
Trading Services in Ontology-driven Markets

Steffen Lamparter
Institute AIFB

University of Karlsruhe (TH)
Germany

sla@aifb.uni-karlsruhe.de

Björn Schnizler
Information Management and Systems

University of Karlsruhe (TH)
Germany

schnizler@iw.uni-karlsruhe.de

April 30, 2005

Abstract

In recent years, Web Services have become the key technology for building
flexible and interoperable computing infrastructure. However, to realize the vi-
sion of a full-fletched service oriented architecture efficient service discovery and
allocation is required to coordinate the interplay between service providers and re-
questers. Recently, the Semantic Web community suggested the use of Semantic
Web Services and semantic matchmaking mechanisms for allocating adequate ser-
vices. These mechanisms do not adequately address or even neglect the existence
of prices for services and thus may lead to economic inefficient outcomes. Cleav-
ing on the advantages of a semantics based matchmaker, this paper describes the
design of an ontology-driven market for trading Web Services. As such, a frame-
work is presented that enriches an auction schema by several components enabling
semantics based matching as well as price-based allocations of services. Further-
more, the use of background knowledge in auction mechanisms also reduces the
overall complexity of the auction which is shown by means of a simulation.

1 Introduction
Web Services have become the key technology for enabling distributed computing in-
frastructures for collaboration and electronic commerce. They can be used to auto-
mate business processes, to enable process-driven application integration, and to deploy
Computational Grid infrastructures. The benefits of using Web Services are improved

1

connectivity, efficiency, flexibility, immediacy, and interoperability of disparate sys-
tems [1]. Although in theory, users could utilize Web Services from multiple locations,
this potential is rarely exploited in practice. This seeming contradiction is caused by
the significant barriers that arise when organizational boundaries are crossed. Over-
coming these barriers requires that Web Services can be reliably discovered, acquired,
and managed.

Most of the current service discovery mechanisms for Web Services use matchmak-
ing algorithms which rely on attribute-based matching functions [2]. These algorithms
are capable of syntactically comparing user requirements against service descriptions.
However, a symmetric and attribute-based matching of service descriptions is inflexible
and difficult to extend to new characteristics or concepts [3].

Recently, the Semantic Web community suggested the use of Semantic Web Ser-
vices (e.g. using OWL-S 1, WSMO2) which enrich services by a formal and explicit
description of their capabilities. Instead of syntactically based matchmaking algo-
rithms, services can be semantically matched using concepts and relations formalized
by means of ontologies [4]. Furthermore, these matchmakers can be easily extended
by adding new concepts and rules and adapt the service discovery to changing policies.

However, the direct application of matchmaking mechanisms for allocating Web
Services has several drawbacks: Firstly, these algorithms do not guarantee that those
requesters will receive the supplied services who value them most. Secondly, they ig-
nore the fact that users will only offer their services if they are adequately compensated.
Compensation requires determining how the offered services are allocated among po-
tential requesters and how the prices for the services are set. Thirdly, semantics based
matchmaking algorithms are typically computational demanding and thus not adequate
for large-scaled negotiations. However, these aspects are crucial for implementing eco-
nomic efficient Web Service infrastructures.

Recently, researchers have suggested employing market mechanisms for the alloca-
tion of Web Services [5, 6]. Markets can be an effective institution to allocate resources
(Pareto-) optimally [7]. This is achieved by the interplay of demand and supply and
due to the information feedback inherent to the price system. As such, the application
of market mechanisms for the service discovery is deemed promising.

Applying classical market mechanisms3 for trading Web Services may lead to in-
efficient outcomes as these mechanisms allocate on base of syntactical descriptions.
The extension of semantic matchmakers to auctions is, however, from a computational
point of view intractable. Rather, existing market algorithms which perform well have
to be enriched by components capable of handling semantically represented service
descriptions.

The contribution of this paper is twofold: Firstly, a market platform for trading
Web Services efficiently is presented. This is realized by merging the advantages of
classical auction algorithms and semantically based matchmakers into one framework.
Secondly, it is shown that the complexity of a classical auction mechanism is reduced
by means of formalized background knowledge.

1http://www.daml.org/services/owl-s/1.1/
2http://www.wsmo.org/
3For instance, the mechanism used in eBay (http://www.ebay.com/).

2

The paper is structured as follows: In section 2, the design requirements for an
ontology driven marketplace for trading Web Services are elicited. Based on these re-
quirements, a market architecture is outlined in section 3. In section 4, an ontology
based communication language is introduced for specifying service offers, requests,
and agreements. Section 5 describes the basic components of the marketplace in-
frastructure. Section 6 evaluates the splitting algorithm by means of a performance
simulation. Section 7 compares the marketplace with related work and section 8 con-
cludes the paper.

