FSM-based Evolution in a Swarm of Real Wanda Robots

ABSTRACT

The creation of mechanisms to control the behavior of mo-
bile robots becomes increasingly complex with the complex-
ity of the desired tasks and the environment involved. Evo-
lutionary Robotics is a methodology for the automatic gen-
eration of robot control mechanisms using basic principles
from natural evolution, i.e., mutation, recombination and
selection. In this paper, a decentralized online-evolutionary
model based on finite state machines (FSMs) is investigated
with respect to its ability of evolving controllers for a swarm
of mobile robots. The model originally has been proposed for
simulation and is now implemented for a real-robot scenario.
A new selection operator is proposed which implements a de-
centralized version of tournament selection with arbitrarily
many parents. In a real-robot experimentation setup using
”"Wanda” robots it is showed that basic behaviors like Colli-
sion Avoidance and Gate Passing can be evolved by the pro-
posed model. Furthermore, the paper discusses some imple-
mentation details specific to real hardware; this includes par-
ticularly a specially designed communication protocol used
for selection, an onboard fitness function based solely on sen-
soric information, and a recovery mechanism for the case of
hardware failures.
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1. INTRODUCTION

Creating control mechanisms for mobile robots is well-
known to be a difficult task [2], especially if the environment
is unknown or changing. Often manual controller design
has become a limiting factor of the attainable complexity of
an autonomous task [12]. To use Evolutionary Algorithms
to generate robot controllers as an alternative to program-
ming by hand is an approach which is being investigated
in the field of Evolutionary Robotics (ER). There, robot
controllers, called gemomes in the following, are mutated
randomly and selected according to their adaptation to the
desired task in the given environment. Controllers which
are better adapted to the desired task and environment are
selected for a new generation. The level of adaption is mea-
sured by a fitness function that evaluates the robot’s behav-
ior. ER has proven to be capable of finding control mech-
anisms which outperform manually designed controllers in
terms of effectiveness in solving a desired task and simplic-
ity of the controller [18].

The work done in the area of ER can be classified along
four dimensions; (1) simulation — reality: The large amount
of time needed by the evolution process in real time, the
lack of the necessary hardware and related problems have
led to experiments in ER often being carried out in simula-
tions [15]. Results from simulations, however, cannot always
be readily transferred into reality. This problem is known
as a Reality Gap [11]. Therefore it is believed to be nec-
essary, at least partially to work with real robots [18]. (2)
offline — online: This axis focuses on the point in time at
which evolution takes place. If evolution takes place be-
fore the actual execution of the task in an artificial training
environment, it is an offline process. In contrast, online
methods are based on evolution which takes place during
execution of the actual task. This has the advantage that
it takes place in the original environment, which even can
be changing or unknown. On the other hand, a problem
of this approach is that the uncertainty of success, which
is present in every learning approach, can have more fa-
tal consequences when real hardware in a real environment
is involved. (3) off-board — on-board (decentralized): The
presence or absence of a central unit during the evolution
determines this differentiator. On-board methods can be
seen as a distributed approach in which all tasks are per-



formed only on the robot itself, while off-board methods use
a central computing unit which observes and controls the
evolution process completely or partially. With a decentral-
ized approach, however, only local information and resources
such as memory and processing power can be used. This may
seem a limitation at first sight, but offers some advantages as
well. With a rising number of robots in the population, any
kind of a central resource may become a bottleneck. Also,
it provides a single point of failure. Finally, the presence
of a central unit is unfeasible in many types of real envi-
ronments. A decentralized approach is thus more scalable,
robust and closer to many real scenarios. (4) encapsulated —
distributed: This criterion divides serial from parallel meth-
ods, encapsulated approaches being the more serial ones. In
an encapsulated approach, all individuals in a population
are hosted on a single robot and evaluated sequentially. In
contrast, in distributed approaches each robot hosts only
one individual, the population consists of several robots and
the fitness evaluation takes place in parallel. This variation
is closely associated with the decentralized approaches and
offers similar advantages, such as robustness and scalability.
In encapsulated approaches, the time needed in order to
evaluate the entire population increases linear by the num-
ber of individuals. By using parallelization in the distributed
case, time is constant.

