
Meaningful Service Classifications for Flexible
Service Descriptions

Sudhir Agarwal and Martin Junghans
Karlsruhe Institute of Technology (KIT),

Institute AIFB and KSRI,
Englerstr. 11, Karlsruhe, Germany.

Email: {sudhir.agarwal,martin.junghans}@kit.edu

Abstract—We present a formal underpinning for Web service
classes by viewing them as a set of services that fulfill a logical
combination of constraints on functional and non-functional
properties. A hierarchy of service classes is automatically derived
by their formal definition and can be exploited for an efficient
service retrieval. In addition, we show in this paper how service
classes can be used (i) to create service descriptions without
specifying precise property values and (ii) to create service
requests that can use service classes to express ranges of desired
property values.

I. INTRODUCTION

Based on the benefits of service classifications, the potential
of underspecified modeling formalisms, and derived from
current shortcomings we introduce our service class formalism
in this work. A class formally describes a set of services
that have certain service properties within a common range.
The classes can be build upon functional and non-functional
property constraints uniformly. Our approach provides the
following benefits. (1) A formal class definition allows to
automatically categorize semantically described services into
given classes. The class hierarchy can be automatically derived
from the definition of individual classes. Inconsistencies in
existing service categorizations and contradictions between
semantic service descriptions and its classification can be
automatically detected and prevented. (2) Service classes can
be used to express service requests. A request either formalizes
requirements from scratch or alternatively reuses given class
definitions. As available service descriptions can be classified
automatically due to formal service class definitions, the
classification of services can be pre-computed and services
of a requested class can be directly retrieved, which in turn
leads to more efficient service retrieval task as the search
space can be reduced. (3) Service classes can be also used
to create service descriptions when precise property values
are not known or should not be revealed. For instance, if the
precise response time of a Web service cannot be determined, a
class FastService that is defined such that a service of this class
feature a response time of less than a second, then the service
can be classified into this class to express the responsiveness
implicitly.

Our contribution can be outlined with the support of Fig-
ure 1. The bottom layer of the figure contains the interpretation
of service descriptions: service instances with their executions

Service Class

R(P1)

P1

. . . R(Pi)

Pi

. . . R(Pn)

Pn

Fig. 2. Formal Property-Based Model of Web Service Classes

runs (traces) and the measured values of the non-functional
properties. Explicit service descriptions can be created using
these models for the capability expression and the concrete
value of the property availability. Service class are used to
create implicit service descriptions and is exemplified by the
class FastService in the middle layer of Figure 1.

II. IMPLICIT DESCRIPTION OF WEB SERVICES
PROPERTIES

The property based service model is used to formally
describe Web services, including their functionality, when
concrete values of the functional or non-functional properties
are known and the service description modeler is willing to
publish them. However, in many cases the concrete value of a
service property is not known or not supposed to be mentioned
explicitly. However, it may still can be possible or desired to
specify a range in which the concrete value lies.

Furthermore, explicit description of property values does not
support negation, which means that explicit description does
now allow exclusion of properties. Therefor, since ontology
languages have open world semantics, an ontology reasoner,
e.g. HermiT, will not find any matching explicit service
descriptions, such as OWL-S Profiles, if the request contains
exclusion of some Web service property.

In this section, we introduce the notion of a Web ser-
vice class to address above drawbacks of explicit service
descriptions. We will first show formally what a Web service
class means by relating it to the formal model of a Web
service. Then, we will present how Web service classes can
be described with OWL. Having this, we will discuss how
properties of Web services can be specified implicitly with
the help of classes.



Fig. 1. Interrelation between service classes on the top layer, service description formalism using explicit and implicit values (intermediate layer), and the
formal interpretation of the service model (bottom layer).

A. Web Service Classes

Definition A Web service class C is a finite set P of Web
service properties, with each property P ∈ P associated with
a set R(P ) that denotes the range for the values of the property
P (refer to Figure 2).

Informally, a Web service class describes a set of Web
services by specifying constraints that are satisfied by the
values of functional and non-functional properties of each
Web service that is a member of the Web service class. More
formally, a Web service class as defined in Definition II-A
describes a set of sets of (property-value) pairs (P, v) for all
properties P ∈ P and for all values v ∈ R(P ). That is,

C =
⋃
P∈P

{(P, v) : v ∈ R(P )}.

