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Abstract. RDF(S)1 constitutes a newly emerging standard for metadata that is
about to turn the World Wide Web into a machine-understandable knowledge
base. It is an XML application that allows for the denotation of facts and schemata
in a web-compatible format, building on an elaborate object-model for describing
concepts and relations. Thus, it might turn up as a natural choice for a widely-
useable ontology description language. However, its lack of capabilities for de-
scribing the semantics of concepts and relations beyond those provided by in-
heritance mechanisms makes it a rather weak language for even the most aus-
tere knowledge-based system. This paper presents an approach for modeling on-
tologies in RDF(S) that also considers axioms as objects that are describable in
RDF(S). Thus, we provide flexible, extensible, and adequate means for accessing
and exchanging axioms in RDF(S). Our approach follows the spirit of the World
Wide Web, as we do not assume a global axiom specification language that is too
intractable for one purpose and too weak for the next, but rather a methodology
that allows (communities of) users to specify what axioms are interesting in their
domain.

1 Introduction

The development of the World Wide Web is about to mature from a technical plat-
form that allows for the transportation of information from sources to humans (albeit in
many syntactic formats) to the communication of knowledge from Web sources to ma-
chines. The knowledge food chain has started with technical protocols and preliminary
formats for information presentation (HTML – HyperText Markup Language) over a
general methodology for separating information contents from layout (XML – eXtensi-
ble Markup Language, XSL – eXtensible Stylesheet Language) to reach the realms of
knowledge provisioning by the means of RDF and RDFS.

RDF (Resource Description Framework) is a W3C recommendation [10] that pro-
vides description facilities for knowledge pieces, viz. for triples that denote relations
between pairs of objects. To exchange and process RDF models they can be serialized
in XML. RDF exploits the means of XML to allow for disjoint namespaces, linking and
referring between namespaces and, hence, a general methodology for sharing machine-
processable knowledge in a distributed setting. On top of RDF the simple schema lan-
guage RDFS (Resource Description Framework Schema; [2]) has been defined by the
W3C to offer a distinguished vocabulary to model class and property hierarchies and

1 We use “RDF(S)” to refer to the combined technologies of RDF and RDFS.



other basic schema primitives that can be refered to from RDF models. To phrase the
role of RDFS in knowledge engineering terminology, it defines a simple ontology that
particular RDF documents may build on.

Ontologies have shown their usefulness in application areas such as intelligent in-
formation integration or information brokering. Therefore their use is highly interesting
for web applications, which may also profit from long term experiences made in the
knowledge acquisition community. At the same time, this is a great chance for the
knowledge acquisition community as RDF(S) may turn knowledge engineering, so far
a niche technology, into a technological and methodological powerhouse. Nevertheless,
while support for modeling of ontological concepts and relations has been extensively
provided in RDF(S), the same cannot be said about the modeling of ontological axioms
— one of the key ingredients in ontology definitions and one of the major benefits of
ontology applications.

Even though there are good and bad choices for particular formal languages, one
must face the principal trade-off between tractability and expressiveness of a language.
RDF(S) has been placed nearer to the low end of expressiveness, because it has been
conceived to be applicable to vast web resources! In contrast to common knowledge
representation languages, RDF(S) has not been meant to be the definitive answer to all
knowledge representation problems, but rather an extensible core language. The names-
pace and reification mechanisms of RDF(S) allow (communities of) users to define their
very own standards in RDF(S) format — extending the core definitions and semantics.
As RDF(S) leaves the well-trodden paths of knowledge engineering at this point, we
must reconsider crucial issues concerning ontology modeling and ontology applica-
tions. To name but a few, we mention the problem of merging and mapping between
namespaces, scalability issues, or the definition and usage of ontological axioms.

