
Approximate and Incremental Processing of
Complex Queries against the Web of Data

Thanh Tran, Günter Ladwig, and Andreas Wagner

Institute AIFB, Karlsruhe Institute of Technology, Germany
{ducthanh.tran,guenter.ladwig,a.wagner}@kit.edu

Abstract. The amount of data on the Web is increasing. Current exact
and complete techniques for matching complex query pattern against
graph-structured web data have limits. Considering web scale, exact-
ness and completeness might have to be traded for responsiveness. We
propose a new approach, allowing an affordable computation of an ini-
tial set of (possibly inexact) results, which can be incrementally refined
as needed. It is based on approximate structure matching techniques,
which leverage the notion of neighborhood overlap and structure index.
For exact and complete result computation, evaluation results show that
our incremental approach compares well with the state of the art. More-
over, approximative results can be computed in much lower response
time, without compromising too much on precision.

1 Introduction

Recently, large amounts of semantic data has been made publicly available
(e.g., data associated with Web pages as RDFa1 or Linked Data2). The efficient
management of semantic data at Web-scale bears novel challenges, which have
attracted various research communities. Several RDF stores have been imple-
mented, including DB-based solutions such as RDF-extensions for Oracle and
DB2, Jena, Sesame, Virtuoso or native solutions for RDF like OWLIM, HStar,
AllegroGraph, YARS [10], Hexastore [17] and RDF-3X [14]. Recently, also IR
technologies, in particular the inverted index has been proposed for managing
RDF data [18].

We observe that all these systems focus on computing complete and exact
answers. Exact matching in a Web setting (with billions of RDF triples), how-
ever, results in unacceptable response times especially w.r.t. complex SPARQL3

queries. The success of current Web search engines suggest that exact matching
might be not needed. A more practical direction towards responsive and scalable
solutions for Web-scale semantic data management is approximate matching
equipped with sophisticated mechanisms for ranking. In this paper, we focus on
the problem of approximate matching and how to refine matches incrementally.

Contribution. We propose an approach for matching complex query pat-
terns against the Web of Data. Our approach allows an “affordable” computa-
tion of an initial set of approximate results, which can be incrementally refined
as needed. Our main contributions are:

1 http://w3.org/TR/xhtml-rdfa-primer/
2 http://www.w3.org/DesignIssues/LinkedData.html
3 http://www.w3.org/TR/rdf-sparql-query/

Fig. 1. a) A data graph, b) its structure index graph and c) a query graph.

– We propose a pipeline of operations for graph pattern matching, where
results can be obtained in an incremental and approximate manner. We
thereby allow a trade-off between precision and response time.

– Via four phases, results are reported early and can be incrementally refined
as needed: First, entities matching the query are computed. Then, structural
relationships between these entities are validated in the subsequent phases.
To our knowledge, this is the first proposal towards a pipelined processing
of complex queries for incremental result computation.

– For processing structural relationships, we introduce a novel approximate
structure matching technique based on neighborhood overlap and show how
it can be implemented efficiently using Bloom filters [3]. Another approxi-
mation is introduced for result refinement, which instead of using the large
data graph, operates at summary level.

– Via a benchmark, we show that our incremental approach compares well
w.r.t. time needed for computing exact and complete results. Further, it is
promising w.r.t. approximate result computation.
Outline. In Section 2, we define the problem, describe the state-of-the-art

and compare it to our approach. We discuss entity search in Section 3. In Section
4, we present our approximate structure matching technique, followed by the
refinement phase in Section 5. We present an evaluation in Section 6. Finally,
we conclude with Section 7.

2 Overview

In this section, we define the problem, discuss the state-of-the-art, highlight our
main contributions and compare them with related work.

Definition 1. A data graph G is a tuple (V,L,E) where V is a set of nodes
connected by labeled edges l(v1, v2) ∈ E ⊆ V × V with v1, v2 ∈ V and l ∈ L.
Further, V is the union VE] VD with VE representing entity nodes and VD
representing data nodes. E is the union E = ER] EA, where ER ⊆ VE × VE
represents relations between entity nodes and EA ⊆ VE × VD stands for entity
attributes.

Note, our graph-structured data model is of interest in the Semantic Web and
database community, as it captures RDF4, XML and relational data. Further,
we consider conjunctive queries, a fragment of many query languages (e.g., SQL
and SPARQL).

Definition 2. A conjunctive query q = (Vv] Vc, Pr] Pa) is an expression
p1 ∧ . . . ∧ pn, where pi ∈ Pr] Pa are query atoms of the form p(n1, n2) with
n1 ∈ Vv,n2 ∈ Vv] Vc being variables Vv or constants Vc otherwise, and pi
are called predicates. We distinguish between relation query atoms pr ∈ Pr

and attribute query atoms pa ∈ Pa, where pr and pa are drawn from labels
of relation edges ER and attribute edges EA respectively. Relation query atoms
paths (pr1 , . . . , prk) contained in q have maximum length kmax.

