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Abstract Artificial Intelligence (AI) is one of the most momentous technolo-
gies of our time. Thus, it is of major importance to know which stakeholders in-
fluence AI research. Besides researchers at universities and colleges, researchers
in companies have hardly been considered in this context. In this article, we
consider how the influence of companies on AI research can be made measur-
able on the basis of scientific publishing activities. We compare academic- and
company-authored AI publications published in the last decade and use scien-
tometric data from multiple scholarly databases to look for differences across
these groups and to disclose the top contributing organizations. While the vast
majority of publications is still produced by academia, we find that the citation
count an individual publication receives is significantly higher when it is (co-)
authored by a company. Furthermore, using a variety of altmetric indicators,
we notice that publications with company participation receive considerably
more attention online. Finally, we place our analysis results in a broader con-
text and present targeted recommendations to safeguard a harmonious balance
between academia and industry in the realm of AI research.

Keywords artificial intelligence · impact quantification · company influence ·
industry-academia collaboration

1 Introduction

Artificial intelligence (AI) research is a rapidly growing field of study that
is likely to revolutionize both industry and society in the upcoming decades
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(Makridakis, 2017). Consequently, the leaders in AI research will play a sig-
nificant role in shaping this revolution. It is therefore of great importance
for academia, industry, government agencies, policy makers, and the general
public to know which stakeholders have the most impact in this area.

Traditionally, the academic field has focused primarily on basic research,
education, and training, while the industrial field has engaged in applied re-
search and development in commercially viable application areas. In the field
of AI, however, these tendencies seem to have shifted in recent years (Gil
and Selman, 2019; Littman, 2021). Many technology companies have mas-
sively invested into AI related research and development (Dernis et al., 2019)
and are now able to compete with the best academic research institutions—
best illustrated by their increased presence in prestigious AI conferences such
as the Conference on Neural Information Processing Systems (NeurIPS) and
the International Conference on Machine Learning (ICML) (Ahmed and Wa-
hed, 2020; Hagendorff and Meding, 2021). This is particularly remarkable as
companies seem to have lowered their publication efforts in other disciplines
(Larivière et al., 2018; Tijssen, 2004). In addition, it has been observed that
publication activities among companies became more concentrated (Ahmed
and Wahed, 2020; Krieger et al., 2021). For instance, large language mod-
els such as GPT-3 were developed and trained with an entire research team
at OpenAI in the background. Training GPT-3 took around one month and
costed tens of million US Dollar.1 It is easy to imagine that such resources
are not readily available to researchers in academia. As a consequence, many
academics and policymakers call for a democratization of AI.

Existing approaches to evaluating the impact of corporate AI research fall
short in several respects: Some researchers only analyze the number of publi-
cations as a proxy for research participation (Ahmed and Wahed, 2020; Zhang
et al., 2021) and hence disregard citations and the impact of research out-
puts. Other scholars rely on a single metric such as the average citation count
(Klinger et al., 2020) or the median citation count (Hagendorff and Meding,
2021). In fact, a study suggests that there is no significant quality difference be-
tween academic and corporate research outputs in AI (Hartmann and Henkel,
2020). In addition, most scientists based their analysis on a limited set of pre-
selected conference papers (Ahmed and Wahed, 2020; Hagendorff and Meding,
2021; Hartmann and Henkel, 2020) and are thus neither comprehensive nor
representative. Given these shortcomings, it follows that it is still largely un-
known how the research quality and impact of corporate and academic AI
research compare in recent years.

This article aims to provide an in-depth assessment of the impact of AI
research conducted by companies and to compare academia- with company-
authored AI publications2 using large scholarly datasets, such as the Microsoft

1 https://www.nytimes.com/2020/11/24/science/artificial-intelligence-ai-
gpt3.html

2 In this article, we use the terms “publication” and “(research) paper” interchangeably.

https://www.nytimes.com/2020/11/24/science/artificial-intelligence-ai-gpt3.html
https://www.nytimes.com/2020/11/24/science/artificial-intelligence-ai-gpt3.html
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Academic Graph,3 the associated Microsoft Academic Knowledge Graph,4 the
Altmetric.com database,5 and the Global Research Identifier Database.6 Over-
all, we make the following contributions:

1. We analyze the impact of AI research conducted by companies using large
scholarly datasets and using a combination of citations and altmetrics.7

2. We disclose key contributors and topics concerning company-involved AI
research.

3. We place our analysis results into a broader context and provide targeted
recommendations for action for science, industry, and politics.

The upcoming sections are structured as follows: In Section 2, we outline
related work. In Section 3, we describe how we created our dataset for analyz-
ing the impact of companies on AI research, before presenting our methodology
for data analyis in Section 4. Section 5 presents the results of our analyses. In
Section 6, we discuss our findings. We conclude in Section 7.

2 Related Work

In this section, we outline existing works on analyzing the impact of research
quantitatively and qualitatively. We then describe how our analysis differs
from existing works.

2.1 Analyzing Research Quantity

A report from the Joint Research Centre of the European Commission and the
OECD identified the top corporate R&D investors (Dernis et al., 2019). Not
only did they display which of them published the most papers related to AI
in the period from 2014 to 2016, they also looked into which of them filed the
most patents or registered the most trademarks. However, they did not put
the contributions of these companies in relation to the contributions made by
the academic field.

The annual Artificial Intelligence Index Report by Stanford University in-
cluded such comparisons (Zhang et al., 2021). Among other things, the authors
analyzed peer-reviewed papers related to AI from Elsevier’s Scopus database.
They note that in every major country and region, the highest proportion
of peer-reviewed AI papers comes from academic institutions. However, the
second highest share differs across regions: In the United States, corporate-
affiliated research represents 19.2% of the total publications, whereas in China

3 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
4 https://makg.org/
5 https://www.altmetric.com/
6 https://www.grid.ac/
7 Our source code and data is available online at https://github.com/LazaTabax/AI-

Impact-Scientometrics.

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://makg.org/
https://www.altmetric.com/
https://www.grid.ac/
https://github.com/LazaTabax/AI-Impact-Scientometrics
https://github.com/LazaTabax/AI-Impact-Scientometrics
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(15.6%) and the European Union (17.2%), government institutions rank second
in terms of publications. The authors also mention that corporate-academic
collaboration has significantly grown in importance and popularity in the AI
field (Zhang et al., 2021, p. 23). According to the authors, publications in AI
research in general continue to grow at an increasing pace, and China overtook
the United States for the share of AI journal citations for the first time. The
US, on the other hand, are still ahead at AI conferences in terms of publica-
tions and citations (Zhang et al., 2021). The report provides a great overview
over the field but does not delve further into the differences between corporate
research and academic research.

Jurowetzki et al. (2021) analyzed publication counts by company and non-
company institutions. They detect an increased proportion of corporate pub-
lications in AI research in the 2010s. They conclude that companies hold an
increasingly important position in fundamental AI R&D. They collect evi-
dence of the brain drain of researchers from academia to industry and find
that researchers working in the field of deep learning and those with higher
average impact are more likely to switch (Jurowetzki et al., 2021, p. 25).

The study settings of Ahmed and Wahed (2020) allowed the authors to
analyze such differences in more detail. They also collected data through the
Scopus database, but they focused on papers published at major AI and non-
AI conferences. To classify affiliations, they used a fuzzy string matching and
regular expressions (Ahmed and Wahed, 2020, p. 14). In addition, they differ-
entiated between different company sizes and university rankings by combining
their affiliation data with information from Fortune magazine and QS World
University Rankings. Their findings show a clear upward trend in corporate
representation at all major AI conferences, as well as increased cooperation be-
tween elite universities and companies since the advent of deep learning. This
is remarkable since companies seem to have lowered their publication efforts
in other disciplines (Tijssen, 2004; Larivière et al., 2018). Large technology
companies and elite universities, with which they often work, have clear ad-
vantages in modern AI research, according to their reasoning. They argue that
the underlying reason for this trend is the computational advantages of large
companies, which they refer to as the “compute divide.” As a result, middle
to low tier universities are effectively crowded out in AI as they lack access to
such computational resources. Although their analysis shows that there has
been an increase in the participation of companies in AI research, this study
only considers the publication quantity and does not evaluate the quality of
the publications or more specifically their citation impact.

