
An Extendable Toolkit for Managing Quality of Human-based Electronic Services
David Bermbach and Robert Kern and Pascal Wichmann and Sandra Rath and Christian Zirpins

David.Bermbach|Christian.Zirpins|Robert.Kern@kit.edu, Pascal.Wichmann|Sandra.Rath@student.kit.edu
Karlsruhe Institute of Technology, Institutes AIFB/KSRI

Englerstrasse 11, 76131 Karlsruhe, Germany

Abstract

Micro-task markets like Amazon MTurk enable online
workers to provide human intelligence as Web-based on
demand services (so called people services). Businesses
facing large amounts of knowledge work can benefit
from increased flexibility and scalability of their work-
force but need to cope with reduced control of result
quality. While this problem is well recognized, it has
so far only rudimentarily been addressed by existing
platforms and tools. In this paper, we present a flex-
ible research toolkit which enables experiments with
advanced quality management mechanisms for generic
micro-task markets. The toolkit enables control of cor-
rectness and performance of task fulfillment by means
of continuous sampling, dynamic majority voting and
worker pooling. While we demonstrate its application
and performance for an OCR scenario building on Ama-
zon MTurk, the toolkit supports the development of ad-
vanced quality management mechanisms for a large va-
riety of people service scenarios and platforms.

Introduction
Interactive Web technologies enable scenarios, where – just
like IT-resources in cloud computing – human intelligence is
utilized on demand. Human computation [von Ahn, 2005] or
people services (pServices) are terms that have been coined
to describe this phenomenon. In particular, pServices have
been defined as Web-based services that deliver scalable hu-
man workforce [Kern, Zirpins, and Agarwal, 2009].

Traditionally businesses hire a large workforce, where in
case of high workload experts need to perform laborious and
repetitive tasks that could be done by less skilled workers,
or tasks are even left completely undone. Such tasks can
now be outsourced to the “crowd”. Among the potential ad-
vantages are cost-efficiency, scalability as well as flexibil-
ity. pServices particularly lend themselves to repetitive tasks
where automated approaches still fail.

While a number of applications are being considered, we
focus on Web-based micro-task markets like Amazon Me-
chanical Turk (MTurk). Here, service requesters can publish
small tasks in form of an open call. Micro-task markets can
be considered typical examples of pServices as their (mainly
monetary) incentive scheme allows for active scaling of hu-
man resources (as opposed to games [von Ahn and Dabbish,
2004] or CAPTCHAs [von Ahn et al., 2008]).

Typical application scenarios of pServices revolve around
information, i.e. the generation of information and the im-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

provement of information quality all along the information
lifecycle. Furthermore, existing applications cover virtually
all fields of human intelligence. Human visual perception,
for instance, is used for digitizing services, i.e. decipher-
ing handwritings [Little et al., 2009] or translating document
scans into machine-encoded text (Optical Character Recog-
nition, OCR) [Kern, Thies, and Satzger, 2010].

As there is limited control over the individual contrib-
utors in pService scenarios, quality management (QM) is
a vital necessity [Kern, Zirpins, and Agarwal, 2009]. Ex-
isting toolkits like Crowdflower (www.crowdflower.com)
or TurKit [Little et al., 2009] however do not pay spe-
cific attention to efficiency and do not provide goal-based
quality management capabilities. In this paper, we present
the CSP/WMV toolkit, a convenient, flexible and generally
platform-independent toolkit for the quality management of
pServices as an attempt to close this gap.

In the following, we will recap the conceptual background
and describe the toolkit design and architecture as well as its
implementation. We use an OCR scenario to evaluate the
toolkit in both simulations and real-time experiments. Fi-
nally, we discuss related work before we conclude and give
an outlook on the future development of the toolkit.

