
Learning Disjointness for Debugging Mappings between
Lightweight Ontologies

Christian Meilicke1, Johanna Völker2, Heiner Stuckenschmidt1

1 Computer Science Institute
Universität Mannheim, Germany

{christian,heiner}@informatik.uni-mannheim.de
2 Institute AIFB

Universität Karlsruhe (TH), Germany
voelker@aifb.uni-karlsruhe.de

Abstract. Dealing with heterogeneous ontologies by means of semantic map-
pings has become an important area of research and a number of systems for
discovering mappings between ontologies have been developed. Most of these
systems rely on general heuristics for finding mappings, hence are bound to fail
in many situations. Consequently, automatically generated mappings often con-
tain logical inconsistencies that hinder a sensible use of these mappings. In previ-
ous work, we presented an approach for debugging mappings between expressive
ontologies that eliminates inconsistencies by means of diagnostic reasoning. A
shortcoming of this method was its need for expressive class definitions. More
specifically, the applicability of this method critically relies on the existence of
a high-quality disjointness axiomatization. This paper deals with the application
of the debugging approach to mappings between lightweight ontologies that do
not contain any or very few disjointness axioms, as it is the case for most of to-
day’s practical ontologies. After discussing different approaches to deal with the
absence of disjointness axioms we propose the application of supervised machine
learning for detecting disjointness in a fully automatic manner. We present a de-
tailed evaluation of our approach to learning disjointness and its impact on map-
ping debugging. The results show that debugging automatically created mappings
with the help of learned disjointness axioms significantly improves the overall
quality of these mappings.

1 Motivation

A common way of integrating different ontologies describing the same or largely over-
lapping domains is to use formal representations of semantic correspondences between
their classes and relations - also referred to as “ontology mappings”. There are two
major research challenges connected to ontology mappings. The first one is the devel-
opment of a logical model for representing and reasoning about ontology mappings.
The second one is the identification of semantic correspondences between elements
in different ontologies as a basis for generating mappings between ontologies. Man-
ual approaches for identifying semantic correspondences are often not feasible since
real world ontologies, for example in the medical domain, often contain several thou-
sand classes. As a response to this problem, a number of automatic and semi-automatic

tools for generating hypotheses about semantic correspondences have been developed
(see [7] for an overview). The results of these tools, however, often contain a significant
amount of errors caused by the use of general heuristics that are bound to fail in certain
situations. Due to this fact, a revision of the mappings created by matching systems is
often inevitable to guarantee the quality of the integration.

In this paper, we present a method for automatically revising mappings that can also
be applied to mappings between lightweight ontologies. The method is an extension of
previous work on debugging ontology mappings that relied on the existence of complex
class descriptions and therefore was not applicable to a wide range of ontologies on
the semantic web. The contribution of this paper compared to previous work is the
following:

• We describe a variant of the original debugging method reported in [17] that does
not require a specialized reasoning system but can be implemented on top of any
description logic reasoner.

• We present a preprocessing step that follows the approach outlined in [27] in which
missing disjointness axioms are added to lightweight ontologies as a basis for de-
tecting malicious correspondences.

• We re-implemented the prototype described in [27] and developed an improved set
of features, that enables us to build a more reliable classification model for learning
disjointness axioms.

• We implemented a validation technique for debugging learned disjointness based
on logical reasoning and performed a detailed evaluation of the automatically ac-
quired axioms against a manually created Gold Standard.

• We evaluated the mapping debugging method using learned disjointness axioms
and show that this approach significantly improves the result of existing matching
systems.

In the following, we briefly introduce the approach for debugging ontologies and
discuss different options for dealing with the lack of disjointness axioms in lightweight
ontologies. In Section 3 we present an approach for learning disjointness axioms from
examples that has been chosen as a basis for the preprocessing step. Section 4 provides
details on the experiments we carried out and the results achieved. We conclude with a
discussion of the approach and topics for future work.

2 Debugging Mappings

In previous work, we have proposed the use of logical reasoning about ontology map-
pings for improving the quality of automatically generated mappings both in terms of
using reasoning inside matching systems to evaluate mapping hypotheses [16] and as
a basis for debugging mappings generated by a matching systems a posteriori [17]. In
the following, we provide relevant definitions of the ontology matching task and briefly
present an approach for debugging mappings as well as different options for extending
this approach to lightweight ontologies.

2.1 Ontology Mapping Basics

Given two ontologies, O1 and O2, describing the same or largely overlapping domains
of interest. According to Euzenat and Shvaiko [7], correspondences between elements
of these ontologies can be defined as follows.

Definition 1 (Correspondence and Mapping). Given ontologiesO1 andO2, let Q be
a function that defines sets of matchable elements Q(O1) and Q(O2) of ontologies O1

andO2 respectively. Then a correspondence betweenO1 andO2 is a 4-tuple 〈e, e′, r, n〉
such that e ∈ Q(O1) and e′ ∈ Q(O2), r is a semantic relation, and n is a confidence
value from a suitable structure 〈D,6〉. A set of correspondencesM is a mapping be-
tween O1 and O2 iff for all c ∈M c is a correspondences between O1 and O2 .

