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Abstract—Consumption of business processes provided in form
of Web sites have become a part of our daily life for attending our
personal and business needs. In order to obtain the best solution
for a particular task, users often combine several Web sites.
However, currently the composition of Web sites, coordination of
the execution of such Web sites compositions is done completely
manually. In this paper, we present an approach that allows
users to automatically compose generic solutions by combining
appropriate Web sites and invoke the generic solutions with
appropriate parameters whenever required, thus relieving them
from a lot of manual coordination effort. We show how Web sites
and their compositions can be formalized as processes, how the
formal descriptions of Web sites can be automatically composed
to obtain generic solutions and how such generic solution can be
executed inside a common Web browser with automatic flow of
data among different parties despite heterogeneous data.

I. INTRODUCTION

Most of the interesting business processes need to interact
with the user multiple times during their execution, e.g. for ob-
taining inputs, providing outputs or resolving non-determinism
in order to proceed with further execution. In order to interact
with the user elements for displaying information as well as
elements for receiving user input are needed. In the Web, such
multi-step, multi-interactive, non-deterministic processes are
implemented as Web sites, while single step, deterministic
utility procedures are often offered as Web services. Web
sites build the much larger part of the Web than the atomic
Web services1. Web sites offer processes, while Web services
mainly offer simple utility procedures, e.g. for conversion of
formats, currencies or querying a database etc. In the rest of
the paper, we use the term Web Processes for RPC based Web
services, RESTful Web services and Web sites.

End users use Web sites for accomplishing their simple day
to day tasks as well as complex business needs. Users often
need more than one Web process to accomplish a task at hand
because of reasons like (1) users wish to compare the outcomes
of different Web processes and select the best one, and (2)
complex tasks that can not be performed completely with one

1around 30,000 publicly available WSDLs according to seekda [1] vs. a
few billion Web sites even without considering dynamic Web sites.

Web process or (3) when a process needs inputs that a user
obtains as outputs of other processes, to name a few.

a) Example Scenario: Consider Mary who is a secretary
and needs to arrange travel for her boss very often. Every
time, she is supposed to plan a trip for her boss, she needs to
search and book the most suitable flight, hotel and rental car.
For doing so she uses a bunch of Web sites. For flight booking
sites, she need to enter date and time considering the timetable
of her boss multiple times, check the flight availability and
compare the prices etc. Furthermore, she needs to check the
availability of the hotels that are not too far away both from
the location of the meeting her boss want to attend as well as
the airport. Especially, in case the meeting location is far from
hotel, she needs to find a rental car of appropriate class for
reasonable price and availability in the duration of the stay of
her boss.

Currently, users have to coordinate the execution of various
Web sites manually, e.g. by manually entering same (or
logical dependent) data in different forms multiple times,
trying out different input values, aggregate results of various
Web processes. Considering that many tasks that the users
accomplish with the help of multiple Web processes need to
performed again and again (e.g. travel booking as described in
Example I-0a), supporting a user with automatic techniques in
coordinating the Web processes can save a lot of human effort.

In the recent years, many techniques have been developed
with the aim of providing users with support for automation
while working in the Web. The initial approaches e.g. [2]
targeted mainly the data on static Web pages. Later the idea
of semantic description of Web data has been applied for
Web services resulting in approaches like OWL-S [3] and
WSMO [4]. Automatic composition techniques for seman-
tic Web services, e.g. [5] have considered RPC style Web
services, even though the mentioned semantic Web service
description techniques provide with models for describing
composite Web services as well. The execution environments
like OWL-S Virtual Machine [3], [6] and Semantic Execution
Environment [7] focus mainly on the execution of workflows
that have semantic Web services as atomic activities. To the



best of our knowledge, the composite service description
techniques such as OWL-S Process Model have not been
applied for describing dynamics of Web sites. Unfortunately,
the plethora of automatic Web service composition approaches
focus only on atomic Web services, e.g. [5], [8], [9], [27] are
not applicable for composing processes. As a consequence
there is also a lack of a semantic execution engine for
executing and coordinating Web processes.