In this paper we concentrate on the latter, namely on how to model axioms in
RDF(S) following the stipulations, (i), that the core semantics of RDF(S) is re-used
such that “pure” RDF(S) applications may still process the core object-model defini-
tions, (ii), that the semantics is preserved between different inferencing tools (at least
to a large stretch), and, (iii), that axiom modeling is adaptable to reflect diverging needs
of different communities. Current proposals neglect or even conflict with one or several
of these requirements. For instance, the first requirement is violated by the ontology
exchange languages XOL [8] and OIL [7] making all their object-model definitions in-
digestible for most RDF(S) applications. The interchangeability and adaptability stipu-
lation is extremely difficult to meet by the parse-tree-based representation of MetaLog
[13], since it obliges to first-order logic formulae. We will show how to adapt a gen-
eral methodology that we have proposed for axiom modeling [12, 14] to be applied to
the engineering of ontologies with RDF(S). Our approach is based on translations of
RDF(S) axiom specifications into various target systems that provide the inferencing
services. As our running example, we map axiom specifications into an F-Logic format
that has already served as the core system for SiLRi, an inference service for core RDF
[4]. Our methodology is centered around categorization of axioms, because this allows
for a more concise description of the semantic meaning rather than a particular syntac-
tic representation of axioms. Thus, we get a better grip on extensions and adaptations
to particular target inferencing systems.
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In the following, we introduce the RDF(S) data model and describe how to define
an object model in RDF(S) including practical issues of ontology documentation (Sec-
tion 2). Then we describe our methodology for using RDF(S) such that axioms may
be engineered and exchanged. We describe the core idea of our approach and illustrate
with several examples how to realize our approach (Section 3). Before we conclude, we
give a brief survey of related work.

2 Modeling Concepts and Relations in RDF(S)

In this section we will first take a look into the core ontology engineering task, i.e. at
the RDF(S) data model proper, and then exploit RDF(S) also for purposes of practical
ontology engineering, viz. for documentation of newly defined or reused ontologies.
This will lay the groundwork for the modeling of axioms in Section 3.

2.1 The RDF(S) Data Model

RDF(S) is an abstract data model that defines relationships between entities (called
resources in RDF) in a similar fashion as semantic nets. Statements in RDF describe
resources, that can be web pages or surrogates for real world objects like publica-
tions, pieces of art, persons, or institutions. We illustrate how concepts and relations
can be modelled in RDF(S) by presenting a sample ontology in the abstract data model
and only afterwards show how these concepts and relations are presented in the XML-
serialisation of RDF(S).

RDF. As already mentioned RDF(S) consists of two closely related parts: RDF and
RDF Schema. The foundation of RDF(S) is laid out by RDF which defines basic enti-
ties, like resources, properties, and statements. Anything in RDF(S) is a resource. Re-
sources may be related to each other or to literal (i.e. atomic) values via properties. Such
a relationship represents a statement that itself may be considered a resource, i.e. reifi-
cation is directly built into the RDF data model. Thus, it is possible to make statements
about statements. These basic notions can be easily depicted in a graphical notation
that resembles semantic nets. To illustrate the possibilities of pure RDF the following
statements are expressed in RDF and depicted in Figure 12:

– Firstly, in part (a) of Figure 1 two resources are defined, each carrying a FIRSTNAME

and a LASTNAME property with literal values, identifying the resources as William
and Susan Smith, respectively. These two resources come with a URI as their
unique global identifier and they are related via the property MARRIEDWITH, which
expresses that William is married with Susan.

– Part (b) of the illustration shows a convenient shortcut for expressing more com-
plex statements, i.e. reifying a statement and defining a property for the new re-
source. The example denotes that the marriage between William and Susan has
been confirmed by the resource representing the Holy Father in Rome.

2 Resources are represented by shaded rectangles, literal values by ovals and properties by di-
rected, labeled arcs.
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Fig. 1. An example RDF data model.

– The RDF data model offers the predefined resource rdf:statement and the pre-
defined properties rdf:subject, rdf:predicate, and rdf:object to reify a
statement as a resource. The actual model for the example (b) is depicted in part (c)
of Figure 1. Note that the reified statement makes no claims about the truth value
of what is reified, i.e. if one wants to express that William and Susan are married
and that this marriage has been confirmed by the pope then the actual data model
must contain a union of part (a) and part (c) of the example illustration.