The generic form of definition 1 allows to capture a wide class of correspondences
by varying what is admissible as matchable element, semantic relation, and confidence
value. In this work, we impose the following additional restrictions on correspondences:
We only consider correspondences between classes. We also restrict r to be the equiv-
alence relation.3 In the following we use the prefix notation 1: C to refer to class
C from ontology O1. Given ontologies O1 and O2, the equivalence correspondence
〈1: A, 2: B, =, 1.0〉 is correct if everything that we account to be an instance of 1: A
also has to be accounted to be an instance of 2:B and vice versa. Note that most of to-
day’s matching systems only generate equivalence correspondences. Finally, we assume
that the confidence value is represented numerically on D = [0.0, 1.0]. The confidence
value n can be seen as a measure of trust in the fact that the correspondence holds. The
higher the confidence degree with regard to the ordering 6, the more likely relation r
holds between matchable elements e and e′.

This notion of a mapping between ontologies has been used as the basis of a stan-
dardized API4 for handling ontology mappings, sometimes also referred to as ontology
alignments, and has become the de facto standard for representing automatically gener-
ated mappings through its use in the Ontology Alignment Evaluation Initiative (cf. [6]
and [8]).

2.2 A Debugging Method

To apply logical reasoning to ontology mappings, we first have to translate them into a
logical representation. Several formalisms have been proposed for this purpose (com-
pare e.g. [23]). In this paper, we use standard description logics as a basis for encod-
ing mappings in order to make use of existing, highly optimized reasoning systems.
In particular, based on the specification of a mapping, we generate a merged ontology
containing the axioms from the two ontologies to be mapped and equivalence axioms
between classes in these ontologies that represent the mapping.

Definition 2 (Merged ontology). Given a mapping M between ontologies O1 and
O2. The merged ontology O1 ∪M O2 of O1 and O2 connected via M is defined as

3 Notice that the proposed approach is with a few minor modifications also applicable for sub-
sumption correspondences.

4 http://alignapi.gforge.inria.fr

O1∪MO2 = O1∪O2∪{t(c) | c ∈M} with t being defined by t(〈1:C, 2:D,=, c〉) =
1: C ≡ 2: D converting equivalence correspondences into equivalence axioms of
O1 ∪M O2.

The merged ontology provides a basis for reasoning about the impact of a mapping
on classes in the mapped ontologies. Of particular interest is the identification of in-
coherences that are introduced by the mapping. More specifically, we are interested in
classes in the mapped ontologies that were satisfiable before the merge operation be-
coming unsatisfiable inO1∪MO2. Such an incoherence must have been introduced by
the mapping. We call a mapping that introduces incoherence an inconsistent mapping.

Definition 3 (Inconsistency of a mapping). Given a mappingM between ontologies
O1 and O2. M is inconsistent iff there exists a class i: C with i ∈ {1, 2} such that
Oi 6|= i:C v ⊥ and O1 ∪M O2 |= i:C v ⊥. OtherwiseM is consistent.

Some correspondences of an inconsistent mapping M between O1 and O1 have
to be incorrect, given the logical correctness of O1 and O2. Obviously, we would not
accept a mapping that imposes restrictions on O1 ∪M O2 making some of the classes
in O1 ∪M O2 unsatisfiable. In order to identify those elements of a mapping causing a
class to become unsatisfiable, we can use techniques known from the area of classical
diagnosis [19] that have already successfully been applied in the context of diagnosing
inconsistencies in description logic ontologies [21]. A central notion with this respect is
the one of a minimal conflict set. In our setting, a minimal conflict set is an inconsistent
subset ofM which contains no real subset that is also inconsistent.

Definition 4 (Minimal conflict set). Given a mappingM between ontologies O1 and
O2. A mapping C ⊆ M is a minimal conflict set iff C is inconsistent and each C′ ⊂ C is
consistent.

Several approaches have been proposed to explain and resolve incoherences in on-
tologies [13, 22]. At first sight, these approaches can be applied in a straight forward
way to the problem of mapping debugging by resolving the incoherence ofO1 ∪MO2.
Our definition of a minimal conflict set, in particular, is closely related to the notion of a
minimal incoherence-preserving sub-TBox, a central notion in the context of ontology
debugging. Nevertheless, there are two major differences between ontology and map-
ping debugging. On the one hand, we will never remove any of the axioms inO1 orO2.
We are not even interested in which of these axioms is taking part in causing the in-
coherence. On the other hand, correspondences are labeled with confidence values that
can be seen as a measure of trust in the correctness of the correspondence. Contrary to
this, in standard approaches for resolving incoherences each axiom is implicitly equally
weighted, since no further information about its correctness is given.

The approach presented in algorithm 1 takes into account the peculiarities of map-
ping debugging. It can be seen as naive strategy that transforms an inconsistent mapping
into a consistent one by a sequence of rational decisions. First, the correspondences of
M are sorted descending due to their confidence value. An empty mapping M′ is
instantiated that will, finally, contain a consistent subset ofM. In each iteration corre-
spondence c with the highest confidence value is removed fromM and added toM′.