2 Design Requirements
The design of a market platform for trading services mainly affects two components
[7]: (i) A communication language which defines how bids (i.e. offers and requests)
and agreements can be formalized and submitted to the market mechanism. (ii) An
outcome determination by means of an allocation (i.e. who gets which service and a
pricing schema) and a payment component. Both components as well as the interplay
between them have to be designed carefully to reflect the users’ requirements [7]. Be-
sides classical properties stemming from the mechanism design theory (e.g. allocative
efficiency, incentive compatibility), the following domain specific requirements for a
market platform capable of trading services can be identified [8, 9]:

R1 Immediate execution of possible counterparts is required by the mechanism. This
bases on the fact that services are usually time critical goods.

R2 Simultaneous trading of multiple sellers and multiple buyers is required by the
mechanism, i.e. sellers and buyers have to be allowed to place bids simultane-
ously.

R3 Trading heterogenous services simultaneously is required to be supported by the
mechanism, e.g. computational services and storage services.

R4 Meaningful matchmaking of orders should be realized by the market infrastruc-
ture to allow a matching of services based on the semantics of an order instead
of their syntactical representation. For instance, a request for a storage service
should be matched with an offer for a hard disk service.

R5 Trading dependent services is required to fulfill the dependence property of ser-
vices. For instance, buyers usually demand a combination of services as a bundle
to perform a task, e.g. a computational service in combination with a storage ser-
vice. This is based on the fact that services can be complementarities, i.e. the
valuation for a set of services is greater than the sum of the valuation for each
service. Thus, it is required to support bids on bundles4. Furthermore, a buyer
may want to submit more than one bid on a bundle but many that are excluding
each other. In this case, the services are substitutes, i.e. the buyer has subadditive
valuations. As such, the market must support XOR-bids to express substitutes.

4A bundle can be defined as an AND concatenated bid on multiple services, e.g. S1 ∧ S2.

3

Service Marketplace

Trading

Components

Trading

Components

[…]

Pre
-

processor

Market Administrator

Service

Offers

Trading

Component

Registry

Service

Requests

Trading

Components

Pre
-

processor

Pre
-

processor

Auction

1

Auction

2

Auction

n

Agreements

Figure 1: Overall architecture of the service marketplace

R6 Support for multiattribute services should be realized by the market as services
are typically not completely standardized. Similar services can differ in their
quality and their policies, e.g. a storage service by its capacity or access time; a
billing service by its age restriction.

R7 Computational and communication efficient determination of the outcome is re-
quired by the mechanism in order to converge on a desirable global outcome by
minimizing the computational effort.

Without loss of generality, we restrict the family of market mechanism to auctions,
as auctions are an efficient institution for allocating services and determing prices [7].

3 Marketplace Architecture
In this section the overall architecture of an ontology-driven marketplace is introduced.
The architecture, as outlined in figure 1, consists of the following components: a Mar-
ketplace Administrator, a Trading Component Registry, and several instances of Trad-
ing Components which encapsulate Preprocessors and Auction instances.

Although the market is seen as a monolithic unit, internally it may consist of several
independent trading components each with its own auction mechanism and preproces-
sors. In each of these individual trading components, only a subset of all available
services is traded. These sets are disjunctive subsets of all services and may include
several dependent heterogenous services which are demanded or supplied in a bundle.
For instance, a trading component TC1 could include storage services and computa-
tional services because several requesters are requesting these services as a bundle.
Another trading component TC2 could only include payment services because users
demanding or supplying this service are not interested in trading storage services as a
bundle.

4

Although a central auction mechanism comprising all available services would ful-
fill the economic properties, a distinction between several independent trading compo-
nents clearly reduces the complexity of the auction (R7), especially if a great number
of heterogeneous services are traded.

Trading Component Registry The Component registry is a repository that contains
an ontology-based description of each trading component. These descriptions basically
specify the capability of the services that are traded in a specific trading component.

Marketplace Administrator The Marketplace Administrator manages the internal
mechanisms, i.e. the administrator instantiates, removes, or merges trading compo-
nents. Furthermore, the administrator receives orders from requesters and suppliers. In
order to allow meaningful matchmaking (R5) these orders are formally expressed via
ontologies. The Marketplace Administrator compares the capabilities specified in the
order with those stored in the registry on a semantic level (R4) and forwards the order
to the corresponding internal trading component.

Auction In order to compute the optimal outcome, a multiattribute combinatorial
double auction is applied [8]. This mechanism meets the requirements mentioned in
the last section by allowing immediate executions (R1), simultaneous trading (R2), and
trading heterogeneous (R3), dependent (R4), as well as multiattributive (R6) services.
However, existing implementations of such mechanisms rely only on pure syntactic
matching of orders and, thus, requirement (R4) cannot be met. Therefore, an additional
preprocessing of the order book is necessary.