In this paper, a combination of an online, onboard and
distributed approach is used which is also known as Embod-
ted Evolution (EE) [19].0One of the first work in EE was the
"Probabilistic Gene Transfer Algorithm” [19] as well as the
work form Simoes and Barone [14]. Both used artificial neu-
ral networks (ANNSs) as control mechanism as approximately
40% of the work done in ER does [12]. A major disadvantage
of ANNSs is that the learned knowledge is hidden within the
neural network and cannot automatically be interpreted or
reviewed. To avoid this problem, in this paper finite state
machines (FSMs) are used as controllers. The advantage
over neural networks is the transparency of resulting con-
troller. They are also suitable for critical applications where
a verifiable behavior is required.

The implementation is based on the work of Kénig et al.
[7]. Some elements can be directly incorporated into this
work, such as the used mutations, others must be adapted to
the use of real robots. These include reproduction and evalu-
ation of the resulting behavior. The robot-to-robot commu-
nication needed for selection takes place via infrared (IR).
An error correction protocol that is adapted to IRs small
bandwidth is proposed. Although the communication al-
ways takes place between two individuals, the reproduction
is capable of handling more than two parents by a sequential
collection procedure. Due to the necessity of spatial prox-
imity for communication the reproduction cannot take place
at fixed intervals, but only when two robots meet. There-
fore, for different robots they take place at different times
and out of sync. Since the communication takes time all
other elements of the evolutionary process are asynchronous
as well. Thus, the design of the fitness function must guar-
antee comparable results at any time.

In addition, restrictions that come with real robots must
be noted. These are long experiment run times, since exper-
iments run in real time only, limited battery life and also a
limited life span of the robots themselves [9]. To minimize
these limitations, the experiments are performed in a swarm
of robots. Thus, properties such as decentralized control,

Figure 1: The Wanda robot and the arrangement
of its infrared sensors 1,...,7, denoted by the sensor
variables hi,...h7.

robustness, flexibility and scalability can be achieved [17].
These properties counteract the limited life span of a robot
because a failure of a single robot does not cause the entire
experiment to fail. Also, parallelism can significantly reduce
time. This can help to reduce run time and handles short
battery life [19].

Furthermore, a recovery function for storing the current
state of a robot is established. This state can be restored
on the same robot, or if necessary even on another robot.
Thus, after a failure of a robot it can be replaced by another
one and the experiment can be continued even beyond the
battery life time of a single robot.

For the investigation of the model, two benchmark be-
haviors are examined. (1) Collision avoidance (CA) is a
basic behavior often used in ER as a first test of an evo-
lutionary approach. It requires the robots to learn how to
navigate through an arena, without colliding with objects,
other robots or walls. (2) Gate passing (GP) is a more ad-
vanced behavior where robots are supposed to learn to cross
a gate as often as possible by still avoiding collisions.

The remainder of the paper is structured as follows: After
a description of the Wanda robot platform, the evolutionary
model is introduced. Here the main elements, the controller,
fitness evaluation, mutation and reproduction as well as im-
portant parts of the implementation are illustrated. Finally,
the experiments carried out and there results are presented.

2. WANDA ROBOT PLATFORM

The Wanda robot is an autonomous mobile robot, devel-
oped at the Karlsruhe Institute of Technology (KIT) [5]. Its
design is specially optimized for studies in swarm robotics,
evolutionary robotics and multi-agent systems. The Wanda
robot has a diameter of 51 mm and a height of 45 mm.

The hardware design of the Wanda robot consists of sev-
eral modular layers. These are from top to bottom: ODeM-
RF board (OB), cortex controller board (CTB), auxiliary
battery board (AUXB), motor board (MB), bottom board
(BB). Each of these layers consists of a PCB equipped with
various sensors, actuators and other system elements such
as memory, processors, or batteries. The boards operate
independently and are connected by buses. Starting from
CTB’s central processing unit an I°C, UART and SPI bus
runs to the layers beneath respectively above. The CPU is
a Cortex T™-M3 from Texas Instruments with ARM archi-
tecture, clocked at 50 MHz, 64 kB RAM and 256 kB flash



for the operating system WandaOS. This memory can be
programmed via JTAG using the robot’s USB port.