Algorithm 1
RESOLVECONFLICTS(M)
1: M′ ← ∅
2: SORTDESCENDING(M)
3: whileM 6= ∅ do
4: c← REMOVEFIRSTELEMENT(M)
5: M′ ←M′ ∪ {c}
6: if not ISCONSISTENT(M′,O1,O2) then
7: M′ ←M′ \ {c}
8: end if
9: end while

10: return M′

WheneverM′ becomes inconsistent, c has to be rejected and is removed fromM′. This
decision is motivated by the fact, that there exists a minimal conflict set C ⊆ M′ such
that c ∈ C and there exists no c′ ∈ C with lower confidence than c. The algorithm ter-
minates after |M| iterations. The resulting mappingM′ is consistent and each superset
ofM′ is an inconsistent mapping. By calling ISCONSISTENT(M′,O1,O2) the merged
ontology O1 ∪M′ O2 is created and the coherence of this ontology has to be checked.
Thus, the algorithm can be implemented on top of any reasoner capable of reasoning in
the merged ontology O1 ∪M O2.5

2.3 Problems with Lightweight Ontologies

For many matching problems mapping inconsistencies will only occur if the ontologies
to be matched contain disjoint classes. On the one hand, the disjointness of two classes
can be explicitly stated by a disjointness axiom. Evaluations of existing ontologies have
shown that, even in expressive ontologies, these axioms are often missing [28]. On
the other hand, disjointness can be derived from expressive definitions, that will rarely
occur in lightweight ontologies. This has already been identified as a problem in our
previous work where missing expressivity often leads to a situation where only a small
subset of all incorrect correspondences are detected [17]. Thus, the whole approach
is useless in the context of lightweight ontologies, for instance ontologies specified in
RDF Schema. This is a major drawback as according to Ding and Finin in mid 2006 [4]
about half a million ontologies were defined using RDF schema while disjointness ax-
ioms were only found in less than 2,500 files on the web. As this questions the useful-
ness of our approach on a large scale, we have to find ways to deal with the lack of
disjointness axioms in most real world ontologies. There are several possible solutions
to this problem:

Manual Preprocessing A straightforward approach is to require a manual preprocess-
ing step in which disjointness axioms are added to the ontologies to be mapped.
This approach is not really feasible for large ontologies.

5 We implemented the algorithm on top of the Pellet reasoner [24].

Alternative Consistency Criteria In previous work, we have also experimented with
alternatives to the notion of mapping inconsistency as a basis for debugging map-
pings. In particular, we have used the notion of stability which requires that a map-
ping should not induce any changes in the hierarchies of the mapped ontologies.
It turned out, however, that this is too restrictive in many practical cases as real
ontologies often disagree on the taxonomic relation between classes.

Disjointness Assumptions In [20] Schlobach proposes a method called semantic clari-
fication as a basis for debugging lightweight ontologies. The method is based on the
assumption that sibling classes are always disjoint unless this introduces a conflict.
We could use this assumption in our setting as well and add disjointness axioms for
all sibling classes of a class thus enriching the ontologies to be mapped. Taking a
closer look at this approach, however, reveals that the effect is almost the same as
for the stability criterion and thus also too restrictive in many cases.

As all of the approaches mentioned above have problems, we follow a different ap-
proach in this paper. The idea is to learn which classes in a lightweight ontology should
actually be regarded as being disjoint. We analyze expressive ontologies and derive fea-
tures indicating the disjointness of classes. Based on these features, we decide which
classes in a lightweight ontology are most likely disjoint and add the corresponding
axiom to the merged ontology as a basis for debugging. Details of this approach are
presented in the following section.

3 Learning Disjointness Axioms

Our approach to the automatic acquisition of disjointness axioms relies on a machine
learning classifier that determines disjointness of any two classes. The classifier is
trained based on a “Gold Standard” of manually created disjointness axioms (cf. Sec-
tion 4.1), i.e. pairs of classes each of which is associated with a label – “disjoint” or
“not disjoint” – and a vector of feature values. As in our earlier experiments [27], we
used a variety of lexical and logical features, which we believe to provide a solid ba-
sis for learning disjointness. These features are used to build an overall classification
model on whose basis the classifier can predict disjointness for previously unseen pairs
of classes. We implemented all features and auxiliary methods for training and classifi-
cation within the open-source tool LeDA6 (Learning Disjointness Axioms), a complete
redesign and re-implementation of our original prototype and publicly available under
the LGPL license.

In the following, we give a brief overview of the features we used for the exper-
iments that we report on in Section 4. The current feature set differs from the orig-
inal one [27] in that it focuses more on lexical and ontology-based similarity, which
turned out to work very well in previous experiments. At the same time, we omitted
several “weak” features including, e.g., OntoClean meta-properties and enumerations.
For details with respect to our selection of features and their respective impact on the
evaluation results reported in Section 4.2, the interested reader is referred to [26].

6 http://ontoware.org/projects/leda/

Taxonomic Overlap. In description logics, two classes are disjoint iff their “taxo-
nomic overlap”, i.e. the set of common individuals must be empty. Because of the open
world assumption in OWL, the individuals of a class do not necessarily have to exist
in the ontology. Hence, the taxonomic overlap of two classes is considered not empty
as long as there could be common individuals within the domain that is modeled by
the ontology. Following these considerations, we developed several methods to com-
pute the actual or possible overlap of two classes. Both of the following formulas are
based on the Jaccard similarity coefficient [12]. I denotes the set of named individuals,
whereas C consists of all the atomic classes.

foverlapi(c1, c2) =
|{i ∈ I|c1(i) ∧ c2(i)}|
|{i ∈ I|c1(i) ∨ c2(i)}|

foverlapc(c1, c2) =
|{c ∈ C|c v c1 u c2}|
|{c ∈ C|c v c1 t c2}|

These two features are complemented by fsub, that represents a particular case of
taxonomic overlap, while at the same time capturing negative information such as class
complements or already existing disjointness contained in the ontology. The value of
fsub for any pair of classes c1 and c2 is 1 for c1 v c2 ∨ c2 v c1, 0 for c1 v ¬c2 and
undefined otherwise.7

Semantic Distance. The semantic distance between two classes c1 and c2 is the min-
imum length of a path consisting of subsumption relationships between atomic classes
that connects c1 and c2 (as defined in [27]).