Preprocessor The Preprocessor administrates an order book containing ontology
based orders and is responsible for preparing this order book in a way that it can be
handled by a traditional auction system. Thereby, two aspects can be distinguished: (i)
Semantic preprocessing: By means of the taxonomic relations derived from the ontol-
ogy bids are submitted or removed in a way that that the subsequent syntactic auction
mechanism results in the same set of matches as a semantic approach, while inappro-
priate allocations are avoided (R4). For example, a storage service is requested and
a hard disc service offered, syntactic matching will fail due to the lack of taxonomic
information. Therefore, semantic preprocessing adds an additional bid, in this case a
hard disc service request, which is XOR connected with the request for a storage ser-
vice. Hence, the hard disc request can be matched with the corresponding offer while
preserving the consistency of the order book. (ii) Syntactic preprocessing: Once this
is done, the ontology based communication primitives are translated into the syntactic
bidding language that is understood by the auction mechanism. Thereby, the ontology
instances are serialized to strings.

Before the marketplace components are described in more detail, a language for
specifying requests, offers, and agreements is introduced in the following section.

5

4 Ontology-based Communication Language
Formal knowledge representation is crucial for providing a marketplace that allows
intelligent and meaningful allocations. Ontologies provide the right means by featuring
logic-based representation languages [10]. They come with executable calculi that
allow querying and reasoning during run-time. Besides, such formalisms facilitate
the conceptual integration of heterogeneous service description efforts by providing
well-defined and machine understandable semantics. Before the main communication
primitives and ontological concepts are introduced in section 4.2, 4.3 and 4.4, major
design considerations of the ontology are discussed in 4.1.

4.1 Ontology Design Considerations
Currently there are several different initiatives that strive for describing different as-
pects of Web Services semantically (e.g. using WSMO, OWL-S). In order to be able
to handle the different external communication languages, the marketplace is based on
the OWL-DL version of the foundational ontology DOLCE (Descriptive Ontology for
Linguistic and Cognitive Engineering) [11]. Foundational ontologies are high-quality
formalizations of domain independent concepts and associations that contain a rich ax-
iomatization of their vocabulary. They provide a philosophical sound reference point
for easy and rigorous comparison and thus, can be used for harmonizing and integrating
existing specifications like WSDL, OWL-S, WSMO, WS-Polciy, XACML, etc. This
is done by aligning existing specifications with their upper level concepts derived from
DOCLE (as done for OWL-S in [12]).

Descriptions & Situations (D&S) [13] is a module that extends DOLCE in order to
allow modelling contexts such as social institutions, regulations or roles. By introduc-
ing the notion of Descriptions, DOLCE ground entities can be described from different
points of view. For instance, in one context a Web Service might play the role of a
requester and in another context that of a service provider. Further, such contexts can
be used to distinguish between a service description and a service in the real world. In
the following, offers, requests, and agreements are specified by means of Descriptions
of services.

4.2 Communication Primitives
The interaction between participants and marketplace mainly affects the three com-
munication primitives Offers, Requests, and Agreements. These are also the major
concepts that represent information in a market. As depicted in figure 2, offer, request,
and agreement descriptions can be regarded as a specialization of the concept Service
Description, which is a subclass of the upper level concept Description derived from
D&S (see also [14]). A Service Description specifies concrete service capabilities and
constraints of a service, which are also modelled as Descriptions in terms of D&S. A
Service Description must have at least one Capability Description, whereas constraints
can be defined optionally. In the following the main communication primitives offers,
requests, and agreements are discussed in more detail.

6

Service

Description

Constraint

Description

Agreement
Offer
Request

Description

Capability

Description

subclass

component

Figure 2: Relations between D&S descriptions

Offers: A service provider sends an offer to the marketplace which contains concrete
information about the capabilities that will be carried out by the service. Furthermore,
an offer contains a reservation price for the service. Thus, an offer can be regarded as
a Service Description containing a mandatory constraint that defines an lower bound
for the price a provider asks for. For instance, an offer for a stock quote service may
contain information about the average response time, payment restrictions (e.g. only
credit cards), and mandatorily a reservation price (e.g. at least 5$). Offering bundles of
services is ontologically represented by a Service Description that contains more than
one Capability Description5.
Requests: A service request is the counterpart of an offer and specifies the require-
ments of a customer. A request contains information about the minimal requested
capabilities of the service, e.g. a stock quote services that returns quotes for companies
listed in the Dow Jones in Dollar. Furthermore, a request contains the valuation of
the customer for the service, i.e. the maximum price a customer is willing to pay for
the service, e.g. at most 6$. Thus, a request can be regarded as a Service Description
containing a constraint that defines an upper bound for the price a customer is willing
to pay. Bundle requests can be specified identical to bundle offers.
Agreements: Once a joint understanding is determined, i.e. the requirements specified
in an offer as well as in a request are fulfilled by each other, an agreement between
provider and customer is reached. The agreed functionality together with the deter-
mined properties (e.g. price, quality level) have to be fixed in a contract and commu-
nicated to the market participants. In this contract properties of a deal have to be fixed
exactly, i.e. constraints should restrict the allowed values of an attribute exactly.

In the following requests and offers together are referred to as Orders; a set of
orders as Order Book. All three primitives mentioned above contain capabilities of a
service as well as constraints regarding the usage of the service. These two components
are described in section 4.3 and 4.4.