Six IR receivers are also attached to this board. They are
positioned in a circular way around the middle of the robot
(cf. Figure 1 right). Directly below are six corresponding
IR transmitters. Together, they are used to determine the
distance of obstacles and for communication. Distances of
up to 35 cm can be measured. Within this range a reli-
able communication is possible. For communication an in-
terrupt based Time Division Multiple Access (TDMA) [4]
protocol with frames of 100 ms length is used. Each frame
features ten time-slots. To avoid packet collisions a simple
self-synchronizing algorithm is used. The usable bandwidth
per robot is approximately 20 byte/s.

The OB hosts beside two light sensors and four ultra-
bright LEDs a ZigBee communication chip. ZigBee is a
wireless network standard based on IEEE 802.15.4 for wire-
less communication suitable for distances of up to 100 m.
A Wanda robot connected to the Host Controller Applica-
tion can be used to send commands to robots or retrieve
information, for example, sensor values.

DC motors, responsible for the differential drive of the
robot, are located on the MB. Both of the wheels can be
controlled differentially. They are not only used for the for-
ward movement of up to 30 cm/s, but for the steering as
well. The inside of the wheels is equipped with a reflective
stripe pattern used to measure actual rotation speed of each
wheel. This information is used during locomotion to adapt
the speed to the desired value.

The energy needed for autonomous operation is obtained
from two rechargeable lithium-polymer batteries, one lo-
cated on the AUXB respectively on the BB. Here batteries
form the first generation iPod Shuffle are used, each with
a capacity of 250 mAh. They can provide an autonomy
time of up to two and a half hours while being successively
discharged. The charging process however is running in par-
allel and requires two to three hours. A voltage sensor can
provide information about the current battery level.

The AUXB provides five RGB LEDs as well as a microSD
card slot. The BB provides three IR floor sensors, a 3D
accelerometer and a USB port. A RGB Sensor Board in
front of the robot hosts a RGB sensor as well as an IR sensor
to determine short distances.

To increase the visibility of a robot for other robots, they
have a white plastic housing which reflects the IR light much
better than a robot without housing.

The operating system WandaOS is derived from Symbri-
catorRTOS [16], which in turn is based on FreeRTOS [13].
FreeRTOS is a real-time operating system optimized for em-
bedded systems, it is characterized by its small footprint and
provides support for multitasking. SymbricatorRTOS ex-
pands FreeRTOS by including aspects such as a C++ API,
an easy-to-use method of synchronization and communica-
tion between tasks, as well as a command shell for control-
ling, calibrating or debugging via a connected PC.

3. EVOLUTIONARY MODEL

The following section gives an overview of the evolutionary
model used in this work. The main focus is on the evolvable
controller model and the according mutation and selection
process. Furthermore, some details about the implementa-
tion on the Wanda robot platform are given.

Figure 2: Graphical representation of a simple
MARB controller for CA. By the initial move state
(denoted by a double circle) a robot moves forward
until one of the outgoing transitions is evaluated to
true. This is the case when an obstacle is in the
front, so the value of sensor h: rises above 150. If
the obstacle is on the right side of the robot, tran-
sition 1 is evaluated to true, otherwise transition 2,
leading to a turn to the left or to the right. When
the obstacle is no longer in front of the robot, no con-
dition of the turn states will be true, so the MARB
falls back to the initial state.

3.1 Controller mode

The controller model used here is based on the concept
of the Moore Automaton for Robot Behavior (MARB)[T],
which is derived from a Moore machine, a type of FSM [3].

The input of a MARB is given by sensor values of a robot
which direct the transition from one state to the other. As
an output the MARB gives at every state motor commands
to the robot. A MARB can be depicted as a directed graph
where the nodes represent the states and the edges the tran-
sitions. This can also be used for graphical representation
(Figure 2). The initial state is marked by a double circle.
The states are labeled with their name, the command and
the parameter. At the transitions, the respective condition
is noted. The number at the beginning of each condition
determinates the order of their evaluation.