2.2 Analyzing Research Quality

Several researchers aimed for measuring differences in the research quality.
Hagendorff and Meding (2021), for instance, analyzed 10,000 machine learn-
ing papers published between 2015 and 2019 from three leading conferences,
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namely CVPR8, NeurIPS9, and ICML.10 To distinguish between the different
affiliation types, the authors searched for a predefined set of academic and in-
dustry words in each paper’s full-text. Consistent with the previously discussed
works (Zhang et al., 2021; Ahmed and Wahed, 2020), the authors also state
that the absolute number of papers and the proportion of academia-industry
cooperation papers is rising across-the-board. More importantly, however, the
authors aimed to compare the “success” or “impact” (Hagendorff and Meding,
2021, p. 8) that papers had depending on their affiliation type. As an indica-
tor for that, they used the median number of citations per publication. Their
results show that there is a significant difference between academia and indus-
try. Company papers from all considered years and conferences have higher
median citations than purely academic ones. However, the effect seems to di-
minish over time, which is due to the fact that citations are typically slow
to accumulate and thus generally lower for more recently published papers.
Therefore, the authors admit that mere citation analyses may not be partic-
ularly credible for very recently published papers. In addition to their simple
citation analysis, the authors looked for mentions of trending topics in machine
learning, such as “adversarial,” “reinforcement,” “deep” or “convolution” in
the papers. This provided insights into how early and how often such topics
were to be found in pure academic, pure industry, and mixed papers. As it
turned out, academic papers seem to be lagging roughly two years behind in
such mentions compared to company papers (Hagendorff and Meding, 2021,
p. 8). A similar analysis of social impact terms did not yield a significant
difference between the groups.

Klinger et al. (2020) considered the research trajectory and topic diversity
of published AI research and inspected the influence of private sector orga-
nizations in AI research. They based their analysis on a sample of around
90,000 pre-prints that were published in AI-related categories on arXiv.org.
Because arXiv does not hold curated records of affiliations or citations, they
fuzzy matched the paper titles with the Microsoft Academic Graph and its
authors with the Global Research Identifier Database. In contrast to other
approaches, they only split their paper collection into two groups: papers with
industry participation and papers without. They find that papers involving
companies have higher median and average citations than those without com-
pany involvement, similar to Hagendorff’s results (Hagendorff and Meding,
2021). Remarkably, this observation holds true even when accounting for the
publication year, the number of institutions involved, and the topical compo-
sition of the papers (Klinger et al., 2020, p. 31). Thus, the authors concluded
that AI research undertaken by private companies is particularly influential. In
addition, they also noted that the top collaborators with private AI researchers
are elite institutions in the US.

8 Conference on Computer Vision and Pattern Recognition
9 Conference on Neural Information Processing Systems

10 International Conference on Machine Learning
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Hartmann and Henkel (2020) analyzed (meta-)data of 15,000 articles from
five AI conferences, covering the period of 2004–2016. They then manually
distinguished between corporate and non-corporate institution types and split
the articles into groups accordingly. Their findings suggest that the scientific
quality of corporate publications is on average comparable to that of academic
publications in AI, and that the increase in the number of corporate publi-
cations is not associated with a decrease in quality (Hartmann and Henkel,
2020, p. 9). While the authors do not find significantly higher citation counts
of industry papers as the two previously mentioned studies (Hagendorff and
Meding, 2021; Klinger et al., 2020), the period they considered differs from the
one in our work. It is possible that in more recent years the citation patterns
have indeed changed as we will show in Sec. 5. Hartmann and Henkel further
argue that the main reason companies engage in fundamental AI research is
the central role that data plays in their business models. Large tech companies
typically create and own major data assets which gives them a comparative
advantage in conducting AI research over universities (Hartmann and Henkel,
2020, p. 372).

2.3 Current Shortcomings and Own Contribution

Although the studies mentioned above have provided valuable insights into
the research trajectory of AI, a comprehensive scientometric analysis of the
rise of corporate science has not been performed so far. Many researchers base
their claim of the rise of corporate AI research merely on increased publica-
tion counts by the industry or on increased academia-industry collaboration
patterns (Ahmed and Wahed, 2020; Hartmann and Henkel, 2020; Zhang et al.,
2021). These quantity comparisons can be judged as helpful, but they mostly
measure scientific participation and not impact. Furthermore, the samples
used in these analyses often consist of a relatively low number of publications
taken from a few selected top conferences (Hagendorff and Meding, 2021; Hart-
mann and Henkel, 2020), completely disregarding publications from journals
and smaller conferences. Consequently, these datasets may not be sufficiently
representative for the entire field of study. Moreover, the performed impact
measurements predominantly rely on average or median citation counts (Ha-
gendorff and Meding, 2021; Klinger et al., 2020), while other citation metrics
may better describe the citation distribution (see Sec. 4). Furthermore, none
of the existing works address the issue of time delay in citations. Particularly,
recently published papers may not have had adequate time to accumulate
citations, thereby hindering the observation of corresponding effects.

To address these issues and gain a deeper insight into how companies im-
pact AI research, we work on the following improvements and extensions in
this article: First, we incorporate considerably more venues and papers into our
analysis while maintaining high data quality. Second, we better characterize
the citation distribution by using other appropriate citation impact indicators.
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Third, we include altmetrics in our analysis because they capture impact in a
timely manner and can provide a different perspective on impact.

3 Dataset

In this section, we present the datasets used for analyzing the impact of com-
panies on AI research. We outline our data sources in Sec. 3.1 and the data
generation process in Sec. 3.2.

3.1 Data Sources

We used the following data sources for our analysis:

– the Microsoft Academic Graph11 (MAG),
– the associated Microsoft Academic Knowledge Graph12 (MAKG),
– the Altmetric.com database13 (ALTM), and
– the Global Research Identifier Database14 (GRID).

In the following, we describe these data sources in detail.

3.1.1 Microsoft Academic Graph

The Microsoft Academic Graph (MAG) (Wang et al., 2020) is a large, hetero-
geneous graph containing metadata about millions of scholarly entities, such as
publications, authors, institutions, and fields of study. We chose the MAG15,16

over other scholarly databases for the following reasons:
First, the MAG covers more publications than comparable databases like

Scopus, Web of Science, Dimensions, and CrossRef, as a recent study con-
firmed (Visser et al., 2021). The used MAG version contains metadata of
more than 260 million publications across all scientific domains and nearly
27 million computer science papers specifically. Unlike databases like Scopus,
which mainly focus on peer-reviewed journal articles, the MAG also contains
many conference proceedings, book chapters, patents etc. from the last few
decades. To study the AI discipline, in which researchers often prefer to pub-
lish in conferences or online-archives rather than journals, a broad coverage of
documents in the data is valuable (Visser et al., 2021).

11 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
12 https://makg.org/
13 https://www.altmetric.com/
14 https://www.grid.ac/
15 We used the latest MAG data dump version that was available at the start of our data
analysis (July 2021).
16 OpenAlex (https://openalex.org/) is a current attempt to maintain and improve the
data previously available at the MAG. However, at the time of our data analysis, OpenAlex
was not yet available to the extent that it is today. According to our research, OpenAlex
has no significant improvements in AI paper coverage.

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://makg.org/
https://www.altmetric.com/
https://www.grid.ac/
https://openalex.org/
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Second, the MAG provides bibliometric data suitable for citation analysis.
Its coverage of citations is better than that of Scopus and Web of Science and
comparable to that of Google Scholar (Harzing and Alakangas, 2017). The
main advantage of using the MAG over Google Scholar for a full-fledged bib-
liometric analysis is that the MAG also provides rich metadata about authors
and affiliations (Hug et al., 2017).

3.1.2 Global Research Identifier Database

The Global Research Identifier Database (GRID) is an openly available, global
database of research-related organizations.17 It provides unique and persistent
identifiers, along with metadata, for more than 100,000 curated records of
organizations.

Our MAG data features GRID identifiers for most affiliations. This al-
lows us to connect affiliations with their respective GRID entries. Linking the
MAG affiliations to GRID-IDs is important for our analysis, because it en-
ables us to retrieve the organization type of given affiliations—knowing if an
institution belongs to academia or industry. GRID distinguishes between edu-
cation, healthcare, company, archive, nonprofit, government, facility, and other
as types of organizations.18 For our analysis, we focus on the entries labeled
as either company or education:

– Research producing institutions are categorized under education if they
have the ability to grant degrees. This typically includes faculties, depart-
ments, and schools. They represent academia.

– Company organizations, on the other side, are defined as private business
entities with the aim of gaining profit. They represent the industry.

Since links between the MAG and GRID already exist, manual mapping
or string matching, as required in other related work, is unnecessary.

3.1.3 Altmetric Database

The Altmetric database is one of the largest altmetric data providers currently
available (Robinson-Garcia et al., 2014). It contains high quality data related
to mentions of scientific publications on the web, including social media. Oper-
ating since 2012, altmetric.com has been monitoring a range of non-traditional
sources. Today, the Altmetric database contains 191 million mentions of over
35 million research outputs (including journal articles, datasets, images, white
papers, reports and more).19 The sources include public policy documents,
blogs, mainstream media articles, faculty opinions, and social media posts.