4.3 Service Capability Description
In literature there are two distinct ways to formally represent service capabilities. Basi-
cally capabilities can be modelled explicitly and implicitly (cf. [15]). Explicit represen-

5Note that Constraints can still be defined for individual services in the bundle by using the Object
concept in the Constraint Description to refer to the according capability.

7

-subclassof DnS:Description

Service Description

-Information Source

-Age of Infromation

Capability Description

-Information Source

-Age of Information

Constraint Description

1

*

1

*

-subclassof DnS:Role

COS:

Computational

Input

-subclassof DnS:Role

COS:

Computational

Output

-subclassof DnS:Task

COS:Computational

Task

-subclassof DnS.Parameter

Attribute

-subclassof DnS:Role

Object

-subclassof DnS:Role

Subject

DnS:defines

DnS:defines

DnS:defines

DnS:defines

DnS:

attitude

towards

DnS:

requisite

for

anakastic
 duty

towards

DnS:defines
DnS:defines

Figure 3: Sketch of the service description ontology. Concepts and associations de-
rived from DOLCE, Descriptions&Situations(DnS), and the Core Ontology of Ser-
vices(COS) are labelled with the according namespace.

tation of capabilities captures the semantics of the tasks or processes that are performed
by a service, whereas implicit modelling is done by describing the transformation that
is preformed by a service.

For our work we reuse a revised version of the Core Ontology of Services [12, 14,
16] which is basically suited to model both approaches mentioned above. For simplifi-
cation, we use a pure implicit modelling approach, where only inputs and outputs are
considered for capability matching in the marketplace.

As shown in figure 3, a Capability Description consists of Computational Inputs
as well as Outputs. All these descriptive entities are Roles that are played by Compu-
tational Objects, e.g. a concrete message in the system. In order to allow bidding on
service bundles, service descriptions may include more than one capability description.

4.4 Constraint Description
Service providers and service requesters may want to express requirements that have
to be fulfilled by potential business partners. Such requirements could be constraints
regarding the desired/offerd service or constraints regarding properties of providers
and customers themselves, e.g. the age of a customer must be at least 18 years. In
the context of Web Services these constraints are often referred to as policies. There
already exists several declarative policy languages either formalized by XML, e.g. WS-
Policy or XACML, or by ontologies, e.g. KAoS [17] and REI [18]. As discussed in
[19], the foundational ontology DOLCE could provide the right means for integrating
these existing efforts.

[19] introduces a framework for expressing policies based on DOLCE and D&S.
As sketched in figure 3, a Constraint-Description consists of the concepts Subject,
Computational Task, Object, and Attribute. The first three concepts allow to define the
application area of the constraint, while subclasses of the concept Attribute allow to
define the property of a service that is constrained. Attribute is valued-by a DOLCE

8

Stock Quote

Service

Security

Paper

Option Future Share

Input

Price

Output

Dollar Euro

has has
Stock Quote

Service

Security

Paper

Option Future Share

Input

Price

Output

Dollar Euro

has has

Figure 4: Stock Service

Offer(StockQuoteServiceOffer)

Capability(StockQuoteService)

ComputationalInput(SecurityPaper)

ComputationalOutput(Dollar)

Constraint(PriceSpecification)

Subject(Localhost)

ComputationalTask(InvocationTask)

Object(StockQuoteService)

Obligation(Localhost,InvocationTask)

Attribute(ReservationPrice)

PriceValue(5$)³

Figure 5: Offer A

Request(FutureQuoteServiceRequest)

Capability(FutureQuoteService)

ComputationalInput(Future)

ComputationalOutput(Dollar)

Constraint(PriceSpecification)

Subject(Localhost)

ComputationalTask(InvocationTask)

Object(FutureQuoteService)

Obligation(Localhost,InvocationTask)

Attribute(Valuation)

PriceValue(6$)£

Figure 6: Request B

Region that defines the overall range of the attribute values. Values not contained in
this Region are not allowed.

4.5 Example
As an example of the ontology based communication language, consider a Web Service
returning quote requests. The capability by means of input and output descriptions of
the service are shown in figure 4.

A user A is supplying this service capable of returning quotes in Dollar for any
given security (i.e. options, shares, and futures). Furthermore, the user has a reservation
price of 5$ for this service. Another user B is demanding a stock quote service capable
of providing quotes in dollar for futures. User B valuates this service with 6$. Figure
5 and 6 show the formalization of the offer and request by means of the proposed
communication language.

5 Components
In this section the main components of the marketplace already introduced in section 3
are described in detail.

5.1 Trading Component Registry
The Component Registry contains a description of each trading component. These de-
scriptions are determined by the capabilities of the services traded in the corresponding

9

trading components. In order to allow forwarding of incoming orders to the right com-
ponent, it has to be described by the most general inputs and outputs. For instance,
a component trading the orders from example 4.5 is described by the input Security
Paper and the output Dollar. Note that a component description may comprise several
capability descriptions.