The input alphabet consists of the cross product of all sen-
sors included. Moore machines typically assign each transi-
tion exactly one element of the input alphabet. As n used
sensors, each with k possible values (k will be fixed at 256
for all sensors in the following, n will be seven, correspond-
ing to the seven IR sensor of the Wanda robot (cf. Figure
1 right)), would lead to k™ transitions per state, a set of
conditions over the sensors is used to combine elements of
the input alphabet, and thus reduce the number of necessary
transitions. The set of conditions consists of atomic compar-
isons to compare two numbers, either two byte values, a byte
and a sensor value or two sensor values and return true or
false. Atomic comparisons can be connected by the logical
AND and OR operators to form a more complex condition.

While evaluating the MARB the first transition which
condition evaluates to true is chosen. The order of evalu-
ation depends upon the order of insertion of the transitions
into the MARB. However, if no condition is true, it is con-
tinued with the initial state. As a result, for each state an
implicit transition to the initial state exists, whose condi-
tion covers the elements of the input alphabet which are not
included by any other outgoing transition of this state.

The output is solely determined by the current state. In
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Figure 3: Schematic view of the GP arena with 16
robots drawn to scale.

this work the output is an operation op € Op where Op is the
output alphabet. Each operation op consists of a command
emd € {Idle, Stop, Move, TurnLeft, TurnRight} and a pa-
rameter par € {1,...,255}. The commands are simple
movement commands, which allow a robot to repeat the
last operation, to stop the current movement, to move for-
ward and to rotate left or right. The parameter in this work
has a different functionality then in the former MARB im-
plementation. They do not indicate the distance to move or
angle to rotate, but the speed of movement. Nevertheless,
the resulting behavior is similar. At a certain speed a de-
fined distance is traveled or a rotation by a certain angle is
produces in a time unit.

3.2 Fitness

The fitness function is a necessary prerequisite to carrying
out selection. Its purpose is to rate the evolved MARB con-
trollers by observing the resulting behavior. The closer this
behavior is to the desired behavior, the higher the fitness
value should be. The design of the fitness function is task-
specific and tailored to the desired behavior. In the ideal
case, it forms the only part which must be replaced to learn
another behavior.

The functionality is based on [7] with some modifications
which are required in a real asynchronous environment as
well as by the expansion of MARB controller by different
movement speeds. The idea of fitness snapshot snaps(t),
an assessment of fitness for a particular point in time, was
retained.

For the two different target behaviors studied in this pa-
per, namely CA and GP, the following fitness snapshots are
defined. In the case of CA a function of direction, speed
and distance to obstacles is used. Similar approaches are
commonly used in the literature [12]. The fitness snapshot
snapca is calculated by

(vi(t) +vr (1)) * d(t)?
200

where ¢t € N denotes the evolutionary cycle, vi(t),v-(t) €
{0,...,255} is the left respectively right wheel speed and
d(t) € {0,...,100} represent the distance of an obstacle in
front, all in the evolutionary cycle t. Since the speeds of the
wheels of a MARB controller always have the same absolute
value, only a forward motion has a positive contribution to
the snapshot. Through the use of the square of the distance
smaller distances are rated superlinearly worse.

snapca(t) =

The snapshot of the GP fitness function also has a CA
part, but it assigns an additional reward r for driving through
the gate (cf. Figure 3).

r, if gate passed since t — 1
snapgp(t) = snapca(t) + :
0, otherwise

To meet the asynchronous aspect of working with real robots,
a snapshot is taken in every evolutionary cycle. Since the
mutations do usually not completely alter the behavior, the
fitness value is based on the previous values instead of com-
puting it from scratch. Nevertheless, in such a case it can
be assumed that the fitness value takes some time to adapt.
Therefore one can speak of a delayed fitness function. Fur-
thermore, some kind of evaporation is needed, which is re-
sponsible for lowering the influence of older snapshots over
time. The evaporation should be synchronized throughout
the population, so individual fitness values of different in-
dividuals are comparable at any time. To circumvent this
problem, a re-weighting of previous fitness is also done ev-
ery evolutionary cycle. For this purpose the method of ex-
ponential moving average is used, which allows a smooth,
continuous fitness function. This has the form

fo(®) =ax fz(t— 1)+ (1 — @) * snaps(t)

with the smoothing factor a € [0;1]. The closer « is to 1,
the smoother the fitness function. By varying « it can be
determined how large the influence of the past is and how
long it lasts.

