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1 Introduction 

First of all, the following subsections introduce in this master thesis by describing the 

problem situation, explaining the aims of this work and giving a motivation. 

 

1.1  Problem description 

The choice behavior in all areas of life is essentially determined by the available 

information. To make intelligent and reasonable decisions information is required, 

which can be obtained from relevant data. 

On the one hand there is the trend that the available data is growing always faster 

and faster. For example the research company Gartner, Inc. reports that data growth 

is the biggest challenge in 2011 for large-enterprise data centers [Gart10]. Another 

up to date example for publishing data is the German census of population in 2011, 

where about 10% of the population is interviewed to acquire data for important 

administrative and scientific objectives [Wagn10]. On the other hand, decision 

makers like managers in companies or representatives in politics threat to be 

overflowed with too much information. However, they complain about less 

information, because they have the feeling that they do not have the relevant 

information to make the right decision [GlGD08, S. 32]. 

Considering both aspects, there is an information deficiency simultaneous to an 

increasing data appearance, e.g. in companies [GaGP09, S. 41]. This means that 

there is much data available but in fact only less data can be used. The right 

decision-making basis would be the relevant information, no more, no less. To 

retrieve the relevant information out of the mass of data, there are some 

requirements for content and structure of this data, so that the relevant information 

can be extracted in an effective and efficient way. 

Online analytical processing (OLAP) has become a popular technique to support the 

process from retrieving information out of data [ChDa97]. The advantage of OLAP is 

that observations (so called measures) can be viewed from different perspectives (so 

called dimensions) and on different levels of detail (so called levels of hierarchies). A 
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possible format for OLAP is OLAP4J1, an open Java application programming 

interface (API) for accessing multi-dimensional data. 

Usually, a data warehouse (DWH) is used where relevant data is provided for 

analytical purposes. To do such analysis this large data repository has to be filled 

with relevant data. This is done by the extract-transform-load (ETL) process, where 

data is first extracted from different data sources, second transformed to suffice the 

OLAP technique and third loaded, which means stored persistently in the DWH 

[ChDa97]. 

One possibility to acquire data for a DWH is to extract published data from the web, 

which exists there in different formats [PBAP08]. Linked Data is an approach, to 

standardize the format for published data so that it can be interconnected on the web 

[BiHB09].  The main idea is that each object of the real world (so called resource) 

has a unique resource identifier (URI) and resources can be linked to other resources 

for what the markup language Resource Description Framework (RDF) is used. One 

special format for multi-dimensional data, such as statistics, is the RDF Data Cube 

Vocabulary, which is compatible to RDF [CyRT10].  

Regarding the process in reference to the above described standards, the data can 

be extracted from the web, transformed from the RDF Data Cube vocabulary to the 

OLAP4J format and loaded into a DWH. In so doing, the main problem is the 

transformation of the data, which should work automatically without any manually 

effort. One approach of an automatic transformation is based on a mapping between 

the RDF Data Cube Vocabulary and a Multidimensional Data Model [KäHa11].  

Although this approach provides the possibility to automatically transform data sets to 

the Extensible Markup Language for Analysis (XMLA)2 format, which is an alternative 

OLAP format to OLAP4J, some questions are still unanswered. One aspect that is 

not solved at all is to deal with hierarchies, because the dimensions of the 

transformed data in this approach have a flattened structure without any hierarchical 

relationships. Since the data in the RDF Data Cube Vocabulary already has a certain 

semantic, the authors of this approach of an automatic transformation believe that 

there are more possibilities to find meaningful hierarchies in Statistical Linked Data 

                                                           
1
 http://olap4j.svn.sourceforge.net/viewvc/olap4j/trunk/doc/olap4j_fs.html 

2
 http://news.xmlforanalysis.com/what-is-xmla 
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[KäHa11]. For example hierarchical structures of the relationship between resources 

could be used for the automatic formation of hierarchies. As a consequence, the 

question how hierarchies that can be used in OLAP systems can be constructed from 

Statistical Linked Data is not answered yet. 

 

1.2 Aims and organization of this thesis 

The aim of this master thesis is to support the extract-transform-load (ETL) process 

from the RDF Data Cube Vocabulary to the OLAP data model, so that it can proceed 

as much automated as possible. The semantics of the data should be automatically 

interpreted and an OLAP data cube should be constructed. The main focus here is 

on hierarchies. This means that this master thesis researches, how useful hierarchies 

can be constructed automatically. To build on existing standards, it is assumed that 

the RDF data is in the format of the RDF Data Cube Vocabulary and has to be 

transformed in the specific OLAP4J standard of the multidimensional data model. 

The concept of this thesis is successive and the sections are based on each other. 

The organization of this thesis also corresponds to work procedure, thus the 

chronological and logical sequence of the steps. To construct hierarchies out of 

Statistical Linked data and use them in OLAP systems, the following questions have 

to be answered. They are the essential parts of this master thesis. Each question is 

answered in an own section after this section 1 „Introduction‟, which also serves as 

motivation for this thesis:  

 Which are useful Statistical Linked Data hierarchies? 

First of all, to understand the relevant concepts, technologies and standards 

and to know the possible hierarchies a qualified background is required. For 

this reason this master thesis introduces the relevant concepts, technologies 

and standards theoretically. To measure the usefulness of a hierarchy, a 

catalog of relevant metrics is developed. Hence, this question is answered in 

section 2 „Theoretical background‟. 

 How can Statistical Linked Data hierarchies be expressed? 

Linked Data publishers should have the possibility to explicitly express all 

possible OLAP hierarchies with a firm and standardized Vocabulary in Linked 
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Data. Since there is already a recommended way of expressing hierarchies 

with the RDF Data Cube Vocabulary, this master thesis critically validates this 

vocabulary. Furthermore it proposes an extension for this vocabulary to have 

the possibility to express all different types of hierarchies. This vocabulary is 

introduced in section 3 „Expressing OLAP hierarchies in RDF‟. 

 How can Statistical Linked Data hierarchies be used? 

There is a mapping required which transforms the explicit hierarchies, 

expressed in a firm and standardized vocabulary in Linked Data into an OLAP 

application to analyze the data. This master thesis describes the developed 

algorithms to support the OLAP4J standard. This developed driver queries 

against Statistical Linked Data, including explicitly expressed hierarchies and 

transforms them into the standardized format for common OLAP applications.  

This transformation of Linked Data into OLAP hierarchies is done in section 4 

„Transforming Linked Data into OLAP hierarchies‟. 

 How can Statistical Linked Data hierarchies be constructed? 

If published data sets do not include explicit hierarchical information, there are 

algorithms required to make implicit included hierarchies explicit. There may 

be generic algorithms that potentially work for all data and also specific 

algorithms which are customized for specific data. This master thesis 

proposes several developed approaches to construct hierarchies from 

Statistical Linked Data. There are specific approaches (time and geo) for often 

occurring data and also generic approaches (rdfs:subClassOf and properties), 

which can potentially be applied to all data. Considering these approaches, 

this master thesis has to cope with the following challenges: 

o How can hierarchies be constructed and what can be names for them? 

o How can levels be constructed and what can be names for them? 

o How can members be constructed and what can be names for them? 

These approaches are explained in section 5 „Approaches for learning OLAP 

hierarchies from RDF‟. 