Object Properties. This feature encodes the semantic relatedness of two classes,
c1 and c2, based on the number of object properties they share. More precisely, we
divided the number of properties p with p(c1, c2) or p(c2, c1) by the number of all
properties whose domain subsumes c1 whereas their range subsumes c2 or vice-versa.
This measure can be seen as a variant of the Jaccard similarity coefficient with object
properties considered as undirected edges.

Label Similarity. The semantic similarity of two classes is in many cases reflected
by their labels – especially, in case their labels share a common prefix or postfix. This is
because the right-most constituent of an English noun phrase can be assumed to be the
lexical head, that determines the syntactic category and usually indicates the semantic
type of the noun phrase. A common prefix, on the other hand, often represents a nominal
or attribute adjunct which describes some semantic characteristics of the noun phrase
referent. In order to compute the lexical similarity of the two class labels, we therefore
used three different similarity measures: Levenshtein, QGrams and Jaro-Winkler.

WordNet Similarity. In order to compute the lexical similarity of two classes (their
labels, to be precise), we applied two variants of a WordNet-based similarity measure by
Patwardhan and Pedersen [18].8 This similarity measure computes the cosine similarity
between vector-based representations of the glosses, that are associated with the two

7 As in case of all the other features, we dealt with missing information by putting a quotation
mark into the feature vector representation, which is interpreted accordingly by the classifier.

8 http://www.d.umn.edu/˜tpederse/similarity.html

synsets.9 We omitted any sort of word sense disambiguation at this point, assuming that
every class label refers to the most frequently used synset it is contained in.

Features based on Learned Ontology. As an additional source of background knowl-
edge about the classes in our input ontology we used an automatically acquired corpus
of Wikipedia articles. By querying Wikipedia for each class label10 we obtained an ini-
tial set of articles some of which were disambiguation pages. We followed all content
links and applied a simple word sense disambiguation method in order to obtain the
most relevant article for each class. For each class label we considered the article to
be most relevant, which had, relative to its length, the highest “terminological overlap”
with all of the labels used in the ontology. The resulting corpus of Wikipedia articles
was finally fed into Text2Onto [3] to generate an additional background ontology for
each of the original ontologies in our data set (cf. Section 4.1), consisting of classes,
individuals, subsumption and class membership axioms.

Based on this newly acquired background knowledge, we defined four features:
subsumption, taxonomic overlap of subclasses and individuals – all of these are defined
as their counterparts described above – as well as document-based lexical context si-
miliarity, which we computed by comparing the Wikipedia article associated with the
two classes. This type of similarity is in line with Harris’ distributional hypothesis [10]
claiming that two words are semantically similar to the extent to which they share syn-
tactic contexts.

4 Experimental Evaluation

In the following we describe the experimental evaluation of disjointness learning and
its effects on mapping debugging. Both groups of experiments have been conducted on
the OntoFarm data set, described in Section 4.1. In Section 4.2 we focus on the experi-
mental setting for disjointness learning and present the most important results. Finally,
in Section 4.3 we discuss how to measure the effects of using learned disjointness in
the context of mapping debugging and describe as well as discuss the debugging exper-
iments and their results.

4.1 Data Sets

We evaluated our approach using automatically created mappings between ontologies
of the OntoFarm data set. It consists of a set of ontologies in the domain of conference
organization that have been collected by researchers of the Knowledge Engineering
Group at the University of Economics Prague [25].11 The ontologies cover the structure
of a conference, involved actors, as well as issues connected with the submission and
review process.

9 In WordNet, a synset is a set of (almost) synonymous words, roughly corresponding to a class
or concept in an ontology. A gloss is a textual description of a synset’s meaning, that most
often also contains usage examples.

10 Labels that were written as one word, though consisting of nominal compounds or other types
of complex noun phrases.

11 The ontologies are available at http://nb.vse.cz/˜svabo/oaei2006/.

Ontology Expressiveness Classes Properties Disjointness
CMT ALCIF(D) 30 59 27
CRS DL-lite 14 17 12
CONFTOOL SIF(D) 39 36 43
EKAW SHIN (D) 77 33 83
PCS ELUIF(D) 24 38 0
SIGKDD ELI(D) 51 28 0

Table 1. Ontologies chosen from the OntoFarm collection.

Meanwhile the OntoFarm data set consists of 13 ontologies, six of which were used
in our experiments. We omitted the other ontologies, since not all of the matching sys-
tems in our experiments were able to provide the corresponding mappings and because
several ontologies were added to the data set after we had already setup the experiments.
Table 1 summarizes core characteristics of the ontologies we used, including their size
and expressive power in terms of the underlying logic as well as the number of already
existent disjointness axioms.12

Gold Standards. In order to obtain a reference set of disjointness axioms for training
and evaluating LeDA as well as to get an upper bound for the evaluation of mapping
debugging, we manually added a minimal and complete set of disjointness axioms to
the ontologies described above.13 For these sets of explicit disjointness axioms, we
computed the transitive closure by “materializing” all implicit disjointness relationships
(positive examples). All pairs of classes whose disjointness could not be inferred from
the initial, minimal set of axioms were considered not disjoint, thus serving as negative
examples in the Gold Standard. This way we obtained a logically “cleaner” and much
bigger data set than in of our earlier experiments with learning disjointness.