Conceptual Background

Our toolkit builds on former work on statistical quality man-
agement for pServices [Kern, Thies, and Satzger, 2010].
We refer to it as CSP/WMV approach which indicates the
building blocks of the mechanism: the continuous sampling
plan CSP-1 [Dodge, 1943] and the weighted majority vote
(WMV) [Kern et al., 2010]. It is a specific form of a ma-
jority vote approach that aggregates the results of multiple
workers in order to gain reliable results. Existing applica-
tions typically apply a fixed level of redundancy to each in-
dividual task, i.e. each task is performed by a well-defined
number of multiple workers. From the perspective of qual-
ity management this means that the quality of each individ-
ual task is validated. However, concepts of statistical quality
control (SQC) show that the quality management effort can
usually be reduced drastically by using sampling instead of
performing a full inspection of all individual items [Mont-
gomery, 2008]. Moreover, a fixed degree of redundancy is
both inefficient and incapable of assuring a certain level of
result quality because the level of agreement (and so the ex-
pected result quality) varies depending on the error rates of
the involved workers.

Task Tasks

Task

Escalated
task

Final
result

3
Raw
result

Raw results

Raw
result Raw
result Raw
result Raw
result

Correctness management mechanism Basic pService platform with
workers & worker pool

Apply CSP-1.

Inspection
required?

Yes

Publish task.

Get result.

Publish task
instance again.

Good
enough?

Could be
better?

Get & consolidate
result.

Yes No

No
Yes

No

Yes

Update
statistics

and return
result.

Task
Task

Task
Task

CSP-1

WMV

Service
requester

Worker
pool

Task Task

Final
result
Final
result

Escalated
task

Figure 1: Basic concept of CSP/WMV quality management
approach for pServices

Correctness Management

The approach proposed by [Kern, Thies, and Satzger, 2010]
increases the efficiency of the traditional majority vote (MV)
by using a combination of a statistical quality control mech-
anism with a dynamic form of a majority vote mechanism,
the weighted majority vote (WMV). The QM effort is re-
duced in two ways: in horizontal direction by validating only
a sample of tasks rather than all tasks and in vertical direc-
tion by dynamically adjusting the level of redundancy rather
than working with a fixed level of redundancy. Moreover,
the approach guarantees a certain quality level.

Figure 1 gives a conceptual overview of the CSP/WMV
approach. One instance of each task submitted by a service
requester is published to the pService platform immediately.
Based on the raw result and the worker ID returned from the
platform, the CSP-1 mechanism decides whether an inspec-
tion of the worker is required or not. If not, the raw result is
assumed to be the final result which is returned to the service
requester. In case inspection is required, the WMV is initi-
ated in order to validate the raw result. This is being done
by publishing additional instances of the task until the con-
solidated result either meets the required inspection quality
level or until it turns out that the required level of quality will
unlikely be met even when adding additional redundancy.
In the latter case, the task is escalated back to the service
requester so he can check the task or improve the task de-
scription. Once the inspection quality level is met, the statis-
tics of all involved workers are updated and the final result
is returned. More details can be found in our previous pa-
per [Kern, Thies, and Satzger, 2010]).

Because the WMV as well as the traditional MV assume
that the raw results delivered by multiple workers can be
compared to each other or aggregated into a consolidated
result, such mechanisms work only for deterministic tasks
i.e. for tasks that have a certain well-defined optimal re-
sult [Kern, Thies, and Satzger, 2010]. Within the multi-
faceted dimensions of quality, only the correctness dimen-
sion is addressed as the ability to return a minimum per-
centage of results that are free of errors [Kern, Zirpins, and
Agarwal, 2009].

Performance Management
Beyond correctness control, the toolkit addresses perfor-
mance by dynamic adjustment of the worker pool size. Con-
cerning correctness the QM effort would be minimal when
only assigning the most qualified workers to the tasks. How-
ever, this would compromise scalability, which is supposed
to be the major advantage of the pService concept: if only
the 2-3 top workers do all the tasks the execution time would
increase drastically. Yet, increasing performance by adding
less qualified workers to the pool comes at the price of ad-
ditional redundant submissions that are needed to compen-
sate for the less reliable results. Most use cases, though, will
likely require both: a minimum level of result quality and a
maximum execution time, i.e. a deadline by which all tasks
must be completed. The CSP/WMV toolkit addresses this
requirement by adapting the worker pool size dynamically
with the goal of meeting the deadline more or less exactly. In
descending order, only the most qualified workers are added
to the worker pool. This keeps the QM overhead minimal
while still completing all tasks in time.