3.3 Mutation

The Mutation operator, as introduced in [7], is used to
manipulate the MARB. It is solely responsible for the di-
versification in this approach. The operator consists of 11
atomic mutations. They form the following three groups, a
detailed description can be found in [7].

(1) Insert or remove a state,
(2) Insert or remove a transition,
(3) Alter a state’s operation or a transition’s condition.

The atomic mutations can be divided into two groups; the
syntactic mutations My, which only change the structure of
the MARB and the semantic mutations Msem = M \ Msyn
which also change the behavior. The syntactic mutations
lead to neutral plateaus, on which the behavior does not
change. It was shown that this has a positive influence on
the course of evolution [6].

The mutation is performed at specified intervals. The
length of this interval is composed of a constant part and
a part proportional to the current fitness value. This has
the purpose that the frequency of mutations decreases with
increasing fitness and higher rated individuals will have more
time to reproduce. If the mutation operator is called, one of
the atomic mutations are selected randomly according to the
probability distribution given in [7]. If the selected mutation
fails, for example because there is no element to be modified
by this mutation, the individual remains unchanged.

The individual probabilities and atomic mutations are se-
lected so that parts of the MARB controller that most likely
influence the behavior would be hardened. By this, more
mutations are needed to remove the appropriate parts. The



hardening of parts of the MARB runs regardless of the cur-
rent or desired behavior, however, because that hardened
elements are expected to be strongly involved in the be-
havior, its influence on the selection is greater than that of
other parts. Thus, the hardening is directed to the desired
behavior, cf. [7].

Overall, this mutation operator can be considered com-
plete in the sense that any MARB can be transformed to
any other MARB within a finite number of mutations.

3.4 Decentralized Cour se of Evolution

For all evolutionary operations described so far, only lo-
cal information, i.e. onboard sensory information is needed,
particularly as an input for the controller and for the fit-
ness evaluation. To maintain the decentralized aspect of
this work, all parts of evolution has to be done by local IR
communication, too. In the following, a reproduction opera-
tor based on a decentralized version of tournament selection
is used. The p tournament participants, called parents, form
a subset of the total population which is given by a robot
and p — 1 other robots which it came close enough to ex-
change controllers via IR. There, a robot collects controllers
of other robots in a sequential manner whenever it comes
close to them. If all p — 1 parents are collected, the associ-
ated fitness value are compared to the current fitness value.
The winner of the tournament is determined by the highest
fitness value. This controller replaces the current individ-
ual’s controller.

Simultaneous communication via IR between more than
two robots is difficult because of the limited communication
radius and the increasing complexity and error rate of the
communication. Therefore, in contrast to [7], the partici-
pants of the tournament are determined in sequence.

Each individual has storage for the highest rated controller
found so far called Memory Genome. It is used to stabilize
the evolutionary process by preventing a complete loss of
a well-rated behavior. Thus it forms a kind of elitism. In
certain intervals it is then checked whether the current fit-
ness falls below a dynamically defined lower bound. If this
is the case, the current controller is replaced by the Memory
Genome.

3.5 Implementation

The MARB Evolution is implemented as a plugin for Wan-
daOS in C++. Care was taken to make possible any changes
to existing elements of WandaOS, so it can be still updated
without changing the plugin. The plugin requires approx-
imately 26 kB program memory, 12 kB of RAM and the
utilization of the processor is 10-15%.

To keep the implementation as flexible as possible, all
changeable parameters were stored in a configuration file on
the microSD card. This allows changes in the parameters,
without changing the source code and re-programming the
robot. In certain intervals, the configuration file is updated
with the current state of the evolutionary process and saved
to the microSD card as a recovery configuration file. There-
fore, a robot can be restarted and resumed after a failure at
its last state before the failure, or even replaced by another
robot, e.g., at low battery state. All information needed to
resume is stored on the microSD card. In this sense the
robot hardware itself is only a shell which can be exchanged
to allow for a longer and more robust evolutionary process.

A log file which contains information about fitness, mu-

tations and reproduction as well as debugging information
like battery levels and communication failures is written to
the microSD card. Also every new version of the controller
is saved. Using a set of specially developed tools, the result-
ing evolutionary data can be analyzed after the end of an
experiment.