To evaluate the results of mapping debugging we had to manually construct refer-
ence mappings consisting of equivalence correspondences for all pairs of ontologies. In
order to create reference mappings of high quality, three people familiar with the do-
main of conferences individually constructed mappings for each pair of ontologies. In
case of a disagreement the correctness of a correspondence was decided by a majority
vote. It turned out that there was only little disagreement with respect to the correctness
of correspondences.

4.2 Disjointness Learning

In this section, we present the evaluation of our approach to the automatic acquisition of
disjointness axioms in which we built a classification model from the features described
in Section 3. After introducing our evaluation setting in Section 4.2 we give an overview
of the results that we obtained by evaluating our classification model against the Gold
Standard of manually created axioms (cf. Section 4.2).

12 For more information about the given logic classes we refer the reader to [1].
13 A set of disjointness axioms D is minimal with respect to ontology O iff for all d ∈ D we

have O ∪D \ {d} 6|= d.

Evaluation Setting Unlike in our earlier experiments where a single ontology had to
serve as a basis for both training and testing, the conference ontologies data set allows
us to use 6 × 5 = 30 different combinations of ontologies for the evaluation of learn-
ing disjointness: for each of the 6 ontologies, we thus performed 5 experiments using
each of the remaining ontologies as training data, and finally averaged over the indi-
vidual results. Note that we removed all previously existing disjointness axioms from
the ontologies prior to training and classification, because we wanted to get compa-
rable results for all ontologies, independently of their respective numbers of existing
disjointness axioms (cf. Table 1).

When testing on any of the ontologies, we always classified (and evaluated against)
all possible pairs of classes – not just those explicitly marked as disjoint by the user. This
is because we hoped that the resulting redundancy would help to rule out incorrectly
classified pairs of classes in a post-processing (debugging) step. As a classifier for all
experiments, we used Weka’s implementation of NaiveBayes with default parameters14,
which turned out to perform slightly better in our initial tests than Decision Trees and
SVMs – especially on the smaller data sets – and provides us with probabilities that
make up quite intuitive confidence values.

Baseline and Evaluation Measures. We generated macro-average values for precision,
recall and F -measure15 by averaging over the respective results on the sets of positive
and negative examples. As a reasonable baseline for our evaluation, we computed a
majority baseline for accuracy (Accbase), that is defined as the number of examples in
the majority class (e.g. “not disjoint”) divided by the overall number of examples. The
majority baseline represents the performance level that would be achieved by a naı̈ve
classifier that labels all entities in the test set with the majority class, i.e. “disjoint” for
all ontologies in our data set. This simple, yet efficient strategy is hard to beat, especially
for data sets that are relatively unbalanced and biased towards one of the target classes.

Debugging of Learned Disjointness We implemented a disjointness debugging tech-
nique based on formal reasoning as final step of our approach. This technique is similar
to the mapping debugging approach presented in algorithm 1. Given a set of learned
disjointness axioms D making statements about the classes in ontology O, we apply
the following procedure: We sort the set of learned disjointness axioms D according
to their associated confidence values (i.e. probabilities generated by our NaiveBayes
classifier) and start with the highest ranked axioms. Each disjointness axiom d ∈ D is
removed from D and temporarily added to O. Afterwards, the class hierarchy of ontol-
ogyO is recomputed. IfO is still coherent d can be accepted and becomes a permanent
part of O, otherwise d is removed from O again. To reduce the amount of reasoning,
after each extension of O we additionally check whether O |= d′ for all d′ ∈ D. In
case of entailment we remove d′ from D and add it to O. This procedure is an efficient
approach that both ensures coherence and increases the quality of learning disjointness.

14 http://www.cs.waikato.ac.nz/ml/weka/
15 In the following we use the term F -measure to refer to the F1-measure, where recall and

precision are evenly weighted.

Results The evaluation shows that our approach can reliably determine disjointness
for any given pair of classes. As detailed by Table 2, the comparison of our results with
the Gold Standard set of disjointness axioms yields a macro-average F-measure of up
to 80.0%. The accuracy (i.e. the fraction of correctly classified pairs) is even higher
ranging from 76.5% to 91.3% which is always above the majority baseline Accbase.

Test on P R F Acc Accbase Accdebug

CMT 0.838 0.785 0.800 0.841 0.685 0.842
CONFTOOL 0.792 0.765 0.770 0.855 0.803 0.857
CRS 0.809 0.801 0.793 0.867 0.824 N/A
EKAW 0.882 0.760 0.797 0.913 0.851 0.922
PCS 0.828 0.749 0.767 0.812 0.663 N/A
SIGKDD 0.778 0.641 0.679 0.765 0.704 0.767

Table 2. Results of learning disjointness averaged over all training ontologies (NaiveBayes clas-
sifier; macro-avg. precision, recall and f-measure)

Debugging the sets of automatically acquired disjointness axioms as described in
Section 4.2 further improves the average accuracy, e.g., from 91.3% to 92.2% Accdebug

for EKAW. Table 3 shows a more detailed evaluation of this post-processing step for
those pairs of training and test ontologies which led to logically incoherent results. The
first column lists the ontologies that were enriched with automatically acquired disjoint-
ness axioms, whereas the second column indicates the respective training ontologies,
i.e. the ontologies that were used to setup the classifier. For each training ontology, we
obtained an incoherent variant of the original ontology and an accuracy value Acc that
was computed by comparison with the respective Gold Standard. The last column of
Table 3 lists the relative numbers of disjointness axioms that had to be removed in order
to debug the ontology. For example, 2.35% of the learned disjointness axioms had to
be removed from EKAW after training had been performed on the CRS ontology. In all
cases, debugging further improved the overall quality of the learning results, which led
to an increased accuracy (Accdebug).

