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Abstract—Nowadays, information and communication technol-
ogy (ICT) has become a key driver for future health-enabling and
ambient assisted living technologies. These future health-enabling
living environments proactively anticipate the inhabitants’ needs
and adapt their behaviour accordingly. They further continuously
monitor the behaviour of the inhabitants and may call in support
in suspicious cases. In this article, we present an architectural
blueprint for such a proactive living environment and highlight
the corresponding challenges for research in the field. Afterwards,
we present a simulation as experimental platform for learning
the daily routine of inhabitants of a flat-sharing community
of senior citizens. The experimental evaluation highlights that
probably unusual behaviour of persons can be detected using
a probabilistic approach, which may serve as an indicator for
external support.

I. INTRODUCTION

Digitalisation has become a priority for governments and
societies [1] as well as one of the United Nation’s Sustainable
Development Goals [2]. Correspondingly, Information and
Communication Technology (ICT) is increasingly becoming
a key driver for future health care processes [3], [4], [5].

According to the World Health Organisation, ICT for health,
often addressed under the term eHealth, are “recognised as one
of the most rapidly growing areas in health today” [6]. Health-
enabling and ambient assisted technologies play an important
role in this context, in particular for smart homes for senior
citizens [7]. In 2060, every third person in Germany, will be
65 years old or older [8]. Whereas in 2013 in Germany 4.4
million citizens have been 80 years old or older, this number
is expected to increase to close to 10 million in 2050 [8].

We can observe massive ICT-driven progress in health-
enabling and ambient assisted technologies in the last
decade [9], [10]. As a result, living environments are trans-
formed into smart homes with the potential of becoming an
additional “institution for health care” [11], [12]. Especially
senior citizens benefit from this development since health
information systems [13], [14] support self-determined living
even if persons suffer due to health detriment and need

assistance. However, this trend has not come to an end. In
contrast, massive research and development effort is needed to
allow for diagnostic relevance and therapeutic efficacy based
on a living environment that proactively takes care of its
inhabitants [7].

We envision future living environments that (a) seam-
lessly integrate with people’s living routines, (b) leverage
current technologies, (c) are future-proof and easy to use, (d)
strengthen participation and integration of caregivers, relatives,
and inhabitants in care processes, (e) work as well in rural as
in municipal areas, (f) contribute to the creation of reliable
digital personal health records, and (g) are evidence-based.
In short, proactive health-enabling living environments will
improve access to health care, educate inhabitants about their
health, support inhabitants in managing their health, and
empower inhabitants to take a more active role in their health
care with less effort due to supportive health information
technology [15].

In this article, we present an architectural blueprint for
future proactive health-enabling living environments: A rede-
fined variant of the Observer/Controller tandem [16] as known
from the Organic Computing domain [17]. We further describe
a first simulation-based study for such environments and
demonstrate the feasibility of learning models for inhabitant
activities. These models are used to determine unexpected
behaviour of inhabitants which may serve as an indicator for
the need of external support.

The remainder of this article is organised as follows: Sec-
tion II describes relevant contributions from the state of the
art. Section III presents the vision of future proactive health-
enabling living environments in more detail. Afterwards,
Section IV discusses an experimental platform for learning
behavioural models of inhabitants in such a living environment
and highlights the benefit of determining probably unusual
activities. The experimental results are analysed and evaluated
in Section V. Finally, Section VI summarises this article and
gives an outlook to future work.



II. STATE OF THE ART

The concept of proactive health-enabling living environ-
ments combines techniques and methods from several fields
of research. In the following section, we initially discuss
relevant contributions in the field, followed by a discussion
of promising technology for achieving the overall vision as
outlined above.