In the following, we show how the range R(functionality)
can be defined. Recall that a service run consists of a set of
inputs ~i, a start state si, a set of outputs ~o, and an output state
so. A Web service functionality class analogously consists
of a set I of sets of inputs, a set Si of start states, a set
So of output states and a set O of sets of outputs. A Web
service functionality class R(functionality) = (I, Si, So,O)
is interpreted as a set L of Web service executions (refer
to Figure ??) by constructing a sequence for each set of
inputs ~i ∈ I, each start state si ∈ Si, each output state
so ∈ So and each set of outputs ~o ∈ O. Consequently, the
set of possible values of the functionality property is the set
of all possible service execution sequences that respect the
constraints specified in the functionality class R(functionality).

The meaning of the class for a non-functional property
is defined analogously according the structure of the non-
functional property.

B. Description of Web Service Classes with OWL

Suppose the set of all services is denoted by S. We begin
with modeling an OWL class Service to denote S. A subset of
S, say S1 with properties P is defined as follows. We define
an OWL class Service1 as subclass of the class Service with

Service1 v Service. For each service property P ∈ P with
range R(P ), we define an OWL object property P with range
concept R(P) if R(P ) is a set of individuals or an OWL data
type property P with range R(P) if R(P ) is a data type. In
both cases, the domain of the property P is set to Service1.

Note, that functionality is just another property in our
model of Web services. That is, there is a property
hasFunctionality with range concept R(Functionality) and
domain concept Service. For simplicity we will use the con-
cept Functionality instead of the concept R(Functionality).
The concept Functionality is defined with two properties
hasStartKB and hasEndKB, both with range concept KB. The
concept Functionality can be further sub-classed to specify a
subset of all functionalities by sub-classing the KBs connected
to it accordingly. Similarly, concepts denoting the set of values
for the non-functional properties can be further sub-classed
according to the need.

C. Implicit Description of Web Service Properties

As stated earlier, when a Web service description needs to
exclude certain properties or include existence of properties
without naming their values explicitly, then we need implicit
service descriptions. Having the description formalism for Web
service classes and property range classes, it is rather straight
forward to achieve implicit descriptions. Since we describe
Web services as well as property values as OWL instances
and Web service classes as well as property ranges as OWL
concepts, a Web service or a property value can be classified in
a Web service class or a property range class by a OWL class
member assertion axiom. Another major advantage of such a
modeling technique is that it supports hybrid descriptions in
the sense that some of the properties of a Web service may be
described explicitly while other properties may be described
implicitly. The formal semantics of OWL ensures that an OWL
reasoner draws correct consequences.

Furthermore, when Web service classes are not just labels as
it is the case in existing approaches, but have formal definition,
it becomes possible to automatically detect inconsistencies in



service classification. For example, with existing approaches,
it is possible to classify a service with an output of type
book as a WeatherInformationService, even though the service
does not deliver any weather information. In our approach the
service class WeatherInformationService will have a formal
description of, for example, the fact that it has only one
output of type WeatherInformation. Therefore, when the book
selling service is classified as WeatherInformationService, the
inconsistency is automatically detected by an OWL reasoner.

D. Example

In our example from Section ??, we have seen above how
the start KB of the description of the service s explicitly names
the input variables that the service has along with their rela-
tionships with each other. In order to be able to state that the
service s does not have an input variable of type CreditCard,
the functionality of the service s needs to be classified into
a functional class. To achieve this, we first describe a sub-
class of the concept KB with NoCreditCardInput v KB u
¬∃has.{CreditCard u Input}. Assuming φ denotes the start
KB of the service s for which we want to describe that it does
not have an input of type CreditCard, we achieve the desired
description by adding the axiom NoCreditCardInput(φ).

III. CONCLUSION AND OUTLOOK

In this paper we presented a semantic Web service mod-
eling and matchmaking approach that exploits the benefits of
formally defined service classes. We therefore based our work
on available semantic Web service modeling frameworks and
extended the state of the art by providing a formal model of
service classes. Service classes describe services with certain
functional and non-functional properties with property values
in a desired range. Service class definitions provide an explicit
semantics as we provided a description formalism that is based
on description logics.