Test on Training on Acc Accbase Accdebug Removed
CMT CRS 0.830 0.685 0.839 1.14%
CONFTOOL CRS 0.869 0.803 0.881 1.41%
EKAW CMT 0.925 0.851 0.932 0.76%

CRS 0.892 0.913 2.35%
PCS 0.919 0.940 2.25%

SIGKDD 0.904 0.911 0.89%
SIGKDD CMT 0.779 0.704 0.780 0.09%

CONFTOOL 0.776 0.776 0.09%
CRS 0.773 0.781 0.90%
PCS 0.744 0.744 0.11%

Table 3. Individual results of learning disjointness after debugging (NaiveBayes classifier)

The complete data sets of our learning disjointness experiments – including the
Gold Standard as well as all the training data and classification results – are available
online and can be downloaded from the LeDA homepage.16

4.3 Mapping Debugging

In the following we describe a group of experiments where we used the results of the
previously presented evaluation of LeDA as basis in the mapping debugging process.
Before reporting the most important results we first focus on the experimental setting.

Experimental Setting In order to adequately measure the effects of learned disjoint-
ness statements on mapping debugging, we compare three types of mappings, namely
(1) the mappings automatically generated by a matching system, (2) the debugged map-
pings where the debugging process is based on the reference disjointness ontologies and
finally (3) the debugged mappings where the debugging process is based on learned
disjointness. Comparisons between input mappings and mappings debugged with refer-
ence disjointness measure the quality of the debugging process in a best case scenario
with respect to the completeness and correctness of disjointness statements. This com-
parison will thus be an upper bound for debugging based on learned disjointness. In the
following we focus on the question whether the effects of debugging based on learned
disjointness are still good enough to increase the quality of a mapping, in particular, we
will compare the results to the upper bound based on the reference disjointness.

We have chosen four matching systems participating in the consensus track of the
OAEI 2006 and 2007 campaign, in particular those systems providing mappings for all
pairs of ontologies listed in Table 1 as well as generating meaningful confidence values.
These system are Falcon-AO [11] (participating 2006 and 2007 with similar results),
OLA (2007) [9], RiMOM (2006) [14] and HMatch (2006) [2]. For all of these sys-
tems we compared the types of mappings described above and measured the size of the
mappings in number of correspondences, precision (P), recall (R) and F -measure (F).
Computing these values with respect to the debugging based on learned disjointness, for
one mapping between ontologies O1 and O2 we performed mapping debugging based
on all 5× 5 = 25 variants for O1 and O2 differing with respect to the ontology used as
training data.

Results The results of these experiments are presented in Table 4. For each matching
system we aggregated over all correspondences in the generated mappings. The first 4
data columns present the characteristics of the mappings generated by the matching
systems. Obviously, there is a significant difference between the matching systems we
used in our experiment. Falcon-AO generates the best mappings compared to the other
systems, in particular with respect to mapping precision. This is partially caused by the
fact that RiMOM and OLA on the one hand extract a one-to-one mapping using a low
threshold or no threshold at all. HMatch, on the other hand, generates many-to-many
mappings which results in a low precision with respect to the data set under discussion
where all reference mappings are one-to-one mappings.
16 http://ontoware.org/projects/leda/

Matching Automatically Debugged mappings based on
System generated mappings reference disjointness learned disjointness

P R F # P R F # P R F

FalconAO-07 123 0.829 0.803 0.816 115 0.870 0.787 0.826 110.4 0.873 0.759 0.812
HMatch-06 203 0.404 0.646 0.497 113 0.708 0.630 0.666 99.2 0.736 0.575 0.646
RiMOM-06 332 0.301 0.787 0.435 232 0.427 0.780 0.552 211.8 0.460 0.767 0.575
OLA-07 389 0.257 0.787 0.387 233 0.425 0.780 0.550 204.4 0.436 0.702 0.537

Table 4. Number of correspondences (#), precision (P), recall (R) and F -measure (F) aggre-
gated over input mappings generated by matching systems, debugged mappings based on the use
of ontologies extended by reference disjointness, and debugged mappings based on the use of
ontologies extended by learned disjointness.

The different characteristics of the matching systems are also reflected in the results
of the debugging process. Based on the reference disjointness the debugging increases
the F -measure for Falcon-AO by only 1%, while for the other systems we can measure
a gain between 12% and 17%. This is based on the fact that for Falcon-AO only a small
number of correspondences are removed (6.5%), while for the other systems between
29.5% and 44.3% of all correspondences are removed.