5.2 Market Administrator
As mentioned above, the overall marketplace is divided into several trading compo-
nents. Each of them determines the allocation for a specific class or classes of services.
The core functionality of the Market Administrator is to manage the trading compo-
nents and to forward incoming orders to the appropriate component. In this section, we
introduce the matching algorithm for comparing orders and component descriptions.
Furthermore, we present management operations that are preformed by the Market
Administrator to keep the set of trading components consistent.

5.2.1 Semantic order forwarding.

Once an order is received, the Market Administrator matches the capabilities of a com-
ponent description derived from the registry with the capabilities contained in the order
by means of a DL-reasoner. In line with [9], matching of capabilities is done by match-
ing all inputs (ino) of the order with all inputs (inm) of the component description and,
accordingly, all outputs of the order (outo) with all outputs of the offer (outm). We
define two capabilities as related if there is a subsumption between all inputs of the
component description and at least one input of the order, i.e. ino subsumes inm or
vice versa. Analogously, for all outputs of the order there has to be a subsumption to at
least one output of the component description. This can be formalized by the following
(simplified) rule.

related(x, y) ←capability(x) ∧ capability(y)
∧ ∀i.((ino(i) → inm(i)) ∨ (inm(i) → ino(i)))∧
∀o.((outo(o) → outm(o)) ∨ (outm(o) → outo(o)))

The rule has to be checked for all descriptions in the registry and all included capabili-
ties. A trading component is already related if on of its capabilities is related. In case
of a bundle request or offer (i.e. more than one capability), one order might be related
to several components. In this case the components have to be merged. In case there is
no relation between the incoming order and any component description, a new market
has to be created together with a new description in the repository.

5.2.2 Operations for trading component management.

As already mentioned, in order to keep the set of trading components consistent, the
Market Administrator has to apply operations that allow for managing the components
and their descriptions. The set of components are considered to be consistent if the
allocation outcome calculated in distributed components is identical to the outcome

10

that would be calculated in one central mechanism. Consistency check has to be done
every time an order is submitted or an agreement is reached. The following operations
are needed in this context:
Create a new component: A new trading component will be created if no appropriate
(related) component can be identified for an incoming order. This is done by creating
an instance of a Trading Component (i.e. Preprocessor and Auction) and by adding a
new component description to the registry.
Remove a component: A trading component has be removed together with the accord-
ing component description if the order book is empty. Thus, the following rule has to
be checked each time an agreement is reached in the trading component:

empty(x) ← OrderBook(x) ∧ ¬∃y.Order(y) ∧ component(y, x)

Split a component: For doing so, the order book of the trading component has to be
split up into several individual order books. Each of them is executed by an independent
trading component. To find out whether an order book has to be divided, the following
rule can be applied:

split(x, y) ←OrderBook(x) ∧OrderBook(y) ∧Order(w) ∧ component(w, x)
∧Order(v) ∧ component(v, y) ∧ ¬∃z.Capability(z)
∧ component(z, w) ∧ component(z, v)

Because the order books are divided only in case they contain two fully distinct sets
of service types, the split operation does not lead to any market defects (e.g. missed
matches, decreasing liquidity). Imagine a trading component contains stock quote as
well as currency translation services. Obviously, the order book can be split into one
book containing only stock quote and one containing only translation services without
loosing potential matches. Trading components should be divided as soon as possible
to reduce the complexity of the allocation mechanism.
Merge components: Several trading components are integrated by removing all com-
ponents except for one, which contains the merged order book. Merging becomes
necessary when a new order arrives that is related to capabilities traded in two differ-
ent components. This will be the case if more than one matches (direct or indirect)
between component description and order:

merge(x, y) ←OrderBook(x) ∧OrderBook(y) ∧Order(w)
∧ component(x,w) ∧Order(v) ∧ component(y, v)
∧ ∃z.Capability(z) ∧ component(w, z) ∧ component(v, z)

Suppose there are two markets, one dealing with stock quote and one with currency
translation services. If a request for a financial service arrives, these two markets have
to be merged.
Update a component description: Each time a order is forwarded or an agreement
reached the component description has to be updated. This is done by determining the
most general input and output for all capabilities in the description.

11

5.3 Trading Component
Each instance of a Trading Component consists of two building blocks: A Preprocessor
and an Auction component. These components are described in the following.

5.3.1 Preprocessor

Due to the fact that two services could match semantically, although their syntactic
descriptions are not fully identical, a semantic preprocessing step is needed to assure
that all possible matchings are considered when calculating the allocation. Afterwards,
the order will be transformed to the auction’s bidding language by a syntactic pre-
processing step.