Based on the semantics and the common formal model of
service and request descriptions, we defined a match between
both and also showed how matches between descriptions and
requests are computed. Finally, we completed the presented
work by a prototypical implementation of our semantic discov-
ery approach, which is a part of the larger system developed
under the research project SOA4All.

Our long term goal is to establish a scalable semantic service
search framework, which tightly integrates discovery and rank-
ing of services into the search. Functional and non-functional
properties are both not distinguished and likewise considered
for discovery and ranking. Thus, we use preferences on
both functional and non-functional properties enables service
search to consider both types of properties for discovery and
ranking as well. We aim to achieve efficiency and scalability
by developing indexing structures. Known service matching
techniques like subsume and plugin match may be exploited
to develop indexing among service descriptions, since these
techniques use the same formalism for service description and
request. Furthermore, due to the tied coupling of discovery and
ranking task, the search space that is considered for expensive

semantic reasoning operations can be reduced in early stages
of search. By this we aim at a very short time to retrieve first
search results. Similarly to Google’s Web page search, further
results can be computed afterwards when the user requests
them.

ACKNOWLEDGMENT

This work was funded by the SOA4All project
(http://www.soa4all.eu) sponsored by the European
Commission under EC grant number FP7-215219 and
by the German Federal Ministry of Education and Research
(WisNetGrid project).

REFERENCES

[1] UDDI, “UDDI Executive White Paper,” UDDI.org, Tech. Rep.,
Nov. 2001. [Online]. Available: http://uddi.org/pubs/UDDI Executive
White Paper.pdf

[2] R. Akkiraju, J. Farell, J. A. Miller, M. Nagarajan, A. Sheth, and
K. Verma, “Web service semantics – WSDL-S,” in W3C Workshop on
Frameworks for Semantics in Web Services, 2005.

[3] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne et al., “OWL-S:
Semantic markup for web services,” W3C Member Submission, vol. 22,
pp. 2007–04, 2004.

[4] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Pollers, C. Feier, C. Bussler, and D. Fensel, “Web Service Modeling
Ontology,” Applied Ontology, vol. 1, pp. 77–106, 2005.

[5] W3C OWL Working Group, OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 27 October 2009, available at http:
//www.w3.org/TR/owl2-overview/.

[6] J. de Bruijn, D. Fensel, M. Kerrigan, U. Keller, H. Lausen, and J. Sci-
cluna, Modeling Semantic Web Services: The Web Service Modeling
Language. Berlin: Springer, 2008.

[7] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph,
Eds., OWL 2 Web Ontology Language: Primer. W3C Recommendation,
27 October 2009, available at http://www.w3.org/TR/owl2-primer/.

[8] Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle, “The
SWRC Ontology - Semantic Web for Research Communities,” in Proc.
of the 12th Portuguese Conference on Artificial Intelligence - Progress
in Artificial Intelligence (EPIA 2005), ser. LNCS, vol. 3803. Springer,
December 2005, pp. 218–231.

[9] J. O’Sullivan, D. Edmond, and A. ter Hofstede, “Formal description
of non-functional service properties,” Informe Técnico FIT-TR-2005-01,
Business Process Management Group, Centre for Information Technol-
ogy Innovation, Queensland University of Technology, 2005.

[10] M. Junghans, S. Agarwal, and R. Studer, “Towards Practical Semantic
Web Service Discovery,” in 7th Extended Semantic Web Conference, ser.
LNCS. Springer, 2010.

[11] M. Junghans and S. Agarwal, “Web Service Discovery Based on Unified
View on Functional and Non-Functional Properties,” in ICSC. IEEE
Computer Society, 2010.

[12] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated
Discovery, Interaction and Composition of Semantic Web Services,” in
Journal of Web Semantics, vol. 1, no. 1, Dec. 2003, pp. 27–46.

[13] K. Sycara, W. S, M. Klusch, and J. Lu, “LARKS: Dynamic Match-
making Among Heterogeneous Software Agents in Cyberspace,” in in
Cyberspace. Autonomous Agents and Multi-Agent Systems, 2002, pp.
173–203.