RDFS. As a companion standard to RDF the schema language RDFS is more important
with respect to ontogical modeling of domains. RDFS offers a distinguished vocabulary
defined on top of RDF to allow the modelling of object models with cleanly defined
semantics. The terms introduced in RDFS build the groundwork for the extensions of
RDF(S) that are proposed in this paper. The relevant RDFS terms are presented in the
following list.

– The most general class in RDF(S) is rdfs:Resource. It has two subclasses,
namely rdfs:Class and rdf:Property (cf. Figure 23). When specifying a do-

3 The reader may note that only a very small part of RDF(S) is depicted in the RDF/RDFS layer
of the figure. Furthermore, the relation APPL:MARRIEDWITH in the data layer is identical to
the resource APPL:MARRIEDWITH in the schema layer.
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main specific schema for RDF(S), the classes and properties defined in this schema
will become instances of these two resources.

– The resource rdfs:Class denotes the set of all classes in an object-oriented
sense. That means, that classes like appl:Person or appl:Organisation are
instances of the meta-class rdfs:Class.

– The same holds for properties, i.e each property defined in an application specific
RDF schema is an instance of rdf:Property.

– RDFS defines the special property rdfs:subClassOf that defines the subclass
relationship between classes. Since rdfs:subClassOf is transitive, definitions
are inherited by the more specific classes from the more general classes and re-
sources that are instances of a class are automatically instances of all superclasses
of this class. In RDF(S) it is prohibited that any class is an rdfs:subClassOf

itself or of one of its subclasses.
– Similar to rdfs:subClassOf, which defines a hierarchy of classes, another spe-

cial type of relation rdfs:subPropertyOf defines a hierarchy of properties, e.g.
one may express that FATHEROF is an rdfs:subPropertyOf PARENTOF.

– RDFS allows to define the domain and range restrictions associated with prop-
erties. For instance, these restrictions allow the definition that persons and only
persons may be MARRIEDWITH and only with other persons.

As depicted in the middle layer of Figure 2 the domain specific classes appl:Person,
appl:Man, and appl:Woman are defined as instances of rdfs:Class. In the same
way domain specific property types are defined as instances of rdf:Property, i.e.
APPL:MARRIEDWITH, APPL:FIRSTNAME, and APPL:LASTNAME.

The use of XML Namespaces in RDF(S). The XML namespace mechanism plays a
crucial role for the development of RDF schemata and applications. It allows to dis-
tinguish between different modeling layers (cf. Figure 2 and 3) and to reuse and in-
tegrate existing schemata and applications. At the time being, there exist a number of
canonical namespaces, e.g. for RDF, RDFS, and Dublin Core (cf. Section 2.2). We here
introduce two new namespaces that aim at two different objectives, viz. the comprehen-
sive documentation of ontologies and the capturing of our proposal for the modeling of
ontological axioms

An actual ontology definition occurs at a concrete URL 4, e.g. at http://
ontoserver.aifb.uni-karlsruhe.de/schema/example.rdf, it defines short-
hand notations, e.g., o and odoc, which refer to our actual namespaces for ontology
documentation (http://ontoserver.aifb.uni-karlsruhe.de/schema/
ontodoc) and modeling of ontological axioms (http://ontoserver.aifb.uni-
karlsruhe.de/schema/rdf), respectively. An actual application that uses our ex-
ample ontology will define a shorthand identifier like appl in order to refer to this
particular, application-specific ontology. Figures 2 and 3 presume these shorthand no-
tations for the namespaces we have just mentioned.

4 The reader may actually compare with the documents that appear at these URLs!
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Fig. 2. An example RDF schema and its embedding in RDF(S).