On this basis, section 6 „Evaluation‟ tests the functionality of the different approaches 

on real data. The last part of this thesis is section 7 „Conclusions‟, where the resulting 

lessons learned are described and a perspective for future work is given. 
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1.3 Motivation 

Besides the general advantages of the transformation of Statistical Linked Data to 

OLAP cubes, the generation of hierarchies during this process, which is the main 

focus in this master thesis, enables the following special advantages respectively use 

cases: 

 Automatic construction of hierarchies: 

Linked Data is used to automatically construct hierarchies, which can then be 

used in OLAP systems. Therefore several approaches are developed. This 

means that no manually effort is necessary to generate hierarchies, because 

the approaches can be used.  

 Making hierarchies explicit: 

Because of the application of algorithms on existing Linked Data, implicit 

included hierarchical structures become explicit. This means that the 

hierarchies are expressed in a standardized way so that the hierarchical 

structures are clear.  

 Additional hierarchies: 

With the generation of additional hierarchies with new levels, new members 

and new allocation of members to particular levels, the use of hierarchies 

becomes more useful, because the data can be analyzed on more levels of 

detail so that more and new knowledge can be derived out of this data.  

 Additional types of hierarchies: 

Besides the possibility to generate additional hierarchies with new levels and 

allocation of members to particular levels, there also may arise new types of 

hierarchies for a particular dimension. With these new types of hierarchies, the 

data can be analyzed in another way, so that more and new knowledge can 

be derived out of this data.  

 Integration of more and less aggregated data: 

Assuming that there are two or more data sets, which share at least one 

common dimension but on different levels of detail, the transformation into a 

cube and generation of hierarchies enables the possibility to analyze this data 

together by using a common hierarchy level. The following cases can be 

distinguished: 
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o Some given dimension members of different data sets roll up to the same 

member in a higher level of detail. For example within the time dimension 

the member „December 2011‟ is used in one data set and the member 

„August 2011‟ is used in another data set. Both data sets can be integrated 

by using a hierarchy, which includes the two given members and the 

additional member „Year 2011‟. Both given members roll up to the new 

member „Year 2011‟. 

o Some given dimension members of one data set roll up to given members 

of another data set. For example within the time dimension the member 

„August 2011‟ is used in one data set and the member „Year 2011‟ is used 

in another data set. Both data sets can be integrated by using a hierarchy, 

which includes these two given members and the member „August 2011‟  

rolls up to the „Year 2011‟. 
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2 Theoretical background 

This thesis is called „Constructing OLAP hierarchies from Statistical Linked Data„. If 

you look closely to this title, you will notice that mainly the following topics are 

relevant: 

 OLAP 

 Hierarchies  

 Statistical Linked Data 

Therefore these concepts and technologies and their relevant surround are explained 

in the following subsections, to give the reader of this thesis a qualified theoretical 

background. 

 

2.1 Online Analytical Processing 

The term Online Analytical Processing (OLAP) was established by Codd et al., who 

define OLAP as „the dynamic enterprise analysis required to create, manipulate, 

animate, and synthesize information from exegetical, contemplative, and formulaic 

data analysis models. This includes the ability to discern new or unanticipated 

relationships between variables, the ability to identify the parameters necessary to 

handle large amounts of data, to create an unlimited number of dimensions 

(consolidation paths), and to specify cross-dimensional conditions and expressions‟ 

[CoCS93]. 

Considering their idea, the term OLAP is representing two facts. On the one hand it 

emphasizes the analytical processing, where information is gained out of data, in 

contrast to the transaction processing, where operational data is generated, e.g. 

entering orders in a company, credit transfer in a bank [ChGl06, p. 145]. On the other 

hand it emphasizes the interactive and multidimensional analysis on historic and 

consolidated data [FBSV00, p. 88]. 
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2.1.1 Conceptual Model of OLAP 

 

2.1.1.1 Data Cube 

On the conceptual level, the data model of OLAP can be represented as a cube.  

The essential feature of this cube is to subdivide the data into a set of facts (cells of 

the cube) and dimensions (edges of the cube). The facts represent key figures, which 

means the values that are assigned to a tuple. The dimensions relate the key figures 

to properties or objective criteria. Therefore each dimension is described by a set of 

attributes and the dimensions together uniquely determine the measures. Since the 

cube in the following figure contains exactly three dimensions, the number of 

dimensions in the multidimensional data model is unrestricted, so that a hypercube is 

generated.  

To provide information on different aggregation levels, hierarchies can be defined 

over the dimensions. The cells are determined by the selected hierarchies and levels 

of each dimension, so that a measure can be considered along one dimension on 

different hierarchical levels [ChDa97]. 

 

Figure 1: Multidimensional data model: cube [modified from KeMU06, p.95] 
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There are several popular operations that can be done with an OLAP cube to regard 

the contained data from the desired perspective [ChDa97]: 

 Slicing/Dicing: Reducing the dimensionality of the data by taking a projection 

of the data on a subset of dimensions for selected data of other dimensions. 

 Pivoting/Rotating: Re-orienting the multidimensional view of data. 

 Roll-Up/Drill-Down: Navigating along a hierarchy to look at the data on a more 

general resp. specific level. For these operations, hierarchies are used.  

 Ranking: Sorting the data.  

These operations can be executed by querying multidimensional data. Therefore, the 

declarative query language Multidimensional Expressions (MDX) can be used, which 

is a part of Microsoft‟s OLAP product3 [NiNT01]. 

 

2.1.1.2 Aggregation functions and summarizability  

In this master thesis, the focus is on generating hierarchies. It doesn‟t make a 

statement of correct aggregation of the measures, which is the next step, when 

possible hierarchies are found. This means by implication, the process of finding 

hierarchies in this master thesis is independent of aggregation functions and 

summarizability conditions. If correct aggregation aspects were taken into account in 

this master thesis, the algorithms to generate hierarchies possibly have to be 

adapted. For example depending on the resulting hierarchy type, additional 

information concerning correct summarizability has to be provided. For the sake of 

completeness, the problematic of aggregating data is broached in this section. So it 

may not be forgotten that not only hierarchies but also aggregation functions play an 

important role, when data is summarized in a higher level of detail. 

As described above, OLAP provides the possibility, to view the data of a cube in 

different perspectives (dimensions) and on different levels of detail (hierarchies). The 

advantage of this concept is that data can be viewed not on the single data points but 

on an aggregated level. For example in a cube containing turnover data, only the 

trend over the years (time dimension) or the variations between the countries (level 

country in a hierarchy citycountrycontinent within the region dimension) is of 

                                                           
3
 http://msdn.microsoft.com/de-de/library/ms717005.aspx 
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interest. To summarize the single data points to an aggregated value, some 

conditions (so called summarizability) must be fulfilled and regulations are needed 

that prescribe the mapping of many single values to one aggregated value (so called 

aggregation functions) [NiNi10]. 

 

In common data warehouses, the following standard aggregation functions are 

supported when executing operations on an OLAP cube: 

 Minimum 

 Maximum 

 Sum 

 Average  

 Range  

 (Distinct) Count 

 

These and all other aggregation functions can be classified in the following three 

types, describing if and how the already aggregated values can further be 

aggregated to a higher level [LeTh09]: 

 Distributive: 

These aggregation functions can be defined as a structural recursion schema, 

which means that a further aggregation in a higher level can be done without 

any other information, e.g. minimum. Thus, for aggregates only a fraction of 

the original storage space is required. The calculation of further aggregated 

values only requires the current aggregates, which results in a good 

performance as compared to the other types of aggregation functions. 