Originally based in the area of “smart homes“, a variety of
assistive systems have been proposed in recent years, typically
under the term “ambient intelligence”. Ambient intelligence is
a field in ICT that aims at empowering people’s capabilities by
the means of digital environments that are sensitive, adaptive,
and responsive to human needs, see e.g. [18], [19]. The
basic idea is that ubiquitous, unobtrusive, and anticipatory
communication is available via human-machine interfaces that
provides the basis for proactively supporting the inhabitant in
its daily routine and simultaneously monitoring its behaviour
to identify situations where assistance or emergency is needed.
Environments equipped with such a technology are called
“ambient assisted living” (AAL) environments. In general,
AAL technology is intended to be able to prevent, cure,
and improve wellness and health conditions, especially of
older adults. For instance, part of the scope are medication
management tools that remind inhabitants to take control of
their health conditions [20], [21], [22]. Other possible benefits
include mobile emergency response systems [23], fall detec-
tion systems [24], or video surveillance systems [25], [26].
Furthermore, researchers focused on technologies that support
daily activities by monitoring the behaviour and providing
reminders [27], [28] as well as by means of automation [29].
Another example is the CARE project [30] that aims at
combining digital image frames with an active recommender
mode, where recommendations cover possible activities for
the elderly living in the environment and are derived from a
(generalised, pre-defined) “well-being model”.

In contrast to the vision presented in this article, these sys-
tems have several drawbacks: they do not adapt their behaviour
to changing preferences, they do not learn at runtime, they
do not incorporate the knowledge of humans, or they do not
incorporate detection of suspicious behaviour.

Health-enabling and ambient assistive technologies can also
be viewed as components of health information systems (HIS),
which support health care processes [31]. In HIS terminology,
these tools are computer-based application systems, which are
installed on physical subsystems such as computer systems
and support specific services. As such application systems
on the physical layer include sensors, HIS using such tools
are called sensor-enhanced health information systems [32],
[33]. Since a person’s (smart) home is typically also included,
such HIS are also denoted as transinstitutional HIS [31],
[33]. Data from such health-enabling and ambient assistive
technology tools and findings based on these data (which may
be derived automatically, semi-automatically, or manually)
may or perhaps should become part of a person’s electronic
health record [14]. The applications must be understood as

informatics diagnostics and informatics therapeutics tools [34].
We will approach the goal of proactive health-enabling

living environments on the basis of technology from the fields
of Organic Computing, Active Learning, and Online Learning.
The following paragraphs briefly summarise the basic concepts
and relevant contributions in these fields.

Organic Computing (OC) is a recent paradigm of designing
and developing self-adapting and self-organising technical
systems acting in the real world [17]. OC proposes to master
the increasing complexity of technical systems (e.g. in terms
of openness and interconnection, see [35], [36]) by moving tra-
ditional design-time decisions to the runtime and from system
engineers to the systems themselves. Thus, OC systems are
designed to process so-called self-* properties that allow them
to be self-adaptive and self-organising at runtime. In this ar-
ticle, we aim at proactive health-enabling living environments
that self-adapt to the anticipated inhabitant demands and their
behaviour, which require a system design allowing for internal
adaptation. OC and related initiatives (such as Autonomic
Computing, AC [37]) have proposed a variety of architectural
blueprints. For instance, the generalised observer/controller
(O/C) framework [16] is a popular representative from the
OC domain. Closely related is the Monitor-Analyse-Plan-
Execute(-Knowledge) cycle from the AC domain, typically
referred to as MAPE(-k) [37]. For both concepts (i.e. O/C
and MAPE-k), multi-layered extensions have been proposed
as well as system-of-systems concepts [38]. We will adapt the
general multi-layered O/C blueprint for the purpose of this
article.

Active Learning (AL) provides powerful approaches to
create flexible systems that are able to adapt themselves to a
changing environment [39]. These methods interact with their
target system to investigate which information might optimise
their model best, and they actively acquire this information.
In classification (also in regression) problems, AL algorithms
actively request the target value of an instance (feature vec-
tor) [40]. Three basic AL approaches exist: 1) query synthesis
(the query instance is generated), 2) pool-based AL (the query
is an instance from a pool of unlabelled instances), and 3)
stream-based AL (instances successively appear and the AL
algorithm decides if the label should be acquired) [40]. One
of the main challenges is to balance the exploration of new
regions in the feature space and the exploitation of the existing
knowledge to refine the trained model [39]. Especially when
applied to activity recognition problems, a further relevant
aspect of AL is the ability to efficiently generate training
data, since labelling is an expensive task [41]. Here, AL
methods have been combined with traditional semi-supervised
learning techniques, such as self-training and co-training. AL
has also been applied to reduce labelling costs in a smart-
home environment [42] and in health applications on mobile
devices [43].