XML serialization of RDF(S). One important aspect for the success of RDF in the
WWW is the way RDF models are represented and exchanged, namely via XML. In the
following excerpt of an RDF schema document, the classes and property types defined
in Figure 2 are represented in XML and the domains and ranges of the properties are de-
fined using the RDF constraint properties rdfs:domain and rdfs:range. In addition,
we here denote some exemplary meta-metadata, viz. the o:InstantiationProperty
that distinguishes between concrete concepts like Person and abstract concepts like
BilateralSymmetricConcept — the latter of which is only used for structuring rather
than for the purpose of instantiation and is specific for the type of database applications
we have.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#"
xmlns:rdfutil="http://www.w3.org/rdfutil#"
xmlns:o="http://ontoserver.aifb.uni-karlsruhe.de/schema/rdf#">

<rdf:Description ID="Person">
<rdf:type resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class"/>
<rdfs:subClassOf

rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource"/>
<o:InstantiationProperty

rdf:resource="http://ontoserver.aifb.uni-karlsruhe.de/schema/rdf#Concrete"/>
</rdf:Description>

<rdf:Description ID="Man">
<rdf:type resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class"/>
<rdfs:subClassOf rdf:resource="#Person"/>
<o:InstantiationProperty
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rdf:resource="http://ontoserver.aifb.uni-karlsruhe.de/schema/rdf#Concrete"/>
</rdf:Description>

<rdf:Description ID="Woman">
<rdf:type resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class"/>
<rdfs:subClassOf rdf:resource="#Person"/>
<o:InstantiationProperty

rdf:resource="http://ontoserver.aifb.uni-karlsruhe.de/schema/rdf#Concrete"/>
</rdf:Description>

<rdf:Description ID="Organisation">
<rdf:type resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class"/>
<rdfs:subClassOf

rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource"/>
<o:InstantiationProperty

rdf:resource="http://ontoserver.aifb.uni-karlsruhe.de/schema/rdf#Concrete"/>
</rdf:Description>

<rdf:Description ID="firstName">
<rdf:type

resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Property"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string"/>

</rdf:Description>

<rdf:Description ID="lastName">
<rdf:type

resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Property"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string"/>

</rdf:Description>

<rdf:Description rdf:ID="marriedWith">
<rdf:type

resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Property"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>

</rdf:Description>

</rdf:RDF>

2.2 Modeling ontology metadata using RDF Dublin Core

Metadata about ontologies, such as the title, authors, version, statistical data, etc. are
important for practical tasks of ontology engineering and exchange. In our approach
we have adopted the well-established and standardized RDF Dublin Core Metadata
element set [15]. This element set compromises fifteen elements which together cap-
ture basic aspects related to the description of resources. Ensuring a maximal level
of generality and exchangeability, our ontologies are labeled using this basic element
set. Since ontologies represent a very particular class of resource, the general Dublin
Core metadata description does not offer sufficient support for ontology engineering and
exchange. Hence, we describe further semantic types in the namespace http://onto-
server.aifb.uni-karlsruhe.de/schema/ontodcand instantiate these types when
we build a new ontology. The example below illustrates our usage and extension of
Dublin Core by an excerpt of an exemplary ontology metadata description. 5

<rdf:Description about = "">

5 The complete metadata description also contains elements like “publisher” or “contributor” or
“sources”.
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<dc:Title> An Example Ontology </dc:Title>
<dc:creator>

<rdf:Bag>
<rdf:li ID="cr1"> Steffen Staab </rdf:li>
<rdf:li ID="cr2"> Michael Erdmann </rdf:li>
<rdf:li ID="cr3"> Alexander Maedche </rdf:li>

</rdf:Bag>
</dc:creator>
<dc:date> 2000-02-29 </dc:date>
<dc:format> text/xml </dc:format>
<dc:description>

An example ontology modeled for this small application
</dc:description>
<dc:subject> Ontology, RDF </dc:subject>

<odoc:creator_address>
<rdf:Bag>

<rdf:li ID="cr1"> Institute AIFB, Karlsruhe University </rdf:li>
<rdf:li ID="cr2"> Institute AIFB, Karlsruhe University </rdf:li>
<rdf:li ID="cr3"> Institute AIFB, Karlsruhe University </rdf:li>