 Algebraic: 

These aggregation functions can be expressed by finite bounded algebraic 

expressions, which means that a further aggregation in a higher level can be 

done, but additional information is required, e.g. average, where count is the 

additional information. Thus, for aggregates less storage space than for the 

original data is required but more than for aggregates with distributive 

aggregation functions. The calculation of further aggregated values also only 
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requires the current aggregates, which results in a good performance as 

compared to the other types of aggregation functions, too. 

 Holistic: 

These aggregation functions are not bound on the size of storage, needed to 

describe the aggregates, which means that a further aggregation is only 

possible on the original data, e.g. median. Thus the storage space for 

aggregates is not less than the storage space for the original data. The 

calculation of further aggregated values requires the original data, which 

results in a bad performance as compared to the other types of aggregation 

functions. 

Summarizability is the correctness of aggregation operations, which means that a 

function computed from the aggregated data is the same as it would be computed 

from the original, not aggregated data. The following three conditions must be fulfilled 

to guarantee summarizability [LeSh97]: 

 Disjointness: 

This rule means that a dimension member may belong to only one parent 

member. 

 Completeness: 

o The first part of this rule means that each member of the higher levels 

must have child members till to the lowest level of the hierarchy. 

o The second part of this rule means that each member must belong to a 

particular parent member.  

 Consistency:  

This rule means that it depends on the interaction of the following three 

characteristics whether summarizability holds: 

o Type of the dimension:  

 Temporal 

 Non-temporal 

o Type of the measure: 

 Stock (measured at a particular point of time, e.g. number of 

citizens) 

 Flow (refer to periods and are recorded at the end of these 

periods, e.g. annual income) 
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 Value-per-unit (determined for a fixed time, e.g. item price) 

o Statistical aggregation function associated (described above) 

For example, it does not make sense to summarize (aggregation function: 

sum) the number of citizens (type of measure: stock) over the years (type of 

dimension: temporal). The following table gives an overview of the 

combinations that guarantee summarizability for temporal and non-temporal 

dimensions, if disjointness and completeness are given.  

 

 Temporal Non-temporal 

Stock Flow Value-
per-unit 

Stock Flow Value-
per-unit 

Min ok ok ok ok ok ok 

Max ok ok ok ok ok ok 

Sum not ok ok not ok ok ok not ok 

Avg ok ok ok ok ok ok 

Range ok ok ok ok ok ok 
Table 1: Consistency [modified from LeSh97] 

 

2.1.2 Business Intelligence 

The term Business Intelligence (BI) was mint by the Gartner group with the following 

statement: „Data analysis, reporting, and query tools can help business users wade 

through a sea of data to synthesize valuable information from it – today these tools 

collectively fall into a category called ´Business Intelligence´ „[AnAS04, p.18 et seq.]. 

BI does not denote a specific system or application; it can rather be understood as a 

conglomeration of concepts and technologies to support the decision process. 

Kemper et. al. define Business Intelligence as an integrated, company-specific, IT-

based, entire approach to support operational decision-making [KeMU06, p.8]. 

 

2.1.2.1 BI process  

From the process-driven perspective, BI also can be regarded as a process from 

different and distributed data up to specific knowledge. Therefore, first the relevant 

data has to be selected and a data preprocessing is necessary. After a 

transformation, the data has to be provided in OLAP-Cubes, where different analysis 

methods finally generate specific knowledge after interpretation of the results 

[Humm08]. The following figure shows such a generic BI process. 
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Figure 2: A generic Business Intelligence process [modified from Humm08] 

The generation of OLAP cubes and hierarchies out of Statistical Linked Data is a 

concretization of a part of this generic BI process. Linked Data can be understood as 

distributed basis data and the above steps can take place till OLAP cubes are 

generated. On these, different analysis can be made that were finally interpreted to 

knowledge.  

 

2.1.2.2 Facets of BI 

The technologies and concepts, which are suitable to support decision making can 

be arranged in a two-dimensional illustration. At this, the vertical axis shows the 

phases from data preparation to data analysis. The horizontal axis shows the focus 

from technology to application. 

This illustration clarifies the differentiation of BI in different perspectives. Since BI in 

the broad sense includes all technologies and concepts to support decision-making, 

the analysis-oriented understanding of BI concludes all applications, in which a user 

has a direct and interactive access to the system. BI in a strict sense only includes 

applications that immediately support decision making. Since OLAP is a core 

application of BI in a strict sense, it is an essential technology to support decision 

making.   
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Figure 3: Facets of Business Intelligence [KeMU06, p.4] 

 

2.1.2.3 Data – Information - Knowledge  

From the process-oriented perspective, BI can be regarded to generate knowledge 

out of data. Thus, data is transformed to information, which is an intermediate step 

and then transformed to knowledge, which is used to make decisions. 

 

Figure 4: Stairs of knowledge [modified from Nort05, p.32] 

Data, constructed out of signs on the basis of certain principles, is the basic module 

of information science and represent facts.  

By adding a meaning and a purpose to data, it is transformed to information and the 

data becomes dependent of the context, in which it is used. 



2 Theoretical background 

 
24 

 

Knowledge is formed by evaluating, comparing or combining information. This 

implicates that knowledge is always committed to persons or organizations, where it 

can be used to make useful and responsible decisions. Hence, a hierarchy also 

illustrates an effective form of knowledge representation, because prior domain 

knowledge relevant to data is encoded [PoRa99]. 

 

2.1.3 Data Warehouse 

To prepare the data for analysis purposes such as OLAP, a special system, which 

serves as data pool, is required. This special database is called data warehouse, 

where all data and metadata can be stored for analysis and archiving purposes.  

One of the first definitions points up the significant properties: „A data warehouse is a 

subject oriented, integrated, non-volatile, and time variant collection of data in 

support of management‟s decisions‟ [Inmo02, p.31]. These four properties, which all 

are relevant for decision making, are explained below: 

 Subject orientation: The focus of the system does not concentrate on 

processes but on the modeling of a subject.  

 Integration: There is integrated data existent, which may originate from several 

and different sources. 

 Non-volatility: The data is stored persistently, thus the data is not overwritten. 

 Time-Variant: The data can be analyzed within the time dimension.  

Considering these aspects, data warehouses elementary distinguish from 

transactional databases in the following main characteristics [BaGü04, pp. 9-11]: 

 Query-Performance: Data warehouses are optimized for long, large and 

complex read accesses instead of short, small, easy and single-tuple read and 

write accesses.  

 Historical data: Decision support in data warehouses requires consolidated 

and historical data from different and heterogeneous sources instead of only 

the current data in one transactional database. 

 User: Data warehouses are designed for a few data analysts, manager and 

controller instead of a large number of case workers. 
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In consequence of all these reasons, data warehouses are implemented separately 

from operational databases, so that queries use the data pool of the data warehouse 

instead of calculating the result on-the-fly by accessing the data sources of the data 

warehouse in the running time of the query. To have always new data available, data 

warehouses have to be updated in a pre-defined rhythm, e.g. every night, monthly. 

This is done by the ETL process.  

 

2.1.3.1 ETL process 

To have data for the OLAP operations in a data warehouse available, they have to be 

extracted from the data sources, transformed for analysis purposes and saved in the 

data warehouse. This recurring procedure is called ETL-process and consists of the 

following steps [BaGü04, p. 81 et seqq.]: 

 

Figure 5: ETL-process 

 

 Extraction: The first step is the extraction of the data from the sources, which 

can be done in miscellaneous manners (e.g. periodic, event-triggered, query-

triggered). The outcome of this step is the transferring of the relevant data to a 

work area, where it can be transformed.  

