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1 Introduction

Rules that allow existential quantifiers in the head (cosioln) have been studied ex-
tensively in knowledge representation, databases, andgoggramming (in the related
form of logic programs with function symbols). In generalisinot decidable if a set
of such rules admits a finite model, but a number dfisient conditions have been
proposed to detect situations where this is the case.

Two suchacyclicity conditions argoint acycliclity [8] and super-weak acyclicity
[9]. This short technical note investigates the relationgigpveen the two conditions.
The main result is that, while super-weak acyclcity is a ng@eeral condition, the two
conditions coincide on all sets of rules that do not contairtiple occurrences of the
same variable in any body atom (Theor&mWe also observe that this restriction does
not reduce the expressivity of jointly acyclic rules (Themi2).

We first introduce our basic notation (Sectignand recall the idea of acyclicity
using the case ofieak acyclicity(Section3). Thereafter, we introduce joint acyclicity
(Sectiord) and conmpare it with super-weak acyclicity (Sectin

2 Preliminaries

Our syntax is based on a standard first-order logic signaaites based on finite sets
C of constantsF of function symbolsandP of predicatesand on an infinite set of
variablesV. These sets are mutually disjoint. We will usually keep tigeature im-
plicit. The assumption on finiteness is useful when definiotipms such agrounding
A functionar : FUP — N associates a natural numeg(o) with each function symbol
or predicater € F U P that defines tharity of o. The set ofpositionsof o € F U R
is the sefl, = {{o, 1),..., (o, ar(0))}. Atermis a standard first-order term constructed
from variables, constants, and function symbols.

We generally use letters, vy, z v, w, u for variables,a, b, c, d for constantsf,
g for function symbolsR, S, T for predicates, ang, t for terms, possibly with sub-



or superscripts. Boldfaced expressions, suck asc, are used to denote lists of the
respective elements.

Definition 1. Anatomis a formula of the form Ry, ..., t,) wherear(R) = n. Anexis-
tential rule(or simplyrule in the context of this paper) is a formula of the form

YX.YY.@[X, Y] = JAzy[X, Z]

whereX,y, and z are mutually disjoint lists of variables, ang[x, y] and ¢[x, z] are
conjunctions of function-free atoms that contaiactlythe variables inx,y andx, z,
respectively. In particular, all variables ix must occur ing, a condition known as
safety

The conjunctionp is called thepremiseor body, ¢ is called theconclusioror head
andx is called thefrontier. A Datalog rules a rule without existential quantifiers, i.e.,
one wherez is empty. Afactis a rule with empty body (a conclusion that is uncondi-
tionally true). As opposed to the body, we require the heaarafe to contain at least
one atom.

Safety of rules simplifies the definition of some syntactiaditions in the paper.
However, all of our results remain valid if one assumes th&temnce of a special atom of
the formT(X) that describes a tautological condition, which can be ts@dke unsafe
rules safe without changing their semantics. We usuallyt timei preceding universal
quantifiers when writing rules, and we use sets of atoms aseeogent notation for
conjunctions of atoms.

In the literature on databases, existential rules are krasiWlfuple Generating De-
pendencieonstants are known aalues and predicates are known@$ations Rules
are often assumed to contain no constant symbols and arsttitily separated from
facts. A set of facts forms databasginstancé. We do not use this terminology in this
paper.

Definition 2. A rule setR is renamed apaif each variable name is bound in at most
one quantifier inR. A universal (existential) variabl® such a renamed rule set is
one that occurs in a universal (existential) quantifiefréntier variableis a universal
variable that occurs in the head of its rule.

The previous condition allows us to uniquely identify vatis by their name, which
simplifies many definitions.

Existential rules are a syntactic fragment of first-ordedicate logic, and we con-
sider it under the according semantics.

Definition 3. Aninterpretation/ consists of a non-empty domai and an interpre-
tation function’, defined as usual. The notion ofrodelof a set S of logical formulae

is defined according to the standard semantics of first-olalgic. Two sets S and T of
logical formulae areequivalentf they have the same set of models. In particular, this
terminology applies to sets of rules.