Note, conjunctive queries can be conceived as graph patterns (corresponding to
basic graph patterns in SPARQL). Fig. 1a, 1c depict a data and a query graph
q(Vq = Vv] Vc, Pq = Pr] Pq), with atoms as edges and variables (constants)
as nodes. A match of a conjunctive query q on a graph G is a mapping µ from

Bisimulation

1. Entity
Search

Final
Results

Conjunctive
Queries

Indexing Entities &
Entities’ Neighborhood

2. Intersecting Entities’
Neighborhood

3. Structure-based
Result Refinement

4. Structure-based
Answer Computation

Relation
Index

Entity &
Neigborhood

Index

Structure
Index

Structure-based
Partitioning & Indexing

RDF DATA

Intermediate, Approximately Matched Results

Fig. 2. Offline data preprocessing and online query answering.

variables and constants in q, to vertices inG such that the according substitution
of variables in the graph representation of q would yield a subgraph of G. Query
processing is a form of graph pattern matching, where the resulting subgraph
of G exactly matches q. All such matching subgraphs are returned. As opposed
to such an exact and complete query processing, an approximate procedure
might output results, which only partially match the query graph (i.e., a result
matches only some parts of q). A query processing procedure is incremental,
when results computed in the previous step are used for subsequent steps.

Related Work. Much work in RDF data management targets orthogonal
problems, namely data partitioning [1] and indexing [10, 17]. We now discuss
related approaches that focus on the problem of query processing.
– Query Processing. Matching a query against a data graph is typically per-

formed by retrieving triples and joining them along the query atoms. Join
processing can be greatly accelerated, when the retrieved triples are already
sorted. Sorting is the main advantage of vertical partitioning [1] and sextu-
ple indexing [17] approaches, which feature data partitioning and indexing
strategies that allow fast (nearly linear) merge joins. Further efficiency gains
can be achieved by finding an optimal query plan [14].

4 http://www.w3.org/TR/rdf-primer/

– Approximate Query Processing. Above approaches deal with exact and com-
plete query processing. In the Semantic Web community, notions for struc-
tural [11] and semantic approximation [7] have been proposed. So far, the
focus is on finding and ranking answers that only approximately match a
query. In database research, approximate techniques have been proposed
for “taming the terabytes” [8, 5, 2]. Here, focus lies on efficiency. Instead
of using the actual data, a query is processed over an appropriate synopsis
(e.g., histograms, wavelets, or sample-based). Further, a suitable synopsis
for XML data as been suggested [15], in order to compute approximate an-
swers to twig-pattern queries. Unlike approaches for flat relational data [8],
the synopsis used here takes both structural and value-based properties of
the underlying data into account. Essentially, the synopsis is a structural
summary of the data, which is augmented with statistical information (e.g.,
count or value distribution) at nodes and edges.

– Incremental Query Processing. Related to our incremental approach is work
on top-k query processing. Different algorithms for top-k query processing
have been proposed [12]. Here, the goals is to not compute all results, but
to allow early termination by processing only the k best results.
Overview of our Approach. Fig. 2 illustrates the main concepts and

techniques of our approach. The data graph is broken down into two parts.
While attribute edges a ∈ EA are stored in the entity index, relations r ∈ ER are
stored in the relation index. Also, a summary of the data (structure index [16])
is computed during data preprocessing. These indexes are employed in various
operators in the pipeline, which we propose for query processing. We rely on
sorted merge join and reuse related techniques [1, 17]. However, as opposed to
such exact and complete techniques, operations in our pipeline match the query
against the data in an approximate way to obtain possibly incorrect answers
(which are refined during the process). Instead of operating on all intermediate
answers, it is possible to apply a cutoff or let the user choose the candidates at
every step.

Firstly, we decompose the query into entity queries and perform an entity
search (ES), storing the results in sorted entity lists with a maximum length of
cutoff . These results match attribute query atoms only. The next step is approx-
imate structure matching (ASM): we verify if the current results also match the
relation query atoms. By computing the overlap of the neighborhood of the enti-
ties obtained from the previous step, we verify if they are “somehow” connected,
thereby matching the relation query atoms only in an approximate way. Dur-
ing structure-based result refinement (SRR), we further refine the matches by
searching the structure index (a summary of the data) for paths, which “might”
connect entities via relation query atoms. Only in the final step (structure-based
result computation (SRC)), we actually use edges in the data graph to verify
if these connections indeed exist, and output the resulting answers (exactly
matching the query).

Example 1. During ES, we obtain 4 entity queries {qx, qz, qu, qv} from the ini-
tial query (Fig. 1c), and the corresponding results {(p1, p3, p5, p6), i1, u1, c1},
for a cutoff ≤ 4. This and the results of the subsequent refinement steps are
summarised in Table 1. During ASM, we find that all p1, p3, p5 are somehow

connected with the other entities, leading to 3 tuples. During SRR, we find
out that p5 is in the extension E6, and that this structure index node has no
incoming supervise edge. Thus, p5 cannot be part of an answer to qx. During
SRC, we observe that the previous approximate techniques lead to one incor-
rect result: p3 could not be pruned through ASM, because p3 knows p1, and
is thus “indirectly” connected with the other entities i1, u1, c1. p3 could also
not be pruned through SRR, because when looking only at the summary (i.e.,
structure index), p3 exhibits the same structure as p1 (i.e., it is also in E2) and
thus, must be considered as a potential result. Clearly, using SRC we can not
find out that p3 is actually not connected with i1 via worksAt (thus, could be
ruled out).