 Transformation: The second step is the transformation of the data, which 

means to adapt data, schema and data quality to the requirements of the end 

users. Mainly, the heterogenic data has to be integrated (e.g. adapting data 

types, harmonizing strings) and cleaned  (e.g. avoiding redundancy, checking 

for consistency)  

 Loading: The last step is the loading of the data into the data base, where it is 

stored persistently. After one initial load, the OLAP cubes are updated and the 

data is available for analysis.  
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This master thesis attaches importance to the ETL-process, since Linked Data is 

extracted from the web and transformed that it is adequate to the OLAP4J standard, 

whereby a special focus is on hierarchies. Besides the possibility to directly use 

Linked Data hierarchies for example with OLAP4J, which is described in section 4 

„Transforming Linked Data into OLAP hierarchies‟, the constructed hierarchies could 

also be further transformed and loaded in a data warehouse, where they can be 

used.   

 

2.1.3.2 Star and snowflake schema 

On the conceptual level, modeling the data is done in multidimensional cubes. The 

conversion of the semantic, conceptual level to the logical, intern level of the 

database he may occur in a multidimensional way, which is called MOLAP and in a 

relational way, which is called ROLAP [BaGü04, p. 201 et seqq.]. Since the 

advantages of ROLAP are open standards and scalability, the advantages of MOLAP 

are direct implementation of the conceptual level of OLAP, intuitive operating and 

analytical powerfulness [BaGü04, p. 242 et seqq.]. To combine the advantages of 

ROLAP and MOLAP, the conversion can also be done in a hybrid way, which is 

called HOLAP.  

Because relational databases are popular in theory and practice, ROLAP is 

explained in more detail, which can be further divided in the star and snowflake 

schema: 

 Star schema: 

The star schema consists of one fact table and several dimension tables. 

Since the measures are contained in the fact table, the dimension tables 

contain the attributes of the dimensions.  Each dimension table is connected 

with its primary key with the fact table, thus the total of all foreign keys 

referencing to the fact table is its primary key. If a dimension has a hierarchical 

structure, the star schema is denormalized, since there are functional 

dependencies between the non-key attributes representing the hierarchy.  
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Figure 6: Star schema 

 

 Snowflake schema: 

The snowflake schema also consists of one fact table, which contains the 

measures and several dimension tables. In contrast to the star schema, the 

snowflake schema is normalized. Thus, one dimension covers several tables 

for the hierarchy levels. The primary key of the lowest level of each hierarchy 

is referencing to the fact table, where the total of all foreign keys referencing to 

the fact table is its primary key.  
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Figure 7: Snowflake schema 

 

 

 

2.2 Linked Data 

Linked Data is an approach to connect data from different sources on the World Wide 

Web by creating typed links between different data sets [BiHB09]. If the data is freely 

available, the term Linked Open Data is used. Linked Data is based on the Semantic 

Web standards, whereby the unique identification of each thing, such as metadata 

elements or certain entities is very important [ZaHM11]. Therefore Uniform Resource 

Identifiers (URIs) are used. Tim Berners-Lee provided the four principles for Linked 

Data [Bern06]: 
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1. Use URIs as names for things. 

2. Use HTTP URIs so that people can look up those names. 

3. When someone looks up an URI, provide useful information, using the 

standards (RDF*, SPARQL). 

4. Include links to other URIs, so that they can discover more things.  

The publication of data as Linked Data enables advantages for all, data providers, 

developers and end-users [ZaHM11]. Data providers have the possibility to enrich 

their own data by linking to other data sets on the web. Developers benefit from 

Linked Data also, because they are not restricted on one data set and can easily 

integrate data from other sources. Finally, both aspects are also relevant for end-

users, because they have useful applications and many data sets available. 

 

2.2.1 RDF, RDFS and OWL 

Resource Description Framework (RDF)4 is a formal language for representing 

structured information about things on the World Wide Web [HiKR09, pp.19]. The 

intention is not to display data correctly, but rather re-combination of information 

contained in it.   

The conceptual representation of an RDF document is a set of nodes, which are 

linked by directed edges, so that a graph is formed. Each statement is structured by 

subject-predicate-object sentences, whereby all parts consist of an URI. A statement 

is also called a triple [HiKR09, pp. 20-25]. 

 

Figure 8: Triple consisting of subject, predicate and object 

 

                                                           
4
 http://www.w3.org/TR/rdf-primer/ 
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There are several serialization formats of RDF. Since many programming languages 

support Extensible Markup Language (XML)5 libraries, the XML based serialization 

RDF/XML is a common practice. XML itself is a markup language, intended to use for 

data exchange and electronic publishing. To define structures for XML documents, 

XML Schema6  can be used. Both, XML and XML Schema are W3C 

Recommendations [HiKR09, pp. 353-361]. 

However, this master thesis uses the Turtle representation of RDF, because it can 

more easily be accessed by humans. A triple is denoted with turtle like this:  

ex:subject    ex:predicate    ex:object 

 

The part before the double dot is an abbreviation for a longer part. This concept is 

called namespaces. There may be different abbreviations for different longer parts. A 

list of all relevant namespaces for this master thesis can be found in the appendix. 

The abbreviation ex: always stands for an example namespace.  

RDF can semantically be enriched by using Resource Description Framework 

Schema (RDFS)7. This also graph-based language provides the possibility to 

generate simple ontologies, so that knowledge about a domain of interest can be 

represented in a standardized way [HiKR09, pp. 46-67].  

Resources can be typed, i.e. to mark them as elements of a certain aggregation. The 

individual elements are called instances; a set of resources is called class. Classes 

can be sub-classes of other classes, so that a class hierarchy is generated. This 

hierarchical relationship is used in one approach of this master thesis to generate 

OLAP hierarchies.  

Predicates in a triple are also called properties, since they describe a relationship 

between two other resources (subject and object). Also properties can be sub 

properties of other properties, so that a property hierarchy is generated. Furthermore, 

properties can be restricted, by setting limits for possible classes of subject and 

object.  

                                                           
5
 http://www.w3.org/XML/ 

6
 http://www.w3.org/XML/Schema 

7
 http://www.w3.org/TR/rdf-primer/#rdfschema 



2 Theoretical background 

 
31 

 

Considering RDF and RDFS, we have to distinguish assertional knowledge, which is 

represented in RDF and makes propositions about concrete entities and 

terminological knowledge, which is represented in RDFS and gives background 

information about the domain of interest [HiKR09, p. 66]. Both, RDF and RDFS are 

W3C Recommendations.  

Since RDF and RDFS provide only very limited expressive means, the Web Ontology 

Language (OWL)8 is used, to represent more complex knowledge [HiKR09, p. 111]. 

This language is also a W3C Recommendation and has three increasingly-

expressive sublanguages: OWL Lite, OWL DL, and OWL Full. The basic buildings of 

OWL are classes, roles and individuals [HiKR09, pp. 111-158].  Individuals are 

instances of classes and classes are the same like in RDFS. In contrast to RDFS, 

OWL properties are called roles. There are abstract roles, which link two classes and 

concrete roles, which link two individuals. The essential contrasts to RDFS are the 

advanced concepts class restrictions and role restrictions. With these concepts, it is 

possible to express a stronger semantic meaning than in RDFS.  

 

2.2.2 RDF Data Cube Vocabulary and SDMX 

The RDF Data Cube Vocabulary is an approach to publish multi-dimensional data on 

the web [CyRT10]. It is built upon the Statistical Data and Metadata eXchange 

(SDMX), which is the ISO-standard (ISO/TS 17369:2005) for statistical data 

exchange. The RDF Data Cube Vocabulary is an OWL ontology and compatible to 

Linked Data, which enables the following advantages:  

 Observations become web-addressable to be annotated or linked to.  