An offer will semantically match a request if all inputs and outputs match. Inputs
match in case all inputs of the offer subsume at least one input of the request. Outputs
match in case all outputs of the request subsume at least one output of the offer. This
is formalized in the following simplified axiom, where (inr, outr) represent the inputs
and outputs of the request cr and (inm, outm) those of the offer co.

semantic−match(cr, co) ← ∀x.(inr(x) → ino(x)) ∧ ∀y.(outr(y) → outo(y))

Note that the objective of this preprocessing is not to match bids, but to transform the
order book in a way that the results of the syntactic matching is identical to the semantic
matching defined above. Syntactic matching can be defined as follows:

syntactic−match(cr, co) ← ∀x.(inr(x) ↔ ino(x)) ∧ ∀y.(outr(y) ↔ outo(y))

Based on this definitions, the orders mentioned in example 4.5 match only on a seman-
tic level due to the different degree of abstraction of the input concepts. In order to get
the same matches in a syntactic algorithm as in a semantic approach, the ontology is
used to generate alternative bids. These bids can then be concatenated by a XOR op-
erator6, ensuring that at most one bid will be executed. Therefore, the following rules
can be used:

• If a concept X that represents the input of a request (e.g. Future) is subsumed by
another concept Y in the ontology (e.g. Security Paper), a new XOR-associated
request has to be introduced with input Y . This has to be done for each concept
that subsumes X and is subsumed by the input of the component description.
This would mean for request B of the example 4.5 that the alternative request
(SecurityPaper,Dollar) has to be introduced.

• If a concept X that represents the output of an offer (e.g. Dollar) is subsumed
by a concept Y in the ontology (e.g. Price), a new XOR-associated offer has to
be introduced containing output Y . This has to be done for each concept that
subsumes X and is subsumed by the input of the component description. This
means, for Offer A of the example, a new offer (SecurityPaper, Price) has to
be added.

6A XOR B means either A, B, or ∅, but not AB.

12

• In order to avoid unnecessary large concatenations of bids, the Preprocessor has
to check each time an agreement is reached, if the trading component description
is is changed to a more specific one. If this is the case, the introduced bids that
are more general than the component descriptions have to be removed.

This results in two alternative requests (SecurityPaper,Dollar) and (Future, Dollar)
as well as two offers (SecurityPaper, Price) and (SecurityPaper,Dollar). Now,
it is easy to see that there will also be a match in the syntactic approach. The auction
mechanism has to be able to guarantee that only one alternative request and offer is
accepted (XOR-bids).

In case of semantic matching, it can be shown that after applying these rules the
possible matches are identical compared to the situation without applying the rules. In
case of syntactic matching, applying the rules could significantly improve the match-
making (as illustrated in the example), while it is guaranteed that at least the same
matches are found compared to situation without applying the rules.

After the semantic preprocessing, the syntactic preprocessing is applied. Here,
the semantic order book is translated into the bidding language of the auction mech-
anism. For the auction mechanism, a buyer order has to be transformed into a XOR
concatenated set of bundle bids Bn,1(S1)⊕ . . .⊕Bn,u(Sj), where u is the number of
bundle bids in the order. A single bundle bid Bn,f (Si) is defined as the tuple

Bn,f (Si) = (vn(Si), (qn(Si, g1, ag1,1), . . . , qn(Si, gj , agj ,Aj))).

In the bundle bid, Si denotes any bundle (e.g. a stock quote service and a weather
service) and vn(Si) defines the valuation for this service. Furthermore, the attribute
characteristics can be expressed by qn(Si, gi, agj ,k) where gi ∈ Si is a specific service
and agj ,k ∈ gi is an attribute of it.

The orders of the sellers are formalized in a similar way as the buyers’ orders
are. An order is defined as a concatenated set of XOR bundle bids Bm,1(S1) ⊕ . . . ⊕
Bm,u(Sj), where u is the number of bundle bids. A single bid Bm,f (Si) for a bun-
dle Si is defined as the buyer’s bids are, except the valuation vn(Si) is replaced by a
reservation price rm(Si).

As an example of the syntactic preprocessing the orders will be transferred into the
bidding language required by the auction mechanism:

The requests (SecurityPaper,Dollar) and (Future, Dollar) are represented as
two XOR concatenated bids Bm,1(SecurityPaper)⊕Bm,2(Future) with

Bm,1(SecurityPaper) = (6, Dollar) and Bm,2(Future) = (6, Dollar).

The XOR operator ensure, that at least one bid will be executed. The offers will be
transformed analogously to Bn,1(SecurityPaper)⊕Bn,2(SecurityPaper) with

Bn,1(SecurityPaper) = (5, Dollar) and Bn,2(SecurityPaper) = (5, Dollar).

5.3.2 Auction Mechanisms

The auction mechanism used in the architecture is a multiattribute combinatorial ex-
change as proposed in [8]. The auction fulfills most of the requirements given in section

13

2, as the mechanism allows multiple buyers and sellers simultaneously (R2) the submis-
sion of heterogonous bundles expressing (R3,R5) either substitutabilities (realized by
XOR bids) and complementarities (realized by bundle bids). Furthermore, the mecha-
nism is capable of handling cardinal attributes (R6) as well as an immediate execution
of given orders as the clearing can be done continuously7 (R1). Besides a syntactically
based bidding language, the auction subsumes a winner determination component (i.e.
allocation of services from suppliers to requesters) and a pricing schema (i.e. which
price have to be paid on base of the allocation).