Based on these considerations, we use two pools of work-
ers: one whose members are allowed to participate (active)
and one whose members are not (pending). Using these
pools we then propose to include the following algorithm:

1. Check progress, i.e. calculate the ratio of completed as-
signments

∑
t cat to requested assignments cr.

2. Given the total number of completed assignments cat
during the time period t with the length T and the size
of the active pool n, calculate pt = cat/T · n, which is
the average productivity per worker in period t.

3. Estimate pFt+1, the average productivity per worker in
the next period t+ 1. This might be done based on dif-
ferent forecasting methods (see below).

4. Adapt n, so that – in case pt+1 = pFt+1 – progress will
have reached 100% at the deadline.

5. Restart at step 1 until
∑

t cat = cr or until the deadline
has been reached.

This algorithm checks progress in regular time intervals
and forecasts future productivity based on progress in past
intervals. If the projected completion time exceeds the dead-
line, the size of the active worker pool is increased. Exam-
ple: if after half of the time only one quarter of the tasks have
been completed, the size of the worker pool is tripled. We
propose a set of forecasting mechanisms that differ regard-
ing the number of past intervals and the weight with which
they are taken into account.

Based on practical experience, we propose to use a slight
variation of the algorithm, which never decreases the size of
the active pool. This adds a small overhead in terms of costs
but avoids annoying the workers by continuously blocking
and unblocking some of them due to small random fluctu-
ations in the average productivity per worker. Furthermore,
this strategy reduces the risk of exceeding the deadline.

Toolkit Design and Architecture
Following the considerations discussed so far, our toolkit of-
fers the following features:

• Support of the CSP/WMV approach to manage correct-
ness
• Support of dynamic worker pool management to con-

trol performance
• Generic approach adaptable to various pService plat-

forms (specific MTurk support)
• Multiple scenarios and aggregation methods with

seamless switch-over
• Simulation mode to gain reproducible and comparable

results
• Extensibility regarding quality management mecha-

nisms and quality dimensions
• Easy set up for particular scenarios using the configu-

ration manager
From a generic perspective (fig 2), the toolkit architecture

builds on three main components: the core services, the cor-
rectness plugin and the time constraints plugin.

Within the core services the worker pool manager is re-
sponsible for creating qualification tests and evaluating re-
sults. Furthermore, workers are sorted into pools in order to
control which group may access certain tasks and which may
not (active/pending pool). This component also provides im-
port and export functionality for worker data and triggers
synchronization with the pService platform.

The second component is the task result collector, which
holds and persists worker submissions locally. As correct-
ness control generally requires redundant work this compo-
nent also groups redundant submissions for the same task.
Plugins may add worker submissions or lock and retrieve a
complete set of worker submissions.

The task result fetcher periodically polls the pService
platform for worker submissions and ensures that a single
submission is processed only once. Furthermore, it provides
an internal queuing system which may be used by plugins. It
also provides the so-called incoming results queue to which
it sends a message for every new worker submission. For
this purpose it first checks whether the submission was al-
ready processed. If not, it requests all existing submissions
for that task from the task result collector as well as a lock on
those and enqueues them within one message on the incom-
ing results queue. To support multiple pService markets as
well as a simulation mode, access to the respective systems
is wrapped inside a platform wrapper component.

The correctness plugin requires three general steps: first,
retrieve a message from the incoming results queue, second,
process the message, third, return the data to the task result
collector and release the lock. This minimum requirement
is already included within the core services. A concrete im-
plementation uses CSP-1 and WMV for processing the mes-
sage. It checks incoming submissions, decides whether the
task needs to be inspected (i.e. requires a redundant sub-
mission) based on the statistics held within the worker pool
manager or whether it should be escalated (i.e. returned to
the requester). If necessary, it then requests a redundant as-
signment via the platform wrapper. If a sufficient number
of submissions exist for a given task, the correctness plu-
gin uses WMV to determine which result is most likely the