</rdf:Bag>
</odoc:creator_address>
<odoc:url> http://ontoserver.aifb.uni-karlsruhe.de/schema/example.rdf </odoc:url>
<odoc:version> 2.1 </odoc:version>
<odoc:last_modification> 2000-03-01 </odoc:last_modification>
<odoc:ka_technique> semi-automatic text acquisition </odoc:ka_technique>
<odoc:ontology_type> domain ontology </odoc:ontology_type>
<odoc:no_concepts> 4 </odoc:no_concepts>
<odoc:no_relations> 3 </odoc:no_relations>
<odoc:no_axioms> 1 </odoc:no_axioms>
<odoc:highest_depth_level> 1 </odoc:highest_depth_level>

</rdf:Description>

3 Modeling of Axioms in RDF(S)

Having prepared the object-model and documentation backbone for ontologies in RDF(S),
we may now approach the third pillar of our approach, viz. the specification of axioms
in RDF(S). The basic idea that we pursue is the specification and serialization of axioms
in RDF(S) such that they remain easily representable and exchangeable between differ-
ent ontology engineering, representation and inferencing environments. The principal
specification needs to be rather independent of particular target systems (to whatever
extent this is possible at all) in order to be of value in a distributed web setting with
many different basic applications.

3.1 Axioms are Objects, too

Representation of interesting axioms that are deemed to be applied in different infer-
encing applications turns out to be difficult. The reason is that typically some kind of
non-propositional logic is involved that deals with quantifiers and quantifier scope. Ax-
ioms are difficult to grasp, since the representation of quantifier scope and its likes is
usually what the nitty-gritty details of a particular syntax, on which a particular infer-
encing application is based, are about. An ontology representation in RDF(S) should,
however, abstract from particular target systems.

A closer look at the bread and butter issues of ontology modeling reveals that many
axioms that need to be formulated aim at much simpler purposes than arbitrary logic
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structures. Indeed, we have found that many axioms in our applications belong to one
of a list of major axiom categories:

1. Axioms for a relational algebra
(a) Reflexivity of relations
(b) Irreflexivity of relations
(c) Symmetry of relations
(d) Asymmetry of relations
(e) Antisymmetry of relations
(f) Transitivity of relations
(g) Inverse relations

2. Composition of relations6

3. (Exhaustive) Partitions7

4. Axioms for subrelation relationships
5. Axioms for part-whole reasoning

Our principal idea for representing ontologies with axioms in RDF(S) is based on
this categorization. The categories allow to distinguish between the structures that are
repeatedly found in axiom specifications from a corresponding description in a partic-
ular language. Hence, one may describe axioms as complex objects (one could term
them instantations of axiom schemata) in RDF(S) that refer to concepts and relations,
which are also denoted in RDF(S). For sets of axiom types we presume the definition
of different RDF schemata. Similar to the case of simple metadata structures, the RDF
schema responsible for an axiom categorization obliges to a particular semantics of its
axiom types — which may be realized in a number of different inferencing systems like
description logics systems (e.g., [6]) or frame logic systems [4]. The schema defined
in our namespace http://ontoserver.aifb.uni-karlsruhe.de/schema/ordf
stands for the semantics defined in this and our previous papers [12, 14]. 8 The schema
is also listed in the appendix of this paper (cf. Section A). Other communities may, of
course, find other reasoning schemes more important, or they may just need an exten-
sion compared to what we provide here.

Thus, we build a two-layer approach. On the first layer, the symbol level, we provide
a RDF(S) syntax (i.e. serialization) to denote particular types of axioms. The categoriza-
tion really constitutes a knowledge level that is independent from particular machines.
In order to use an ontology denoted with our RDF(S) approach, one determines the
appropriate axiom category and its actual instantiation found in a RDF(S) piece of on-
tology, translates it into a corresponding logical representation and executes it by an
inferencing engine that is able to reason with (some of) the relevant axiom types.

Figure 3 summarizes our approach for modeling axiom specifications in RDF(S). It
depicts the core of the RDF(S) definitions and our extension for axiom categorizations
(i.e. our ontology meta layer). A simple ontology, especially a set of application specific
relationships, is defined in terms of our extension to RDF(S).