 Data between statistical and non-statistical data sets can be combined. 

 Flexible, non-proprietary and machine readable means of publication. 

 Standardized tools and components can be reused. 

 

The following figure gives an outline of the RDF Data Cube Vocabulary: 

 

                                                           
8
 http://www.w3.org/TR/owl-features/ 
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Figure 9: RDF Data Cube vocabulary [CyRT10] 

 

 

A cube is represented by qb:DataSet and is linked by qb:structure to a 

qb:DataStructureDefinition. The qb:DataStructureDefinition defines the structure of 

one or more cubes, which consists of a set of components, which are represented by  

qb:ComponentSpecification. There is the possibility to qualify a 

qb:ComponentSpecification by the following: 

 qb:componentRequired to set a component optional. 

 qb:order to order the components for user interfaces. 

 qb:componentAttachement to attach attributes at other levels of the structure. 

Furthermore, each qb:ComponentSpecification refers by the qb:ComponentProperty 

to one of three kinds of components, which are subclasses of 

qb:ComponentProperty: 
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 qb:DimensionProperty: To identify the observations, e.g. time, region. 

 qb:AttributeProperty: To qualify and interpret the observed value(s), e.g. unit, 

scaling factor. 

 Qb:MeasureProperty: The Phenomenon being observed, e.g. turnover, costs. 

Each qb:ComponentProperty refers by the qb:concept to a skos:Concept, a 

predefinied terminology to support interoperability and comparability. An observation, 

to which all corresponding dimensions, measurements, attributes are attached, is 

typed as qb:Observation and is linked by the qb:dataSet to the qb:DataSet.  

The RDF Data Cube Vocabulary also provides the possibility to define slices, which 

allow to group subsets of observations together. Since a slice is also a result of an 

OLAP operation on a multidimensional cube, a defined slice in the RDF Data Cube 

Vocabulary is not relevant for this master thesis.  

To define members of a dimension unambiguously, a qb:DimensionProperty can be 

linked via rdfs:range to a certain data type or via qb:codeList to a 

skos:ConceptScheme. By using a skos:ConceptScheme and other parts of the 

Simple Knowledge Organization System (SKOS)9, hierarchical structures between 

members can be expressed. This vocabulary is described and critically validated in 

section 3 „Expressing OLAP hierarchies in RDF„. 

 

2.2.3 SPARQL 

The SPARQL Protocol And RDF Query Language (SPARQL)10 is a W3C 

Recommendation for querying RDF based information and for representing the 

results. The core of it are simple graph patterns, which can be extended with 

advanced query patterns, such as filtering, grouping, alternatives. Although the 

syntax and usage of SPARQL is similar to the query language for relational 

databases Structured Query Language (SQL), it must be noticed that the two 

languages operate on very different data structures [HiKR09, p. 262].  

                                                           
9
 http://www.w3.org/TR/2009/REC-skos-reference-20090818/ 

10
 http://www.w3.org/TR/rdf-sparql-query/ 



2 Theoretical background 

 
34 

 

Since the official W3C Recommendation of SPARQL is version 1.0, there is already a 

W3C working draft for SPARQL version 1.111 with extended features, which is used 

in this master thesis to query RDF data. 

 

2.2.4 Semantic Web 

Linked Data as approach to connect data on the web is a special aspect of the 

broader Semantic Web [Sack10, pp. 17-18]. The Semantic Web itself is defined as 

an extension of the current Web, in which information is given a well-defined 

meaning, better enabling computers and people to work in cooperation [BeHL01]. 

This definition intonates that the meaning and use of information is essential for the 

collaboration over the web.  Many aspects, such as the stronger collaboration in 

scientific progresses (data interchange) or the interconnection of workflows and 

business processes because of increased cost pressure and competition in business 

are fueling the effort of the Semantic Web [KaBM08, pp. 4-5]. 

From the technology-oriented perspective, the Semantic Web consists of different 

standards that are based on each other. They can be arranged in a Semantic Web 

Layer Cake [Brat07]. For this master thesis, the layers above OWL are not relevant.  

                                                           
11

 http://www.w3.org/TR/sparql11-query/ 
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Figure 10: Semantic Web layer cake
12

 

 

2.2.5 Linking Open Data Cloud and Statistical Linked Data sets 

As described above, the main idea of Linked Data is to interconnect different data 

sources on the World Wide Web by creating typed links between different data sets. 

All data sets, following the four Linked Data principles, which are connected to each 

other, can be taken together in a cloud diagram, which is updated periodically if 

additional data sets are available [CyJe11]. Within this cloud diagram, also Statistical 

Linked Data sets can be found. 

 

                                                           
12

 http://www.w3.org/2007/03/layerCake.png 
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Figure 11: Linking Open Data cloud diagram, September 2011 [CyJe11] 

 

Since it is the aim of this master thesis to derive hierarchies out of Statistical Linked 

Data, relevant data sets are searched. The following assumptions are made that a 

data set can be used to test and evaluate the developed approaches: 

 The data set follows the four Linked Data principles. 

 The data set includes Statistical Linked Data. 

 The data set has a correct and corresponding qb:DataStructureDefinition from 

the RDF Data Cube Vocabulary.  

 

 

The following table includes some examples of data sets that were found on the web 

and fulfill all assumptions. The full table, including links to the data sets and data 

structure definitions has also been published. 13   

                                                           
13

 http://planet-data-wiki.sti2.at/web/Datasets 
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Topic/Example Publisher Measures Dimensions 

electoral 

statistics of a 

German state14 

GESIS – Leibniz 

Institute for the 

Social Sciences 

obsValue geo 

party 

financial data for the 

UK government 

(COINS)15 

data.gov.uk amount refPeriod 

dataType 

dataSubtype 

departmentCode 

accountCode 

programmeObjectCode 

counterpartyCode 

Real GDP growth 

rate in Europe16 

Eurostat obsValue date 

unit 

geo 

timeFormat 

freq 

obsStatus 

data of companies, 

required by law to 

file forms(EDGAR)17 

U.S. Securities 

and Exchange 

Commission  

accountsPayableCurrent 

accruedLiabilitiesCurrent 

(…) 

issuer 

date 

segment 

payments to 

suppliers18 

 

Lichfield District 

Council 

netAmount reference 

payer 

payee 

date 

expenditureLine 

expenditureCategory 

payment 

Table 2: Examples of data sets using the RDF Data Cube Vocabulary 

 

                                                           
14

 http://gesis-lod.appspot.com/ 
15

 http://data.gov.uk/resources/coins 
16

 http://estatwrap.ontologycentral.com/page/tsieb020 
17

 http://edgarwrap.ontologycentral.com/ 
18

 http://spending.lichfielddc.gov.uk/ 
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2.2.6 Linked Data as a source for data warehouses 

The concept of this master thesis is a concretization of the generic BI process, since 

Statistical Linked Data is transformed to an OLAP cube, whereby hierarchies are 

generated.  

There are several general advantages of using ontologies for the design of data 

warehouses, because ontological knowledge may enrich a multidimensional model, 

e.g. to find hierarchies [PaMa11]. A concrete ontology is the RDF Data Cube 

Vocabulary, including Statistical Linked Data. If this serves as data source for data 

warehouses, the following advantages can be recognized: 

 Additional method to analyze Linked Data: 

Besides the possibility to browse Linked Data with a Semantic Web Browser 

or a Faceted Search Browser, it can now be viewed with the common OLAP 

operations in different perspectives and on different levels of detail.  