Design Rationales and Novelties. Our design is based on the obser-
vation that state-of-the-art techniques perform well w.r.t queries containing
highly selective atoms (e.g., attribute atoms with a constant). Query atoms
containing variables (e.g., relation query atoms), on the other hand, are more
expensive. Considering Web-scale, these query atoms become prohibitive. Pro-
cessing type(x, y) or friendOf (x, y) for instance, requires millions of RDF triples
to be retrieved. When dealing with complex graph patterns having many re-
lation query atoms (that might involve a large number of triples), we propose
a pipeline of operations, which starts with “cheap” query atoms to obtain an
initial set of approximate answers, and incrementally continues with refining
operations via more expensive query atoms.

Work on data partitioning and indexing [1, 10, 17] are orthogonal, and com-
plement our solution. Also, existing techniques for exact and complete query
processing based on sorted merge join are adopted [1, 17]. Building upon these
previous works, we present the first solution towards a pipelined processing of
complex queries on Web data, enabling results to be computed approximately,
incrementally, and reported early.

ES
qx qz qu qv
p1 i1 u1 c1
p3 i1 u1 c1
p5 i1 u1 c1
p6 i1 u1 c1

ASM
qx qz qu qv
p1 i1 u1 c1
p3 i1 u1 c1
p5 i1 u1 c1

SRR
qx qz qu qv
p1 i1 u1 c1
p3 i1 u1 c1

SRC
qx qz qu qv
p1 i1 u1 c1

Table 1. The different re-
sults for ES, ASM, SRR
and SRC.

In particular, our approach is the first approximate
technique for querying RDF data, which is capable
of trading precision for time: approximately matched
results can be reported early, and when needed, re-
sult precision can be improved through several sub-
sequent refinement steps. Compared to existing tech-
niques, the structure refinement step (SRR) resem-
bles a technique for approximate twig pattern match-
ing [15]. The difference is that our structure index
is a synopsis for general graph-structured data, while
the synopsis employed in [15], is for hierarchical XML
data only. Different from any previous techniques, we
introduce an additional level of approximation. This is realized by ASM, a novel
approximate join operator that exploits the notion of neighborhood overlap for
structure matching.

As opposed top-k approaches, our incremental approach does not compute
the best, but all approximate results, which are then iteratively refined in several
steps. In particular, we do not focus on ranking aspects in this work and simply
apply a predefined cutoff to prune large results.

Fig. 3. a) The transformed query graph obtained in ES, b) the structure index match
computed in SRR and c) SRC through joins along the structure index match.

3 Entity Search

Let us first describe offline entity indexing and then online entity search.

Entity Indexing. Attributes a ∈ EA that refer to a particular entity are
grouped together and represented as a document (ENT-doc) in the inverted
index. We use structured document indexing – a feature supported in standard
IR engines such as Lucene – to store entities’ attributes values in different fields:
we have (1) extension id : the entity’s extension id (used for SRR, c.f. Sec. 5);
(2) denotations: the entity’s URI and names; (3) attributes: concatenation of
attribute/value; (4) k-neighborhood : neighbor entities reachable via paths with
max. length k.

Query Decomposition. The goal is to parse the query graph q for com-
puting intermediate results as follows:

– Entity queries QE. Each entity query qvar ∈ QE is composed of a set of
attribute query atoms pa(var , con) ∈ Pa. Every qvar requires entities var
to have attribute values, matching the specified constants con ∈ Vc.

– Maximum distance. dmax
qx is the max. distance between an entity query qx ∈

QE and the other qy ∈ QE , where distance dqx(qy) between qx and qy is the
length of the shortest path of relation atoms connecting the variable nodes
x and y.

– Transformed query. q′(QE ⊆ Vq′ , Pr) contains entity queries qe ∈ QE as
nodes and relation query atoms pr ∈ Pr connecting these nodes. This is a
compact representation of q, where attribute query atoms pa are collapsed
into the entity queries qe, i.e., each entity query node in q′ represents a set
of attribute query atoms from q.

For result computation, we select an attribute query edge pa(var, con) ran-
domly and create an entity query qvar for the node var. Other attribute query
edges referring to the same node var are added to qvar. Starting with this
entity query node, we construct the transformed query graph q′ by breadth-
first-searching (BFS) q. We add visited relation query atoms as edges to the
transformed query, and when attribute query atoms are encountered, we use
them to create entity queries in same way as we did for pa(var, con). During
the traversal, the length of visited relation chains are recorded. This allows us
to compute the distance for every entity query pair. That is, for every entity
query qx, we compute its distance dqx(qy) to other entity queries qy. Finally, the
maximum distance is computed for every entity query qx from this information,
i.e., dmax

qx = arg max{dqx(qy) : qx, qy ∈ QE}.

Processing Entity Queries. Every entity query is evaluated by submit-
ting its attribute query atoms as a query against the entity index, i.e., qe =
{pa1(e, con1), . . . , pan(e, conn)} is issued as a conjunction of terms “pa1//con1,. . . ,
pan

//conn”. We use Lucene as the IR engine for indexing and for answering en-
tity queries specified as keywords. Given qe, this engine returns a sorted list of
matching entities, where the maximum length of the list is less than a predefined
cutoff value.

