rank join approaches retrieve and process
all 35103 sources, just as the shj approach does.

0

5000

10000

15000

20000

25000

30000

35000

k:1 k:5 k:10 k:20

#s
o

u
rc

e
s

re
tr

ie
ve

d

0

10

20

30

40

50

60

70

80

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

Ti
m

e
 [

s]

rj-cc

rj-tc

shj

0

10

20

30

40

50

k:1 k:5 k:10 k:20

Ti
m

e
 [

s]

(a)

(b) (c)

0

10

20

30

40

50

dist:n dist:e dist:u

Ti
m

e
 [

s]
 (d)

0

10

20

30

40

50

60

70

2TP 3TP 4TP 5TP

Ti
m

e
 [

s]

rj-cc

rj-tc

shj

(e)

Fig. 4. (a) All queries with their evaluation times (k = 1, d = n). (b) Average number
of sources over all queries (different k, d = n). (c) Average evaluation time over all
queries (different k, d = n). (d) Average evaluation time over all queries (different n,
k = 10). (e) Average evaluation time over all queries with varying number of triple
patterns (k = 1, d = n).

Bounding Strategies. We now examine the effect of the bounding strate-
gies on overall execution time. The average processing times mentioned earlier
represent an improvement of 12% of rj-tc over rj-cc. For Q3, the improvement
is even higher, where rj-tc takes 11s, compared to 30s for rj-cc.

The improved performance can be explained with the tighter, more precise
bounding strategy of rj-tc compared to rj-cc. For example, our bounding strat-
egy can take advantage of a large star-shaped subexpression with 3 patterns

14

in Q3, leading to better performance because of better upper bound estimates.
Moreover, we observed that the look-ahead strategy helps to calculate a much
tighter upper bound especially when there are large score differences between
successive elements from a particular input.

In both cases, a tighter, more precise bound means that results can be re-
ported earlier and less inputs have to be read. This is directly reflected in the
number of sources that are processed by rj-tc and rj-cc, where on average, rj-tc
requires 23% fewer sources than rj-cc. Note, while in Fig. 4a rj-tc’s performance
often seems to be comparable to rj-cc, Fig. 4b makes the differences more clear
in terms of the number of retrieved sources. For instance, both systems require
an equal amount of processing times for Q17. However rj-tc retrieves 7% less
sources. Such “small” savings did not show properly in our evaluation (as we
retrieved sources locally) but would effect processing time in a real-world setting
with high latency.

Concerning the outlier Q19, we noticed that rj-tc did read slightly more
input (2%) than rj-cc. This behavior is due to our implementation: Sources are
retrieved in parallel to join execution. In some cases, join operators and the
source retriever do not always stop at the same time.

We conclude that rj-tc performs equally well or better than rj-cc. For some
queries (i.e., entity queries and inputs with large score differences) we are able
to achieve performance gains up to 60% compared to the rj-tc baseline.

Early Pruning. We observed that this strategy leads to lower buffer sizes
(thus, less memory consumption). For instance with Q9, rj-tc could prune 8%
of its buffered data. However, we also noticed that the number of sources loaded
and scanned is actually the key factor. While pruning had positive effects, the
improvement is small compared to what could be achieved with tighter bounds
(for Q9, 73% of total processing time was spent on loading and scanning sources).

Effect of Result Size k. Fig. 4c depicts average query processing time
for all three approaches at different k (with d = n). We observed that the
time for shj is constant in k, as shj always computes all results, and that the
rank join approaches outperform shj for all k. However, with increasing k, more
inputs need to be processed. Thus, the runtime differences between the rank join
approaches and shj operator become smaller. For instance, for k = 1 the average
time saving over all queries is 46% (52%) for rj-cc (rj-tc), while it is only 31%
(41%) for k = 10.

Further, we can see in Fig. 4c that rj-tc outperforms rj-cc over all values for
k. The differences are due to our tighter bounding strategy, which substantially
reduces the amount of required inputs. For instance, for k = 10, rj-tc requires
21% less inputs than rj-cc on average.

We see that rj-tc and rj-cc behave similarly for increasing k. Both operators
become less efficient with increasing k (Fig. 4c).