In this paper, we present an approach which supports users
in the accomplishment of recurring tasks in the Web. The
central idea is to allow users to define solution templates,
which are complex decentralized workflows with Web pro-
cesses as its components, and remember the solution templates
as ”intelligent” bookmarks in the Web browser. Furthermore,
a user will be able to select the bookmark appropriate for
a concrete instantiation of a problem, which triggers the
execution of the complex workflow underlying the solution
template. In order to be able to do composition and execution
of solution templates, descriptions of Web processes must be
available. In Section II-A and Section II-B we give overviews
of our Web process description formalism as well as our semi-
automatic technique for obtaining descriptions of the processes
implicit in the flow of Web pages. Furthermore, composition
of solution templates relies on retrieval of appropriate Web
process descriptions from a repository of Web process de-
scriptions, which we introduce in Section II-C. Having all
the preliminaries introduced, we develop in Section III an
automatic technique for supporting users in the task of defining
the solution templates. In Section IV we present the overall
architecture of our system with implementation details of
our Web browser based graphical solution template synthesis
and execution prototype. We conclude in Section VI after
discussing related work in Section V.

II. PRELIMINARIES

In this section we give short overviews of some existing
technologies which are needed to develop the main con-
tribution of the paper. Automatic techniques for generating
appropriate compositions of Web processes are useful only
if there is a large pool of semantic descriptions of Web
processes available. In II-A, we give an overview of the
process description language that we use for describing the
dynamics of Web sites. In II-B, we give a brief introduction
of our view of Web sites as processes as well as an overview
of our semi-automatic approach for obtaining descriptions of
processes implicit in the flow of Web pages.

A. Semantic Description of Web Sites as Processes

In this section, we present an overview of the suprime
Process Description Language (suprimePDL ) that we use to
describe the information flow and control flow among the Web
pages. suprimePDL is based on the π-calculus process algebra.
For details on the syntax and formal semantics of the language,
we refer to [10], [11].

The behavior φD of a Web process is described with the π-
calculus process algebra [12] in combination with a semantic

Name Syntax Semantics
Null 0 does nothing; used as termination symbol

Input c[x].P
takes inputs at port c, binds them to vari-
ables x and then behaves like P

Output c〈y〉.P outputs the values y at port c and then
behaves like P

Local ∆.P
performs the list of changes ∆ and then
behaves like P

Conditional ω?P
behaves like P if condition ω can be eval-
uated to true, otherwise like 0

Composition
∏

1≤i≤n Pi
parallel composition of n process compo-
nents Pi

Choice
∑

1≤i≤n Pi
behaves like exactly one of the n alternative
processes Pi

Agent In-
vocation

@A{y}

invocation of an agent identifier A with
arguments values y. An agent identifier A
with arguments x is defined with a process
expression in which x are the only names
that may occur freely.

TABLE I
π-CALCULUS SYNTAX AND SEMANTICS OF BEHAVIOR DESCRIPTIONS

Element Maps to
Base URL of Web page / Link Logical URI of ontology
Display element id Ontology class

Content of a display element Ontology instance of the class corr.
to the display element id

Variable name of link Ontology class

Variable value of link Ontology instance of class corr. to
the variable

Form name Complex ontology class

Form field id Property of the class corresponding
to the form name

Form field name
ontology class representing the
range of the property correspond-
ing to the field id

Form Field Value Instance

TABLE II
CORRESPONDENCE BETWEEN PAGE CONTENT AND ONTOLOGY

description of static and dynamic process resources in the do-
main ontology OD expressed in SHIQ(D) description logic
expressions. E.g., input parameters x and the communication
channel c are resources and further described in OD (cf.
Table I). Benefits of this combined approach, details on the
description formalism, and its formal semantics are introduced
in [13]. Here, we give an overview about the syntax and its
semantics in Table I. The semantics of π-calculus process
expressions is defined on a labeled transition system (LTS)
the knowledge of the service in that stage of the execution
and is described by an ontology. The ABox of the ontology
is subject to change during state transitions and the TBox is
assumed to be invariant during execution.