Example 2. The query q shown in Fig. 1c is decomposed into the entity queries
qx, qz, qu, qv, resulting in the transformed query q′ (Fig. 3a). For this, we start
with age(x, 29) to create qx = {age(x, 29)}. Then, we traverse the relation edges
to obtain q′ = {qx, worksAt(qx, z), authorOf(qx, y)}. Further, encountering
name(z,AIFB) results in z = qz = {name(z,AIFB)}. The process continues
for the remaining edges of q. For entity search, entity queries like qx for instance,
is submitted as “age//29” to obtain the list of entities (p1, p3, p5, p6).

4 Approximate Structure Matching

So far, the entity query parts of q have been matched, while the remaining
pr still have to be processed. Typically, this structure matching is performed
by retrieving triples for the entities computed previously (i.e., edges e ∈ ER

matching pr), and joining them along pr. Instead of an equi-join that produces
exactly matched results, we propose to perform a neighborhood join based on
the intersection of entities’ neighborhoods. We now define this novel concept
for approximate structure matching and discuss suitable encoding and indexing
techniques.

Definition 3. The k-neighborhood of an entity e ∈ VE is the set Ee
nb ⊂ VE

comprising entities that can be reached from e via a path of relation edges
er ∈ ER of maximum length k. A neighborhood overlap e1 ./nb e2 between
two entities e1, e2 is an evaluation of the intersection Ee1

nb ∩ E
e2
nb, and returns

true iff e1 ./
nb e2 6= ∅ s.t. e1 is connected with e2 over some paths of relations

e ∈ ER, otherwise it returns false. A neighborhood join of two sets E1 ./
nb E2

is an equi-join between all pairs e1 ∈ E1, e2 ∈ E2, where e1 and e2 are equivalent
iff e1 ./

nb e2 returns true.

Managing neighborhood via Bloom filters. For every entity node e ∈
VE , we compute its k-neighborhood via BFS. Then, all elements in this neighbor-
hood (including e) are stored in the entity index using the neighborhood field.
We store the neighborhoods of entities as Bloom filters [3], a space-efficient,
probabilistic data structure that allows for testing whether an element is a
member of a set (i.e., the neighborhood). While false negatives are not possible,
false positives are. The error probability is (1− e−f×n/m)f , where m is the size
of the Bloom filter in bits, n is the number of elements in the set and f is the
number of hash functions used [3]. During the neighborhood computation, we
count the number of neighbors n for each entity, and set the parameter m and
f according to a probability of false positive that can be configured as needed.

Approximate matching via Bloom filters. Checking for connection be-
tween two entity queries qe1 , qe2 ∈ QE can be achieved by loading candidate

triples matching query edges pr and then performing equijoins between the
candidates and the entities E1, E2 obtained for qe1 , qe2 . However, because this
may become expensive when a large number of triples match edges pr, we pro-
pose to check for connections between these entities in an approximate fashion
via a neighborhood join E1 ./

nb
Efilter

E2. This operates on the Bloom filters as-
sociated with the entities only, i.e., does not require retrieval and join of triples.
In particular, the join is evaluated by processing e1 ./

nb e2 for all e1 ∈ E1 and
e2 ∈ E2 in a nested loop manner, using the filters of elements in E1 or E2

denoted by Efilter.
For processing e1 ./

nb
e2 e2, we evaluate if e1 ∈ Ee2

nb using the filter of e2. Per-
forming neighborhood overlap this way requires that the neighborhood index
built for e2 covers e1, i.e., k ≥ de2(e1). This means that for supporting queries
with relation paths of a maximum length kmax

q , we have to provide the appro-
priate neighborhood index with k = kmax

q . Note that for checking connections
between entities in the lists E1 and E2 along a chain of k query atoms pr, only
one set of Bloom filters has to be retrieved to perform exactly one neighborhood
join, while with the standard approach, k + 1 equi-joins have to be performed
on the triples retrieved for all pr.

The approximate matching procedure based on this neighborhood join con-
cept is shown in Alg. 1. It starts with the center query node qcenter, i.e., the
one with lowest eccentricity such that maximum distance to any other vertex is
minimized (where eccentricity(qx) = dmax

qx , the distance information computed
previously). From qcenter, we process the neighbor query nodes by traversing
them in depth-first search (DFS) fashion. For every qneighbor in the current DFS
path, we neighborhood join the entities associated with this node with entities
in the result table A (line 9). Note, at the beginning, we marked the center
node as qfilter. This is to indicate that filters of Eqcenter

should be used for
neighborhood join as long as possible, i.e., until finding out that Eqneighbor

is at
a distance greater than k. In this case, we proceed with the filters of EqlastSeen

,
the elements lastly processed along the path we currently traversed (line 7). By
starting from qcenter, we aim to maximize the “reusability” of filters.