4.4 Discussion

One might argue that the results of these systems could also be optimized to a significant
degree by e.g finding an appropriate threshold or extracting a one-to-one mapping. This
objections points to an important advantage of our approach. The proposed debugging
method adapts to the characteristics of the matching problem without any additional
information about appropriate thresholds or any other additional information based on
e.g. experiences with similar matching problems.

One might still criticize, that while our approach indeed increases the quality of
a rather bad input mapping, it does not optimize a top matching system by a notable
degree. This objection neglects an important aspect. A system that performs very well
for a certain matching problem might produce poor results for a different problem.
While OLA, for example, performed not very well with respect to our evaluation, it
was among the top six matching systems of the OAEI 2007 benchmark testcase [5]
with an overall performance similar to Falcon-AO, the best system in our evaluation.
Therefore, given a realistic matching problem without reference mapping, we cannot
eliminate choosing a system that generates substandard or average results. Notice also,
that even with respect to the mappings generated by Falcon-AO, we measure a slight
improvement. This improvement is based on a trade-off between precision and recall,
which makes our approach in particular interesting for applications that require a highly
precise mapping.

Comparing the debugging results based on reference disjointness to the results
based on learned disjointness, there are only minor differences. As we argued, debug-
ging based on the reference disjointness can be seen as an upper bound. Therefore, the
results based on learned disjointness are surprisingly good. This can partially be ex-
plained by the good results of learning disjointness discussed in Section 4.2. In some

cases we even obtained results topping the upper bound, e.g, compare the F -measure
for RiMOM. As a general pattern we observe that learned disjointness based debugging
generates more precise mappings, but decreases recall.

This pattern is based on the fact that even incorrect disjointness statements may
sometimes have positive effects in the debugging process. An example will illustrate
this point. For the EKAW ontology LeDA learns that the classes PC Member (”pro-
gram committee member”) and Demo Chair are disjoint. Even though the strong dis-
jointness assumption is incorrect, we have to accept that a person can be an instance of
Demo Chair without being an instance of PC Member and vice versa. Thus, introduc-
ing a subsumption axiom between PC Member and Demo Chair has to be considered
as an error. Our way to detect conflicts in mappings is exactly based on the idea to check
wether or not the propagation of a subsumption relation from one ontology to the other
ontology can be accepted from a formal point of view. This means that, even though
the disjointness axiom PC Member v ¬ Demo Chair is too strong, we nevertheless
draw the correct conclusion in the debugging process that we are not allowed to model
a subsumption between both classes. This pattern occurred several times within our ex-
periments and explains that the results of debugging based on learned disjointness in
some situations even outperforms debugging based on a reference disjointness.

5 Conclusion and Future Work

In this paper, we have addressed the problem of creating high quality mappings between
lightweight ontologies which are the dominant form of ontologies currently available on
the web. Our approach, that has already been successfully applied to expressive descrip-
tion logic ontologies, was to perform a posteriori debugging based on inconsistencies
introduced by the mappings. In this paper we showed that an automatic enrichment
of lightweight ontologies with disjointness axioms leads to equally good results. In
particular, we could show that a machine learning technique produces disjointness in-
formation with an accuracy of 85 to 90 percent. Based on these automatically created
disjointness information we could improve the overall quality of the mappings by up
to 16 percentage points. These results are quite impressive considering that once the
classifier has been trained our approach is completely automatic and does not require
any human interaction.

One of the most important topics for future work is related to the interdependency
between learned disjointness axioms and automatically generated correspondences. In
our setting we first added learned disjointness axioms to the ontologies and used this
additional information to guide the process of mapping debugging. Conversely, it would
also be possible to use the information encoded in the mappings to optimize the process
of disjointness debugging. Notice that in each of these alternatives we have to trust in a
heuristic method to debug the results of another heuristic method. The most promising
solution to cope with this dilemma is to combine disjointness and mapping debugging in
a unique step. In such a setting we first have to find a way to make confidence values for
disjointness axioms and correspondences comparable. Having once defined a complete
ordering of disjointness axioms and correspondences based on a normalized confidence

value, an algorithm similar to algorithm 1 should be applicable to an ordered set con-
taining both disjointness axioms and correspondences. We expect such an algorithm to
have positive effects on the accuracy of both disjointness and mapping debugging.

The method described in this paper is applicable in many different settings. The
most straightforward application is to improve the results of an automatic matching
system by a one-shot application of the method. This corresponds to the experiments
performed in this paper and we can expect to get a quality improvement comparable to
the ones reported in this paper. Another option for using the method is to integrate the
debugging functionality into existing matching systems in terms of a special extraction
function that extracts the final mapping from a similarity matrix over concepts. This
option has been investigated in [15]. Finally, it is clear that completely automatic ap-
proaches will always have their problems. A possible alternative is to use debugging
functionalities to support a human expert in the evaluation of an automatically gener-
ated mapping. Such an interactive method will help us at least partially to avoid the
dilemma mentioned above. In particular, we can ask the user to mark a subset of the
generated mapping as correct or incorrect and use the method above to derive the im-
plications of this partial judgement. Such an approach will probably significantly speed
up manual mapping evaluation and produce a high quality mapping due to the human
in the loop.

Acknowledgements: Research reported in this paper has been partially financed by the
EU under the IST-2006-027595 project NeOn as well as by the German Science Foun-
dation (DFG) in the Emmy Noether Programme under contract STU 266/3-1 and the
Multipla project.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2002.