Online or stream learning [44] is a machine learning
paradigm developed to work in time-variant (also called non-
stationary, or evolving) environments. Thereby, it delivers real-
time predictions, efficiently built on large data streams (e.g.



sensor inputs). One of the most important components is
the ability to detect drift (gradual change) or shift (abrupt
change). Here, change detection mechanisms are of great
importance [45]. Online learning has also been used in smart
home environments for activity recognition [46] or to detect
lighting behaviour [47]. In the field of preference learning [48],
the goal of a classifier is to predict the preferences of humans.
Therefore, it is necessary to identify so-called perennial ob-
jects, e.g. in form of inhabitant profiles [49].

III. PROACTIVE HEALTH ENABLING ENVIRONMENTS

The overall vision of this article is to integrate existing
knowledge in the domains of sensor infrastructures, active
learning, and user-centred design into a solid scientific founda-
tion for design of effective, IT-supported living environments
for proactive health enablement. We focus on ordinary living
environments inhabited by multiple persons with diverse de-
mographic backgrounds. The main challenge to be resolved is
that different inhabitants will have different expectations for
how their living environments should behave [15]. Accord-
ingly, smart devices must identify with which person they are
interacting and have to learn how inhabitants’ requirements
and perceived preferences evolve over time.DFG form 53.01– 05/16  page 2 of 23 

 

necessary information. Active learning is required to develop models of inhabitants and enrich IT-
supported living environments with the required intelligence to offer proactive assistance. User-
centered design ensures that developed solutions are congruent with the requirements, 
expectations, and values of their inhabitants, especially, with respect to usability and information 
privacy.  

The proposed research project constitutes fundamental research aimed at making proactive 
health-enabling living environments a reality. We envision future living environments that 
seamlessly integrate with people’s living routines, leverage current technologies, are future proof 
and easy to use, strengthen participation and integration of caregivers, relatives, and patients in 
care processes, work as well in rural as in municipal areas, contribute to creation of reliable digital 
personal health records, and are evidence-based. In short, proactive health-enabling living 
environments will improve access to health care, educate patients about their health, support 

Table 1. Scenario overview. 
 a) living as couple ('normal case') b) living with assistance
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1.a) Erich Edam, 75 years old, and Elfriede 
Edam, 72 years old, are living for more than 
20 years on the 3rd floor of a multi-family 
house in their ca. 100 m2 apartment in 
Ploetzberg. Both senior citizens are 
physically and mentally fit. Despite of some 
minor but increasing age-related deficits, 
they clearly want to remain in their 
apartment for a variety of reasons. Moving to 
an assisted-living facility or even to a nursing 
home is neither considered nor intended. 
Erich and Elfriede have two daughters who 
live with their families about 50 and 200 km 
away, respectively. 
Continue, if applicable, with 1.b or 2.a. 
“To fulfill their desire ...” (see below)  

1.b) As housekeeping and shopping became 
more difficult, Mr. and Ms. Edam decided to 
engage a company for senior citizen services, 
in particular, for cleaning and for shopping of 
heavy items. Since then a staff member of the 
company is coming to their apartment twice a 
week. Mr. and Mrs. Edam are satisfied, 
especially since the staff member, coming to 
them, is very sympathetic. Other services, for 
instance, meals on wheels or nursing services, 
can also be booked through this company, if 
needed.  
Continue, if applicable, with 2.2. 
“To fulfill their desire ...” (see below)  
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2.a Three weeks ago, Elfriede Edam 
unfortunately had a fall while cleaning 
windows, causing a fracture of her left 
femoral neck. Luckily, her husband, who was 
shopping at this time, came back home few 
minutes after her fall. He called emergency 
services, who Elfriede could no longer have 
informed herself. An ambulance took Ms. 
Edam to the Department of Trauma Surgery 
at Ploetzberg Medical Center, where she 
was successfully operated. After about one 
week, she was transferred to a rehabilitation 
hospital for further treatment, where she is 
currently staying. The discharge exa-
minations in the Medical Center resulted in a 
predominantly positive prognosis. Mr. Edam 
now has to take care for himself alone. So 
far this works out, especially, since his 
daughters visit at weekends to support him. 
After Elfriede‘s fall, it remains however 
uncertain whether the couple will be able to 
completely manage their daily activities 
themselves. According to their daughters, 
moving to an assisted-living facility would be 
a good choice. However, Mr. and Mrs. Edam 
still insist on staying in their apartment.  
Continue, if applicable, with 2.2. 
“To fulfill their desire ...” (see below)  