Effect of Score Distributions. Fig. 4d shows average processing times for
all approaches for the three score distributions. We see that the performance of
both rank join operators varied only slightly w.r.t. different score distributions.
For instance rj-cc performed better by 7% on the normal distribution compared

15

to the uniform distribution. The shj operator has constant evaluation times over
all distributions.

Effect of Query Complexity. Fig. 4e shows average processing times (with
k = 1, d = n) for different numbers of triple patterns. Overall, processing times
increase for all systems with an increasing number of patterns. Again, we see
that the rank join operators outperform shj for all query sizes. In particular, for
5 queries patterns, we noticed the effects of our entity bounds more clearly, as
those queries often contained entity queries up to the length of 3.

5 Related Work

The top-k join problem has been addressed before, as discussed by a recent sur-
vey [8]. The J* rank join, based on the A* algorithm, was proposed in [14]. Other
rank join algorithms, HRJN and HRJN*, were introduced in [7] and further ex-
tended in [12]. In contrast to previous works, we aim at the Linked Data context.
As recent work [6, 10, 3, 11] has shown, Linked Data query processing introduces
various novel challenges. In particular, in contrast to the state-of-the-art pull -
based rank join, we need a push-based execution for queries over Linked Data.
We therefore adapt pull strategies to the push-based execution model (based on
operator scheduling). Further, our work is different from prior work on Web-
accessible databases [19], because we rely exclusively on simple HTTP lookups
for data access, and use only basic statistics in the source index.

There exist different bounding strategies. In [2, 17], the authors introduced
a new Feasible-Region (FR) bound for the general setting of n-ary joins and
multiple score attributes. However, it has been proven that the PBRJ template
is instance-optimal in the restricted setting of binary joins using corner-bound
and a single score attribute [2, 17]. We adapt the corner-bound to the Linked
Data setting and provide tighter, more precise bounds that allow for earlier
termination and better performance.

Similar to our pruning approach, [18] estimates the likelihood of partial re-
sults contributing to a final result (if the estimate is below a given threshold
partial results are pruned). However, [18] addressed the selection top-k problem,
which is different to our top-k join problem. More importantly, we do not rely on
probabilistic estimates for pruning, but employ accurate upper bounds. Thus,
we do not approximate final top-k result.

6 Conclusion

We discussed how existing top-k join techniques can be adapted to the Linked
Data context. Moreover, we leverage available information in this particular set-
ting to enable two kinds of optimizations: (1) tighter bounds estimation for early
termination and (2) aggressive result pruning. We show in real-world Linked
Data experiments that top-k processing can substantially improve performance
compared to the state-of-the-art baseline, which computes all results. Further
performance gains could be observed using the proposed optimizations.

16

References

1. S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow, and G. Weikum. Language-
model-based ranking for queries on rdf-graphs. In CIKM, pages 977–986, 2009.

2. J. Finger and N. Polyzotis. Robust and efficient algorithms for rank join evaluation.
In SIGMOD, pages 415–428, 2009.

3. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich. Data
summaries for on-demand queries over linked data. In World Wide Web, 2010.

4. A. Harth, S. Kinsella, and S. Decker. Using naming authority to rank data and
ontologies for web search. In ISWC, pages 277–292, 2009.

5. O. Hartig. Zero-Knowledge Query Planning for an Iterator Implementation of Link
Traversal Based Query Execution. In ESWC, 2011.

6. O. Hartig, C. Bizer, and J. Freytag. Executing SPARQL queries over the web of
linked data. In ISWC, 2009.

7. I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in
relational databases. The VLDB Journal, 13:207–221, September 2004.

8. I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv., pages 11:1–11:58,
2008.

9. G. Klyne, J. J. Carroll, and B. McBride. Resource description framework (RDF):
concepts and abstract syntax, 2004.

10. G. Ladwig and T. Tran. Linked Data Query Processing Strategies. In ISWC, 2010.
11. G. Ladwig and T. Tran. SIHJoin: Querying Remote and Local Linked Data. In

ESWC, 2011.
12. C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql: query algebra and

optimization for relational top-k queries. In SIGMOD, pages 131–142, 2005.
13. N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung. Efficient top-k aggre-

gation of ranked inputs. ACM Trans. Database Syst., 2007.
14. A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting

incremental join queries on ranked inputs. In VLDB, pages 281–290, 2001.
15. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C