B. View of Web Sites as suprimePDL Processes

Table II summarizes the correspondence between the static
part of a Web page and the ontology elements. For each new
Web site, we create an ontology with the logical URI derived
from the base URL of the Web site. In the semantic description
of the content of a link, the arguments of a link are modeled
as classes in the ontology, and the values of the arguments as



Web Artifact Element of the Process Description Language
URL Agent identifier

Web page Composition of a set of outputs and a choice
from a set of links and forms

Selection of a link Invocation of an agent identifier
Submission of a form Input process
CGI script Execution of a local Operation

Web Agent identifier composed of concurrently run-
ning Web pages

TABLE III
MAPPING BETWEEN WEB ARTIFACTS AND ELEMENTS OF THE

FORMALISM

instances of the classes corresponding to the arguments. An
HTML form corresponds to a complex ontology class in the
ontology. The names of the input elements of the form are
the properties of the complex class representing the whole
form. The range of a property corresponding to an input
element is modeled as an ontology class. The name of the
class can be often derived from the label of the input field
(see e.g. [14]). Some types of input elements provide a set
of values from which one or more can be selected. In these
cases, the provided values are modeled as ontology instances,
while the class representing the range of an input field as
enumeration class instead of a normal class. Thus, we obtain
an ontology with classes, instances and relationships for each
Web site. Automatic techniques for detecting mappings and
alignments, e.g. [15] in such a large pool of ontologies are
necessary.

A set of mappings, illustrated in Table III, is defined
between the Web artifacts and the elements of our process
description language. In our view, a URL is equivalent to
an agent identifier, whereas the selection of a link, which is
a usage of a URL, is equivalent to invocation of an agent
identifier with concrete values for the arguments. In our model,
a Web page corresponds to a process which is a composition
of a set of outputs and a choice from a set of links and forms.
Formally, a Web page P that display l values x1, . . . , xl,
contains m links u1, . . . , ul and n forms f1, . . . , fn can be
described as follows:

y〈o1, . . . , ol〉.0 ‖ {U1 + . . .+ Ul + F1.N1 + . . .+ Fn.Nn},

where U1, . . . , Ul denote the URLs that the links u1, . . . , ul
are respective invocations of and F1.N1, . . . , Fn.Nn the input
processes corresponding to the forms f1, . . . , fn.

Our semi-automatic acquisition of semantic process descrip-
tions of Web sites automatically crawl the (dynamic) Web
pages and create ontologies for the terms occurring on a Web
page, especially in the links and forms as well as description
of the process implicit in the flow of crawled Web pages. Such
automatically created ontologies and process descriptions can
be further refined manually with a browser based graphical
editor for suprimePDL [16], [17].

C. Search

For the synthesis of a coordinating process, it is required
that the processes that need to be coordinated are known. Fur-

thermore, during the synthesis, it is required to find processes
that can be glued together to a given process. In [18], we
have developed a technique for finding processes that fulfill
constraints on the functionality, including temporal constraints
(desired order of activities). The query formalism for con-
straints is a combination of the µ-calculus [19], [20] temporal
logic and SHIQ(D) description logic. Desired exchanged
messages, i.e., input and output parameters, are constrained
in a SHIQ(D) domain ontology OR, which allows us to
express assumptions on the types of the messages. Then,
the desired behavior is modeled by expressions using the µ-
calculus. The modal µ-calculus, an extension of the modal
logic, is used to query for modal and temporal properties
of processes expressions. It has a simple syntax, an easily
given semantics, and the fixpoint operators provide immense
power [19], [20].