The communication protocol developed here can be sum-
marized as packet-based, connection-oriented and reliable.
It is based on the Transmission Control Protocol (TCP),
but since the transmission speed is significantly lower and
the possible packet size is much smaller, only the basic ideas
can be taken up. There are different packet types, some
for the handshake phase, in which the IDs and the current
fitness values are exchanged and some for the genome trans-
fer phase, where the higher rated controller is transmitted.
While communicating, the robots stop to not leave the com-
munication radius. Despite the compression of the trans-
mitted controller, a communication process takes 10-20 sec-
onds depending on the length of the genome. In addition,
the length of an evolutionary cycle is synchronized with the
communication frames, so the main loop will be paused un-
til a communication frame is completed. A cycle has thus a
length of 100 ms.

4. METHOD OF EXPERIMENTATION

For the experiments, a population size of 16 robots was
chosen. The size of the arena was determined according to
the requirements of the communication which tends to get
worse with an increase of the robot density. Good results
were achieved with five robots per square meter, resulting in
a size of 2 m to 1.6 m. For the GP experiment the arena is
divided in two equal parts, where a gate with 40 cm width
is left free. One of these halves is illuminated with a video
projector mounted above the arena, so the robots can detect
passing the gate based on the brightness difference.

To verify the advantage of parallelization of a decentral-
ized and distributed approach, an addition experiment with
only eight robots was performed in a 1.2 m to 1.3 m arena.
All experiments were recorded with a camera above the
arena for later analysis.

Besides the variation in population size, the sequential re-
production operator was evaluated with respect to different
numbers of parents. Overall, the following four experimental
setups have been investigated:

(1) CA, 16 robots, 2 parents
(2) CA, 16 robots, 3 parents
(3) CA, 8 robots, 2 parents

(4) GP, 16 robots, 2 parents

All the experiments consisted of three evolutionary runs.
At the beginning of each evolutionary run, the robots are
distributed randomly in the arena having a preferably high
distance from each other. To compare the experiments with
the results from [7] in simulation, a length of 80,000 cycles is
used, which corresponds to a length of four hours. This was
calculated by the length of an evolutionary cycle in addition
to the overhead produced by the evolutionary model and the
implementation. The overhead was analyzed in preliminary
experiments and accounts for about 40% of the total time.
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Figure 4: Comparison of the average fitness and its standard error over time.

Table 1: Period, until a non-trivial behavior emerges and is established.

Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4
First occurrence of non-trival behavior 00:42:20 00:14:00 01:02:20 00:52:00
Non-trivial behavior established in population 01:13:20 01:05:00 01:22:40 01:18:20
Time in between 00:31:00 00:51:00 00:20:20 00:26:20

The mutation interval was set to 50 cycles plus 1% of
the current fitness value. The step size used for the mu-
tations (i.e., the change in state parameters and condition
constants) was 32. The minimum time between two repro-
ductions was 100 cycles. This is used to prevent robots from
repeatedly exchanging their genomes once they met. An ex-
act reproduction interval cannot be specified because a re-
production requires two robots to meet. Every 6,000 cycles
the following action is performed with the stored Memory
Genome: The current controller is replaced by the Memory
Genome if the current fitness value is less than half as large
as that of the Memory Genome. The smoothing factor of
the fitness function is 99% for experiments 1-3 and 99.5% for
experiment 4. Thus, the influence of a snapshot falls within
250 cycles to 5% in CA experiments. In the GP experiment
this takes approximately 500 cycles, so the reward for pass-
ing the gate has a longer influence on the fitness value. This
reward r seems high at 400,000 units, but because it is added
to the snapshot, the smoothing must be considered. This re-
sults in a reward of 2,000 units per passing the gate after
the use of the exponential moving average (400,000+0.995).

The success of a robot or an evolutionary run was deter-
mined by the fitness of the last generation according to the
procedure in [7]. A robot was considered successful if the av-
erage of its fitness in the final minute of an evolutionary run
is positive, an evolutionary run was considered successful if
at least one successful robot existed. Moreover, the devel-
opment of fitness values over time is evaluated, because in
an online approach not only the final result is important,
but the fulfillment of the task is already significant from the
beginning.