[14] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott,
D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srini-
vasan, and K. Sycara, “Bringing Semantics to Web Services: The OWL-
S Approach,” in SWSWPC, ser. LNCS, J. Cardoso and A. Sheth, Eds.,
vol. 3387. Springer, 2004, pp. 26–42.

[15] N. Srinivasan, M. Paolucci, and K. Sycara, “Semantic Web Service
Discovery in the OWL-S IDE,” in Proceedings of the 39th Annual
Hawaii International Conference on System Sciences - Volume 06.
Washington, DC, USA: IEEE Computer Society, 2006.



[16] M. Á. Corella and P. Castells, “Semi-automatic semantic-based web
service classification,” in Business Process Management Workshops, ser.
Lecture Notes in Computer Science, J. Eder and S. Dustdar, Eds., vol.
4103. Springer, 2006, pp. 459–470.

[17] G. Li, W. Zhang, H. Li, and J. Guo, “An efficient way to accelerate
service discovery and invocation,” in Systems, Man and Cybernetics,
2007. ISIC. IEEE International Conference on, oct. 2007, pp. 1304 –
1309.

[18] R. Lara, M. Corella, and P. Castells, “A flexible model for Web service
discovery,” in 1st International Workshop on Semantic Matchmaking and
Resource Retrieval: Issues and Perspectives, Seoul, Korea, September
2006.

[19] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani, “On
automating Web services discovery,” The VLDB Journal, vol. 14, no. 1,
pp. 84–96, 2005.

[20] J. Gonzalez-castillo, D. Trastour, and C. Bartolini, “Description Logics
for Matchmaking of Services,” in KI-2001 Workshop on Applications of
Description Logics, 2001.

[21] L. Li and I. Horrocks, “A Software Framework for Matchmaking Based
on Semantic Web Technology,” Int. J. Electron. Commerce, vol. 8, no. 4,
pp. 39–60, 2004.

[22] M. Stollberg, M. Hepp, and J. Hoffmann, “A Caching Mechanism
for Semantic Web Service Discovery,” in The Semantic Web. 6th Int.
Semantic Web Conf., ser. LNCS 4825, K. Aberer and et al., Eds. Busan,
Korea: Springer, 2007, pp. 480–493.

[23] M. Stollberg, U. Keller, H. Lausen, and S. Heymans, “Two-phase Web
Service Discovery based on Rich Functional Descriptions,” in Proc. of
the 4th European Semantic Web Conf. Springer, 6 2007.

[24] U. Keller, H. Lausen, and M. Stollberg, “On the Semantics of Functional
Descriptions of Web Services,” in Proc. of the 3rd European Semantic
Web Conf., 2006.

[25] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel, “WSMO-Lite Anno-
tations for Web Services,” in 5th European Semantic Web Conf., ser.
LNCS 5021. Springer, 2008.

[26] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Nor-
ton, and C. Pedrinaci, “IRS-III: A broker-based approach to semantic
Web services,” Web Semant., vol. 6, no. 2, pp. 109–132, 2008.

[27] J. O’Sullivan, “Towards a precise understanding of service properties,”
Ph.D. dissertation, Queensland University of Technology, 2006.

[28] K. Kritikos and D. Plexousakis, “Requirements for QoS-based Web Ser-
vice Description and Discovery,” Computer Software and Applications
Conference, Annual International, vol. 2, pp. 467–472, 2007.

[29] ——, “Mixed-Integer Programming for QoS-Based Web Service Match-
making,” IEEE Transactions on Services Computing, vol. 2, pp. 122–
139, 2009.

[30] M. Klusch, B. Fries, and K. Sycara, “OWLS-MX: A Hybrid Semantic
Web Service Matchmaker for OWL-S Services,” Web Semantics, vol. 7,
no. 2, pp. 121–133, 2009.

[31] M. Klusch, P. Kapahnke, and I. Zinnikus, “Hybrid Adaptive Web Service
Selection with SAWSDL-MX and WSDL-Analyzer,” in Proceedings of
the 6th European Semantic Web Conference on The Semantic Web:
Research and Applications, ser. ESWC 2009 Heraklion. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 550–564.