Definition 1: Basic µ-calculus Syntax

Ψ := Ψ ∧Ψ | ¬Ψ | µX.Ψ(X) | 〈a〉Ψ | P | > | ⊥

Conjunction and negation allow to compose inclusions and
exclusions of desired process fragments. The terminals of the
expression are the propositions P , existence of an action a
(e.g., occurrence of input and output action), as well as > and
⊥, which match all or no processes, resp. The minimal fixpoint
operator allow to specify formulas recursively. Note that
disjunction, universal quantifier for actions as well as maximal
fixpoint operator can be built using the above basic constructs.
However, since the specification of temporal constraints using
fixpoint operators is very technical and likely not to be handled
by end users, we extend the constraint specification language
by some commonly used patterns such as until, eventually,
and always as predefined patterns that can be expressed with
the fixpoint operators ψ1 until ψ2 means that the process will
reach some state in which ψ2 holds and ψ1 holds until this
state is reached. A process that must reach a state in which ψ
holds is expressed by eventually ψ. always ψ means that
ψ holds on every path, whereas further restriction to the path
may be applied. We refer to [19], [20] for further details on
the syntax and semantics of the µ-calculus.

For the model checking algorithm that checks for a given
query and a given process description in suprimePDL, whether
the process description fulfills the query or not, we refer
to [18]. We will use the model checking technique developed
for the purpose of finding processes with required temporal
structure and functionality from within our synthesis algorithm
presented in the next section.

III. SYNTHESIS OF SOLUTION TEMPLATES

In this section, we present an automatic technique to syn-
thesize solution templates. Given the logical constraints on
the information flow among processes, a solution template
also determines the sequences in which processes are invoked.
Different independently acting Web processes invoked by a
user do not communicate with directly with each other, but
rather via the user, e.g. when the outputs of one Web process
need to fed to another Web process. As a consequence, the



problem of automating the coordination can be seen as the
task of synthesizing a controlling process C that runs in the
user’s Web browser. Our approach allows user to specify
constrains on the controlling process with respect to desired
control and information flow and constructs controlling pro-
cesses that fulfill user’s constraints by combining the semantic
descriptions of the appropriate Web processes available in the
process repository created with the semi-automatic acquisi-
tion technique [17]. In Section III-A, we show how the a
controlling process can be modeled with suprimePDL. Since,
modeling solution templates can be a very tedious task, if
performed manually, we develop an algorithm for synthesizing
such solution templates automatically in Section III-B.

A. Structure of the Controlling Processes

When a user models a controlling process, the user has
certain constraints regarding the data flow, the control flow,
the properties of the data as well changes made by the whole
process. We derive three requisites from the above mentioned
three reasons for the usage of a controlling process. (1) When
no single process provides all desired outputs, a parallelization
of component processes is required in order to simulate the
possible data flow among them. Also, when there are several
similar processes, i.e. processes that provide the same results,
the parallelization can collect results of all processes. (2) When
the number of inputs required from the user can be reduced
by reusing known inputs that are provided by the user or
by previously obtained outputs of other processes, then we
need to model the data flow between the controlling process
and the process for which inputs can be provided. As the
controlling process is the invoker, it always needs to accept
outputs provided by the processes. (3) When the output of the
composed process needs to be the best among all alternatives,
then the resulting information obtained from all component
processes shall be aggregated. Suppose the controlling process
is denoted by C and the Web processes that are supposed to
be composed together with the help of the controlling process
C are denoted by P1, . . . , Pn. Then a solution template is
denoted by C ‖ P1 ‖ . . . ‖ Pn. That is, all the Web processes
run in parallel to each other and also to the controlling process.

B. Automatic Synthesis of Solution Templates

The synthesis algorithm computes a set of solution tem-
plates for a given problem, which is described by a user’s
requirements. The user formulates the desired properties of a
solution template as a tuple (I,O,Γ) that contains a set I
of inputs, a set O of outputs, a description Γ of constraints
on the inputs and outputs including their types and how they
relate with each other.The algorithm not just composes several
processes such that a template provides the required outputs
taking requirements and preferences into account. It focuses
on synthesizing a controlling process that eases controlling the
process execution by automating non-challenging tasks like
provision of inputs or forwarding parameters. In our example,

Mary wants to provide inputs

I = {flightArrivalTime, flightStart, flightEnd,

carPickupTime, carPickup, creditCard, user}

The desired outputs O must be provided by a solution
template. For instance, Mary requires a Web process that
delivers basic information like start and end location and/or
time for flight, rental car, and hotel, as well as pricing
information and perhaps payment details. She could describe
this as

O = {ft, ftEndTime, fp, car, cp}.