 Additional type of data sources for data warehouses: 

Data warehouses can be filled with Linked Data, which is an additional type of 

a data source. So not only other data, for example out of relational databases 

or other web data, for example published in XML, can be integrated.  

 Integration of Linked Data and OLAP cubes: 

Statistical Linked Data, both external and captive, can be transformed to a 

cube in a data warehouse, where it can be combined with other data, for 

example captive data out of customer relationship (CRM) or Enterprise 

Resource Planning (ERP) systems in already existing OLAP cubes.  

 Additional semantics: 

The additional semantics of the Linked Data can be used to enrich the data or 

metadata of the existing data warehouse.  

Summarizing these aspects it can be noticed that the two concepts Linked Data and 

OLAP profit by each other.  
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2.3 Hierarchies 

A hierarchy is a system of elements, which are subordinate or superordinate to each 

other. The need for hierarchies in a dimension of a cube is, because things in real 

world can also exhibit hierarchical structures. Because of this special relationship, the 

elements of dimensions, called members, can be arranged in one or more 

hierarchies.  

Since a subordinate member is called child, a superordinate member is called parent 

[MaZi04]. Dependent on the children and parents, each member is assigned to a 

certain level. The sequence of levels is called path and the number of levels, which 

are forming a path is called path length. The uppermost level, having no parent level, 

is called root and levels having no children are called leaf levels. The minimum and 

maximum numbers of members in one level which are related to a member of 

another level is indicated by the cardinality. This master thesis completes these 

terms, used in [MaZi04], by the terms root distance and stage. The number of levels 

without skipping an intermediate level between the root and a particular level is called 

root distance of this level and all levels that have the same distance to the root are 

located on the same stage.  

In the context of OLAP, a formal definition for a hierarchy is as follows: “A hierarchy 

is a set of variables which represent different levels of aggregation of the same 

dimension and which are linked between them by a mapping” [PoRa99]. This means, 

a hierarchy shows the relationships between domains of values (variables), called 

levels and the variable instances, called members.  

Hierarchies enable both, navigation paths through a dimension for end-users and 

aggregation paths for the associated measures [GaGP09, p.58]. Going along a 

hierarchy, drill-down operations towards a lower, more detailed level and roll-up 

operations towards a higher, more generalized level are possible. This master thesis 

introduces the restriction that there are no loops within a path, meaning that a roll up 

respectively drill down operation never links back to a lower, more detailed 

respectively higher, more generalized level. 

From the view of mathematics, these operations are transformations of values from 

one domain to values of another smaller or bigger domain, whereby a mapping 
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between the domains is used [PoRa99]. If the summarizability conditions of 

disjointness and completeness are fulfilled, the mapping defines a containment 

function and it is called full mapping. If there is a full mapping between each adjacent 

couple of variables, the hierarchy is called classification hierarchy, otherwise 

aggregation hierarchy.  

A proposal for a formal notation of hierarchies in a multidimensional model can be 

found in [Vass98]. More than one parent member in a higher level (non-strict 

hierarchies) and descriptive attributes of a level are not expressible with this notation. 

For this reason the following table gives an overview of the already developed 

notation and a proposal for an extension to express all required elements of a proper 

hierarchy. It has to be noticed that the formal defined operations, in particular 

level_climbing and function_application in [Vass98] also have to be adapted, since 

the notation is extended. Because the correct aggregation is not part of this master 

thesis, these cube operations are not defined formally.  

Element Explanation Notation 

Notation proposed by [Vass98]: 

Dimension  𝐷𝑖  
Level   𝐷𝐿𝑖  
Levels of a dimension  levels(𝐷𝑖) 
Hierarchy Lattice of levels (H,≤) 
Dimension path Linear, totally ordered list of 

levels 
𝐷𝑝𝑖  

Levels of a dimension 
path 

 levels(𝐷𝑝𝑖 ) 

Paths of a dimension  paths(𝐷𝑖) 
Member  x 
Members of a level   dom(𝐷𝐿𝑖) 
Operator h Assigning levels to dimensions h(𝐷𝐿𝑖) = D if  𝐷𝐿𝑖  𝜖 levels(D) 
Function level 𝐷𝐿𝑖  is the k-th level of  

dimension path 𝐷𝑝𝑖  with 𝐷𝐿0 

denoting the lowest level 

level(𝐷𝐿𝑖)= k, if 𝐷𝐿𝑖= 
levels(𝐷𝑝𝑖 )[k] 

Children of a member Relationship to members on a 
lower level 

descendants(x, DL) = {𝑥1, 𝑥2 ..., 𝑥𝑘}, 
𝑥1, 𝑥2 ..., 𝑥𝑘𝜖 dom(DL), DL < 𝐷𝐿0 

Proposed extension: 

Parents of a member  Relationship to members on a 
higher level 

ancestors(x, DL) = {𝑦1 , 𝑦2 ..., 𝑦𝑘}, 
𝑦1 , 𝑦2  ..., 𝑦𝑘  𝜖 dom(DL), 𝐷𝐿0< DL  

Descriptive Attribute  a 
Descriptive Attributes 
of a level 

 attributes(𝐷𝐿𝑖) 

Characteristic of 
attributes 

 characteristic(x, a, 𝐷𝐿𝑖) 

Table 3: Formal notation for a hierarchy 
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According to the proposal of [MaZi05], hierarchies in a multidimensional model can 

also be classified by different criteria, which are described in the following 

subsections. The following figure gives an overview, including the relationships of the 

criteria: 

 

Figure 12: Metamodel of hierarchy classification 

 

A graphical example both on the schema level, which describes the relationships of 

the levels, and instance level, where concrete instances are populated, is given for 

each type. Therefore the following notation is used: 

 

Figure 13: Notation of hierarchies in a multidimensional model: (a) level, (b) hierarchy, (c) cardinalities, (d) analysis 

criterion, and (e) fact relationship 

 

The main distinction of different hierarchies is substantiated in the number of analysis 

criteria within one dimension. An analysis criterion represents a substantially criterion 
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used in analysis. For example the regional dimension can have the two analysis 

criteria geographical location and organizational structure. So we fundamentally 

differentiate individual and parallel hierarchies.  

 

2.3.1 Individual hierarchies 

In an individual hierarchy, only one criterion for analysis is used. There may be one 

to n paths through the hierarchy, but finally all paths end at the schema level on the 

same level. So the distinction between simple and multiple alternative hierarchies is 

caused in the number of paths through the hierarchy at the schema level. 

 

2.3.1.1 Simple hierarchies 

A simple hierarchy is a specialization of an individual hierarchy, where exactly one 

path at the schema level is possible. It can be represented as a tree and it is 

characterized by two properties, namely type and strictness.  

 

2.3.1.1.1 Type of simple hierarchies 

 

2.3.1.1.1.1 Symmetric hierarchies 

In a symmetric hierarchy, all levels are mandatory, so that all branches have the 

same length. At the instance level, each parent member must at least have one child 

member.  

 

Figure 14: Example for a symmetric hierarchy: (a) model and (b) instances 
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2.3.1.1.1.2 Asymmetric hierarchies 

In contrast to symmetric hierarchies, not all levels are mandatory in an asymmetric 

hierarchy. This implicates that the branches do not have the same length so that this 

type can be represented as an unbalanced tree. A child member exactly belongs to 

one parent member. 