The winner determination problem maximizes social welfare, i.e. the difference
between the buyers’ valuations and the sellers’ reservation prices. The winner determi-
nation problem is formulated as a linear Mixed Integer Programm (MIP) and thus can
be solved by optimization solvers such as CPLEX8. The winner determination is, how-
ever, an generalization of the combinatorial allocation problem (CAP) and thus NP
complete [20].

The winner determination alone is insufficient to ensure an efficient outcome of the
mechanism. Thus, a pricing mechanism is required which reveals the true internal in-
formation of the participants about the demand and supply situation (i.e. preferences).
In the proposed auction, an approximated Vickrey schema is used which results in an
approximated allocative efficiency [20].

6 Performance Simulation
As mentioned above, the proposed architecture is capable of splitting markets, if two or
more disjunctive order sets exist. This may lead to high performance gains especially if
the auction mechanism is computational demanding. In the following, this performance
gain is measured by means of a stochastic based simulation.

An order stream is generated which consists of two disjunctive order subsets. Each
buyer and seller submits five bundle bids as an order. The bundles are generated using
the Decay distribution, which is shown to lead to hard instances of general combinato-
rial allocation problems [21].

In the first scenario, the order stream is computed using a single instance of the
mechanism. In the second scenario, the order stream is split into two disjunctive subsets
and computed using two independent instances of the mechanism. Figure 7 shows
the computation time of CPLEX for calculating the allocation in both scenarios. In
scenario 2, the computation time of the independently computed subsets are added to
make the overall computation time comparable with the first scenario.

Due to the exponential runtime of the auction mechanism, it is obvious that an
intelligent order book splitting leads to performance gains. For instance, the winner
determination for 900 bundle bids takes more than 140 seconds in scenario 1. Splitting
the subsets and computing the order books separately (each with 450 bundle bids) takes
only 40 seconds.

7Continuously clearing means a clearing each time a new order enters the market.
8CPLEX is a commercial solver for optimization problems (http://www.cplex.com/).

14

0

50

100

150

200

250

1
0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0

9
6
0

Number bundle bids

C
o

m
p

u
ta

ti
o

n
ti

m
e

Scenario 1 Scenario 2

Figure 7: Performance evaluation

However, the results cannot be generalized as the computation time for the intel-
ligent order splitting is neglected at the moment. Nevertheless, the simulation shows
that the use of background knowledge may reduce the overall complexity.

7 Related Work
For maintaining a loose coupling between service requester and provider, dynamic ser-
vice discovery plays a crucial role. Thus, several algorithms and frameworks have
been proposed to tackle this problem. Some of them are based on syntactic service de-
scriptions, like description repository UDDI or the discovery protocol WS-Discovery9.
Others, like [9, 22, 23], suggest to adopt semantic service descriptions for matchmak-
ing. However, while providing semantic matching capabilities, these algorithms use
centralized matching components without the employment of prices. Thus, these al-
gorithms require full information about the demand and supply situation in order to be
effective. However, this information requirement is not even closely met [20, 7].

Market-based approaches incorporate incentives for truthful information revelation
by implementing prices. [5] motivate exemplarily the use of price systems for allocat-
ing Web Services. However, complementarities, attribute characteristics, and seman-
tics based order specifications are not considered and, thus, the mechanism does not
fulfill the defined requirements in section 2. Furthermore, several architectures have
been introduced for an economic allocation of resources in similar domains such as the
Computational Grid, e.g. [24]. However, these mechanisms are not directly applicable
for trading Web Services as they do not consider the dependencies between services
(i.e. by the use of bundles) and rely on attribute-value based bidding languages.

There are several bilateral mechanism schemas for negotiating services. For in-
stance, [6] implement a semantic-enabled negotiation system. However, the systems
does not allow the simultaneous trading of multiple buyers and sellers and thus do not
fulfill the requirements specified in section 2.

Besides, ontologies cannot only be used to improve matching within a market as
done in this work, but they can also be used for modelling negotiation protocols and

9See http://www.uddi.org/, http://msdn.microsoft.com/ws/2004/10/ws-discovery/ for details.

15

strategies [25]. This could allow agents to adapt to different market mechanisms. How-
ever, this work is complementary to ours and becomes relevant when considering dif-
ferent mechanisms in the market.

8 Conclusion
This paper outlined the design of an ontology-driven market for trading Web Services.
Based upon a requirement analysis for a Web Service market, a marketplace was de-
signed which is up to these marks. The marketplace uses an ontology based communi-
cation language that is capable of representing semantically described request, offers,
and agreements. These ontology-driven messages were transformed into syntactically
represented orders so that an existing auction mechanism could be used while still al-
locating on a semantic level. Furthermore, semantic information was used to split the
whole market into several independent sub-markets. The concept was shown to be
more efficient than an existing mechanism, i.e. the use of background knowledge has
reduced the overall complexity.