17 Similar to Microsoft Academic, the GRID is not being continued from 2022 on. It has
also received an open-access successor database which built on its data named Research
Organization Registry (ROR).
18 https://www.grid.ac/pages/policies
19 https://www.altmetric.com/about-our-data/how-it-works-2/

https://www.grid.ac/pages/policies
https://www.altmetric.com/about-our-data/how-it-works-2/
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Altmetric.com also collects the number of online readers on platforms such as
Mendeley. However, these values are not used for the attention score.

The Altmetric attention score is a sophisticated score based on all online
mentions a research output has received from these sources. It is automatically
calculated and weights mentions depending on three main factors: volume,
sources, and authors.20 First, the score increases with the number of people
mentioning a given publication. Notably, only one mention per person per
source is counted to prevent individuals with multiple postings about a paper
influencing the score. Second, mentions from different sources are weighted
differently. To illustrate, a newspaper article contributes more than a blog
post which contributes more than a tweet. Third, the author of an online
mention also plays a role in how it contributes to the score. Altmetric.com
looks on the frequency someone mentions scholarly articles, whether there is
any bias towards a particular journal or publisher, and who the audience is.
For instance, a physician sharing a link to a study with other physicians counts
significantly more than a journal account pushing the same link automatically.
Robinson-Garcia et al. (2014) conclude that Altmetric.com is a transparent,
rich and accurate tool for altmetric data. For our analysis, we rely on the
Altmetric API provided for research purposes.

3.1.4 Microsoft Academic Knowledge Graph

The Microsoft Academic Knowledge Graph (MAKG) is a large dataset with
information about scientific publications and related entities (Färber, 2019).
It was built on the basis of the MAG data and contains additional and revised
metadata about scholarly entities (Färber and Ao, 2022). MAKG’s revised
version features tags for publications, offering more detailed information about
the respective areas of research. Extracted from the publications’ abstracts and
filtered using the TextRank algorithm, these tags extend the field of study
labels given in the MAG. They enable us to glean additional insights into the
research focus of given AI papers.

3.2 Dataset Creation

A schematic overview of our data generation approach is given in Fig. 1. Over-
all, we perform the following steps: (1) identifying relevant papers, (2) merging
paper and affiliation metadata, (3) grouping papers into three disjoint groups,
(4) applying venue and time filters, (5) enriching the resulting sample with
altmetric information, (6) and retrieving keywords from it. In the following,
we describe these steps in more detail.

1. Identifying relevant papers: The primary objective of the initial step is to
gather metadata for relevant publications. Since our focus is on analyzing
papers related to AI, we need to identify the papers within the MAG

20 https://www.altmetric.com/about-our-data/the-donut-and-score/

https://www.altmetric.com/about-our-data/the-donut-and-score/
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Fig. 1: Schematic overview of the dataset creation pipeline

database that pertain to AI research. However, there are two challenges in
determining which publications fall under the broad scope of AI.
Firstly, AI research intersects with various other scientific disciplines, mak-
ing it difficult to establish clear boundaries. For example, disciplines like
neuroscience or statistics share overlapping areas with AI, and the distinc-
tions may not be well-defined. Secondly, it is unclear whether papers that
utilize AI methods without directly contributing to AI knowledge should
be included in our analysis. Some publications in fields such as finance or
contemporary art may employ existing machine learning techniques with-
out making significant contributions to the AI domain itself.
Every paper in the MAG database is already associated with one or more
fields of study, thanks to Microsoft’s assignment procedure outlined by
Sinha et al. (2015). The assignment involved using “seed” papers as a
starting point, which were either known to belong to a specific field or had
relevant keywords in their titles. Additional papers were then identified as
candidates based on their similarity to the top N related papers within a
given field. The confidence score of related papers within a specific field
increased based on their interconnectedness with other papers in that field.
The described assignment procedure and the possibility of assigning mul-
tiple fields of study to a paper help resolve the two challenges mentioned
earlier. Assigning multiple fields of study to a paper enables us to include
papers that belong to AI as well as other relevant domains such as math-
ematics. Additionally, the counting of connections a paper has to other
papers within a particular field addresses the second challenge. This means
that a paper that primarily applies AI methods to unrelated topics should
either be excluded from the candidate list or assigned a very low confidence
score.
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Fig. 2: Exemplary paper-author-affiliation combinations

Utilizing the MAG’s integrated field of study categorization, we can specif-
ically employ the field of study ’Artificial Intelligence’ within the field of
study ’Computer Science’. It is the sixth largest second-level field, compris-
ing over 4.4 million papers. However, for increased data quality, we chose
to exclude papers with a confidence score21 of exactly zero, as this helps
avoid the inclusion of potentially misassigned papers in the AI field.22

2. Merging paper and affiliation metadata: In a second step, we combine the
metadata from the identified papers with the metadata about the institu-
tions of the papers’ authors. As described in Sec. 3.1.1, the MAG assigns
affiliations to authors and authors to papers. Hence, we can link papers
via authors to affiliations (see Fig. 2). Notably, more than half of the (co-)
authors (and thus about a quarter of the papers) had no information on
their affiliation specified in the MAG; also, about 20% of authors who had
an affiliation entry cannot be mapped to a corresponding GRID entry. Ul-
timately, we obtain 7,700 unique affiliations associated with AI-research,
linked to 315,000 papers, which is about 60% of the papers from Step 1.

3. Grouping papers into three disjoint groups: Third, we match the metadata
of publications and affiliations with the information about the organization
types found in GRID. This allows us to split institutions (and thus papers)
into a company group and an education group. About 5,500 of the 7,700
research organizations were identified as education types, 530 as company

21 This score ranges between zero and one and indicates the confidence of the field
of study assignment, see https://docs.microsoft.com/en-us/academic-services/graph/
reference-data-schema#paper-fields-of-study.
22 The confidence values between 0 and 1 are not evenly distributed. Among the 520,000
articles with a confidence value greater than zero, 99.998% have a value between 0.2 and
0.5. Therefore, we consider a threshold of 0.5 inappropriate for our scenario. Even if we were
to set a threshold of 0.2, only 10 additional papers would be included in the sample.

https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema#paper-fields-of-study
https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema#paper-fields-of-study
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types. Note that there are plenty of papers co-written by authors from com-
panies and from academia that can be found in both groups. This unclear
distinction might skew results in either direction. Hence, we decided to put
all papers that could be found in both groups into a separate third group.
Similar to Hagendorff and Meding (2021), we call this mixed group the
cooperation group, which leaves us with three disjoint groups of papers. In
the simplified examples of Fig. 2, paper 1 would be considered an education
paper, paper 2 a cooperation paper, and paper 3 a company paper.23

4. Applying venue and time filters: Before performing our citation analysis,
we filter the remaining 230,000 papers in two ways. First, we exclude all
papers not published in journals or conferences. This is necessary in order
to ensure comparability across the different proportions of document types
across groups. Academic institutions almost exclusively publish journal
articles and conference proceedings (over 90% of papers). Companies’ pub-
lications on the other hand include a significant amount of patents among
other things (over a third of their documents). Since journal and conference
papers have higher citation rates than other types of documents, this filter
should in theory prevent this disparity potentially benefiting academia.
Second, we additionally exclude papers which were published before 2012.
This has several reasons. The simplest one is that our main focus lies on
the last decade of AI research. Additionally, recent developments such as
the deep learning hype have their origins in the ImageNet Challenge from
2012 (Alom et al., 2018; Ahmed and Wahed, 2020). Moreover, a practical
reason for choosing only papers from 2012 on is that Altmetric has only
been established and has collected data from this year onwards.
We call the resulting filtered dataset the citation dataset (see Fig. 1). It
consists of about 72,000 pure education papers, 3,800 cooperation papers,
and 1,500 pure company papers.

5. Enriching the resulting sample with altmetric information: Furthermore,
based on the papers from the previous dataset, we create an altmetric
dataset with altmetric indicators included (see Fig. 1). For integrating the
altmetric data into this dataset, we query the Altmetric API and match
about 17% of the selected papers using their DOI. The relatively low match-
ing proportion is to be expected and is in line with previous attempts
(Robinson-Garcia et al., 2014) due to the fact that Altmetric does not cre-
ate entries for unnoticed papers. This approach enables us to study the
similarities and differences between citation-based indicators to altmetric
ones for the considered AI papers.