 

Figure 15: Example for an asymmetric hierarchy: (a) schema and (b) instances 

 

For this hierarchy, completeness is not given, so that the summarizability condition is 

not fulfilled. Therefore two alternative solutions are provided: 

 Transforming an asymmetric hierarchy into a symmetric one using 

placeholders 

 Creating parent child relations 

 

2.3.1.1.1.3 Generalized hierarchies 

A generalized hierarchy represents a generalization/specialization relationship. This 

concept is also used in object oriented programming, where it is called inheritance. 

There are two types of levels: Common levels, where the members within one level 

have the same attributes and specific levels, where the members within one level 

have different attributes. At the schema level, multiple exclusive paths that share 

some levels are possible and at the instance level a member exactly belongs to one 
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path. The levels where the paths are split respectively joined are called splitting or 

joining level.  

 

Figure 16: Example for a generalized hierarchy: (a) schema and (b) instances 

 

A special case of generalized hierarchies is a non-covering hierarchy, where at the 

schema level alternative paths can be achieved by skipping one or more intermediate 

levels. A child member exactly has one parent member, but the length of the paths 

from the leaves to the same parent level may vary for different members.  

 

Figure 17: Example for a non-covering hierarchy 

 

In a generalized hierarchy the mapping from a splitting level to a parent level is 

incomplete, because not all members of the splitting level roll up to a member of 

each parent level. Thus, completeness is not given so the summarizability condition 
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is not fulfilled. For this reason, special aggregation mechanisms are required in roll 

up operations.  

 

2.3.1.1.2 Strictness of simple hierarchies 

 

2.3.1.1.2.1 Strict hierarchies 

In a strict hierarchy, there is at the schema level a one-to-many cardinality between 

all parent and child levels. At the instance level a child member exactly belongs to 

one parent member and a parent member may have several child members. All 

previous examples were strict hierarchies, so there is no figure for this hierarchy. 

 

2.3.1.1.2.2 Non-strict hierarchies 

If there is at the schema level at least one many-to-many cardinality between a 

parent and a child level, a non-strict hierarchy is present. Thus a child member can 

be related to several parent members and also a parent member may have several 

child members at the instance level, so this hierarchy forms a graph. 

 

Figure 18: Example for a symmetric non-strict hierarchy: (a) model and (b) instances 

 

For this hierarchy, disjointness is not given, so that the summarizability condition is 

not fulfilled. Therefore special data structures and algorithms are needed, to 

aggregate data within this hierarchy. One approach is called bridge table, where the 

percentage distribution of a child member to several parent members is used to 
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aggregate the measures. For example employee X in the above figure is assigned to 

section 1 with 20%, to section 2 with 30% and section 3 with 50%. When calculating 

the average on the section level for example, this given percentage distribution is 

considered.  

 

2.3.1.2 Multiple alternative hierarchies 

The previously described hierarchies all were specializations of a simple hierarchy. 

Their common property was that only one path at the schema level is possible. In 

contrast to them, multiple alternative hierarchies share some levels of several non-

exclusive simple hierarchies at the schema level. At the instance level, a child 

member may belong to more than one parent member and n paths through the 

hierarchy are possible. As a consequence, a graph is formed. In analysis, the user 

has to choose one of the alternative paths, because it is semantically not correct to 

simultaneously traverse the different composing simple hierarchies. 

 

Figure 19: Example for a multiple alternative hierarchy: (a) model and (b) relations 
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2.3.2 Parallel hierarchies 

Parallel hierarchies are complementary to individual hierarchies, because not exactly 

one analysis criterion is used, but rather more analysis criteria can be used within 

one dimension. These hierarchies can be dependent or independent. 

 

2.3.2.1 Parallel independent hierarchies 

In a parallel independent hierarchy, there is at the schema level no connection 

between the different analysis criteria, which means they do not share levels. So they 

represent non-overlapping sets of hierarchies, which can be of different kind.  

 

Figure 20: Example for a parallel independent hierarchy 

 

2.3.2.2 Parallel dependent hierarchies 

In a parallel dependent hierarchy, there is at the schema level a connection between 

the different analysis criteria, which means that at the minimum one level of different 

hierarchies is shared. 
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Figure 21: Example for a parallel dependent hierarchy: (a) model and (b) relations 

 

2.3.3 Usefulness of hierarchies 

After all different types of hierarchies have been introduced; this subsection answers 

the question how the usefulness of a hierarchy can be measured formally. This has 

to be explained because the developed approaches generate hierarchies, but make 

no statement about the usefulness of them. So in this subsection metrics for 

measuring the usefulness of a hierarchy are introduced and explained formally. 

The proposed metrics should be seen as an indicator for a human for the usefulness 

of a hierarchy. The ultimately usefulness of a hierarchy definitely depends on more 

aspects: 

 User: 

Usefulness always depends on the personal favorites of a user. Somebody 

preferring for example a clear and excessive structure in a book with many 

classification levels would possibly prefer rather more than less levels in an 

OLAP hierarchy. 
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 Use Case: 

Usefulness also depends on the use case of analyzing the data in an OLAP 

cube. For example to get an overview and a feeling for the data included in a 

cube, possibly a balanced hierarchy with some, but not too many levels is 

reasonable. However, a data analyst searching for specific information on 

many different levels possibly would prefer a proper hierarchy with many 

levels.  

Because the metrics each time depend on and correspond to different things, it has 

to be distinguished between the type of metrics and the correspondence of metrics: 

 Type of metrics: 

o Quantitative metrics: Can be computed with mathematic formulas, since 

they fully depend on number and relationships of levels and members 

of a hierarchy. They are denoted by (n). 

o Qualitative metrics: Have to be estimated by a user, since they depend 

on the usefulness out of the human view.  They are denoted by (q). 

 Correspondence of metrics: 

o Metrics corresponding to one approach: They are valid for one 

approach across all hierarchies that are found with this approach.  

o Metrics corresponding to one found hierarchy: They are valid for one 

distinct hierarchy and they do not depend on the approach, with which 

this hierarchy was found. 

To compare and apply against each other, the following metrics are normalized on 

the interval [0;1]. The higher the value is the better the evaluation is. The formulas of 

the quantitative metrics are explained with an example and the qualitative metrics are 

explained in prose. It is denoted in brackets, on which element the formula is 

referring to. 

 

2.3.3.1 Metrics corresponding to one approach 

The metrics corresponding to one approach refer to the different approaches to 

generate hierarchies, described in section 3. The following metrics are used: 

 Number of found hierarchies (n): 

Number of found hierarchies(dimension) = 
ℎ

ℎ𝑚𝑎𝑥
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h = number of found simple hierarchies in a dimension 

hmax = maximum number of found simple hierarchies in a dimension 

The number of found hierarchies of one approach corresponds then to the 

average of the number of found hierarchies of all dimensions. 