!"#$%&'()
"($*+,&%-($)
*.#/)

0!#&1'"#/)
0.%2(&3)

4(&5#&)0((.)
3%$%+#&)

6.%2(&3)7&%00#&)

8%/5)&#/,.9)
:#9";#&)

8%/5)&#/,.9)
"(..#"9(&)

<(&#)/#&1'"#/)

<(&&#"9$#//)
0.,+'$)

8'3#)
"($/9&%'$9/)
0.,+'$)

=)
)

>("%.)
*.#)/?/9#3)

<($*+,&%-($)
3%$%+#&)

!'3,.%-($)
0.%2(&3) @%7)A%9%)

@%7)A%9%)%$A))
*$%.)&#/,.9/)

Figure 2: Component overview of CSP/WMV toolkit

correct one. It then updates worker statistics via the worker
pool manager and returns the results to the task result col-
lector. Also, if necessary, qualification values of the worker
are adjusted to block workers delivering poor quality.

As discussed, the worker pool manager controls access
to tasks by sorting workers into pools. This mechanism is
leveraged within the time constraints plugin which uses it
to complete all tasks as close to the deadline as possible.
For this purpose, the plugin offers three standard forecasting
algorithms. Additional ones can easily be added. The first al-
gorithm follows a simple last value strategy - it just assumes
that the average productivity per worker as defined above
remains constant. The other two implementations use some
form of weighted averages where recent productivity values
weigh more than older values. This is done to decrease ex-
posure to random fluctuations.

The task result collector offers export functionality for fi-
nal results as well as raw data. In the SimInput mode, raw re-
sults can be generated at a fixed level of redundancy which
can be used for repeated simulations afterwards. We have
also implemented a simulation platform, which mimics the
behavior of workers on pServices platform by reading raw
submissions from the file system whenever a task or redun-
dant submission is required. To enhance the illusion of a
real pServices platform simulated workers need some time
to submit results and may be blocked by our platform. Also,
a submission is either selected by chance or following the or-
der in which the data was originally persisted. Future work
will also consider the actual order of events as well as de-
lays in between to give an even more realistic impression of
a live test.

Implementation
The toolkit was developed using Java SE 6 and is currently
maintained as an Eclipse 3.6 project. All components de-
scribed in the previous section are either implemented as
separate classes or as a set of classes. Extensibility is gen-
erally achieved through usage of abstract classes and inter-
faces combined with reflections. Regarding application de-
sign, the toolkit is primarily designed as a library which can

be used for multiple purposes, e.g. within a web application
or a standalone tool. Initializer classes can easily be added
by adapting the existing standalone initialization class.

Originally, the project targeted the MTurk platform and,
hence, includes an implementation of the platform wrap-
per component for this provider. MTurk distinguishes be-
tween HITs (Human Intelligence Tasks), HIT types and as-
signments. HIT type describe a particular kind of task, e.g.
OCR. HITs are concrete instances of such HIT type, e.g.
one word which is to be transcribed. For each HIT multi-
ple assignments may exist, i.e. several workers each submit
an independent result (the ”assignment”) for the very same
task. It is not only possible to specify from the beginning a
particular level of redundancy (i.e. dynamically request mul-
tiple assignments for each HIT) but also to extend a HIT, i.e.
request an additional assignment for an existing HIT.