Γ denotes a logical expression that describes the types of
relation between inputs and outputs of the composed process.
It allows also to constrain the data flow among several Web
processes and to constrain the outputs of the processes. In our
example,

Γ = {Time(flightArrivalTime),Airport(flightStart),Airport(flightEnd),

Time(carPickupTime),City(carPickup),CreditCard(creditCard),

UserProfile(user),FlightTicket(ft),Time(ftEndTime),

RentalContract(car), equiv(flightEnd, ftEnd),Price(cp),

before(ftEndTime, carPickupTime),Price(fp),≤ (fp, 100)}

is a set of constraints that are interpreted as a conjunc-
tive query. Each constraint can be a binary or unary predi-
cate. equiv(flightEnd, ftEnd) states that the desired destination
equals the destination airport of the flight ticket. The con-
straint before(ftEndTime, carPickupTime) relates the depen-
dency between the arrival time and the pickup time of the
rental car. It allows to use the outputs of the flight booking
process for a subsequent rental car arrangement process (if
it is required to combine these two different processes). Web
process outputs are constrained (filtered) when a parameter is
compared to a literal, as in ≤ (fp, 100). It is also possible to
filter based on a variable value instead of specifying a constant
value at design time.

Given desired properties (I,O,Γ), we first identify pro-
cesses from a repository of available Web processes that match
the query (cf. line 1 in Algorithm 1). Here, we assume that the
match method provides the functionality of the matchmaker
to discover Web processes fulfilling given constraints (refer to
Section II-C). Compositions of Web processes are computed
with a Plan Space Planning algorithm [21]. The algorithm
takes the properties of the desired solution templates and a set
of already created solution templates as input. It selects ran-
domly one constraint γ from the set of desired constraints and
tries extends the already created partial solution templates such
that the new partial solution templates fulfill the constraint.
The constraint is then removed in order to ensure that it is not
considered again unless it is added as part of the preconditions
of the newly added process fragments. The algorithm invoked
itself with the new set of solution templates and the new set
of constraints until there are no unsatisfied constraints left.
In the beginning, the algorithm is called the complete set of
constraints as specified by the user and an empty set of solution



Algorithm 1 composeSolutionTemplate
Require: Desired properties (I,O,Γ) and a set of solution

templates S
1: if Γ = ∅ then
2: Stop!
3: take one γ ∈ Γ
4: let S ′ ⊆ S denote those solution templates that do not

satisfy γ
5: if S ′ 6= ∅ then
6: Pmatch ← match(γ)
7: for all P ∈ Pmatch do
8: for all S ∈ S ′ do
9: copy S to S′

10: let C denotes the controlling process of S′

11: add P ‖ C
12: adjust C
13: add φP , the preconditions of P , to Γ
14: remove S from S ′
15: if S ′ has changed then
16: remove γ from Γ
17: composeSolutionTemplate(S ′, (I,O,Γ))
18: else
19: Failure!
20: else
21: remove γ from Γ
22: composeSolutionTemplate(S, (I,O,Γ))

templates. Once all the solution templates are synthesized
such that each of the synthesized solution template fulfills the
constraints specified in Γ, the final set of solution templates is
obtained by selecting only those that have desired inputs and
outputs as specified in I and O. This selection is performed
with the help of the same model checking algorithm match
that is used for searching processes.

1) Creating and Adjusting the Structure of the Controlling
Process: The synthesis algorithm returns a set of solution
templates. The component processes P of a solution template
run in parallel in the created template. Then a controlling
process C is synthesized such that each of the processes
P ∈ P can be executed, i.e. inputs are provided and outputs
are received by C. Therefore C splits into |P| threads; one
thread CP per process P ∈ P . The interface (choreography)
of a thread CP is complement of that of P . That is, CP has a
corresponding input operation for each output operation in P ,
and a corresponding output operation providing the required
inputs for each input operation of P in the right order and
at right channel to ensure the data flow. If P performs a
local operation, CP provides inputs and subsequently accepts
outputs according to the signature of the local operation. In
cases of deterministic choice, composition, and summation
in P , the thread CP is split again and the sub threads are
analogously synthesized for the remaining sub processes.