2.b (from 1.b) Due to a femoral neck fracture, 
caused by a fall, Elfriede Edam currently stays 
at a rehabilitation hospital (details at 2.a). Erich 
Edam was very glad to have the senior citizen 
services already in place. It is also reassuring 
for him to know about the option of booking 
additional services, although they are currently 
not needed. 
“In their objective ...”: see below. 
 
2.b (from 2.a) As housekeeping and shopping 
became more and more difficult for him, Erich 
Edam had to recognize that he cannot 
accomplish his daily-living activities on his own. 
Together with their daughters it was decided to 
engage a company for senior citizen services, 
in particular, for cleaning and shopping of 
heavy items. Since then a staff member of the 
company is coming to Mr. and Ms. Edam’s 
apartment twice a week. Erich is very satisfied, 
especially since the staff is sympathetic and 
since she also takes time to talk to him. It is 
also reassuring for him to know about the 
option of booking additional services, for 
instance, meals on wheels or nursing services, 
although they are currently not needed. 
“To fulfill their desire ...” (see below)  

For all four scenarios: To fulfill their desire to live as long as possible self-determined and self-
dependent (autonomous) as senior citizens, they use existing assistive technologies. They would be 
willing to transform their apartment into a proactive health-enabling living environment. 

Fig. 1. Schematic description of four possible scenarios in proactive health-
enabling living environments highlighting different requirements for the
underlying observation and actuator control system.

For illustration purposes, consider four scenarios focusing
on senior citizens as outlined in Figure 1. The scenarios
describe varying living conditions of an elderly couple that

introduce different aspects and corresponding needs: i) normal
behaviour (i.e. support through smart home technology), ii) as-
sisted living (i.e. automatically distinguish between inhabitants
and housekeeping), iii) surveillance of normal behaviour (i.e.
detect unexpected behaviour of inhabitants for emergency or
entertainment requirements). In future work, we will investi-
gate these four scenarios with senior citizens in apartments
equipped with corresponding ICT.

In contrast to current systems from the state of art, proac-
tive health-enabling living environments (PHELE) as outlined
above provide novel benefits:

1) PHELE learn user preferences, behaviour, and corre-
sponding context from direct and indirect user interac-
tion.

2) This learning mechanism adapts over time to cover
concept drift and shift, e.g. if one of the persons is
temporarily absent or housekeeping is introduced.

3) PHELE improve the actuator control in the sense of a
smart home concept over time.

4) The system supports the inhabitants in their daily rou-
tine, especially in the context of health, e.g. by remind-
ing about medication.

5) PHELE use the behaviour models to detect suspicious
conditions, e.g. if persons grow lonely or loose control
of their daily routine.

6) Based on such detected events, they autonomously trig-
ger support mechanisms, e.g. inform relatives or raise
an alarm.

We envision future living environments that seamlessly
integrate with people’s living routines, leverage current tech-
nologies, are future proof and easy to use, strengthen partici-
pation and integration of caregivers, relatives, and inhabitants
in care processes, work as well in rural as in municipal
areas, contribute to creation of reliable digital personal health
records, and are evidence-based. In short, proactive health-
enabling living environments will improve access to health
care, educate inhabitants about their health, support inhabitants
in managing their health, and empower inhabitants to take
a more active role in their health care with less effort due
to supportive health information technology. We claim that
future successful PHELE require fundamental input from
several research domains including OC and AL. Therefore,
we outline an architectural blueprint for these environments
in the following and highlight the resulting major research
challenges.

A. Architectural concept for proactive health-enabling living
environments

Figure 2 illustrates the technical realisation of the proactive
health-enabling living environment. The apartment is equipped
with sensors (to perceive the current conditions) and actuators
(to control devices such as light and heating). This constitutes
the “System under Observation and Control” (SuOC) in OC
terms, see [16].