6 E.g., FATHERINLAWOF is composed by the relations FATHEROF and MARRIEDWITH.
7 E.g., concepts Man and Woman share no instances.
8 The reader may note that we have chosen names to coincide with many conventional names,

e.g. “symmetry” of relations.
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Fig. 3. An Object Model and an Instantiation in RDF(S)

In the following subsections, we will further elucidate our approach by proceeding
through a few simple examples of our categorizations of axiom specifications listed
above. In particular our scheme is, (1), to show the representations of axioms in RDF(S)
and (2), to show a structurally equivalent F(rame)-Logic representation that may easily
be derived from its RDF(S) counterpart (cf. [9, 3] on F-Logic). Then, (3), we exploit the
expressiveness of F-Logic in order to specify translation axioms that work directly on
the F-Logic object representation of axioms. Thus, (2) in combination with (3) describes
a formally concise and executable translation. For better illustration, we finally, (4),
indicate the result of our translation by exemplary target representations of the axioms
stated in RDF(S).

The reader should note here that we do neither believe that F-Logic fulfills all the
requirements that one might wish from an ontology inferencing language, nor do we be-
lieve that the axiom types we mention exhaust all relevant types. Rather we believe that
our experiences and experiences in particular domains will push for further categoriza-
tions of axioms, further translations mechanisms, and, hence, further extensions of the
core RDF(S) representation. All that will have to be agreed upon by communities that
want to engineer and exchange ontologies with interesting axioms across particularities
of inference engines. Our main objective is to acquaint the reader with our principle
methodology that is transportable to other translation approaches, inferencing systems,
and other axiom types, when need arises.
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3.2 Axioms for a relational algebra

The axiom types that we have shown above are listed such that easier axioms come first
and harder ones appear further down in the list. Axiom specifications that are referred
to as “axioms for a relational algebra” rank among the simplest ones. They describe
axioms with rather local effects, because their implications only affect one or two rela-
tions. We here show one simple example of these in order to explain the basic approach
and some syntax. The principle approach easily transfers to all axiom types from 1.(a)-
(g) to 3.

Let us consider an example for symmetry. A common denotation for the symmetry
of a relation MARRIEDWITH (such as used for “Hillary is married with Bill’) in first-order
predicate logic boils down to:

(1) 8X;Y MARRIEDWITH(X;Y ) MARRIEDWITH(Y;X).

In F-Logic, this would be a valid axiom specification, too. Most often, however,
modelers that use F-Logic take advantage of the object-oriented syntax. Concept defini-
tions in F-Logic for Person having an attribute MARRIEDWITH and Man being a subcon-
cept of Person is given in (2), while a fact that William is a Man who is MARRIEDWITH

Susan appears like in (3).

(2) Person::LivingBeing[MARRIEDWITH)) Person].
Man::Person.

(3) William:Man[MARRIEDWITH!! Susan].

Hence, a rule corresponding to (1) is given by (4).

(4) 8X;Y Y [MARRIEDWITH!! X ] X [MARRIEDWITH!! Y ]:

We denote symmetry as a predicate that holds for particular relations:

(5) SYMMETRIC(MARRIEDWITH).

In RDF(S), this specification may easily be realized by a newly agreed upon re-
source o:Symmetric:

(6) <o:Symmetric rdf:ID="marriedWith"/>

For a particular language like F-Logic, one may then derive the implications of
symmetry by a general rule and, thus, ground the meaning of the predicate SYMMETRIC

in a particular target system. The corresponding transformation rule (here in F-Logic)
states that if for all symmetric relations R and object instances X and Y it holds that X
is related to Y via R, then Y is also related to X via R.

(7) 8R;X; Y Y [R!! X ] SYMMETRIC(R) andX [R!! Y ]:

11



This small example already shows three advantages. First, the axiom specification
(6) is rather target-system independent. Second, it is easily realizable in RDF(S) (cf.
(6)). Third, our approach for denoting symmetry is much sparser than its initital coun-
terpart (4), because (7) is implicitly assumed as the agreed semantics for our schema
definition.

Following our strategy sketched in the previous subsection, these steps from RDF
representation to axiom meaning are now summarized in Table 1. For easier under-
standing, we will reuse this table layout also in the following subsection.