The above features were mainly used within the correct-
ness plugin: In the beginning a new HIT type and a corre-
sponding number of HITs are created using the batch mode
provided by the standard MTurk library for Java. Later on,
the task result fetcher periodically polls the MTurk platform
for assignments. Using the unique assignment ID it identi-
fies duplicates which have already been processed and ig-
nores those. All other assignments are grouped by the corre-
sponding HIT ID which is also used as primary key within
the task result collector. The current implementation parses
the assignment content. This is an XML document using a
custom answer comparison class, which is instantiated using
reflections and a properties file. Based on these comparisons,
it then identifies unique answers by which it groups the as-
signments. The worker ID of the assignment is then used
to identify a unique worker object within the worker pool
manager and its correctness values are retrieved. Based on
this information the probability of an answer being correct
is calculated for all existing unique answers. If this probabil-
ity exceeds a threshold for one of the answers that particular
answer is marked as correct, all answers are returned to the
task result collector and the worker correctness values are
updated. For complex scenarios, multiple answers can also
be merged into a new answer which meets the quality needs
better than any of the answers that were submitted by the
workers. If an additional answer would be required as the
probabilities are all below the threshold, the algorithm cal-
culates whether the HIT should be escalated, i.e. returned
to the requester. This is especially useful in tie situations,
which usually occur when a task is particularly difficult. In
an OCR scenario we have often observed this for the letters
’a’ and ’o’ or ’n’, ’m’, ’r’ and ’v’. If still an additional sub-
mission is required and the task must not be escalated, the
toolkit sends an extend HIT request to the platform wrap-
per which in turn requests an additional assignment from
the MTurk platform.

For the time constraints plugin, we leveraged multi-
ple MTurk features: First, MTurk offers qualification tests
which can be used to test the workers prior to allowing them
to work on a given task. We use this feature for initializing
the correctness plugin with initial correctness values for the
workers. Based on the results of the test we also assign a
qualification to every participating worker. As our time con-

straints plugin requires control over worker pools we ini-
tially assign each worker a value of 1 if he is part of the ac-
tive pool, for the pending pool we assign a 0 and spammers
are set to -1 to permanently block them. In the HIT type
of our task we then specify the access restriction of having
a quality control qualification value of 1. If the time con-
straints plugin realizes that the size of the active pool should
be increased it requests the x best workers within the pend-
ing pool from the worker pool manager and issues a move
to active pool command. The worker pool manager executes
this command and sends, via the MTurk platform wrapper,
an update qualification value request with the parameter 1
to MTurk so that the corresponding workers are allowed to
work on that HIT type. As described earlier, we avoid scal-
ing the active pool down. For this reason, it is important to
start with a small active pool and a large pending pool so
that all scaling requests can be fulfilled. When starting the
platform including the time constraints plugin, all known
workers are sorted into their respective pools based on an
imported worker pool file and their qualification values are
updated accordingly. If it is not desired to use this plugin it
is always possible to specify a HIT type which has no access
restrictions or to move all appropriate workers to the active
pool from the beginning. Furthermore, the toolkit supports
having different qualifications for different kinds of tasks.

Evaluation
For the evaluation of the CSP/WMV toolkit, two different
approaches have been used. While the correctness manage-
ment capabilities were evaluated using a realistic scenario
on top of the MTurk platform, the performance manage-
ment feature was so far only evaluated by a simulation using
dummy data.

The toolkit was evaluated using the same scenario and
data set as in [Kern, Thies, and Satzger, 2010]: an OCR sce-
nario which was performed on top of MTurk. The data set
consists of 1176 handwritten words. In each of the tasks,
a worker was asked to type in a single handwritten word
which was displayed as an image file (JPEG). The expected
optimal result (gold standard) was specified by the author
of the handwriting himself. A compensation of 0.01 USD
per assignment was paid to the workers. In order to exclude
spammers and workers who submit poor quality right from
the start, only such users were allowed to participate who
had passed a qualification test. The test consisted of a series
of 10 simple OCR tasks (10 words).

The actual evaluation is divided into two parts: in the first
part, the QM approach was simulated based on a batch of
raw results. In the second part, the QM approach was applied
in real time.

Simulation Results
In order to compare the QM approach with the traditional
majority vote mechanism, the first part of the evaluation was
performed as a simulation on the basis of raw results from
a batch comprising 10 redundant assignments per task. For
simulating the traditional majority vote, a fixed number of
raw results were used. For simulating the WMV, a varying

Figure 3: Accuracy vs. redundancy during live experiments
and simulations with the correctness plugin

number of raw results were used according to the dynamic
concept of the approach.