2) Incorporating Atomic Web Services: If a matching pro-
cess P ∈ P , i.e. P provides the required outputs and requires

Fig. 1. Synthesized solution template with a filter derived from a constraint.

inputs that are not supposed to be provided by the user manu-
ally (by comparing with I), then the algorithm tries to provide
a composition of atomic Web services that derives the missing
inputs of P from the given information in I. We assume,
that if a user wishes some locally available information to be
integrated automatically, there are corresponding Web services
to access the information. Web services provide simple oper-
ations that can be used to transform the data; a composition
of Web services can provide the required input for P . We will
not describe further details of Web service composition, since
many AI planning based techniques have been introduced and
well-investigated [22], [23]. Our matchmaker therefore also
need to consider temporal constraints on the processes used
for the data transformation as we only consider those that
provide outputs before another input is required that cannot
be provided by C. For instance, a process requires airport
codes as inputs instead of city names and an available service
translates a city name to the airport code. Then the template
should not introduce this service if the airport code is returned
after the credit card is charged.

3) Example: Recalling Mary’s travel booking scenario,
we assume for example that there is no process that pro-
vides all required outputs. We focus on two component
processes that provide flight arrangements. The controlling
process operates them as shown in Figure 1. Besides the
synthesis of the controlling process as the complement of
the individual Web processes, the controlling process should
ensure that constraints and requirements of the query are
taken into account. For a constraint γ ∈ Γ that constraints
the values of one required output o ∈ O a local process
lγ({o1, c1}, {o2, c2}, . . . , {on, cn})(c1, c2, . . . , ck) is added to
a new thread of the controlling process C. After a process Pi
returns oi to the corresponding thread CPi of the controlling
process and Pi’s next process is an input operation, CPi

forwards oi and its communication channel identifier ci to the
local process lγ that implements the process filter that is used
for γ. The filter lγ returns a set of communication channels
{c1, c2, . . . , ck} ⊆ {c1, c2, . . . , cn}. In order to avoid synchro-
nization issues, the channels are defined as shared variables
within the scope of C. A channel ci ∈ {c1, c2, . . . , ck} is in the
result set if the corresponding process Pi is continued. We say
that a process P is continued if the thread CP provides inputs
to the next input operation in P after P returned the parameter
required for the filter. CP ′ does not provide any further inputs



Fig. 2. suprime Architecture

to P ′ if P ′ is not continued. As shown in Figure 1, after
the price information of offered flights were received by the
threads of the controlling process, a filter leq100 synchronizes
both threads by receiving price information fp from each
thread in C. Mary specified the requirement ≤ (fp, 100) ∈ Γ,
which means that processes with prices lower than 100 may
continue execution at runtime.

IV. IMPLEMENTATION

In this section, we give overviews of the implementation of
the suprime components relevant for this paper and refer to
the suprime Web site 2 for more technical details. Figure 2
shows the main components of the suprime framework.

The languages for describing processes, offers, queries and
preferences build the basis for the intelligent techniques like
acquisition, search, composition, ranking and execution. Our
process description language suprimePDL has been briefly
introduced in Section II-A. The query language for specifying
constraints on process properties, especially temporal con-
straints, has been presented in [24]. The Fuzzy If-Then rules
based preference specification language has been introduced
in [25]. For each language, we have developed a Java API as
well as a graphical notation.

The Repository component stores process descriptions, on-
tologies and ontology mappings persistently. The descriptions
can be managed with the help of the methods for adding,
removing and updating the descriptions. E.g. the automatic
acquisition module that generates the semantic process de-
scriptions as introduced in Section II-B uses these methods to
manage the process descriptions persistently.