This also means that every rule set is equivalent to onesliahamed apart. We do
not make thdJnique Name Assumptiqi NA) where diferent constants are required



to be interpreted dierently. This becomes relevant only when considering rtilas
include equality, which we do not do herein.

The primary reasoning problem that we consider is the faligwkind of query
containment.

Definition 4. A boolean conjunctive que8CQ) is a formuladv.Q where Q is a con-
junction of atoms and# contains all variables in Q. A BCQv.Q is entailedby R if it
is entailed under standard first-order logic semantics.

This is closely related to the relevant task of findoggtain answers$o conjunctive
queries with free variables (that is, for CQs that are not BLQhecking satisfiability
and BCQ entailment for unrestricted existential rules igaaidable 4,3] even with
very strong restrictions on the vocabulary or the numbeulas 2].

3 Weak Acyclicity and the Skolem Chase

As a first introduction to the idea of acyclicity, we recajate the notion ofweak
acyclicity [6,7] and its relationship to a simple inferencing procedurevkmas the
Skolem chasp9].

Definition 5. Given a set of rule®, thedependency grapk a directed graph that has
the positions of predicates iR as its nodes. For every rujee R, and every variable x
at position(R, p) in the head op, the graph contains edges as follows:

— If x is universally quantified, and x occurs in a body atom aipon (S, q), there
is an edge fromsS, g) to (R, p).

— If x is existentially quantified, and the bodyfontains a (necessarily universally
guantified) variable y atS, g) such that y also occurs in the headwfthen there
is aspecial edgérom (S, g) to (R, p).

R is weakly acyclidf its dependency graph has no cycle going through a spedigée
The class of weakly acyclic rule sets is denated

Intuitively, non-special edges encode the possible pgssirvalues in bottom-up
reasoning, whereas special edges encode the dependeneebdhe premise that a
rule was applied to and the new individuals that the appticadf this rule entails. A
cycle over special edges may indicate that newly inventkabgacan recursively be used
in premises which require the invention of further valadsnfinitum For instance, the
dependency graph of the rule

R(x.y) = 3zR(y.2) 1)

has a special edge frofR, 2) to itself. Indeed this rule may lead to the construction
of an infiniteR-chain of new elements. To formalise this, it is convenierttiink of a
concrete reasoning procedure being applied to rules. $cetid, it is useful to express
existential quantifiers using Skolem function symbols:



Definition 6. Consider a rulep of the formVx,y.¢[x,y] — 3Jz.y[X,z] wherex are
exactly those variables that occur in head and body. Let hieestze ok. TheSkolemi-
sationof p is the rulevx, y.¢[x,y] — ¢’[x] wherey’ is obtained fromy by replacing
every variable z z with a function term Ax) where § is a fresh function symbol of
arity I. The Skolemisation of a set of rules is the union ofSkelemisations of each of
its elements.

The set of body variables of a rulep that also occur in the head pfis known
as thefrontier of p. In Definition 6 we only use frontier variables in Skolem terms
since one can rewritéx, y.¢[X, y] — Jz.y[X, z] asVx.(Ay.¢[X,y]) — (z.y[X, z]). This
also explains why Definitio® considers only frontier variables as possible sources of
special edges.

Fact 1 Given a rule seRR with SkolemizatiorR’, and a BCQdv.Q over the signature
of R (without Skolem function symbols), we h&E Iv.Q if R’ E Av.Q.