A <o:Symmetric rdf:ID="marriedWith"/> RDF(S)
B SYMMETRIC(MARRIEDWITH) F-Logic Object
C 8R;X; Y Y [R!! X] SYMMETRIC(R) and X[R!! Y ]: Translation A xiom
D 8X;Y X[MARRIEDWITH!! Y ] Y [MARRIEDWITH!! X]: Target Axiom

Table 1. Symmetry

3.3 Composition of relations

The next example concerns composition of relations. For instance, if a first person is
FATHEROF a second person who is MARRIEDWITH a third person then one may assert
that the first person is the FATHERINLAWOF the third person. Again different inferenc-
ing systems may require completely different realizations of such an implication. The
object description of such an axiom may easily be denoted in F-Logic or in RDF(S) (cf.
Table 2). The transformation rule works very similarly as the transformation rule for
symmetry.

A <o:Composition rdf:ID="FatherInLawComp">
<o:composee rdf:Resource="fatherInLawOf"/>
<o:firstComponent rdf:Resource="fatherOf"/>
<o:secondComponent rdf:Resource="marriedWith"/>

</o:Composition>
B COMPOSITION(FATHERINLAWOF, FATHEROF, MARRIEDWITH)
C 8R;Q; S;X; Y; Z X[S !! Z] 

COMPOSITION(R;Q; S)^X[R !! Y ] and Y [Q!! Z]:
D 8X;Y; Z X[FATHERINLAWOF!! Z] 

X[FATHEROF!! Y ] and Y [MARRIEDWITH!! Z]:

Table 2. Composition

3.4 General axioms

Our approach of axiom categorization is not suited to cover every single axiom spec-
ification one may think of. Hence, we still must allow for axioms that are specified in
a particular language like first-order predicate logic and we must allow for their repre-
sentation in RDF(S). There are principally two ways to approach this problem. First,
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one may conceive a new RDF(S) representation format that is dedicated to a particu-
lar inferencing system for reading and performing inferences. This is the way that has
been choosen for OIL [7], which has a RDF(S) style representation for a very simple
description logics, or Metalog [13], which represents Horn clauses in RDF(S) format.

The alternative is to fall back to a representation that is even more application spe-
cific, viz. the encoding of ontological axioms in pure text, or “CDATA” in RDF speak
(cf. (8)). In fact, the latter is a very practical choice for many application-specific ax-
ioms — once you make very deep assumptions about a particular representation, you
are also free to use whatever format you like.

(8) <o:GeneralAxiom rdf:ID="WhoPaidForTheWeddingParty">

<o:text olang="flogic">

<![CDATA[

FORALL w, x, y, z

w:Wedding[groom->x, bride->y, billTo->z] <-

z[fatherInLawOf->x:Man] AND x[marriedWith->y].

]]>

</o:text>

</o:GeneralAxiom>

4 Related Work

The proposal described in this paper is based on several related approaches, viz. we have
build on considerations made for the RDF inference service SiLRi [4], the ontology
engineering environments ODE [1] and Protégé [5], the ontology interchange language
OIL [7], and our own earlier work on general ontology engineering [12, 14].

SiLRi [4] was one of the first approaches to propose inferencing facilities for RDF.
It provides most of the basic inferencing functions one wants to have in RDF and,
hence, has provided a good start for many RDF applications. In fact, it even allows to
use axioms, but these axioms may not be denoted in RDF, but only directly in F-Logic.
It lacks capabilities for axiom representation in RDF(S) that our proposal provides.

In our earlier proposals [12, 14] we have discussed how to push the engineering of
ontological axioms from the symbol level onto the knowledge level — following and
extending the general arguments made for ODE [1]. This strategy has helped us here in
providing an RDF(S) object representation for a number of different axiom types.

Nearest to our actual RDF(S)-based ontology engineering tool is Protégé [5], which
provides comprehensive support for editing RDFS and RDF. Nevertheless, Protégé cur-
rently lacks any support for axiom modeling and inferencing — though our approach
may be very easy to transfer to Protégé, too.