On-top of this SuOC, a control loop is established that
consists of an observer and a controller unit. The observer
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Fig. 2. Schematic illustration of the proactive control loop based on
the architectural Observer/Controller blueprint from the Organic Computing
domain [16].

is responsible for analysing the sensor information, maintain-
ing user models, and finally passing an aggregated situation
description to the controller unit. The controller decides about
necessary interventions (i.e. control of actuators) and learns
from feedback. Furthermore, a user interaction module may be
triggered from both units, which is responsible for efficiently
querying the particular inhabitants for preferences and labels.

The observer component gathers raw data from the sensors
and analyses the data. Based on this information, it main-
tains models for all inhabitants including the expected daily
behaviour (in terms of expected sequences of activities), the
preferences (e.g. temperature and light), and the correspond-
ing context information. The former model is a result of a
generative approach using the probability distribution of the
observations and may be realised using techniques such as
Hidden Markov Models [50]. The preferences and context
models may also be derived from observations – however,
this process can be realised efficiently by using the inhabitant
as source of information. Here, mechanisms from the active
learning [39] domain are used to efficiently ask the inhabi-
tant: a) about his/her preferences in a certain context, b) to
distinguish between normal and probably unusual behaviour,
c) to get labels for activities, and d) to verify detected events,
locations, and interactions with devices (e.g. coffee machine,
TV, or shower).

The controller uses the situation description and the models
as basis to decide about actuator control. This can be realised
by means of a rule-based reinforcement learning approach,
e.g. in terms of variants of the Extended Classifier System
as introduced by Wilson [51] that are especially developed
for controller tasks in OC systems [52], [53]. In order to
be able to learn from feedback, two basic mechanisms are
used: 1) indirect feedback (i.e. the inhabitant does not revoke
actions of the controller) and 2) direct feedback (i.e. asking
the inhabitant if decisions correspond to preferences using an

active learning mechanism again).

B. Technological challenges

As outlined above, the proactive living environment con-
stitutes a control loop that requires models for preferences
and context of inhabitants. The underlying challenge is to
learn the models of inhabitants’ preferences and context –
as a mixture of efficient explicit labelling of preference in-
formation, implicit recognition of conclusive behaviour, and
assessment of expected behaviour from sensor information. In
the next section, we present a first approach to determine the
expected sequences of user activities. However, this is just
a first step in the process towards proactive health-enabling
living environments. For a fully fledged system, research has
to address several challenges and develop novel techniques to
fill the gap. The following list names and explains the most
relevant challenges in this context:

1) Modelling of context and user preferences based on
probabilistic techniques: In order to act appropriately and
proactively, the PHELE has to be aware of the underlying
user preferences. Since a universally applicable model for all
possible inhabitants is not available, the proactive home has to
be able to learn such an individual model per inhabitant from
observations – which also includes the challenge to distinguish
between inhabitants and to identify them. We therefore need
novel techniques from generative, probabilistic modelling for
a multi-levelled modelling of context information and pref-
erences of different inhabitants. Context includes information
such as time, location, user status, etc.

2) Self-assessment of context and preferences: In order to
proactively assist the inhabitants, the modelling techniques
have to be able to adapt their behaviour to changing conditions
and preferences. This includes mechanisms for a detection of
concept drift (for both, preferences and context), an ageing of
knowledge in the sense of being able to forget outdated model
information, and a prediction mechanism for preferences, i.e.
to answer the question what the inhabitant wants to do next and
anticipate the corresponding actuator control actions. This is
accompanied by mechanisms to assess normal and unexpected
behaviour [54], which could be used as a basis for analysing
the inhabitants’ conditions.

3) Interaction-based continuous self-improvement of context
and preference models: The necessary knowledge about pref-
erences is seldom available in advance and the only person
that is able to provide the corresponding information are the
inhabitants themselves. Consequently, the inhabitant has to
be efficiently included into the self-learning process of the
control system without annoying him. Therefore, we have to
investigate novel techniques from the active learning (AL) [39]
domain, especially novel selection strategies for uncertain and
time-variant environments. In order to keep the querying of
the inhabitant as low as possible, we have to further develop
novel mechanisms to consider and assess other feedback
sources, including indirect feedback (i.e. conclusive behaviour
of the inhabitant), which may be further improved by taking
reinforcement mechanisms into account. Finally, this has to



be included in the proactive control strategies of the proactive
home.