A possible approach to BCQ answering is to recursively caostonsequences
bottom-up, similar to the consequence operator in LogiggRmmming. In database
theory where existential rules have often been studiesd piticedure (and its possibly
infinite result) is known as thehase

Definition 7. Consider a set of rule® and letR’ be a Skolemisation &®. A ground
instanceof a rule is a formula that is obtained by removing all quaeti$iand by uni-
formly replacing each variable with a variable-free (iground term (possibly includ-
ing Skolem functions). Thekolem chasés defined to be the least set SKC of ground
facts that is closed under the following rule:

if the rulep is the ground instance of a rule iR and if Be SKC for every body
atom B ofp, then He SKC for every head atom H pf

The Skolem chase can be computed by applying rules bottolmitiphis con-
struction may not terminate. For example, using r@etégether with a facR(a, b)
the Skolem chase has the forlR(a, b), R(b, f(b)), R(b, f(f(b))),...}. In essence, all
acyclicity conditions studied in this paper can be viewedygactic checks whether
the Skolem chase terminates for a given set of rules. Degithis in the general case
is not possible:

Fact 2 The problem of determining whether the Skolem chase tetesirfiar a given
set of rules is undecidable.

This is an easy consequence of standard Turing machineations in logic pro-
grams p], where the halting of the Turing machine is equivalent ®fihiteness of the
facts derived in forward-chaining. Finite or not, the Skolehase is a correct reasoning
procedure, and we can strengthen Baas follows:

Fact 3 Given a rule seRR with (possibly infinite) Skolem chase SkC, and a BG(1)
over the signature oR (without Skolem function symbols), we h&/e Av.Q iff SkKCE

v.Q.



Fact 4 The Skolem chase of a weakly-acyclic set of r@lésfinite.

The previous statement is easy to verify. Weak acyclicityuees that the Skolem
chase does not lead to any Skolem term of the féfthwhere the argumentscontain
another term with the Skolem functidn Since there are only a finite number of terms
without this form of nesting, the overall number of derivalgiround facts over the
(fixed) predicates is bounded. This type of reasoning cantasused to obtain a good
intuition about the advanced notions of acyclicity consgdiebelow.

Summing up, an acyclicity condition is a criterion that @alfous to decide whether
the Skolem chase will terminate on a given set of rules.

4 Joint Acyclicity

This section introducej@int acyclicity, which is a proper generalisation of the notion
of weak acyclicity introduced in Sectidh Considering again the examplB (we note
that the potential for creating an infinite Skolem chase $ Wehen extending the rule
as follows:

R(x.y) A C(y) — JzR(y. ). )

This rule cannot be applied recursively since inventedeglare not required to be-
long to C. Yet, the dependency graph contains the same cycle as kaidréhe rule
is not weakly acyclic. This highlights an important deficigrof weak acyclicity that
was also noted in9]: weakening a rule by adding additional requirements tdady
may destroy weak acyclicity. Moreover, note that even theugence of existentially
quantified variables on all premise positions would not ssagly lead to an infinite
Skolem chase:
A(X) A B(X) = 3y, zS(X,y,2) A A(Y) A B(2). 3)

Again, the example fails to be weakly acyclic even thoughmiinite Skolem chase can
occur. We capture this formally by shifting our focus fronsftions to variables (which
can occur in multiple positions):

Definition 8. Consider a renamed apart set of rul&s For a variable x, letPosg(X)
(Posn (X)) be the set of all positions where x occurs in the body (he&d)-o neces-
sarily unique — rule. Now for any existentially quantifiediaale v, letMove(v) be the
smallest set of positions such that @dsy(v) € Move(v), and (2)Posy(y) € Move(v)
for every universally quantified variable y wiBtosg(y) € Move(V).

The existential dependency gramf R has the existentially quantified variables
of R as its nodes. There is an edge from v to w if the rule where wreanntains a
universally quantified (body) variable z that also occurthie head and witlPosg(2) €
Move(V).

R isjointly acyclicif its existential dependency graph is acyclic. The clagsiofly
acyclic rule sets is denotgd

ThusMove(x) contains the positions in which values invented fomay appear.
This captures theftect of non-special edges in Definitidi whereas special edges
correspond to edges in the existential dependency gragimitiza 5 is obtained by



modifying condition (2) in DefinitiorB to requirePosg(y) N Move(x) # 0 instead of
Posg(y) € Move(X). This states that a value is propagated by a rule if it saisme-
instead ofall — of the rule’s premises. Joint acyclicity therefore appaaibe the more
natural condition.