6. Retrieving keywords: At last, we access paper tags from the MAKG. Since
the MAKG features up to five tags per paper, we are able to compile a list
of over 300,000 tags attributable to papers from our citation dataset. As

23 If an author is employed at both a university and a company, we considered both af-
filiations and categorized all of these papers as collaborative papers. Upon reviewing our
dataset, we discovered that only 18 papers had an author with both a corporate and an
educational affiliation. However, since these papers included other (co-)authors with one of
the respective affiliations, they would have been classified as collaborative papers regardless.
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these tags can be interpreted as papers’ keywords, we name the resulting
dataset keyword dataset (see Fig. 1). We also prepare two other paper
samples through Step 1 to 4 to compare their citation distributions. The
first one consists of AI papers published in five major AI conferences as in
Hartmann and Henkel (2020), to reproduce and compare with the results of
our main citation dataset. In the following we refer to it as the conference
sample. Secondly, we are interested in non-AI papers to examine whether
observed patterns are unique to the field of AI. For this, we perform the
same data processing steps to papers from the unrelated field of electrical
engineering. We refer to it as the non-AI sample.

4 Data Analysis

In our data analysis, we use several measurements for quantifying the impact
of AI research that we want to explain in greater detail in this section. First
of all, we show how we approach the citation analysis in Sec. 4.1. In Sec. 4.2,
we describe our use of altmetrics to measure a different dimension of impact.
Finally, Sec. 4.3 outlines our method to analyze common AI research topics of
academia and the industry. We conduct the analysis outlined in this section
using Python, utilizing in particular the libraries pandas, scipy, and pyaltmet-
rics.

4.1 Citation Analysis

We start the citation analysis with comparing basic citation-based metrics like
average citations and average citations per year that are calculated for each of
the three groups education, company, and cooperation independently. For mea-
suring the differences between groups more appropriately, we apply percentile
ranks and derive a weighted score from them. To validate the statistical signif-
icance of our results, we also apply significance tests. At last, we highlight top
research organizations and their relative contributions in terms of publications
and citations.

In the following we explain the statistical methods used in the analysis:
In Sec. 4.1.1 we briefly mention our outlier detection method, in Sec. 4.1.2
we discuss the percentile rank approach, and in Sec. 4.1.3 we explain the
significance tests in use.

4.1.1 Outlier Detection

Citation distributions are typically highly skewed, meaning that the vast ma-
jority of papers receive little to no citations while a small fraction of successful
papers gets cited very frequently. To analyze whether such very successful pa-
pers distort our citation metrics, we for once exclude outliers and look into the
metrics of the remaining papers. Following a standard method for detecting
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statistical outliers (Yang et al., 2019), we define upper outliers as being above
Q3 + 1.5 ∗ IQR, with Q3 being the 75th quantile and IQR the interquartile
range – the difference between the 25th and 75th percentile in the sorted list of
a given sample. In our citation dataset, this applies to about 17.5% of papers
which received more citations than the group-specific outlier threshold.

4.1.2 Percentile Ranks

As citation distributions are typically highly skewed, arithmetic averages alone
are not well suited for citation analyses. Scientometricians argue, therefore,
that percentiles are an important alternative to such average-based indicators
for obtaining a normalized citation impact of publications (Bornmann et al.,
2013). With percentile ranks, the citation score of each paper is rated in terms
of its percentile in the total citation distribution—the 0th percentile being the
lowest and the 99th percentile being the highest in citations. One can obtain
percentiles from a set of numerical data by arranging it in ascending order and
then splitting it into 100 groups of the same size.

There are two variants of the percentile rank approach: one with 100 rank
classes (PR(100)), and one with 6 rank classes (PR(6)). The PR(6) method
with 6 classes (Leydesdorff et al., 2011) rewards highly cited papers stronger
than the PR(100), which is desirable for highly skewed distributions. The
PR(6) score has been widely used, such as by the National Science Foundation
(Leydesdorff et al., 2011). It also has the highest correlation with conventional
indicators. For these reasons, we use it for the analysis.

To apply the PR(6) method, we split our paper collection into six classes:

– Rank 1: Bottom–50%: papers with a percentile less than the 50th per-
centile;

– Rank 2: 50th–75th: papers within the [50th; 75th) percentile interval;
– Rank 3: 75th–90th: papers within the [75th; 90th) percentile interval;
– Rank 4: 90th–95th: papers within the [90th; 95th) percentile interval;
– Rank 5: 95th–99th: papers within the [95th; 99th) percentile interval;
– Rank 6: Top-1%: papers with a percentile equal to or greater than the 99th

percentile.

Each paper that we want to analyze is assigned to one of these classes. The
thresholds that define the class intervals are calculated from the aggregation
of all papers. Afterwards, each set of papers receives a mean percentile rank
score by weighting the relative frequencies (i.e., probabilities) p(x) in each set
with their class rank x, as follows:

R(6) =

6∑
x=1

x ∗ p(x) (1)

This means that papers that are, for instance, in the 80th percentile weigh
three times as much as papers in the 40th percentile. The lowest possible
score a set can receive is 1, for the case when all papers are in the bottom
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class. The highest score is 6 in the event that every paper gets placed in the
top-1% class.

With this score we can evaluate whether the citation count of a given subset
of papers is above or below a certain level. The expected value for the case of
random attribution equals:

1 · 0.50 + 2 · 0.25 + 3 · 0.15 + 4 · 0.05 + 5 · 0.04 + 6 · 0.01 = 1.91 (2)

4.1.3 Statistical Significance Tests

To test the statistical significance of found differences, we use non-parametric
tests, since they do not require us to make assumptions about the distributions
at hand (e.g., assumption of a normal distribution or homogeneous variance
in the subsamples). Non-parametric tests, as suggested in Leydesdorff et al.
(2011), work well with citation distributions, which are typically highly skewed.
First, we test whether differences among the subsets under study are significant
using the Kruskal–Wallis rank variance test (Kruskal and Wallis, 1952). If the
null hypothesis is not rejected (i.e., no significant differences among the sets are
found), then the analysis ends because it is not relevant to test further. In the
other case, one can test for pairwise differences using the Mann–Whitney’s U
test (Mann and Whitney, 1947) on each two subsets. We define a difference to
be statistically significant when the p-value of the Kruskal-Wallis test is lower
than the α = 0.05 level, or lower than the Bonferroni adjusted α = 0.0167 level
when performing the three pairwise Mann-Whitney U tests on the subsets.24

4.2 Altmetric Analysis

We follow a similar procedure with the attention scores of the matched paper
sample from the Altmetric database. First, we analyze the basic statistics of
the attention scores. Second, we apply the PR6-method and test for statistical
differences across the groups. Third, we compare citation counts, attention
scores and other altmetrics of papers to investigate the relationship between
them. Besides correlation, we are interested in the question of whether either

24 We also evaluate if the absence of keywords (i.e., not fields of study) would pose an
issue, considering both the number of affected articles and any bias in company involvement
between articles with and without keywords. Our examination reveals that articles lacking
keywords accounted for a mere 0.04% of the total articles we analyze. Additionally, these
articles demonstrate a comparable level of company involvement to those with keywords,
with an average company involvement of 7.4% compared to 9.4%. Based on these findings,
we assert that the data used in our study is representative and reliable. To address concerns
regarding potential variations in keyword semantics and their impact on our results, we
can emphasize three key points. Firstly, our study focuses exclusively on AI as a restricted
domain, minimizing the need for disambiguation of words. Secondly, we have identified only
eight distinct AI subfields, such as machine learning and AI ethics, having rather non-
overlapping topics. Thirdly, we employ a diverse range of keywords, including synonyms, for
each AI subdomain.
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group has some inherent bias towards more attention from fellow scholars
(expressed by citations) or more attention from the public on the internet
(expressed by altmetric attention score). To analyze this, we use the framework
proposed by Williams (2022) that categorizes papers into three cases given
their relative strength in the mentioned metrics:

– Exceptionals: highest scores in both citation count and altmetric attention
score;

– Scholars: top in citations and lowest in altmetrics; and
– Influencers: top in altmetrics and lowest in citations.

Williams defined papers as top performing on a given metric if they land in the
top 20%; conversely, low performing papers on a given metric are papers in the
lowest 20%. According to William’s study, scholars’ papers are rather techni-
cal, jargonistic, specific and unappealing while influencers’ papers are rather
non-technical, large-scale, pragmatic, relatable and appealing. Exceptionals,
on the other hand, combine the advantages of both sides.25

Intuitively, we anticipate academic papers to be more likely to land in the
category of scholars as they, in theory, focus more on basic research that is
more valuable to other researchers. Papers where the industry is involved,
on the other hand, should in theory be more relevant for a wider audience,
represented by the category influencers, since they traditionally perform more
applied research. There should be no significant difference in the category
exceptionals if we assume similar levels of research quality across our groups.