Furthermore, the time needed until the first robot of a
population developed a non-trivial behavior has been stud-
ied. In a non-trivial behavior, the robot reacts to the en-
vironment, for example turning away from a wall with a
subsequent forward movement instead of just crashing into
the wall can be seen as a non-trivial behavior. This time

has been determined manually from video recordings. Ad-
ditionally, the time from the first occurrence of non-trivial
behavior to its spread through the population (determined
by a positive fitness of all individuals) was also analyzed.
This determines how long it takes until the behavior is es-
tablished in the entire population.

Finally, the best evolved MARBs out of each evolutionary
run are analyzed. For the GP experiment, one MARB per
run is chosen and tested for ten minutes using eight robots.
These tests were again recorded and converted to trajecto-
ries using the SwisTrack software [8].

5. RESULTSAND DISCUSSION

Overall, the following success rates have been achieved
with the presented evolutionary model which are fairly good
compared to the simulation results.

(1) successful robots: 97,9%, successful runs: 100%
(2) successful robots: 95,8%, successful runs: 100%
(3) successful robots: 95,8%, successful runs: 100%
(4) successful robots: 100%, successful runs: 100%

This shows that the MARB Evolution can be successfully
implemented on real robots. 100% of the evolutionary runs
and, in average, 97.4% of the robots were successful. The
standard error for the successful robots is 1.4%. The fit-
ness of the individual evolutionary runs showed, despite their
small numbers and the influence of randomness, which comes
along with an evolutionary approach, consistent results (cf.
Figure 4).

5.1 Influence of the number of parents

The study of the reproduction operator with respect to
different numbers of parents, examined mainly in experi-
ments 1 and 2, leads to no clear result. The fitness values in



Figure 5: Trajectories of a resulting GP behavior
traced for 10 minutes. Left: population of eight
robots; right: two of the eight robots depicted sep-
arately.

the experiment with three parents are not significantly dif-
ferent from that in experiments with only two parents. The
rate of successful robots is even slightly higher in the exper-
iment with two parents. One reason for this seems to be the
more than twice as large reproduction interval caused by the
sequential collection of the three parents in comparison to
experiments with only two parents. This is also shown by the
time it takes for a non-trivial behavior to be establish in the
entire population which is 65% longer with three (cf. Table
1). However, the higher selection pressure in the experi-
ments with three parents appears to partially compensate
this disadvantage, because the fitness of the experiments 1
and 2 is generally very similar. To determine the answer
to the question of a suitable number of parents, additional
repetitions of the experiments would be necessary.

About the impact of parallelization on the other hand,
a clear statement can be made. Experiments 1 and 2 are
measurably better in terms of fitness achieved and the time
required for this compared to the third experiment. The
phase until the appearance of the first non-trivial behavior
could be overcome significantly faster with 16 robots than
with only eight robots.

5.2 Influence of the Memory Genome

The high utilization rates of 64% with a standard error
of 2,9% of Memory Genomes achieved in the evolutionary
runs confirmed the positive influence of the elitism strategy,
because each time the Memory Genome is used, a drop of
the fitness value is undone. Furthermore, the high utilization
rates could be also an indication that the interval to check
whether the Memory Genome should be used is too long.

5.3 Evolved behaviors

The higher average fitness in experiment 4 suggests that
the reward for passing the gate has at least partly influenced
the developed behavior. All three evolutionary runs of the
experiment found a simple way of following a wall (cf. Figure
5). Such a behavior has already been found as a possible way
to solve the GP task in other papers [10]. As in experiment
4 the wall following is either relatively slow or the gate is
missed, it can be assumed that the influence of the CA part
of the fitness function has a greater contribution to total fit-
ness. Figure 6 visualize a MARB controller, evolved during
experiment 4, which is very similar to a typical CA controller
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Figure 6: Evolved MARB controller corresponding
to the trajectories from Figure 5, 20 unreachable
states have been omitted for better visualization.
Transition 1 is true as long as sensor hy signals space
in front of the robot. Transition 2 is almost always
true, so is always chosen when transition 1 is not
true, which is the case when an obstacle is near.

evolved in experiments 1-3. This fact supports the thesis of
a low GP influence. Moreover, the average time between
passing the gate was at least 280 seconds. The influence of
the reward on the other hand was lost after 500 cycles (see
above); this corresponds with overhead to about 70 seconds.
Through this type of reward the level of fitness was not im-
proved permanently, the main impact still was the CA part
of the fitness function. By a longer-lasting reward it is likely
to increase the influence of the GP.