Recommendation, 2008.
16. F. Schmedding. Incremental SPARQL Evaluation for Query Answering on Linked

Data. In Workshop on Consuming Linked Data, 2011.
17. K. Schnaitter and N. Polyzotis. Optimal algorithms for evaluating rank joins in

database systems. ACM Trans. Database Syst., 35:6:1–6:47, 2010.
18. M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with proba-

bilistic guarantees. In VLDB, pages 648–659, 2004.
19. M. Wu, L. Berti-Equille, A. Marian, C. M. Procopiuc, and D. Srivastava. Processing

top-k join queries. Proc. VLDB Endow., pages 860–870, 2010.

Appendix

Query. 1.

PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e /Category :>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX dcterms : <http :// pur l . org /dc/ terms/>

17

SELECT ∗ WHERE {
?x dcterms : sub j e c t dbpedia : L ibe ra l democ rac i e s .
?x r d f s : l a b e l ? l .
?x owl : sameAs ?x2 .
?x2 f o a f : name ?n .
}

Query. 2.

PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbowl : <http :// dbpedia . org / onto logy/>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ∗ WHERE {
?p dbowl : s ta t eOfOr ig in dbpedia : I t a l y .
?p a f o a f : Person .
?p owl : sameAs ?p2 .
}

Query. 3.

PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>

SELECT ∗ WHERE {
?d owl : sameAs ?d2 .
?d drugbank : drugCategory ? c .
?d drugbank : casRegistryNumber ? id .
}

Query. 4.

PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e /Category :>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX dcterms : <http :// pur l . org /dc/ terms/>

SELECT ∗ WHERE {
?x dcterms : sub j e c t dbpedia : Western Europe .
?x owl : sameAs ?x2 .
?x2 rd f s : l a b e l ? l .
}

Query. 5.

PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e /Category :>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>

SELECT ∗ WHERE {
?x dcterms : sub j e c t dbpedia : Chancel lors of Germany .
?x2 owl : sameAs ?x .
}

Query. 6.

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX dcterms : <http :// pur l . org /dc/ terms/>

18

PREFIX mdb: <http :// data . linkedmdb . org / r e sou r c e / d i r e c t o r/>

SELECT ∗ WHERE {
mdb:8477 f o a f :made ? f .
? f dcterms : date ?d .
? f f o a f : page ?p .
? f owl : sameAs ? f2 .
}

Query. 7.

PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX dailymed : <http ://www4. wiwiss . fu−b e r l i n . de/dailymed/ r e sou r c e /dailymed/>
PREFIX dai lymed orga : <http ://www4. wiwiss . fu−b e r l i n . de/dailymed/ r e sou r c e / o rgan i za t i on/>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>

SELECT ∗ WHERE {
dai lymed orga : Mylan Pharmaceut ica ls Inc dailymed : producesDrug ?d .
?d dailymed : gener icDrug ?gd .
?gd drugbank : po s s i b l eD i s ea s eTarge t ?dt .
? dt owl : sameAs ?dt2 .
}

Query. 8.

PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbowl : <http :// dbpedia . org / onto logy/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

SELECT ∗ WHERE {
?b dbowl : a r t i s t dbpedia : The Beat les .
?b r d f s : l a b e l ? l 1 .
?b r d f s : l a b e l ? l 2 .
?b dbowl : previousWork ?a .
?a f o a f : d ep i c t i on ?img .
}

Query. 9.

PREFIX dbowl : <http :// dbpedia . org / onto logy/>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX factbook : <http ://www4. wiwiss . fu−b e r l i n . de/ factbook /ns#>

SELECT ∗ WHERE {
? c a dbowl : Country .
? c r d f s : l a b e l ? l .
? c owl : sameAs ? c2 .
? c2 factbook : unemploymentrate ?u .
? c2 factbook : l i t e r a c y t o t a l p o pu l a t i o n ?p .
}

Query. 10.

PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbowl : <http :// dbpedia . org / onto logy/>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX mdb movie : <http :// data . linkedmdb . org / r e sou r c e /movie>

SELECT ∗ WHERE {

19

? f mdb movie : ac to r ?a .
? f mdb movie : f e a t u r e d f i lm l o c a t i o n ? l c .
? l c r d f s : l a b e l ? l .
? f owl : sameAs ? f2 .
? f 2 dbowl : music dbpedia : John Wil l iams .
}

Query. 11.

PREFIX geo−ont : <http ://www. geonames . org / onto logy#>

SELECT ∗ WHERE {
? c geo−ont : parentFeature <http :// sws . geonames . org /6269131/> .
? c geo−ont : o f f i c i a lName ”Cornwall ” .
? c geo−ont : nearby ? l c .
? l c geo−ont : name ?n .
? l c a ? t .
}

Query. 12.

PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbprop : <http :// dbpedia . org / property/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>

SELECT ∗ WHERE {
?x dbprop : country dbpedia : Germany .
?x owl : sameAs ?x2 .
?x2 f o a f : d ep i c t i on ?img .
}

Query. 13.
FedBench − LD query 1

PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX swc : <http :// data . semanticweb . org /ns/swc/ onto logy#>
PREFIX swrc : <http :// swrc . ontoware . org / onto logy#>
PREFIX i swc 2008 : <http :// data . semanticweb . org / con f e r ence / iswc /2008/>

SELECT ∗ WHERE {
?p swc : i sPartOf i swc 2008 : pos te r demo proceed ings .
?p swrc : author ?a .
?a r d f s : l a b e l ? l .
}

Query. 14.
FedBench − LD query 2

PREFIX swc : <http :// data . semanticweb . org /ns/swc/ onto logy#>
PREFIX swrc : <http :// swrc . ontoware . org / onto logy#>
PREFIX eswc : <http :// data . semanticweb . org / con f e r ence /eswc/>

SELECT ∗ WHERE {
?pro swc : relatedToEvent eswc :2010 .
?p swc : i sPartOf ?pro .
?p swrc : author ?a .
}

Query. 15.
FedBench − LD query 3

20

PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX swc : <http :// data . semanticweb . org /ns/swc/ onto logy#>
PREFIX swrc : <http :// swrc . ontoware . org / onto logy#>
PREFIX i swc 2008 : <http :// data . semanticweb . org / con f e r ence / iswc /2008/>

SELECT ∗ WHERE {
?p swc : i sPartOf i swc 2008 : pos te r demo proceed ings .
?p swrc : author ?a .
?a owl : sameAs ?a2 .
?a r d f s : l a b e l ? l .
}

Query. 16.
FedBench − LD query 4

PREFIX swc : <http :// data . semanticweb . org /ns/swc/ onto logy#>
PREFIX swrc : <http :// swrc . ontoware . org / onto logy#>
PREFIX eswc : <http :// data . semanticweb . org / con f e r ence /eswc/>

SELECT ∗ WHERE {
? r swc : i sRoleAt eswc :2010 .
? r swc : heldBy ?x .
?p swrc : author ?a .
?p swc : i sPartOf ?pro .
? pro swc : relatedToEvent eswc :2010 .
}

Query. 17.
FedBench − LD query 5

PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbowl : <http :// dbpedia . org / onto logy/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ∗ WHERE {
?a dbowl : a r t i s t dbpedia : Michael Jackson .
?a a dbowl :Album .
?a f o a f : name ?n .
}

Query. 18.
FedBench − LD query 7

PREFIX gn : <http ://www. geonames . org / onto logy#>

SELECT ∗ WHERE {
?x gn : parentFeature <http :// sws . geonames . org /2921044/> .
?x gn : name ?n .
}

Query. 19.
FedBench − LD query 8

PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core#>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ∗ WHERE {
?drug drugbank : drugCategory

<http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugcategory /micronutr ient> .

21

?drug drugbank : casRegistryNumber ? id .
?drug owl : sameAs ? s .
? s f o a f : name ?o .
? s skos : sub j e c t ? sub .
}

Query. 20.
FedBench − LD query 10

PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core#>
PREFIX nyt : <http :// data . nytimes . com/ elements/>
PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e /Category :>

SELECT ∗ WHERE {
? c skos : sub j e c t dbpedia : Chancel lors of Germany .
? c owl : sameAs ? c2 .
? c2 nyt : l a t e s t u s e ?u .
}