Example 3. The 2-neighborhoods for p1, p3, p5 and p6 are shown in Fig. 3a.
For instance, for p1 the neighborhood is obtained by BFS to reach the 1-hop
neighbors p3, i1 and a1 and finally, the 2-hops neighbors p5, u1 and c1. In Fig.
4a, we illustrate the bloom filter encoding of the neighborhood of p3, using
three hash functions. We start with entities for qx (Fig. 3a), as it has the lowest
eccentricity of 2, i.e., qx = qcenter. Via BFS of the query starting from qx, we
arrive at the 1-hop neighboring query nodes qz and y. First, we use the filters
of Eqx (k = 2) to check for overlap between entities Eqx and Eqz , i.e., lookup
if i1 is in any of the filters retrieved for p1, p3, p5 and p6 (Fig. 4b) – to find
out that e1 ./

nb pn 6= ∅, except for pn = p6. Since y is not an entity query,
no processing is required here. When encountering 2-hops neighboring nodes qu
and qv, we find that the current filters are still usable, because distance to these
nodes dqx(qu), dqx(qv) = k = 2. If k = 1 instead, we would need to retrieve the
filter of i1 to check for set membership of u1, i.e., set qfilter = qz for processing
qu.

Algorithm 1: Approximate Matching based on Neighborhood Join

Input: Transformed query q′(QE ⊆ Vq′ , pr(x, y) ∈ Pr). Every entity query
qe ∈ QE is associated with a set of entities Eqe .

Result: Table A, where each row represents a set of connected entities.
qcenter ← ARGMIN{eccentricity(qi) : qi ∈ QE}1

qfilter ← qcenter2

A← Eqcenter3

while ∃qe ∈ QE : ¬visited(qe) do4

qneighbor ← qe ∈ QE obtained via DFS along pr from qcenter5

if dqfilter (qneighbor) > k then6

qfilter ← qlastSeen, where qlastSeen is the one lastly seen along the path7

currently traversed via DFS
end8

A← A ./nb
Eqfilter

Eqneighbor9

end10

return A11

5 Structure-based Result Refinement and Computation

Result of the previous step is a set of tuples. Every tuple is a set of entities
that are somehow connected, i.e., connected over some unknown paths. During
refinement, we want to find out whether they are really connected via paths cap-
tured by query atoms. For this, we propose the structure-based result refinement,
which helps to refine the previous results by operating against a summary called
the structure index. Using the summary, we check if tuples computed in the pre-
vious step match query relation paths. If so, the final step called structure-based
result computation is performed on the refined tuples.

Structure Index for Graph Structured Data. Structure indexes have
been widely used for semi-structured and XML data [4, 13, 6]. A well-known
concept is the dataguide [9], which is a structural description for rooted data
graphs. Dataguide nodes are created for groups of data nodes that share the
same incoming edge-labeled paths starting from the root. Similar to this con-
cept, a structure index has been proposed for general data graphs [16]. Nodes in
a structure index stand for groups of data elements that have equal structural
“neighborhood”, where equal structural neighborhood is defined by the well-
known notion of bisimulation. Accordingly, two graph nodes v1, v2 are bisimilar
(v1 ∼ v2), if they cannot be distinguished by looking only at their outgoing
or incoming “edge-labeled trees”. Pairwise bisimilar nodes form an extension.
Applying the bisimulation ∼ to the graph G(V,L,E) of our data graph that
contains relation edges only, results in a set of such extensions {[v]∼ | v ∈ V }
with [v]∼ := {w ∈ V | v ∼ w}. These extensions form a complete partition of
the entity nodes V of the data graph, i.e., form a family P∼ of pairwise disjoint
sets whose union is V . Based on this notion of bisimulation, the structure index
graph G∼ of G(V,L,E) can be defined in terms of extensions and relations be-
tween them. In particular, extensions from the partition P∼ form the vertices

of G∼. An edge with label l links E1, E2 ∈ P∼ of G∼ iff G contains an l-edge
linking an element in the extension E1 to some element in extension E2.

Algorithm 2: Structure-based Result Refinement using Structure Index

Input: Transformed query q′(Vq′ , pr(qs, qt) ∈ Pr). Entity query nodes
QE ⊆ Vq′ . Table Am×n(qe1 , ..., qen), where each row represents a set of
somehow connected entities. Structure index graph G∼(V ∼, E∼).

Data: EXTqe(qe, ext(qe)) is a two column table containing the results e ∈ Eqe

of qe and their extensions ext(e). E∼(source(r), target(r)) is a two
column table containing source and target nodes of the edge r.

Result: Refined table of entities A. Intermediate result table M(c1, ..., cn)
containing entities and entity extensions, where cn denotes a query qe
or an extension ext(qe).

for pr(q1, q2) ∈ Pr do1

E∼(eq1 , eq2)← {r∼(x, y) ∈ E∼|pr = r∼}2

for qn ∈ {q1, q2} do3

if qn ∈ QE then E∼(eq1 , eq2)← E∼(eq1 , eq2) ./qn EXTqn4

end5

if M = ∅ then M = E∼(eq1 , eq2)6

else M ← E∼(eq1 , eq2) ./qn M7

A← πq∈QE (M)8

end9

return A and M10

Example 4. The data graph shown in Fig. 1a can be partitioned into 8 exten-
sions, shown as nodes of the index graph in Fig. 1b. For instance, p1 and p3
are grouped into the extension E2 because they are bisimilar, i.e., both have
incoming supervise and knows links and both have the same outgoing trees
(paths) of edges knows, (worksAt, partOf) and (authorOf, conference).