For the future, additional auction mechanisms (e.g. English auctions) will be inte-
grated for making the overall platform generally applicable. Furthermore, the existing
platform will be compared and benchmarked with semantics-based matchmakers as
well as classical auction marketplaces in more detail.

References
[1] Lawler, J., Anderso, D., Howell-Barber, H., Hill, J., Javed, N., Li, Z.: A study of

web services strategy in the financial services industry. In: The Proc. of ISECON
2004. (2004)

[2] Veit, D.: Matchmaking in Electronic Markets. Springer Verlag (2003)

[3] Harth, A., Decker, S., He, Y., Tangmunarunkit, H., Kesselman, C.: A semantic
matchmaker service on the grid. In: WWW (Alternate Track Papers & Posters).
(2004)

[4] Li, L., Horrocks, I.: A software framework for matchmaking based on semantic
web technology. In: Proc. of 12th Int. WWW Conf., New York, NY, USA, ACM
Press (2003)

[5] Li, Z., Zhao, H., Ramanathan, S.: Pricing web services for optimizing resource
allocation an implementation scheme. In: Proc. of the Web2003, Seattle, WA.
(2003)

[6] Vasiliu, L., Zaremba, M., Moran, M., Bussler, C.: Web-service semantic enabled
implementation of machine vs. machine business negotiation. Techreport, DERI
Innsbruch (2004)

16

[7] Neumann, D.: Market Engineering - A Structured Design Process for Electronic
Markets. PhD thesis, Economics and Business Engineering, University of Karl-
sruhe (TH) (2004)

[8] Schnizler, B., Neumann, D., Weinhardt, C.: Resource allocation in computational
grids - a market engneering approach. In: Proc. of the WeB 2004, Washington.
(2004)

[9] Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of
web services capabilities. In: Proc. of the 1st Int. Semantic Web Conf., Springer
(2002)

[10] Staab, S., Studer, R.: Handbook on Ontologies. Springer Verlag, Heidelberg
(2004)

[11] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.:
The WonderWeb library of foundational ontologies. WonderWeb Deliverable
D17 (2002)

[12] Mika, P., Oberle, D., Gangemi, A., Sabou, M.: Foundations for service ontolo-
gies: Aligning owl-s to dolce. In: Proc. of the 12th Int. Conf. on WWW, ACM
(2004)

[13] Gangemi, A., Mika, P.: Understanding the semantic web through descriptions
and situations. In: Confederated Int. Conf. DOA, CoopIS and ODBASE. LNCS,
Springer (2003)

[14] Gangemi, A., Mika, P., Sabou, M., Oberle, D.: An ontology of services and
serivce descriptions. Technical report, Laboratory for Apllied Ontology, Rome,
Italy (2003)

[15] Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery,
interaction and composition of semantic web services. Journal of Web Semantics
1 (2003)

[16] Oberle, D., Lamparter, S., Eberhart, A., Staab, S.: Semantic management of web
services. Technical report, University of Karlsruhe (2005)

[17] Uszok, A., Bradshaw, J.M., Jeffers, R., Tate, A., Dalton, J.: Applying KAoS
services to ensure policy compliance for semantic web services workflow com-
position and enactment. In: Int. Semantic Web Conf. (ISWC’04). (2004)

[18] Kagal, L.: A Policy-Based Approach to Governing Autonomous Behavior in
Distributed Environments. PhD thesis, University of Maryland, Baltimore MD
21250 (2004)

[19] Lamparter, S., Eberhart, A., Oberle, D.: Approximating service utility from poli-
cies and value function patterns. In: 6th IEEE Int. Workshop on Policies for
Distributed Systems and Networks, IEEE Computer Society (2005)

17

[20] Parkes, D.C., Kalagnanam, J., Eso, M.: Achieving budget-balance with vickrey-
based payment schemes in exchanges. In: Proc. of the 12th Int. Joint Conf. on
AI. (2001)

[21] Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Winner determination in combi-
natorial auction generalizations. In: Proc. of 1st Int. Joint Conf. on Autonomous
Agents and Multiagent Systems, ACM Press (2002)

[22] Herzog, R., Lausen, H., Roman, D., Stollberg, M., Zugmann, P.: WSMO Reg-
istry. Technical report, DERI (2004)

[23] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.:
Meteors wsdi: A scalable p2p infrastructure of registries for semantic publication
and discovery of web services. Journal of Information Technology and Manage-
ment (2004)

[24] Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for re-
source management and scheduling in grid computing. J. of Concurrency and
Computation: Practice and Experience 14 (2002)

[25] Tamma, V., Phelps, S., Dickinson, I., Wooldridge, M.: Ontologies for supporting
negotiation in e-commerce. Engineering Applications of Artificial Intelligence
(2005)

18