The following rule is jointly acyclic (as a singleton set)tmot weakly acyclic: its
existential dependency graph does not have any edges whtrdapendency graph is
a clique of special edges.

R(%Y) A S(X,y) = IV, W.R(X,V) A RW, ) A S(X,w) A S(V,Y) 4)
In spite of this generalisation, joint acyclicity is easyrézognise.

Proposition 1. Checking whether a set of rules is jointly-acyclicHsomplete w.r.t.
the size of the rule set.

Proof. Detecting cycles in a directed graph and checking inclusiba position in
Move(X) is clearly possible in polynomial time. The latter probl&ralso hard for P
since propositional Horn logic entailment can be expressaty unary predicates with
a single variable to encode propositions. O

5 Super-Weak Acyclicity

Another generalisation of weak acyclicity, callegper-weak acyclicityswa), has been
proposed in9]. Super-weak acyclicity is more general than joint acyglias it uses
function symbols and unification to exclude some additicaaks of value propagation.
However, as we show in this section, joint acyclicity andestyveak acyclicity coincide
on the major class aduplicate-freerule sets. Since every rule set can be expressed by
one that is duplicate-free, we argue thatlready captures the main improvement that
swa provides over weak acyclicity, so that the additional maehy needed to define
swa might not be desirable.

To provide for a more accurate estimation of acyclicity,eruweak acyclicity con-
siders not just the predicate positions where an inventkebvaay occur, but also the
syntactic form of the atoms where values occurred in theeSkiged rule set. A posi-
tion in the context of a rule atom is callegptace formally given by a paifa, i) where
ais an atom withn arguments and € {1,...,n} is the index of a parameter an For
example, consider the rule

R(x, X) — Ay.R(X,y) A R(Y, X). (5)

This rule is not jointly acyclic, sincéR, 1), (R, 2) € Move(y). Yet, the Skolem chase of
the according Skolemised rule

R(x, X) = R(x, (X)) A R(f(X), X). (6)

is finite, since the rule is not applicable to any of the detifgets. Namelyf (X) occurs
in the placegR(x, f(X)) and({x, f(X)), and neither of these occurrences carubiied
with R(X, X) (a renamed apart variant of the premise 6)).(By using places and
unification instead of positions and set containment, D@fimB can be generalised to
the definition of super-weak acyclicity:



Definition 9. Consider a renamed apart set of rul&with SkolemisatiorR’. For a
term t, letPlcg(t) (Plcy(t)) be the set of all places where t occurs in the body (head)
of a — necessarily unique — rule &f. Given two sets B P, of places ofR’, we write

P1 ~ Ps if, for every(a,i) € Py, there is soméb, i) C P; and two substitution8, ¢
such that@ = bo'.

Now for any Skolem term(X) in R’, let Movegys(f (X)) be the smallest set of places
such that (1)Plcy (f(X)) € Moveswa(f(X)), and (2)Plcy(y) € Moveswa(f (X)) for every
universally quantified variable y withlovegya ( (X)) ~ Plcg(y).

The unification dependency grapf R has the Skolem terms & as its nodes.
There is an edge from(X) to g(y) if y contains a variable z witRlcg(2) ~ Movegya(f(X)).

R is super-weakly acyclidf its unification dependency graph is acyclic. The class
of weakly acyclic rule sets is denotega.

We have slightly changed the formulation as compare@jtm[emphasize the sim-
ilarity to Definition 8. It is easy to verify that the resulting notion is the same.

Though one could expect that the use of substitution prewadauch better estimate
of value propagation during the chase, thi®et is very much limited since only indi-
vidual atoms are considered. Indeed, joint acyclicity amks-weak acyclicity coincide
in many cases. More precisely, we say that a rule sétifdicate-fredf it contains no
body atom in which a variable occurs more than once.

Theorem 1. A duplicate-free rule seR is jointly acyclic if and only if it is super-weakly
acyclic.