It has been shown that the structure index is appropriate for investigating
structures that can be found in the data [16]. In particular, it exhibits a property
that is particularly useful for our approach:

Property 1. If there is a match of a query graph on a data graph G, the query
also matches on the index graph G∼. Moreover, nodes of the index graph
matches will contain all data graph matches, i.e., the bindings to query vari-
ables.

Structure-based Result Refinement. Property 1 ensures that nodes of
the index graph matches will contain all data graph matches, i.e., the bindings
to query variables. Therefore, entities computed in the previous step can only be
answers to the query, when they are contained by some matches of the query on
the structure index graph. Drawing upon this observation, Alg. 2: (1) matches
the transformed query graph q′ against the structure index and (2) checks if
the resulting index graph matches contain the previously computed entities in
table A. For index graph matching, edges E∼ of the index graph are retrieved

(line 2) and joined along the query atoms pr(q1, q2) ∈ Pr. When entity query
nodes are encountered, i.e., qn is an element ofQE , we check if entities previously
computed for qn (stored in A) are contained in the matching extensions retrieved
for qn. For this, we use the extensions associated with these entities (as stored in
ENT-doc) to construct an extension table EXTqn and join this table with E∼.
Thereby, extensions that do not contain entities in A are discarded during the
computation. After processing all edges, M contains only index matches, which
connect entities in A. Finally, by projecting on the attributes qe, we obtain the
refined entities A from M (line 8).

Example 5. This example demonstrates refining result tableA = {(p1, i1, u1, c1),
(p3, i1, u1, c1), (p5, i1, u1, c1)}. The result of the refinement step is one index
match (Fig. 3b). To obtain the index match, we can, e.g., start with the query
atom supervise(w, qx). For this, one matching edge supervise∼ = {(E1, E2)}
is retrieved from G∼. supervise∼ is joined with the extension table for qx,
i.e., {(E1, E2)} ./qx {(E2, p1), (E2, p3)}. This results in supervise∼ = {(E1,
E2, p1), (E1, E2, p3)}, i.e., extension E2 obtained for qx contains entities p1, p3
(previously computed for qx). Thus, no match is discarded in this case. We
continue with authorOf(qx, y) to obtain authorOf∼ = {(E6, E4), (E2, E4)}.
By joining on qx, i.e., {(E6, E4), (E2, E4)} ./qx {(E2, p1), (E2, p3)}, we obtain
{(E2, p1, E4), (E2, p3, E4)}, i.e., we discard the extension E6, as it does not
contain p1, p3. Since y is not an entity query, we do no need to check if the
extension E4 contains entities in A. Now, M = authorOf∼ ./ supervise∼,
i.e., M = {(E1, E2, p1), (E1, E2, p3)} ./qx {(E2, p1, E4), (E2, p3, E4)} =
{(E2, E2, p1, E4), (E1, E2, p3, E4)}. This process continues for the remaining
query atoms to obtainM = {(E1, E2, p1, E4, E3, i1, E5, u1, E6, c1), (E1, E2, p3, E4, E3,
i1, E5, u1, E6, c1)}. Projecting M on the attributes q ∈ QE results in A =
{(p1, i1, u1, c1), (p3, i1, u1, c1)}.

Complete Structure-based Result Computation. Finally, results which
exactly match the query are computed by the last refinement. Only for this
step, we actually perform joins on the data. To improve efficiency, we do not
retrieve and join data along the query atoms in a standard way [1]. Instead, we
incrementally refine the results, i.e., reuse the index matches and the entities
associated with them as stored in the intermediate result set M . Given the in-
dex graph match G∼q , the algorithm for result computation iterates through the
edges l∼q ([e1]∼, [e2]∼) ∈ L∼ of G∼q , retrieves matching triples, and joins them.
However, if results exist, i.e., there are entities contained in [e1]∼ or [e2]∼ such
that [e1]∼.E ∨ [e2]∼.E 6= ∅, they are taken into account. In particular, only
triples lmq (e1, e2), where e1 ∈ [e1]∼.E and e2 ∈ [e2]∼.E are retrieved from the
data graph. In Fig. 3c, we see the triples that are retrieved and joined to obtain
the final result of the query. Only by inspecting the actual triples along this
structure index match, we note that p3 is not connected with the other entities.

6 Evaluation
We conducted a complexity analysis for our approach. Given a query graph with
bounded size, we can prove that the complexity of query processing is polyno-
mial, which is more promising than the worst-case exponential complexity of

Data(#Edges) Data(MB) EntityIdx(MB) RelIdx(MB) StrucIdx(KB) Schema(KB)
DBLP 12,920,826 2,084 2210 2,311 132 28
LUBM5 722,987 122 142 112 100 24
LUBM10 1,272,609 215 253 198 80 24
LUBM50 6,654,596 1,132 1391 1,037 82 24

Table 2. Statistics for the data graphs and indexes.

exact and complete graph-pattern matching. Due to space reasons, the details
were omitted here but can be found in our technical report.5 In this section, we
present empirical performance results and also analyze the efficiency-precision
trade-off to shed light on the incremental and approximate features of our ap-
proach.