5.4 Further observations

The hardening of important parts of a MARB controller
by mutation and selection (cf., [7]) seems to work, the nec-
essary structure for a CA behavior, a move and a turn state,
connected to the initial state, was present in almost every
individual. Furthermore, the robustness of the implementa-
tion of the MARB interpreter, the mutation operator and
the MARB Evolution itself should also be mentioned.

The recovery feature has been used frequently. Without
it, only much shorter evolutionary runs would have been
possible and still not all the robots would have reached the
end of the evolutionary run.

Beside the explicit selection based on the current fitness
of a robot, an implicit selection for reproductive success
could also be observed during some of the evolutionary runs.
Robots, which were located in a cluster often reversed after
a few centimeters and returned to the cluster. It is also
conceivable that shorter controllers have a higher chance
of passing, since the probability that they are successfully
transferred is higher than with long controllers. Particularly
experiment 4 provides evidence for this assumption. These
effects may be desired, as the weak pressure towards small
genomes, or undesired, as the clustering. In any case they
have to be considered when setting up experiments.

Finally the following criteria for the evaluation of experi-
ments with real robots in evolutionary robotics by [18] should
be applied to the results obtained here. (1) Influence of the
evolutionary process on the task itself. Here further action
is still needed. 40% of the time the robot is busy with the
evolutionary process and does not process the actual task.
In addition, the need to stop for communication leads some-
times to clusters of robots, which dissolve very slowly. (2)
Adaptation speed. The adaption speed could only be ap-
plied to the first occurrence of a non-trivial behavior because
of the static arena. In the experiments with 16 robots an av-
erage of 30 minutes was required for this purpose. (3) Con-
tinuous improvement of behavior. With the continuously
increasing fitness in all the evolutionary runs, this criterion
can be regarded as fulfilled.



6. CONCLUSION AND FUTURE WORK

The successful completion of the experiments for CA and
GP confirm the transferability of the MARB Evolution to
the Wanda robot and the functional capability of the devel-
oped implementation. A once discovered, positively rated
behavior in all experiments was distributed throughout the
population and did not get lost again completely. The av-
erage fitness increased in all cases, almost continuously. A
positive effect of parallelization can be detected. With it, a
steeper increase in mean fitness was observed in lager popu-
lation. No statement about the optimum number of parents
for the sequential reproduction operator can be made at this
point. The advantages and disadvantages between two or
three parents appear to keep the balance and lead to similar
results.

The challenges presented when transferring the simula-
tion model to real robots could be overcome. The long run
time was counteracted by the parallelization of the evolu-
tionary process. The limited battery life and limited life of
the robots were compensated by the recovery function, so
that the entire population was always ready for evolution.

While this work has preoccupied with the successful im-
plementation and the proof of the fundamental feasibility of
the MARB Evolution on the Wanda robots it is nevertheless
assumed that still further potential for improvement exists.

In future work, further experiments should be performed
to reduce the statistical uncertainty in the results and to ex-
plore new parameter constellations. Following the successful
result in the generation of relatively simple behaviors CA
and GP it should be considered to examine more complex
tasks, that for example require the cooperation of multiple
robots.

Also, on the implementation itself optimizations are pos-
sible. This applies, above all, to parts which slow down
the process of evolution. 25% of time is needed for com-
munication via IR. By using ZigBee (which is available on
the robots) as communication medium, the communication
time could be reduced to practically zero. The available
bandwidth of 250 kB/s would theoretically be sufficient so
that more than 1,000 robots could exchange their controllers
every 10 seconds.

A communication, which exchange the controllers in both
directions, instead of just transmitting the better rated one
as done in this work, would also offer the opportunity for
a recombination operator as suggested in [7], which does
not just copy the better controller, but which combines the
controllers of the parents. With the additional diversity of
recombination the mutation rate could be reduce and thus
the convergence behavior may be improved.

Furthermore, the evolutionary placeholder, which is al-
ready present in the controller for all states and transitions
could be used to store the age of the corresponding element
as Merkel et al. propose in [10]. Elements that contribute
to a high quality behavior could be stabilized and mutations
directed to other elements.
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