The Search component has direct access to the repository
and searches for process descriptions within the repository that
fulfill a query as introduced in Section II-C and presented
in [24]. Roughly, the search is based on a tableaux based
model checking algorithm that checks whether a process
expression is a model of a temporal logic formula. In order
to achieve efficiency, indexing techniques based on the simu-
lation relationships among the process expression have been

2http://suprime.aifb.uni-karlsruhe.de

incorporated, which can be computed independent of a query,
and therefore off-line.

The query formalism proposed in Section III for specifying
end user requirements is roughly a union of the Fuzzy rules
based preference specification formalism [25] and a subset
(without temporal constraints) of the query language presented
in [24]. Therefore, the Java APIs for the query language and
the preference language are used to process the user’s syn-
thesis requirements programmatically. A user interface allows
graphical modeling of user’s requirements on a solution. The
synthesis algorithms presented in Section III, implemented
as part of the Composition component, generates a set of
solution templates. For doing so, it often utilizes the search
for appropriate processes in the repository.

The browser based front end is based on the open source
Oryx process editor 3 and allows end users to model, search,
compose Web processes graphically as well as execute them in
the Web browser. We have extended the Oryx editor to support
our languages by the so called Stencil Sets. In particular, the
process editor allows users to refine the automatically obtained
suprimePDL descriptions of the Web processes. The search
GUI allows users to model a query in the above mentioned
query language graphically. The discovery component returns
the set of process descriptions that fulfill the query and the
ranking GUI allows users to define Fuzzy sets and model
their preferences as Fuzzy rules. When a user has modeled
the requirements on a solution template, he can press the
”synthesize” button, upon which the synthesis algorithm is
invoked. The set of solution templates (suprimePDL process
expressions) is sent to the ranking component together with the
preferences, which return a sorted list of solution templates.
The list is presented to the user at the GUI, where he can
view the details of each solution template, refine the solution
templates and store useful ones in the repository.

In our browser based implementation of the execution of a
complex process, a browser tab corresponds to a thread. That
is, for each thread a new browser tab is opened, in which
the thread can receive inputs and provide outputs. When the
thread terminates, the corresponding browser tab is closed.
When an input is required from the user by a controlling
process, an HTML form is created from the set of input
variable and displayed in the corresponding tab. Similarly,
when a controlling process produces an output to the user,
the output values are displayed in the corresponding tab. If
there is a data flow specified from an output activity of a
controlling process to an input activity of a Web process, the
values are entered in the corresponding form and the form is
submitted automatically. Note that, in this way the names of
the browser tabs act as communication channels for various
input and output activities. When a non-deterministic choice
is executed, a Web page is generated with a list of links
and forms depending on whether an alternative is a process
invocation or an input activity. A user can then either click on
a link or submit a form. In case of a link selection the URL

3http://bpt.hpi.uni-potsdam.de/Oryx/WebHome



Fig. 3. Performance Evaluation of composition (Number of total Web process
descriptions in the repository vs. mean time in seconds for computing the
compositions for the example query.

of the tab is changed to the URL of the new link, whereas in
case of a form the tab behaves as described above.

Figure 3 shows the results of the performance evaluation of
the composition algorithm. We a collection of 100,000 Web
process descriptions created by our semi-automatic acquisition
technique presented in Section II. For the purpose of evaluation
we have created increasingly larger chunks varying from
10,000 to 100,000 by randomly selecting the descriptions
from the original set of 100,000 descriptions. Note, that the
performance for composition to satisfy our example query
which was from the traveling domain depends primarily on the
number of processes from the traveling and not on the total
number of processes. Still the later plays an important role
since the ontology reasoners and the temporal logic reasoner
have to first load the whole repository in memory.

V. RELATED WORK

Annotation of Web pages has been of interest for quite
some time now [2]. However, the main goal of the annotation
approaches was to annotate the data on Web sites with
ontologies to achieve better interoperability. We base our work
on an approach that can capture not only dynamic Web pages,
but more interestingly also the dynamics of the flow of Web
pages. The semantic descriptions of the data on Web pages
goes adjacent to the semantic description of the behavior of
the Web sites. Our process description language suprimePDL
is more appropriate than e.g. OWL-S[3] due to (1) its clear
formal semantics and Turing complete expressivity and (2) its
support for mobility which makes it possible to send links as
data objects which is inherent in Web processes.