Systems. We have implemented the incremental process (INC) based on
vertical partitioning and sextuple indexing [1, 17]. To compare our solution with
the exact and complete approach [1], we implement sorted-merged equi-join us-
ing the same data partitions and indexes (VP). Since query optimization as
proposed for the RDF-3X [14] is orthogonal, all experiments here were per-
formed without optimization, i.e., based on fixed query plans (same for both
approaches). There is no appropriate baseline for the approximate and incre-
mental features of our solution. ASM is based on Bloom filter, which has not
been applied to this problem of structure matching before. Also, there is no al-
ternative for SRR. We have already pointed out (related work) that, while SRR
is based on a summary, which is conceptually similar to the synopsis previously
proposed for approximate query processing, it is not clear how to extend these
concepts to graph-structured data and in particular, to use them in a pipeline.
Our implementation is freely available.6

Datasets. We used DBLP, which captures bibliographic information. Fur-
ther, we used the LUBM data generator to create 3 datasets for 5, 10 and 50
universities (Table 2). Note that the structure indexes were consistently bigger
than the schemas, but were of magnitudes smaller than the data graphs.

Queries. For studying the proposed algorithms in a principled way, test
queries were generated via random data sampling. We generated queries rang-
ing from simple path-shaped to graph-shaped queries. For this, we use as pa-
rameters the maximum number of constants conmax, the maximum number of
paths pmax, the maximum path length lmax and the maximum number of cy-
cles cycmax in the query graph. We sampled constants from data values VD of
the data graph. Paths and cycles were sampled from data graph edges E. The
parameters used in the experiments are conmax = 20, pmax = 6, lmax = 3,
cycmax = 2.

Setting. We used a machine with two Intel Xeon Dual Core 2.33 GHz pro-
cessors and 48GB of main memory running Linux (2GB were allocated to JVM).
All data and indexes were stored on a Samsung SpinPoint S250 200GB, SATA
II. All components have been implemented in Java 5. The bit-vector length and
the number of hash functions used for Bloom filter encoding were computed

5 http://people.aifb.kit.edu/awa/ApproxIncrementalQueryProcessing.pdf
6 http://code.google.com/p/rdfstores/

0 

2000 

4000 

6000 

8000 

10000 

12000 

DBLP  LUBM5  LUBM10  LUBM50 

Q
ue

ry
 '
m
e 
[m

s]
 

Dataset 

VP_TOTAL 

INC_TOTAL 

INC_SRR 

INC_ASM 

INC_ES 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

path  star  graph 

Q
ue

ry
 '
m
e 
[m

s]
 

Dataset 

VP_TOTAL 

INC_TOTAL 

INC_SRR 

INC_ASM 

INC_ES 

Fig. 4. Query processing times for a) different datasets and b) different query shapes.

to reach the configured probability of false positive of 0.1%. Neighborhood in-
dexes were created for k = 3. All times represent the average of 10 runs of 80
queries generated for DBLP, and 80 queries for LUBM. For different steps of
INC, we computed the precision using the formula: precision = (|correct results|
∩ |results retrieved|)/|results retrieved|. A result of an entity query in ES is cor-
rect, if it is contained in the respective column of the final result table. The
precision for ES is computed as the average precision obtained for all entity
query nodes of q. A tuple computed during ASM and SRR is correct, if it is
contained as a row in the final result table.

Average Processing Time. For INC, we decomposed total processing
time into times for ES, ASM, SRR and SRC. Averaging the processing time
over 80 queries, we obtained the results shown in Fig. 4a. The time needed for
ES is only a small fraction of the total time. Times for SRR and SRC make up
a greater portion, and ASM constitutes the largest share. Thus, these results
suggest that users can obtain an initial set of results in a small fraction of
time via ES. In particular, instead of waiting for all exact results, users might
spend only 6, 71 or 84 percent of that times when they choose to finish after
ES, ASM or SRR respectively. The comparison of total times shows that INC
was slower than VP for LUBM5 and LUBM10, but faster for the larger datasets
LUBM50 and DBLP. While these results might change with query optimization,
this promising performance indicates that our incremental approach was able
to effectively reuse intermediate results.

The Effect of Data Size. We have measured total time for LUBM of dif-
ferent data sizes (shown in Table 2). As illustrated in Fig. 4a, query processing
time increased linearly with the size of the data, for both VP and INC. Fur-
ther, INC became relatively more efficient as the data size increased. It can be
observed that the share of total time from ASM decreased with the data size,
i.e., the gain from ASM unfolded as the dataset grew larger. This is particularly
important in the Data Web context; ASM can help to quickly obtain initial
results from a large amount of data.

The Effect of Query Complexity. Considering query complexity, we
classified the 80 queries into three classes according to query shape. As shown
in Fig. 4b, INC did not perform well on path queries. For this type of queries,
ASM was particularly expensive. This is because in many cases, the reusability
of Bloom filters was low (i.e., when path length was higher than k). Filter
loading and nested loop joins became the bottleneck, resulting in slightly higher
processing times compared to VP.