4.3 Subfield Analysis

For our subfield analysis, we match our given list of paper keywords with
the controlled vocabulary of AI by Duran-Silva et al. (2021). It describes an
extensive and expert-validated list of terms for the following AI subdomains:

1. General,
2. Machine Learning,
3. Computer Vision,
4. Natural Language Processing,
5. Knowledge Representation and Reasoning,
6. Distributed Artificial Intelligence,
7. Expert Systems, Problem-Solving, Control Methods and Search
8. AI Ethics

To analyze common research topics across groups, we measure the share of
matched keywords in above mentioned subfields from company-involving pa-
pers.26 If this share is higher in a given subdomain than in the total average
of all matched keywords, we consider that this subfield is of higher research
focus for the industry.

25 For the full list of characterisics see Williams (2022, p. 7).
26 Company-involving papers are the union of pure company and cooperation papers.
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Fig. 3: Average citations for papers across groups

5 Results

Firstly, we present the results of our citation analysis of industry, academic,
and academic-corporate collaboration papers in Sec. 5.1. Secondly, we analyze
the impact of AI papers across these groups based on altmetrics in Sec. 5.2.
Thirdly, we use the paper keywords to investigate the research focus of the
three groups in Sec. 5.3.

5.1 Citation Analysis

The bibliometric data in the MAG provides insights into the citation impact
of published AI research. As stated in Section 3, we start with around 230,000
papers, that we split into the affiliation groups of education, company and
cooperation according to their entry in GRID.

5.1.1 Citation Statistics

First of all, we investigate the effects the filters from data preparation step
4 have on citations across our three disjoint groups. In Fig. 3 we directly
compare the groups in terms of average citations per paper. We see that there
are already visible differences in average citations in the unfiltered sample.
Cooperation papers have a clear lead in average citations. In fact, AI papers co-
written by university and company departments earn over 50% more citations
as pure company papers and three times as many as pure university papers.

The middle and right part of Fig. 3 show the effect the two filters applied
in preparation step 4 have on our groups. There, we can see that papers across
the board have slightly higher average citations when only publications from
journals and conferences are included. As predicted, this effect is even stronger
for the average number of citations of company papers which feature a lot of
patents in the unfiltered sample (59.3 vs. 40.0 citations on average). Their
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Fig. 4: Number of citations across groups without outlier papers.

papers were cited almost 50% more often on average after applying the venue
filter.

Additionally filtering out papers written before 2012 reveals further note-
worthy results. While citations in education-type papers fell according to our
expectations, they increased considerably in company-type papers. As ex-
pected, an AI research paper authored by an university after 2012 received
less citations on average than an older paper. Corporate AI papers, on the
other hand, received on average significantly more citations per paper after
2012. In fact, pure company papers reached an average of 83.6 citations per
publication, which is almost 5 times the amount of citations an academic pa-
per received. They even outperformed the cooperation papers, which follow
close behind with 70 citations on average.

Admittedly, the above mentioned differences in average citations are not
representative for the whole citation distribution. Highly cited outlier papers
distort these numbers in a major way. For example, a famous 2014 paper from
the University of Toronto titled “Dropout: a simple way to prevent neural
networks from overfitting” has been cited almost 20,000 times. In 2018, re-
searchers from Google published a very successful AI paper named “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”
with more than 15,000 citations according to our dataset (which explains that
year’s slight bump in Fig. 5).

To evaluate the robustness of these findings, we for once exclude those out-
liers and visualize the distribution of the remaining data points across groups
as boxplots. Fig. 4 shows that the differences across groups still hold, even
if such outlier papers are excluded. As we can see, most papers in all groups
receive either zero citations or citations in the single digit area. Nevertheless,
company papers and cooperation papers have their boxes shifted upwards. Co-
operation papers in particular show a substantially higher median count and
upper quartile. This suggests that the previously described effects are notably
robust and show up even when disregarding exceptionally successful outlier
papers.
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Fig. 5: Citation counts per paper across the groups from 2012-2021

Moreover, we look into the average number of citations per year to capture
time-dependent effects (see Fig. 5). We observe that in 2012 citations across
the three groups were nearly identical. Company and cooperation papers only
started having higher averages since 2013. The clear peak, however, is reached
in 2015. There, papers from pure companies averaged about 300 citations and
academic-industry collaboration papers 200 citations, which are outstanding
numbers. Papers written entirely at universities at the same time receive only
21 citations. Overall, their mean citation counts remain quite stable around the
mark of 20 throughout the years and thus always beneath their counterparts
with industry involvement. As expected, citations drop for newer papers across
the board and as a result the differences diminish over the last 3 years.

5.1.2 Percentile Rank Results

We also make use of the PR-6 approach to measure the impact of AI papers.
We split the citation dataset papers into the 6 percentile classes according to
their standing in the ordered list of papers and evaluate the share of papers
from each group that get assigned to the classes (see Fig. 6). The shares
these charts depict can be interpreted as the probability that a random paper
from a particular group will end up in a percentile class. The expected share
of a randomly drawn paper from the aggregated sample is marked with a
dotted reference line (e.g., 25% of papers are expected to land in the 50th-75th
percentile class and so on). As we can see in the ’bottom 50%’ class, the share
is higher for education-type papers, lower for company papers, and lowest for
cooperation papers. This, however, only holds true for the first two classes,
which contain papers with relatively low citation impact. From the 75th to
90th percentile class and onwards this tendency reverses. Papers written by
universities are underrepresented in the upper classes and papers written by
the industry or in academia-industry collaboration are clearly overrepresented.
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Bottom 50% 50th-75th 75th-90th

90th-95th 95th-99th Top 1%

Fig. 6: Share of papers per group in the percentile rank classes in relation to
the expected share

This effect increases the higher the percentiles get. In the top 1% class, the
share for company papers even exceeds that of cooperation papers.

Furthermore, we calculate the weighted percentile rank score (see Sec. 4.1.2)
of each group given formula (1). Since the education group makes up the vast
majority of papers in our sample, it yields almost precisely the expected score
of 1.91 as in the formula (2). Company papers, on the other hand, produce a
score of 2.34 and cooperation papers 2.67.

To compare our results with other paper selection approaches from the lit-
erature (Ahmed and Wahed, 2020; Hagendorff and Meding, 2021; Hartmann
and Henkel, 2020), we prepare and analyze a smaller conference sample with
papers from 5 major AI conferences with our MAG data. The resulting citation
metrics are depicted in Table 1. As can be seen, the averages and PR6-scores
from industry-involving publications are comparable to the ones from our cita-
tion dataset, except that the average and median of papers from academia are
slightly higher. That latter fact is not surprising, since we expect papers that
are accepted in the most prestigious conferences to be cited more frequently.
However, this also shows that the inclusion of additional conference and journal
papers in the citation dataset results in a larger difference in citation metrics
across the groups.

It follows that industry-involving publications in AI conferences have a
higher citation impact than academic ones, but the magnitude of the effect is
smaller than that of our citation dataset, which also features journals and less
prestigious conferences. To evaluate whether this tendency holds true for an
unrelated field of study, we also applied it on our non-AI sample consisting



Analyzing the Impact of Companies on AI Research Based on Publications 21

Table 1: Citation statistics of AI conference papers

Group Paper Count Mean Median Max Std PR6

Education 19.8k 24.26 5.00 42,481 349.06 1.88
Company 1.2k 80.09 5.00 13,138 633.08 2.11
Cooperation 3.3k 37.60 8.00 2,819 141.23 2.21

Table 2: Citation statistics of engineering papers

Group Paper Count Mean Median Max Std PR6

Education 110k 8.34 2.00 2,303 30.88 1.98
Company 6k 7.37 2.00 722 22.82 1.95
Cooperation 6k 9.94 3.00 427 20.43 2.24

of electrical engineering papers.27 As the metrics in Table 2 show, we cannot
observe a clear difference between papers from academia and the industry in
citation counts for electrical engineering. Only, the cooperation papers seem
to have a slight edge over the other groups.

Further, we statistically tested the significance of the observed citation
differences across the groups. The null hypothesis of the Kruskal-Wallis, that
there are no differences in our citation dataset, does not hold (p-value≪ 0.001)
and thus we continued with pairwise Mann-Whitney-U tests. They showed that
both company and cooperation papers have significantly higher citations than
education-type papers (p-value≪ 0.001). Remarkably, cooperation papers also
show a significant difference to company papers (p-value ≪ 0.001). Given the
above, we can confidently say that the citation impact of academia-industry
collaboration papers is higher than that of pure company papers, which in turn
have a higher impact than purely academic ones. The tests for our conference
sample are in line with the tests of our citation dataset as they prove to be
statistically significant as well.

On the contrary, the Mann-Whitney-U tests of our non-AI sample could
not show significantly different citations numbers between education and com-
pany papers in either direction, hinting on the fact that the AI research field is
unique in this regard. There, only cooperation papers are significantly better
in attracting citations than the other groups.