From the research community, perhaps the METEOR-S
project first used the term Web processes, even though with a
different meaning than we used it in this paper [26]. In [26]
and other many other related METEOR-S research works, the
focus is on constructing workflows by combining atomic Web
services. In this paper, our focus is on viewing Web sites as
processes and combining them to (more complex) processes.

Mashup tools, e.g. Yahoo! Pipes4 allow users to combine data
from various Web pages and present the aggregated view on
the data on a new Web page. Thus, mashup tools are data
flow driven. Furthermore, they mostly rely on RESTful Web
services for obtaining access to the data. Our main focus in
this paper is not to create a new Web pages with aggregated
information collected from various Web pages, but rather to
provide users of the Web sites with techniques for composition
and execution of Web sites in order to relieve them from
manual coordination of the Web sites they often use for a
task at hand.

iMacros5 is a commercial browser plugin that allows users
to record a navigation behavior as a macro and execute such
macros at some later stage. However, the synthesis of the
macros is fully manual and a macro can use only those Web
processes that are known to the end user while recording it.
Our automatic synthesis technique allows users to compute
generic solutions based on user’s requirement automatically.
While doing so, all Web process descriptions available in the
repository can be used. Furthermore, the formal nature of
our process language makes it possible to employ automatic
procedures for reasoning about the properties of synthesized
solution templates. In the recent years, many automatic Web
Service Composition (WSC) techniques, e.g. [5], have been
proposed. A popular approach to WSC is to characterize
it as an Artificial Intelligence (AI) planning task and to
solve it as such (e.g., [8], [9], [27]). The major difference
between them and our synthesis approach is that we aim at
gluing together processes to a more complex process, whereas
automatic composition techniques aim at composing atomic
Web services to workflows. Several approaches have been
proposed to deal with composition of complex processes,
e.g. [28], [29] and a comprehensive comparison is hard since
they address different flavors of the composition problem. One
of the main distinction to be done is between centralized (or
mediated, orchestrated) composition methods and distributed
(or peer-to-peer) methods. The difference lies in the automated
composition result: the former aim at synthesizing a new
service (mediator) that orchestrates the component services
by properly exchanging messages, while in the latter the
execution of the composition is distributed among all the
component services.

The execution with iMacros is rather syntactic, by which
we mean that it does not support interoperability of data
among different sources by considering their semantics. In
our approach, we rely on semantic descriptions of the data
with ontologies with a standard language OWL in order to
achieve the semantic interoperability despite differences in the
terminologies used at different Web sites. Furthermore, our
execution engine generates HTML forms for receiving user
inputs that can be used across all the involved Web processes.

4http://pipes.yahoo.com/pipes/
5http://www.iopus.com/iMacros/



VI. CONCLUSION AND OUTLOOK

The work presented in this paper was motivated by mainly
two observations (1) Most of the interesting processes in the
Web are targeted at human users and (2) human users have to
coordinate various Web processes manually. We have argued
that most of such coordination e.g. entering the same or logical
dependent data in many different forms, can be automatized.
In this paper, we have presented an approach that helps
the users to automatize the coordination, which is especially
beneficial in case of recurring tasks. We first presented the
overviews of the techniques that are used in the main part
of the paper. Our main contribution lies in the interplay of
many techniques to obtain a useful application in the wider
sense, as well as in the automatic technique for supporting
users in the synthesis of solution template in the deeper sense.
While composition is an intermediate step, the ultimate goal
of the user is to achieve efficiency in day to day work by
executing the solution templates. We addressed this issue by
presenting a Web browser based execution environment that
automates navigation of Web processes while still allowing
manual interaction in case where input from human is required
or desired by the user. In future, we will continue to work
on the scalability issues of search and composition of Web
processes.
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