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

1  2  3 

Q
ue

ry
 '
m
e 
[m

s]
 

Neighborhood distance 

VP_TOTAL 

INC_TOTAL 

INC_SBR 

INC_ASM 

INC_ES 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

1  2  3 

Pr
ec
is
io
n 

Neighborhood distance 

ES 

ASM 

SRR 

Fig. 5. Effect of neighborhood distance on a) processing times and b) precision.

The Effect of Relation Path Length k. In another experiment we clas-
sified queries into three classes according to the length of the longest relation
path (i.e., the neighborhood distance between entities, respectively). As shown
in Fig. 5a, queries with longer relation paths required more time, for both VP
and INC. For INC, the share contributed by ASM remained relatively constant,
suggesting that this step can be performed efficiently even for long relation
paths. Thus, ASM can also help to deal with complex queries with long relation
paths.

Precision. The average precision for the different steps at various k is shown
in Fig. 5b. The precision for ES was relatively constant (0.3 - 0.4). This was
expected, because k should have no effect on the quality of entity search. For
ASM and SRR, precision decreased with larger k. The highest precision obtained
for ASM was 0.56 and this increased to 0.62 after SRR.

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0  2000  4000  6000  8000  10000  12000 

Pr
ec
is
io
n 

Time [ms] 

ES 

ASM 

SRR 

Fig. 6. Precision vs. time.

Time-Precision Trade-
off. We illustrate average
time and precision for differ-
ent steps in Fig. 6. Clearly,
through the incremental re-
finement steps, both preci-
sion and processing times in-
creased. There are some out-
liers – however, overall, a
trend may be noticed: ES
produces fast results at low
precision, i.e., below 50 % for
most cases. Precision can be largely improved through ASM, i.e., in 30 % of
the cases, ASM drove precision from 50 % up to 80 %. For most of these cases
(60 %), the amount of additional processing was less than 10 % of total time.

7 Conclusion and Future Work

We proposed a novel process for approximate and incremental processing of
complex graph pattern queries. Experiments suggest that our approach is rela-
tively fast w.r.t exact and complete results, indicating that the proposed mecha-
nism for incremental processing is able to reuse intermediate results. Moreover,
promising results may be observed for the approximate feature of our solution.
Initial results could be computed in a small fraction of total time and can be
refined via approximate matching at low cost, i.e., a small amount of additional

time. We believe that our approach represents the appropriate paradigm, and
embodies essential concepts for dealing with query processing on the Web of
data, where responsiveness is crucial. At any time, users should be able to de-
cide if and for which results exactness and completeness is desirable. As future
work, we will elaborate on ranking schemes, based on which we plan to integrate
top-k techniques into the pipeline.

Acknowledgements. Research reported in this paper was supported by
the German Federal Ministry of Education and Research (BMBF) in the Col-
labCloud (grant 01IS0937A-E) and iGreen (grant 01IA08005K) projects.

References

1. D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable semantic web
data management using vertical partitioning. In VLDB, pages 411–422, 2007.

2. B. Babcock, S. Chaudhuri, and G. Das. Dynamic Sample Selection for Approxi-
mate Query Processing. In SIGMOD Conference, pages 539–550, 2003.

3. B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Commun. ACM, 13(7):422–426, 1970.

4. P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to
unstructured data. In ICDT, pages 336–350. Springer, 1997.

5. K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Approximate Query
Processing Using Wavelets. In VLDB, pages 111–122, 2000.

6. Q. Chen, A. Lim, and K. W. Ong. D(k)-index: an adaptive structural summary
for graph-structured data. In SIGMOD, pages 134–144. ACM, 2003.

7. O. Corby, R. Dieng-Kuntz, C. Faron-Zucker, and F. L. Gandon. Searching the
Semantic Web: Approximate Query Processing Based on Ontologies. IEEE Intel-
ligent Systems, 21(1):20–27, 2006.

8. M. N. Garofalakis and P. B. Gibbons. Approximate Query Processing: Taming
the TeraBytes. In VLDB, 2001.

9. R. Goldman and J. Widom. Dataguides: Enabling query formulation and opti-
mization in semistructured databases. In VLDB, pages 436–445, 1997.

10. A. Harth and S. Decker. Optimized Index Structures for Querying RDF from the
Web. In LA-WEB, 2005.

11. C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Ranking Approximate Answers
to Semantic Web Queries. In ESWC, pages 263–277, 2009.

12. I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv., 40:11:1–11:58,
2008.

13. R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering indexes for
branching path queries. In SIGMOD, pages 133–144, 2002.

14. T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. PVLDB,
1(1):647–659, 2008.

15. N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Approximate xml query answers.
In SIGMOD, SIGMOD ’04, pages 263–274, New York, NY, USA, 2004. ACM.

16. D. T. Tran and G. Ladwig. Structure index for RDF data. In Workshop on
Semantic Data Management at VLDB, September 2010.

17. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic
web data management. PVLDB, 1(1):1008–1019, 2008.

18. L. Zhang, Q. Liu, J. Zhang, H. Wang, Y. Pan, and Y. Yu. Semplore: An IR
Approach to Scalable Hybrid Query of Semantic Web Data. In ISWC/ASWC,
2007.