5.1.3 Top Research Organizations

As observed earlier, the citation distribution is highly skewed, with some pa-
pers receiving thousands of citations, while others do not get recognized at all.
To identify which organizations impact the field the most, we take a look at

27 The same data preparation steps, filters, and analysis methods are used as in our citation
dataset.
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Fig. 7: Top 10 paper counts of universities (top) and companies (bottom)

the upper end of the top research producing organizations by publication and
citation count.

Starting with the contributions of the research institutions that were la-
beled as education types, we identified almost 4,000 of them publishing in
sum over 67,800 papers on the topic. Unsurprisingly, some academic research
institutions publish significantly more AI articles than others. For instance,
the Carnegie Mellon University, Tsinghua University, Massachusetts Institute
of Technology, and Peking University are each responsible for over 500 arti-
cles, while there are many universities publishing only sporadically (x0,5 = 4,
x = 17). In Fig. 7, the top ten AI-article producing universities are depicted
in descending order. Apart from the aforementioned four, the list follows with
four Chinese universities, namely, Zhejiang University, Beihang University,
Sun Yat-sen University, National University of Defense Technology, and has
the Georgia Institute of Technology from the US and the Nanyang Technolog-
ical University from Singapore in between. All of them have published 320 to
420 AI-articles respectively in the last decade.
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Fig. 8: Top 10 total citations of universities (top) and companies (bottom)

The slope is even steeper for AI-papers authored by companies only. Fig. 7
shows that even within the top ten of companies there are clear differences in
publication counts. Google leads the board by a wide margin with 222 pub-
lished papers followed by IBM with 150, Microsoft with 110, and Facebook
with 80. The rest of the top ten features Samsung, Intel, Huawei, Amazon,
Baidu and Adobe Systems28 who are responsible for over 260 articles in sum.
The majority of the other 160 companies included in the dataset have pub-
lished significantly less AI research (x0,5 = 2, x = 9).

However, if we want to measure which research organizations have the
greatest impact on the scientific community, we need to look at aggregated
citations. Therefore, we selected the top ten academic and industry institu-
tions in terms of citations and ranked them in descending order (see Fig. 8).
On the academic side, we now have a clear winner in terms of the highest
overall citation count of their AI papers: the University of California, Berke-

28 The mentioned company names are directly derived from the MAG and may not rep-
resent their correct legal name, e.g., ’Google’ refers to its parent company Alphabet Inc.
which also includes DeepMind, and ’Facebook’ is now officially called Meta Platforms Inc.,
etc.
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Fig. 9: Share of papers (top) and citations (bottom) by companies

ley with over 53,000 citations. Most Chinese universities from the top ten by
paper count have been replaced in the top ten by citation count either by
other American universities, namely Stanford University and the University
of Washington with around 16,000 and 15,000 citations respectively, or by the
British universities of Oxford and Cambridge with around 20,000 and 14,000,
respectively. The University of Toronto is also worth mentioning in second
place with a total of over 25,000 citations.

Google has by far the highest citation impact from the industry side, as
can be seen in Fig. 8. In fact, with over 74,000 total citations, Google even
surpasses the top universities from our list. Microsoft is in second place with
nearly 17,000 citations, followed by Facebook/Meta with just under 10,000.
Nvidia, IBM, and Apple papers have collected about 4,000, 3,000 and 2,000
citations, respectively, in that order. The top ten continues with Intel, Adobe
Systems, Valeo and Tencent. Remarkably, the top eight of the list were all
American tech companies, followed by a French automotive supplier and a
Chinese technology holding company.

Starting from all companies that have published AI papers, we looked at
which companies are the most represented in terms of the number of publi-
cations and the number of citations of their publications (see Fig. 9). While
Google researchers produced nearly 1 out of 7 of the industry’s AI papers, they
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Table 3: Statistics of Attention Scores

Group Paper Count Mean Median Max Std PR6

Education 12,639 11.97 3.00 3,362.28 61.82 1.91
Company 294 28.62 3.00 3,051.42 215.02 2.10
Cooperation 709 12.88 3.00 660.80 45.30 2.14

received the majority of the citations. Together with Microsoft and Facebook,
the proportion of the total citations adds up to almost 80%. This illustrates
the high concentration of corporate research and its dependence on a few tech
companies, as highlighted by Ahmed and Wahed (2020).

If we exclude papers authored by Google from our citation dataset, we find
that the citation average of company papers is more than halved (x0,5 = 5; x =
41.3) compared to the results in Sec. 5.1.1, which reinforces the great impact
of their publications. However, company papers still outperform university
papers (x0,5 = 3; x = 17.23), thus the observed difference does not solely
rely on one company. Even when excluding the top-3 AI-research producing
companies, a considerable difference between company and education papers
still persists, but admittedly on a smaller scale (x0,5 = 4; x = 24.3).

5.2 Altmetric Analysis

After mapping papers from our citation dataset from the MAG to the Altmet-
ric database we are able to retrieve around 13,000 papers with valid entries in
both databases. In this section, we show the results of the altmetric analysis
given this data.

5.2.1 Attention Score Statistics

Starting with Altmetric.com’s main metric, the (online-)attention score, we
look into similarities and differences in the altmetric dataset. The resulting
descriptive statistics are summarized in Table 3. All groups share the same
median score of 3. On average on the other hand, education and cooperation
papers receive a score of around 12. This indicates a heavily skewed distri-
bution with some papers receiving really high attention while the majority
receives little to no attention according to the Altmetric.com score, similar as
with citation counts. Company papers receive more than twice the attention
score on average compared to papers from the other groups, with a mean score
of 28.6. Notably, this exact number has to be taken with care, since the sub-
set of company papers is less extensive and hence shows substantially more
variance and standard deviation than the others.

The difference between cooperation papers and education papers is not
apparent when looking at the median or average scores. To more robustly
compare the differences across groups, we make use of the PR-6 approach
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Fig. 10: Pearson correlations between different metrics

again and calculate the weighted percentile rank scores as given in Equation
(1). As the education group makes up the vast majority of papers, it yields
almost precisely the expected score of 1.91 as given in Equation (2). Company
and cooperation papers on the other hand, produce scores of about 2.1. This
stems from the fact that most of these papers are to be found above the 50th
percentile of attention scores.

Despite the difference in PR6 being seemingly small, the altmetric scores
of the three groups still have statistically significant differences according to
a Kruskal-Wallis test (p ≪ 0.01). The pairwise results of Mann-Whitney-
U tests indicate significantly higher scores of company papers compared to
education papers (p ≪ 0.01), significantly higher scores of cooperation papers
to education papers (p ≪ 0.01), and similar scores between company and
cooperation papers (p = 0.43).

5.2.2 Comparisons Across Metrics

In this subsection, we examine the relationship between altmetrics and cita-
tions. For this, we first look at the Pearson correlation coefficients between the
metric scores, which are depicted as a matrix in Fig. 10.

As we can see, the assumption of an existing correlation between online
mentions and the attention score is correct. Remarkably, however, the online
reader counts are highly correlated to citations. Although not anticipated,
it makes intuitively sense, since online reader counts are primarily derived
from the Mendeley platform, which includes a reference management software
that scientists use to organize related work. This suggests that the amount of
researchers that have saved and read a paper on Mendeley is proportional to
the citations it will later obtain, presumably because they kept the paper on
Mendeley in order to later cite it. The citation counts and attention scores in
the altmetric dataset are only weakly correlated. This is in line with previous



Analyzing the Impact of Companies on AI Research Based on Publications 27

Fig. 11: Citations counts vs. altmetric scores (in log scales)

works that have compared altmetric scores to citations (Salajegheh and Dayari,
2019; Zhang et al., 2019).

In Fig. 11, we show the log scale of the citation count and the altmetric
score of our 13,000 papers to further investigate this relationship. As explained
in Sec. 4, we apply the categorization of Williams (2022) into scholars’ papers
that score high in citations but not in altmetrics, influencers’ papers which do
the opposite, and exceptionals’ papers that score high in both. The categories
are visualized in Fig. 11 by the dashed lines: the upper left corner corresponds
to scholars’ papers, the lower right corner to influencers’ papers and the upper
right to the exceptionals. By doing so, we can see whether either of our groups
performs better in attracting citations from the scientific world or attention
on the web.