Figure 3 shows the results of the QM approach com-
pared to the traditional MV approach for four different qual-
ity goals: 0.925, 0.950, 0.975 and 0.990. The traditional
MV was simulated based on the same data as the WMV
by averaging all possible combinations of 2 to 9 answers
within each set of 10 available answers per task for the two-
fold up to the 9-fold MV. With 0.984 the CSP/WMV ap-
proach almost perfectly meets the inspection quality goal of
0.99. It even outperforms the accuracy of a ninefold tradi-
tional MV (0.978). That is a remarkable result given that the
CSP/WMV is 4 times more efficient as it requires only 2.25
workers per task compared to 9 workers per task for the basic
ninefold MV approach. In other words: the CSP/WMV ap-
proach has reduced the quality management effort by some
75 percent compared to the traditional MV approach.

Within our simulation environment we have also per-
formed first promising tests with the performance plugin
which we are going to continue in our future research. Such
experiments are time consuming because they require prior
knowledge of a huge number of workers and hence only
make sense for large batches of tasks.

Live Experiments
For the live experiments, the same data set was used as for
the simulated experiments. However, initially only one in-
stance (assignment) of each task was published. Depending
on the results returned and the historical error rate of the
worker who worked on the task, the QM approach dynam-
ically decided in real time whether additional assignments
had to be published.

In the CSP/WMV live experiment the number of re-
maining tasks decreases almost linearly until most of the
tasks have been performed. Then, the execution performance
slows down dramatically and asymptotically approaches
zero (figure 4). This behavior can be explained by the fact
that towards the end, the continuous stream of tasks is in-
terrupted because there are temporarily no tasks available
any more. Therefore, the workers consider the process to be
completed and look for some other tasks to work on. How-
ever, as the CSP/WMV increases the redundancy sequen-

Figure 4: Decreasing number of remaining tasks during live
experiments

Figure 5: Average fraction inspected (AFI) with increasing
number of tasks

tially, new assignments might be published even after all the
available work had already been completed. This applies in
particular to complex tasks for which a higher level of redun-
dancy is required because there is less agreement among the
workers. This effect is further increased by cherry-picking
of the workers: some of the words are so hard to read that
hardly anybody wants to take the risk of making a mistake.
In order to avoid discontinuity and speed up the finalization
of the process, the QM mechanism should switch to a fixed
level of redundancy at the very end of the process.

The upper triangle in figure 3 indicates that in the live ex-
periment, the efficiency of the CSP/WMV for a quality goal
of 0.99 has been comparable to the simulation. It is note-
worthy to mention that one of the 13 workers participating
in the experiment has returned 238 incorrect results of a to-
tal number of 255 tasks he had worked on (the worker acci-
dentally capitalized all words). Nevertheless, the CSP/WMV
was able to cope with the situation and has still delivered sat-
isfactory results.

For a quality goal of 0.95, the live experiment outper-
forms the simulation at a slightly higher redundancy (0.963
vs. 0.951). The average fraction inspected (AFI) of the live
experiment shows a characteristic comparable to the simula-
tion but it decreases more slowly with the increasing number
of tasks (Figure 5). This difference can be explained with the

dynamic nature of the WMV. There is a varying delay before
the new assignments are grabbed by the workers and before
they return a result. As this delay is not covered by the sim-
ulation, it takes more time in the live experiment until the
workers build up reputation and until they reach the random
inspection phase of the CSP/WMV. On the long run how-
ever, the same AFI should be reached as in the simulation.

Related Work
The toolkit we presented in this paper is not the only soft-
ware addressing quality control of pServices.

MTurk already incorporates a basic quality control mech-
anism: Workers may be required to pass a qualification test.
Furthermore, tasks can be reviewed and be rejected or ac-
cepted. The rejection rate is reflected within the workers
KPIs which in turn can be used to control access to tasks,
e.g. to block all workers with a rejection rate of more than 5
percent.

Crowdflower.com provides Labor-on-Demand, e.g. using
the worker pool of Mechanical Turk, but augmenting this
service by additional quality mechanisms. Gold standard
tasks are randomly injected into the usual work processes
to assess the workers performance (a job-specific worker
trust). Multiple redundant assignments can be published to
increase the confidence. Various aggregation methods can
be set using the CrowdFlower Markup Language (CML),
e.g. a single answer returned by the worker with the highest
confidence or an average suitable for numeric answers. The
functionality of Crowdflower is accessible via API.