Proof. Given a seP of places, defin®| to be the set of positior{gp, i) | (p(t,i)) € P}.
Consider an existentially quantified varialMén R that was replaced by the Skolem
term f(x) in the SkolemisatioR’ of R. We first show thaMovegya(f(X))| = Move(v)
by induction over their definitions in Definitic®land9. The base case (1) is obvious.

For the inductive step (2), consider a universally quamt¥igriabley as in (2) of the
respective defintions. We show thdbveg,,(f(x)) ~ Plcg(y) iff Move(v) € Posg(y).
The “only if” direction is part of the definition of>. For the “if” direction, we observe
that every plac€a,i) € Posg(y) is of the formR(z) wherez is a vector of mutually
distinct variables. Therefore, the substitutions reqlinghe definition of-» do always
exist as long as there is an at@lmi) € Movegya(f (X)) whereb is of the formR(t). By
the induction hypothesis, this is the case exactiRifiy € Move(v), which shows the
claim.

We thus find that the existential dependency graph and tHeaton dependency
graph are equal up to renaming of existential variables $kmlem terms. Indeed, the
edges of both graphs agree sirRleg(2) ~ Movegya(f (X)) iff Posg(2) € Move(V)
which follows by a similar argument as in the induction stbp\e. O

Thus the diference betweeswa andja is limited to rule sets that are not duplicate-
free. The following result that is based on a constructiodbti et al. [1] shows that
such rule sets do not add real expressivity over duplicaeile sets:

Theorem 2. For every rule seR that contains a body atom in which a variable occurs
more than once, there is a rule st where this is not the case and such that a BCQ



overR follows fromR iff it follows fromR’. Moreover,R’ can be constructed in time
exponential in the maximal arity of predicatesfand polynomial in the size & if
the maximal arity is fixed.

This statement has been shownInProposition 2.10] for the case of Datalog pro-
grams, where duplicate-free Datalog programs have betdcedrmal The construc-
tion for sets of existential rules is essentially the same dé/not recapitulate the formal
construction of the proof froml] and rather give an illustrating example. Consider the
rules

R(x, x.y) = C(y) (7
R(X,Y,2) — Av.R(Y, Z V). (8)

To eliminate the duplicate variable in rul@)( the atomR(x, x,y) is replaced by an
auxiliary atomRy13(X, y) whereR;13 is a new predicate (the vector 113 encodes the
sequence of parameter positions where each varialf¥xirx, y) first occurs). Instead

of adding a ruleR(x, x,y) — Ri13(X,y), we consider all rules that could possibly lead
to the derivation of a fact matchirig(x, x,y), and we create special instances of these
rules for derivingRy13(x, y). This is only the case for rule8) if y andz represent the
same value. Thus we obtain a new rule set:

Ru13(X,y) — C(y) 9)
R(x,Y,2) — 3Av.R(y,z V) (10)
R(X.Y.y) = 3v.Rusy. V). (11)

where rule 11) has been introduced as a specialization8f This leads to a new atom
R(x,y,y) with duplicate variables that is again replaced by an &@ngilatomR;22(X, ).
However, none of the original rules (especially not r@g ¢an actually lead tR(x, y, y)
(or Ri22(X,y)) being derived. So the final rule set is:

Ru13(%,y) — C(y) (12)
R(x,Y,2) — 3Av.R(Y,z V) (13)
Ri22(X, y) = 3V.Ru1g(Y, V). (14)

If facts were given, they would be translated like rulesslhot dificult but a bit te-
dious to formulate the complete transformation in gendra.easy to see that only the
original rule set needs to be considered when looking forsiayderive an auxiliary
atom, and that the number of auxiliary rules obtained in eaplacement step is thus
bounded by the (linear) number of head atoms in the inputsedeMoreover, up to re-
naming of variables the number of possible duplicate végiphtterns is exponentially
bounded by the arity of the respective predicate. Thesawdtsens lead to the claimed
upper bounds in Theoreg
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