Surprisingly, education, company, and cooperation papers are almost equally
likely to be labeled as scholars’ or as influencers’ papers, which means that we
cannot conclude a tendency of either group towards citations nor online atten-
tion (see Table 4). Nevertheless, there is a clear difference in the category of
exceptionals: Over 10% of papers where companies were involved land in there
in contrast to just under 6% for papers with academic origins. In other words,
our results show the relative superiority of industry papers over academic ones
in both dimensions symmetrically.
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Table 4: Paper category shares per group type

Group Scholar Influencer Exceptional

Education 0.02 0.03 0.06
Company 0.01 0.02 0.11
Cooperation 0.02 0.03 0.10

Fig. 12: Percentage of matched terms attributable to papers with industry
involvement

5.3 Keyword Analysis

Our list of MAKG tags is derived from papers included in our citation dataset
presented in Sec. 5.1. It consists of about 310,000 tags, 93% of which belong to
pure university papers. Accordingly, the remaining 7% of tags come from pa-
pers with company involvement. We match the list of tags with the terms from
the controlled vocabulary for AI subfields (Duran-Silva et al., 2021). Again,
about 7% of all matched terms can be attributed to company or coopera-
tion papers. However, the percentage of matched terms attributable to papers
with company involvement differs across the AI subfields. Fig. 12 illustrates
this discrepancy.

The terms of the subfields ’Philosophical/theoretical Foundations’, ’Dis-
tributed Artificial Intelligence’ and ’Problem Solving, Control Methods and
Search’ have hardly any matches in company-involved papers. Terms of the
subfields ’Knowledge Representation and Reasoning’, ’Expert Systems’ and
’General’ receive some mentions in industry-involving papers but remain rare.
This suggests that these six fields are not a research priority for the industry
and are predominantly studied by academic institutions. In contrast, terms
from the subfields ’Machine Learning’, ’Natural Language Processing’ and
’Computer Vision’ appear more frequently in papers (co-)authored by com-
panies. ’Computer Vision’ in particular has more than twice the percentage
compared to the average share of all matched terms. Therefore, these three
fields can be considered more of a priority for companies. For ’AI Ethics’ the
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percentage is very close to the average of 7% and does not hint in any direc-
tion, which is consistent with the analysis of Hagendorff and Meding (2021).
With our approach, we can therefore not conclude whether AI ethics are more
of a priority for academia or the industry.

6 Discussion

We interpret and put our analysis results into context in Sec. 6.1, discuss
potential explanations for our findings in Sec. 6.2, and review possible impli-
cations for science, industry, and politics in Sec. 6.3.

6.1 Interpretation of Results

Our citation analysis in Section 5.1 reveals several key points:
First, papers involving companies in our main dataset clearly show higher

mean, median, and PR-6 scores with respect to citations, indicating a higher
citation impact of such publications. This finding is quite robust, as it is true
even when very successful outlier papers or papers from top organizations
are excluded. It provides additional support and reinforces the findings of
Hagendorff and Meding (2021) and Klinger et al. (2020), who assert that
there has been a discernible narrowing of AI research and a stagnation of
diversity in recent years. Their research indicates that AI studies involving
the private sector tend to exhibit lower levels of diversity and possess greater
influence compared to academic research. One may assume that our findings
contradict the statement of Hartmann and Henkel (2020, p. 367), who argue
that citation impact of academic and corporate research outputs is about the
same in AI. However, since their study mainly considers bibliometric data
from before 2012, their conclusion may very well be correct for the time frame
under study (see our next finding).

The second finding is that the citation counts of AI research papers written
by companies in the last decade are considerably higher than those written
earlier. We observe this fact when applying the time filter and when analyzing
the time series. This is remarkable considering that, on average, university AI
papers follow the typical rule of lower citations for more recent publications.
This might explain the roughly equal citation impact that Hartmann and
Henkel (2020) observed in their analysis of papers from 2004 to 2016. Moreover,
our inspection of the top contributors supports the statement by Ahmed and
Wahed (2020) who proclaim that AI is increasingly being shaped by large
technology companies. Google, Facebook/Meta, and Microsoft in particular
stand out in our analysis as being highly influential.

Third, cooperation papers have similarly high citation metric scores as
pure company papers. They are slightly lower on average on our main sample
but have in turn a higher median and PR-6 score. From that we can conclude
that cooperation papers have about the same or even slightly higher citation
impact than pure company papers.
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However, we cannot directly conclude from the higher citation impact of
papers that they are also of higher quality as the relationship between cita-
tion impact and research quality is complex. Aksnes et al. (2019) describe
research quality as a multidimensional concept that includes not only the as-
pect of scientific relevance – for which citations are a good proxy for – but
also plausibility, originality, and societal relevance.

Including altmetric data analysis on the same papers allows us to also cap-
ture differences in societal relevance (or broader impact) of papers between
groups, as argued by Bornmann (2014). Our study in Sec. 5.2 shows that ci-
tation counts and altmetric scores of papers correlate only weakly, suggesting
that they indeed measure different things. We also observe that the high cor-
relation found between citation counts and online readers suggests that this
altmetric indicator might be a suitable feature for future citation predictions
(see, e.g., Yan et al. (2011); Yu et al. (2014)), which we do not cover here.

Our analysis of the altmetric data provides additional evidence supporting
the hypothesis of a higher impact of papers authored or co-authored by com-
panies. Although the sample size used for this step was smaller and the sample
contained relatively few industry papers, the observed differences remain both
evident and statistically significant. Papers originating from the private sec-
tor not only garner significantly more citations but also attract greater online
attention, implying a broader relevance beyond the realm of academia.

Hence, under the reasonable assumption that the plausibility and original-
ity constituents of research quality are not considerably worse in corporate
AI science,29 our results indicate that papers with company-involvement are
indeed of higher quality. As our comparison with papers from a non-AI field
has shown, this tendency does not necessarily hold true for other branches of
science, which supports the claim that the comparative research advantages
of companies are only present in the field of AI (Ahmed and Wahed, 2020).

Additionally, our keyword analysis in Sec. 5.3 showed that the industry
predominantly focuses on the trending AI subdomains of computer vision,
natural language processing, and machine learning, which are being impacted
by advances in deep learning and benefit from it. On the contrary, academia
has explored a wider variety of topics in AI, including knowledge representation
and reasoning, distributed AI, and the theoretical foundations of AI.

6.2 Potential Explanations

Our analysis of corporate and university AI research over the last decade re-
veals a striking finding: corporate AI research has consistently produced papers
with significantly higher impact than those from academia. In this subsection,
we present three possible explanations for this observation.

29 The high acceptance rates of industry papers in leading AI journals (see, e.g., Ahmed
and Wahed (2020)) may rather indicate that they even outperform university papers in
these regards, too.
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Hypothesis 1: Industry’s Access to Top AI Talent.

One plausible explanation for the higher research impact of corporate AI
papers is the growing trend of tech companies attracting top AI scientists from
universities. Numerous studies (Hagendorff and Meding, 2021; Hartmann and
Henkel, 2020; Jurowetzki et al., 2021) have pointed out that the industry ac-
tively recruits and hires talented researchers, resulting in a considerable pool
of AI expertise transitioning to corporate settings. While it may be tempting
to attribute the entire increase in research impact to this talent migration,
Jurowetzki et al. (2021) found that AI scientists transitioning into industry
experience an initial surge in paper citations, indicating that the private sector
possesses inherent advantages in conducting impactful AI research. Neverthe-
less, the precise extent to which the strategic hiring of successful university
researchers contributes to the higher impact of corporate AI research remains
an open question (Hagendorff and Meding, 2021).

Hypothesis 2: Industry’s Superior Computational Resources.

Ahmed and Wahed (2020) propose another explanation, suggesting that
the unequal access to computational resources could be a key factor behind
the prevalence of companies in AI research. Given that modern AI research
heavily relies on extensive computing power (see deep learning and especially
fields such as large language model training and meta-learning), large tech
companies equipped with advanced hardware resources may be better posi-
tioned to make significant progress in computationally intensive research.

Hypothesis 3: Industry’s Exclusive Data Assets.

It is widely recognized that the private sector has gathered substantial
quantities of proprietary data for AI research in recent years. According to
Hartmann and Henkel (2020), this privileged access to data sets provides com-
panies with a competitive edge over academic institutions in the field of AI
research. Unfortunately, universities frequently lack access to such proprietary
data, which hampers their capacity to conduct research that is on par with
industry standards. The authors also propose that this data exclusivity may
facilitate companies in appropriating the value of their research, making it
easier for them to publish their results.

Notably, the last two explanations hold particular relevance for research on
topics related to deep learning, as these methods require large amounts of data
and considerable computational resources. As we saw in Sec. 5.3, the industry
shows a particular interest in areas most affected by deep learning. This finding
supports the notion that the availability of both data and computational power
contributes to the higher impact of company-involved AI research.
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6.3 Recommendations for Action for Academia, Industry, and Politics

It is widely acknowledged that companies play a crucial role in driving AI
research forward. They make significant contributions to the field by expanding
research opportunities and facilitating evaluations in specific domains. Notable
breakthroughs in AI research, such as advancements in medicine (e.g., drug
discovery), chemistry (e.g., protein folding (Jumper et al., 2021)), and personal
assistance systems (e.g., Alexa, ChatGPT), have been made possible through
the support and funding provided by companies.