[Little et al., 2009] present TurKit, a Java/JavaScript API
specifically designed to handle iterative tasks on MTurk, i.e.
dependent tasks that build on each other. TurKit stores re-
sults of precedent tasks so that they can be used as the basis
for follow-up tasks. TurKit uses a combination of improve-
ment and voting tasks to ensure the quality of the task result
does not deteriorate.

Our approach is insofar different as it is the only one that
offers a more descriptive QM approach. Here, it is possible
to set goals which the CSP/WMV toolkit tries to fulfill using
statistical measures. All other QM solutions aim to increase
correctness while not offering any concrete information re-
garding the actual correctness off the results. Also, to our
knowledge no solution exists which addresses performance
management.

Conclusion and Outlook
In this work we have presented the design and implementa-
tion of a flexible toolkit which can be used to support var-
ious quality control approaches for pServices of different
platform providers. Furthermore, we have presented a novel
approach for managing the execution performance of pSer-
vices as and additional dimension of quality. First evaluation
results based on an OCR scenario confirm the effectiveness
of the tool and of the underlying approaches.

We hope that the scientific community will make good
use of our toolkit and that our work will help to elevate QM
efforts for pServices to a new level. Interested readers may
obtain a copy of the CSP/WMV toolkit from the authors.

Also, we intend to publish the toolkit as open source soft-
ware in the near future.

There still remains a lot of work to be done on our toolkit.
Right now, only three scenarios are supported. To improve
convenience we plan to include more scenario presets, also
to be able to evaluate our existing quality control mecha-
nisms for different kinds of tasks. For example, regarding
multi-labeling there is another publication in preparation.

Another aspect would be to further improve the simu-
lation mode by not only using live answers but also us-
ing the time parameters originally observed with that par-
ticular answer, e.g. how long did it take from requesting
the submission until the particular worker started working
on it and how long did he take to complete the task. This
would be especially useful for evaluation and comparison of
various forecasting mechanisms which each include unique
strengths and weaknesses. Based on these considerations, it
should then be possible to identify the most accurate ap-
proaches for performance prediction in pServices.

References
Dodge, H. 1943. A sampling inspection plan for continuous pro-
duction. The Annals of mathematical statistics 14(3):264–279.
Kern, R.; Bauer, C.; Thies, H.; and Satzger, G. 2010. Validat-
ing results of human-based electronic services leveraging multiple
reviewers. In Proceedings of the 16th Americas Conference on In-
formation Systems (AMCIS).
Kern, R.; Thies, H.; and Satzger, G. 2010. Statistical quality control
for Human-Based electronic services. In Maglio, P.; Weske, M.;
Yang, J.; and Fantinato, M., eds., Service-Oriented Computing -
Proceedings ICSOC 2010, LNCS, 243–257. Springer.
Kern, R.; Zirpins, C.; and Agarwal, S. 2009. Managing quality
of Human-Based eServices. In Service-Oriented Computing - IC-
SOC 2008 Workshops, ICSOC 2008 International Workshops, Syd-
ney, Australia, December 1st, 2008, Revised Selected Papers, vol-
ume LNCS 5472 of Lecture Notes in Computer Science, 304–309.
Springer.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C. 2009.
TurKit: tools for iterative tasks on mechanical turk. In Proceedings
of the ACM SIGKDD Workshop on Human Computation, 29–30.
Montgomery, D. 2008. Introduction to statistical quality control.
New York, USA: Wiley and Sons, 6th edition.
von Ahn, L., and Dabbish, L. 2004. Labeling images with a com-
puter game. In Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI). Vienna, Austria:
ACM.
von Ahn, L.; Maurer, B.; McMillen, C.; Abraham, D.; and Blum,
M. 2008. reCAPTCHA: Human-Based character recognition via
web security measures. Science 321(5895):1465–1468.
von Ahn, L. 2005. Human computation. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA. Adviser Blum, Manuel.