A purpose similar to our general goal of representing ontologies in RDF(S) is pur-
sued with OIL [7]. The drawback involved with OIL is that it does not integrate nicely
with core RDF(S), since it does not understand the RDF(S) subClassOf relationship
as an immediate OIL construct, and it is completely based on description logics, which
comes with a very nice semantics, but which also assumes a very particular terminolog-
ical model.
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Finally, there are other approaches for ontology exchange and representation in
XML formats that we do not want to elaborate here, as they fail our lackmus test for
supporting the RDF(S) metadata standard, e.g. [13, 8], and there is a tool that provides
schema editing capabilities, but no further support for ontologies [11].

5 Discussion

We have presented a new approach towards engineering ontologies in the web formats,
RDF and RDFS. Our objectives aim at the usage of existing inferencing services such
as provided by deductive database mechanisms [4] or description logics systems [6].
We reach these objectives through a methodology that classifies axioms into axiom
types according to their semantic meaning. Each type receives an object representa-
tion that abstracts from scoping issues and is easily representable in RDF(S). Axiom
descriptions only keep references to concepts and relations necessary to distinguish one
particular axiom of one type from another one of the same type. When the limits of
object representations in RDF(S) are reached, we fall back onto target system-specific
representations. These may be formulated in RDF versions of languages like OIL or
MetaLog — but since they are commonly very specific for particular applications, they
may also be expressed by strings (CDATA), the particular semantics of which is only
defined in the corresponding application.

Our approach has been partially implemented in our ontology engineering environ-
ment, OntoEdit [12]. The object-model engineering capabilities for of RDF(S) are ready
to use, while different views for axiom representations are currently under construction.
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A The RDF schema for categories of relationships

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

<rdfs:Class ID="Relation">
<rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdfs:Class>

<rdfs:Class ID="Asymmetric">
<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdfs:Class ID="Reflexive">
<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdfs:Class ID="Transitive">
<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdfs:Class ID="Irreflixive">
<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdfs:Class ID="Symmetric">
<rdfs:subClassOf rdf:resource="#Relation"/>
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</rdfs:Class>

<rdfs:Class ID="PartOfRel">
<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdf:Description ID="isInverseRelationOf">
<rdf:type rdf:resource="#Relation"/>

</rdf:Description>

<!-- Defintions for COMPOSITION -->

<rdfs:Class ID="Composition"/>

<rdf:Property ID="composee">
<rdfs:domain rdf:resource="#Composition"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdf:Property ID="firstComponent">
<rdfs:domain rdf:resource="#Composition"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdfs:Property ID="secondComponent">
<rdfs:domain rdf:resource="#Composition"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdfs:Property>

<!-- Defintions for PARTITION -->

<rdfs:Class ID="Partition"/>

<rdfs:Property ID="partitionee">
<rdfs:domain rdf:resource="#Partition"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdfs:Property>

<rdfs:Property ID="parts">
<rdfs:domain rdf:resource="#Partition"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>

</rdfs:Property>

<!-- Defintions for InstantiationProperty -->

<rdfs:Class rdf:ID="InstantiationType">
<rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource">

</rdfs:Class>

<rdf:Description rdf:ID="Concrete">
<rdf:type rdf:resource="#InstantiationType">

</rdf:Description>

<rdf:Description rdf:ID="Abstract">
<rdf:type rdf:resource="#InstantiationType">

</rdf:Description>

<rdf:Property ID="instantiationProperty">
<rdfs:domain rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource"/>
<rdfs:range rdf:resource="#InstantiationType"/>

</rdf:Property>

<!-- Defintions for General Axioms-->

<rdfs:Class ID="GeneralAxiom">
<rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource">

</rdfs:Class>
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<rdf:Property ID="lang">
<rdfs:domain rdf:resource="GeneralAxiom"/>
<rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string"/>

</rdf:Property>

<rdf:Property ID="text">
<rdfs:domain rdf:resource="GeneralAxiom"/>
<rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string"/>

</rdf:Property>

<rdfs:Class ID="PartonomicRolePropagation">
<rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource">

</rdfs:Class>

</rdf:RDF>
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