While the importance of industry involvement in AI research has been rec-
ognized in academic works (Gil and Selman, 2019), and potential challenges
associated with increased industry funding and participation have been noted
(Abdalla and Abdalla, 2021; Group et al., 2019), there has been limited sys-
tematic assessment on whether the specific characteristics of companies, such
as their commercial orientation, impose undue limitations or have unforeseen
impacts on AI research (Littman, 2021). The question remains whether action
needs to be taken by academia, industry, or policymakers to ensure a balance
between academia and industry.

In the following, we propose concrete recommendations for action. They
are based on the three hypotheses outlined in the previous subsection.

Addressing Hypothesis 1: Bridging the AI Talent Gap

1. AI Research Fellowships and Career Paths: Government and otherwise in-
stitutional fellowship programs and research grants may be established to
attract and retain AI talent in academia, especially in job-wise competi-
tive fields such as deep learning (Jurowetzki et al., 2021). These programs
should offer competitive funding packages and career development opportu-
nities to motivate researchers to pursue academic careers (Jurowetzki et al.,
2021). Research indicates that a postdoc’s transition to a non-academic
career can be influenced various factors, including individual traits, the
attitude and support of their principal investigator, as well as broader or-
ganizational and policy factors (Hayter and Parker, 2019). In Germany,
junior professorships were introduced in 2002 to enhance career prospects
for young scientists. Nevertheless, postdocs reported only a marginal im-
pact of these university reforms (Fitzenberger and Schulze, 2014).

2. Industry-Academia Talent Development: Developing joint training programs,
internships, and mentorship initiatives between academia and industry can
enable knowledge transfer between universities and industry, attract re-
searchers to universities, and facilitate the sharing of cutting-edge research
practices, data, and infrastructure (Spicer et al., 2022).

Addressing Hypothesis 2: Providing Computational Resources for Academia

1. Adequate Public Funding of Academic Computing Infrastructure: We argue
that academia needs to be able to produce AI research of equal quality with-
out depending on industry involvement, otherwise academic integrity may
be compromised (Jurowetzki et al., 2021; Hagendorff and Meding, 2021).
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As such, it needs to be ensured that research institutions like universities
have the necessary resources to conduct high-quality research independent
of industry.

2. Provisioning Companies’ Computing Infrastructure for Academia: An al-
ternative approach to enhancing academic research could involve providing
cloud services and other infrastructure resources, such as high-performance
computing, to academic researchers without imposing substantial addi-
tional costs or effort (Littman, 2021). By doing so, this approach would
address the hardware limitations currently faced by academia, fostering
an environment conducive to extensive experimentation and innovation.
One way to achieve this could be through partnerships between academic
institutions and industry. These partnerships can facilitate joint research
projects and knowledge sharing, while maintaining the integrity of aca-
demic research. Additionally, governments could subsidize companies that
provide computing infrastructure specifically for AI research.

Addressing Hypothesis 3: Promoting Openess and Industry-Academia Collab-
orations

1. Regulations and Incentives for Sharing Research Artifacts: It is essential
that research results can be replicated and that artifacts, such as datasets,
are accessible following the FAIR principles (Wilkinson et al., 2016). While
the scientific community increasingly embraces the practice of sharing code
and data,30 this culture has not yet become prevalent in the industry
(Ahmed and Wahed, 2020). Instead, policies promoting transparency and
the sharing of core datasets between public and private actors are subject
to controversial discussions (Cockburn et al., 2018). Moreover, even if such
resources are provided, the replication of experiments may be challenging
due to limited hardware resources. In light of these challenges, it is impor-
tant to facilitate the sharing of non-sensitive AI artifacts, such as datasets,
code, and AI models, by private entities, while simultaneously ensuring
compliance with privacy regulations.31 Encouraging incentives, such as tax
benefits or research grants, should also be considered for organizations that
openly share their artifacts. These measures would promote a culture of
openness and collaboration, benefiting both the scientific community and
industrial applications of AI technology.

2. Collaboration and Data Provisioning Platforms: It is highly beneficial to
enhance and expand collaboration platforms and repositories that enable
seamless sharing of AI code, models, and datasets (see, for instance, Zen-
odo, figshare, and AWS Open Data). By leveraging these platforms, re-
searchers can effortlessly build upon one another’s work, including works
from industry, and replicate experiments, fostering a more cohesive and

30 See initiatives like the German National Research Data Infrastructure, https://

www.nfdi.de/.
31 Recent regulatory efforts being negotiated in the EU, namely the AI Act & Data Act,
point in the right direction and should further promote the disclosure of (research) data.

https://www.nfdi.de/
https://www.nfdi.de/
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progressive research ecosystem. Zenodo and figshare in particular allow re-
searchers to upload data at a mostly reasonable scale, but making very
large datasets available is not possible on these platforms. In these cases,
researchers currently rely primarily on corporate programs (e.g., Amazon’s
AWS Open Data). We recommend providing advanced data hosting options
that are independent of companies.

3. Standardization of Data Formats and Documentation: This facet involves
advocating for the adoption of standardized data formats and documen-
tation protocols. Such standardization enhances data interoperability and
accessibility, thereby enabling researchers across institutions and industries
to use common datasets with greater efficiency.

4. Interdisciplinary and Transdisciplinary Research Collaborations: Encour-
aging collaboration between academia, industry, policymakers, and civil
society organizations can foster (a) a unified perspective on the broad
impact of AI research, and (b) more targeted strategies to address AI
research challenges. Such collaboration can cultivate a holistic view, focus-
ing on the development of value-oriented, long-term oriented, trustworthy
AI. For instance, this approach can mitigate the systematic “narrowing”
of AI research, where certain topics disproportionately receive more at-
tention (Klinger et al., 2020; Hooker, 2021; Jurowetzki et al., 2021). It is
also beneficial for creating AI for social good, for instance when it comes
to preserving diversity in AI models (Kuhlman et al., 2020) or combating
disinformation (Gil and Selman, 2019; Buchanan et al., 2021).

5. Incentives for Responsible AI Research Practices and Evaluation: Funding
mechanisms can be developed to reward researchers and organizations that
actively incorporate ethical considerations into their AI research. This can
be achieved through funding programs focusing on or prioritizing projects
that are consistent with ethical guidelines (Jobin and Ienca, 2019) such
as the EU Ethics Guidelines for Trustworthy AI (e.g., covering human
agency, transparency, and fairness) (European Commission, 2019; Smuha,
2019) and the UN sustainability goals (Vinuesa et al., 2020). In addition,
policymakers could advocate for the widespread adoption of evaluation
frameworks for researchers and institutions that do not rely solely on the
citation count as impact indicator but that also encompass broader aspects,
such as the openness and sustainability of research artifacts, to provide a
more comprehensive and responsible measure of scientific contributions.

6. Teaching Fair AI Research: We can support the recommendations to pro-
vide mandatory courses or course content in schools and universities that
provide students with the knowledge to be aware of industry influence on
AI research and to reduce the bias of industry-driven AI research detached
from corporate interests during the research processes.
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7 Conclusion

Artificial Intelligence (AI) is one of the most significant technologies of our
time. Thus, in various contexts, it becomes vital to understand and quantita-
tively measure who is exerting the greatest influence on the future of AI. In
pursuit of this understanding, we used scientometric data from multiple aca-
demic databases to examine and compare the citations and altmetric influence
of academic and corporate AI research papers. Although the vast majority of
publications are still authored by academics, we found that the citation impact
of a paper is significantly higher when it is (co-)authored by a company, con-
firming previous studies. Similarly, papers (co-)authored by companies receive
significantly more attention online, as measured by altmetrics. The robustness
of our results across different methods of data selection and metrics indicates
that corporate AI research has indeed become more important than purely
academic AI research in recent years.

We also provided an overview of the major players in corporate AI re-
search. The publications of these key technology companies, mainly based in
the United States and China, have an immense impact on the field. Addi-
tionally, our keyword analysis disclosed that the private sector is particularly
interested in topics affected by deep learning, such as computer vision and
natural language processing.

Based on our findings, we formulated several recommendations for action
for academia, industry, and policymakers: (1) promoting ethical and respon-
sible AI research, (2) promoting open data and open code initiatives, the
FAIR principles, and democratization of AI research, (3) strengthening finan-
cial and infrastructural support for academic AI research, and (4) bridging the
AI talent gap. Given these recommendations, we are confident that corporate
involvement can positively influence future AI research.
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