IV. A SIMULATION AS EXPERIMENTAL PLATFORM FOR
LEARNING USER BEHAVIOUR

In the following, we present a first step towards such
proactive health-enabling living environments. Since using
real apartments will be subject of future work, we developed
a simulation of a senior citizen flat sharing community in
Unity 3D [55]. Conceptually, this simulation is modular and
can be extended for containing several inhabitants – in the cur-
rent version, one male and two female persons are contained.

Fig. 3. The simulated apartment in UNITY3D.

Figure 3 depicts the simulation in Unity3D, which consists
of ten rooms: three individual rooms (i.e. private sleeping
rooms) with three bathrooms, a common kitchen/eating room,
a utility room, a living room, and two corridors. The rooms are
equipped with sensors (presence detection, light, temperature,
and status detection for devices) and actuators. All rooms
contain different devices that come with actuators: a) the
kitchen contains fridge, cooker, oven, coffee machine, table,
and chairs, b) the bathrooms contain shower, toilet, and basin,
c) the living room contains armchair, floor lamp, radio, and TV,
d) the utility room contains washing machine and desk, and
e) all rooms contain shutters, light and heating with actuators.

As a result, several different activities are possible: move-
ments (walking, sitting, running, standing, and laying), basic
activities (e.g. sleeping, washing, preparation of coffee/food,
eating, laundry, dishes), and leisure (e.g. TV, reading, music).
Furthermore, interaction with devices refers to user prefer-
ences, e.g. the control of shutters, temperature, or light are
a result of a context-dependent preference of an inhabitant for
a certain temperature or light conditions.

We used RainAI [56] to simulate the behaviour of the
inhabitants. This includes a parametrable course of a day
(containing sequences of activities and their duration with
variations) and a path selection routine that considers the
shortest path to the closest point for the currently simulated
activity.

V. EVALUATION

For evaluation purposes, we simulated six consecutive days
in the simulation environment as described above. From these

simulations, we modelled the expected course of a day of
one individual character by training a Hidden Markov Model
(HMM). An HMM is a statistical Markov model in which
the observed system is assumed to be a Markov process with
unobserved states, see [50] for an introduction. In contrast to
simple Markov Models such as Markov Chains, where the
state is directly visible to the observer (i.e. the parameters
are only the probabilities for state transitions), the state is not
visible in HMM – but the output (i.e. the observation) depends
on the state and allows to draw conclusions about the (hidden)
states. More precisely, each hidden state is characterised by a
probability distribution over the possible observable outputs.
Consequently, the sequence of outputs generated by an HMM
allows for conclusions about the sequence of states that have
been passed while generating these outputs.

The goal of the evaluation is to demonstrate the general
feasibility of learning the “normal” course of the day. More
specifically, the goal is to show that a trained HMM is able to
explain the sequence of user activities that are observed – and,
in turn, signalise a deviation from the explainable behaviour
pattern.

A. Data creation

As mentioned above, the simulation was used to generate
observation data for five days following the idea of covering
a week by analysing a sequence of “normal” weekdays, i.e.,
without the weekend. These five days serve as training data
for our models. In addition, a sixth day was generated for
testing purposes. Each day was created by using a daily
routine template, but we added variations and uncertain ac-
tivities to simulate a real-world environment. For instance, we
introduced routines such as eating breakfast, lunch, dinner, or
watching TV shows which were considered in the routine of
each day. In addition, uncertain activities such as reading a new
book or doing the laundry were implemented randomly. For
instance, the use of the toilet was mostly triggered randomly,
but it was also added as a regular daily activity as well (e.g.
after drinking a coffee in the morning). Figure 4 shows an
example for the daily routine used in the simulations.

The recorded data was gathered for one person in the
apartment shown in Figure 3. Rooms that were used in our
simulations are the bathroom, bedroom, kitchen, lavatory, and
living room. Activities included dressing, cooking, making
coffee, food, reading, sleeping, using the fridge, the shower,
the toilet, walking through rooms, washing clothes, dishes,
hands, and watching TV.