2. S. Castano, A. Ferrara, and G. Messa. Results of the HMatch ontology matchmaker in OAEI
2006. In Proceedings of the ISWC 2006 Workshop on Ontology Matching, Athens, GA,
USA, November 2006.

3. P. Cimiano and J. Völker. Text2Onto - a framework for ontology learning and data-driven
change discovery. In A. Montoyo, R. Munoz, and E. Metais, editors, Proceedings of the
10th International Conference on Applications of Natural Language to Information Sys-
tems (NLDB), volume 3513 of Lecture Notes in Computer Science, pages 227–238, Alicante,
Spain, June 2005. Springer.

4. L. Ding and T. Finin. Characterizing the semantic web on the web. In Proceedings of the 5th
International Semantic Web Conference (ISWC-06), Athens, GA, USA, November 2006.

5. J. Euzenat, A. Isaac, C. Meilicke, P. Shvaiko, H. Stuckenschmidt, O. Sváb, V. Svátek, W. R.
van Hage, and M. Yatskevich. Results of the Ontology Alignment Evaluation Initiative 2007.
In Proc. of the ISWC 2007 Workshop on Ontology Matching, Busan, Korea, 2007.

6. J. Euzenat, M. Mochol, P. Shvaiko, H. Stuckenschmidt, O. Sváb, V. Svátek, W. R. van Hage,
and M. Yatskevich. Results of the Ontology Alignment Evaluation Initiative 2006. In Pro-
ceedings of the ISWC 2006 Workshop on Ontology Matching, Athens, GA, USA, 2006.

7. J. Euzenat and P. Shvaiko. Ontology Matching. Springer Verlag, 2007.

8. J. Euzenat, H. Stuckenschmidt, and M. Yatskevich. Introduction to the Ontology Alignment
Evaluation 2005. In Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies,
Banff, Canada, 2005.

9. J. Francois, D. Kengue, J. Euzenat, and P. Valtchev. OLA in the OAEI 2007 evaluation
contest. In Proceedings of the ISWC 2007 Workshop on Ontology Matching, Busan, Korea,
November 2007.

10. Z. Harris. Distributional structure. In J. Katz, editor, The Philosophy of Linguistics, pages
26–47, New York, 1985. Oxford University Press.

11. W. Hu, Y. Zhao, D. Li, G. Cheng, H. Wu, and Y. Qu. Falcon-AO: Results for OAEI 2007. In
Proceedings of the ISWC 2007 Workshop on Ontology Matching, Busan, Korea, November
2007.

12. P. Jaccard. The distribution of flora in the alpine zone. New Phytologist, 11:37–50, 1912.
13. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of OWL DL

entailments. In Proceedings of the 6th International Semantic Web Conference (ISWC-07),
Busan, Korea, 2007.

14. Y. Li, J. Li, D. Zhang, and J. Tang. Result of ontology alignment with RiMOM at OAEI’06.
In Proceedings of the ISWC 2006 Workshop on Ontology Matching, Athens, GA, USA,
November 2006.

15. C. Meilicke and H. Stuckenschmidt. Analyzing mapping extraction approaches. In Proceed-
ings of the ISWC 2007 Workshop on Ontology Matching, 2007.

16. C. Meilicke and H. Stuckenschmidt. Applying logical constraints to ontology matching.
In Proceedings of the 30th Annual German Conference on Artificial Intelligence (KI-07),
Osnabrück, Germany, 2007.

17. C. Meilicke, H. Stuckenschmidt, and A. Tamilin. Repairing ontology mappings. In Proc. of
the 22nd Conference on Artificial Intelligence (AAAI-07), Vancouver, Canada, 2007.

18. B. Patwardhan and Pedersen. Using measures of semantic relatedness for word sense dis-
ambiguation. In Proceedings of the Fourth International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, pages 241–257, February 2003.

19. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.
20. S. Schlobach. Debugging and semantic clarification by pinpointing. In Proceedings of the

European Semantic Web Conference (ESWC), 2005.
21. S. Schlobach. Diagnosing terminologies. In Proceedings of the 20th Conference on Artificial

Intelligence (AAAI-05), Pittsburgh, Pennsylvania, USA, 2005.
22. S. Schlobach, Z. Huang, R. Cornet, and F. van Harmelen. Debugging incoherent terminolo-

gies. Journal of Automated Reasoning, 39(3), 2007.
23. L. Serafini, H. Stuckenschmidt, and H. Wache. A formal investigation of mapping languages

for terminological knowledge. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence - IJCAI05, Edingurgh, UK, August 2005.

24. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 2007.

25. O. Sváb, V. Svátek, P. Berka, D. Rak, and P. Tomasek. Ontofarm: Towards an experimental
collection of parallel ontologies. In Poster Proceedings of the International Semantic Web
Conference 2005, 2005.

26. J. Völker and A. Kesseler. Learning Disjointness Axioms. Technical report, Institute AIFB,
Universität Karlsruhe, December 2007.

27. J. Völker, D. Vrandecic, Y. Sure, and A. Hotho. Learning disjointness. In E. Fran-
coni, M. Kifer, and W. May, editors, Proc. of the 4th European Semantic Web Conference
(ESWC’07), volume volume 4519 of Lecture Notes in Computer Science, pages 175–189.
Springer, June 2007.

28. T. D. Wang. Gauging ontologies and schemas by numbers. In Proceedings of the Workshop
EON Evaluation of Ontologies for the Web, 2006.