B. Hidden Markov Model

After gathering data through our simulations, we made
comparisons between sequences to investigate if it is likely
that a specific sequence was created by the model. Therefore,
we initially had to prepare the data of a day to an appropriate
encoding. Notice that we ignored the time aspect and only
focused on the order of activities in a certain room. For
instance, an encoding of a day starts in the bedroom with
activity “sleeping” and could be followed by opening the



Daily Routine

Favourite Series

Breakfast

Dinner

Lunch

Sleeping

Sleeping

Fig. 4. Example for the daily routine: Sleeping, breakfast, lunch, favourite
series, and dinner are included in every day. The symbols on the arrows denote
the randomised activities.

shutters and going to the toilet. This ends when the person
is going to sleep again. Hence, one day is encoded as a
sequence of activities with their corresponding locations. As
an alternative – and as subject of future work – an encoding
approach may consider the time aspect which may contain
significantly more information.

We trained two multi-nomial HMMs. The first one was
trained with only the location sequences as input. We set the
emission matrix to the identity matrix and did not modify it
during the training process of the HMM. This is equivalent to
a standard Markov chain since our hidden states correspond
to the ouputs. Afterwards, the transition matrix was computed
by the model. Following this, the second HMM included the
current activities as output data and rooms as hidden states.
Additionally, we set the transition matrix of our second model
to the one computed in the first HMM above. The emission
matrix was computed as the relative frequency of an activity
in a room.

Figure 7 illustrates the complete HMM, which was respon-
sible for the room prediction of the training process with
the data generated during simulations. The circles depict the
states and the arrows highlight the corresponding transition
probabilities derived from the training data. The trained HMM
then serves as basis to quantify how probable it is that the
observed behaviour has been generated through this HMM –
and, consequently, if the behaviour of the inhabitants of the
apartment differs significantly from the expected behaviour.

C. Experimental results

After training the HMMs, we tested our models with
random sequences to see how similar they are in comparison
to our encoding of the sixth day. Hence, we created 5, 000
randomly generated sample days (generated from a uniform
distribution for every activity and location) and compared
their scores to the one that was computed from the test day.
We noticed that the probabilities that were computed on the

random samples were significantly smaller in comparison to
our test day.

Figure 5 shows the probability distribution of the first model
that only used locations for training. The model computed the
log likelihood probability of our location sequences that were
randomly generated. We used a kernel density estimation with
a Gaussian kernel to estimate the distribution of the results.
The red line shows the threshold that was created by our test
day.
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Fig. 5. Probability distribution of our first model.

We see that the randomly generated samples have a much
smaller log likelihood probability which implies that their
probability is significantly higher than the one from our test
day.

Our second model, which considered the activities as out-
puts and the locations as hidden states, had similar results.
In Figure 6, we can see the probability distribution for the
second model. The results are almost the same as the ones we
see in the first model – but the threshold of our test day is
closer to our samples which is due to the complexity of the
second model. The probability distribution was estimated the
same way as the first model.
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Fig. 6. Probability distribution of our second model.



Fig. 7. Resulting HMM after training.

VI. CONCLUSION

This article discussed future proactive health-enabling living
environments as a fundamental challenge for research in the
Organic Computing domain. We introduced the vision of
these environments and highlighted how health-support can
be achieved. Based on an architectural blueprint for such
environments, we derived the gap in research that needs to
be addressed.

As a first step towards such environments, we presented
a simulation-based experimental platform of a senior citizen
flat sharing community. In this simulation, we demonstrated
how the daily routine of inhabitants can be learned as a
behaviour model encoding expected behaviour. We illustrated
this model realised as a Hidden Markov Model and further
showed that unexpected behaviour can be detected – which
may be used as an indicator for triggering support from
relatives or professional care givers.

In future work, we will focus on the research challenges
outlined in the article: Initially, we will focus on efficiently
maintaining the knowledge models included in the architec-
ture. This mainly addresses research in the field of active
learning, namely novel selection techniques. Afterwards, we
shift the focus to mechanisms for anomaly detection and
utilising different feedback sources (i.e. implicit feedback from
inhabitant conclusive behaviour and direct feedback from user
interaction). In addition, we will use real apartments with
elderly people as basis for our investigations and analyse the
implications of real-world sensor data instead of simulation
results.
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