 

 Number of dimensions with at least one hierarchy (n) 

Number of dimensions with at least one hierarchy(approach) = 
dh

d
 

dh = number of dimensions with at least one hierarchy 

d = total number of dimensions   

 

 

2.3.3.2 Metrics corresponding to one found hierarchy 

Metrics corresponding to one found hierarchy cannot be generalized sine they 

depend on the type and strictness of a simple hierarchy. Therefore the following table 

distinguishes strictness on columns and type on rows: 

 Strict Non-Strict 

Symetric 

 

 Balance (n) 

 Cardinality (n) 

 Label-uniqueness (n) 

 Labels of the analysis 

criterions (q) 

 Label-uniqueness (n) 

 Labels of the analysis 

criterions (q) 

 

Asymetric 

 

 Balance of the symmetric 

part (n) 

 Cardinalit of the symmetric 

part (n) 

 Label-uniqueness (n) 

 Labels of the analysis 

criterions (q) 

 Label-uniqueness (n) 

 Labels of the analysis 

criterions (q) 

 

Generalized 

 

 Label-uniqueness (n) 

 Labels of the analysis 

criterions (q) 

 Label-uniqueness (n) 

 Labels of the analysis 

criterions (q) 

Table 4: Metrics of a simple hierarchy depending on type and strictness 
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To explain the formulas of the metrics, the following abstract example is used. There 

is one hierarchy with the root, one level and the leafs. Some of the metrics 

correspond to a certain level, some metrics correspond to a certain member. 

 

 

Figure 22: Example of a hierarchy to explain the formulas 

 

 Balance (n): 

Balance(level) = 1 −  
  pi−μ 

P
i=1

(P−1)μ  + (C−μ)
  

P = total number of parent members  

pi= number of child members of the i-th member 

μ = average number of child members 

C = total number of child members 

 

This metric is changed borrowed from [OrDD06], since it is an indicator for 

navigation efficiency. Here, the denotation is changed to guarantee more 

clarity. The balance of level 1 in the example is then calculated as follows: 

balance(level 1) = 1 −
 8−4 + 2−4 + 2−4 

(3−1)4+(12−4)
=0,5 

The balance of the whole hierarchy corresponds to the average of the 

balances of each level except the root and the leaf level. 

 

 Cardinality (n): 

Cardinality(member) =  
0 if c ≤ 1

exp
−

(c−α )2

2β2

  

c = number of child members  
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α = parameter for the minimum cardinality 

β = parameter for the maximum cardinality 

 

This metric is changed borrowed from [OrDD06], since a suitable parent 

member has a limited but higher than one amount of children. Here, the 

denotation is changed to guarantee more clarity. The cardinality of member A 

in the example with the assumption of a minimum cardinality of 2 and a 

maximum cardinality of 20 children is then calculated as follows: 

Cardinality(A) = exp
−

(8−2)2

2∗202 =0,956 

The cardinality of the whole hierarchy corresponds to the average of the 

cardinalities of each member except the cardinality for the leaf level. 

 

 

 Label-uniqueness (n) 

Label-uniqueness(member) = 
cu

c
 

c = number of child members  

cu  = number of unique-labeled child members 

 

The label-uniqueness of member A in the example is then calculated as 

follows: 

label-uniqueness(A) = 
5

8
 = 0,625 

The label-uniqueness of the whole hierarchy corresponds to the average of 

the label-uniqueness of each member except the label-uniqueness for the leaf 

level. 
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3 Expressing OLAP hierarchies in RDF 

To express all different types of hierarchies in Linked Data, a proper vocabulary is 

required. Therefore this section critically validates the recommendation of the RDF 

Data Cube Vocabulary for expressing hierarchies and proposes an extension for this 

vocabulary. 

 

3.1 Simple Knowledge Organization System (SKOS) 

To express hierarchical structures, the RDF Data Cube Vocabulary recommends the 

use of Simple Knowledge Organization System (SKOS)19, a W3C Recommendation 

for expressing the basic structure and content of concept schemes. 

The central elements in SKOS are concepts, which can be defined as „units of 

thougths‟, e.g. ideas, meanings, or (categories of) objects and events. Each concept 

is an instance of the class skos:Concept. Concepts can be grouped together to a 

skos:ConceptScheme to generate a predefined vocabulary, such as thesauri or 

classification schemes. 

To represent hierarchical relationships between concepts, the properties 

skos:narrower and skos:broader are used. The subject of the property skos:narrower 

is the more generalized concept, so this property should be read as „has narrower 

concept‟. The two properties skos:narrower and skos:broader are in each case 

inverse to each other and each concept may have both, many narrower and many 

broader concepts.  

These two properties are not defined to be transitive. So if a concept A is broader 

than a concept B, which is itself broader than a concept C, the concept A is not 

broader than the concept C. To express these semantics, it is required to use the two 

properties skos:narrowerTransitive and skos:broaderTransitive.  

Each member of a dimension in the RDF Data Cube Vocabulary can be defined as 

skos:Concept. So the actual hierarchy is not expressed with the RDF Data Cube 

Vocabulary but rather with SKOS.  

                                                           
19

 http://www.w3.org/TR/skos-primer/ 



3 Expressing OLAP hierarchies in RDF 

 
54 

 

It must be noticed that all concepts that belong to a concept scheme are potential the 

members of the dimension. A member of a dimension is in union a concept in SKOS. 

If a dimension is linked to a concept scheme and there is a member within this 

dimension that is not included in this concept scheme, this is a mistake in modeling.   

In SKOS it is not forbidden to model loops of broader and narrower relationships. 

E.g. a concept A is broader than a concept B that is itself broader than the concept A. 

In OLAP hierarchies, where the aim is to roll up values, this would not be meaningful 

and cannot be expressed. So if loops in a concept scheme are found, there does not 

exist a standard way to handle this problematic and a human user has to be 

interacted, who defines the relationships in the hierarchy. 

Furthermore, there may exist some concepts with broader and narrower relationships 

that are not members of the dimension. If they are not relevant for the remaining 

hierarchy with the existing members, they may be deleted. There is also the 

possibility to retain them for completeness reasons. So if some additional members, 

for which the concepts have been deleted, occur in a future transformation, the 

hierarchy has not to be constructed anew. This has to be decided beforehand.  

 

3.2 Weaknesses of SKOS 

Although SKOS is the recommended way of representing hierarchical structures in 

statistical data of the RDF Data Cube Vocabulary, it has the following disadvantages 

when modeling hierarchies without further metadata: 

 No membership of a concept to a certain level: 

SKOS works on instance level. This means that a certain concept does not 

belong to a certain level. As a consequence, the following hierarchies can‟t be 

expressed with SKOS because there is no assignment of concepts to levels: 

o Parallel hierarchies  

o Multiple alternative hierarchies 

o Generalized hierarchies 

With reference to Figure 16 of a generalized hierarchy above, for example 

class 1 and sector 1 have the same broader concept branch 1. When 

generating the hierarchy with SKOS, it is not clear that the concepts for class 
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1 and sector 1 do not belong to the same level. Class 1 and sector 1 would be 

narrower concepts from branch 1, but cannot be distinguished by the levels. 

As a further consequence, also labels for levels are missing, since a concept 

in SKOS is not assigned to a certain level and there is no information about 

levels.  

 No Attributes of a level: 

In the multidimensional model of [MaZi05], each level can have besides its key 

attribute certain descriptive attributes and characteristics for these attributes 

for each instance of this level. SKOS however, does not make a statement to 

descriptive attributes of a certain concept. This means that using this 

approach, which is a W3C recommendation, descriptive attributes cannot be 

defined and their characteristics cannot be filled when generating the levels of 

a hierarchy with this approach. 

With reference to Figure 16 of a generalized hierarchy above, e.g. the 

customer address is an attribute of the customer ID in the level customer. In 

SKOS, it cannot be expressed that the customer address is a descriptive 

attribute of the customer ID and its characteristic (e.g. „Town Street 22‟) 

cannot be linked to a certain customer.  

Furthermore, to express generalized hierarchies, it is required that levels can 

be distinguished by its descriptive attributes. That being not the case, 

generalized hierarchies and its special cases non-covering hierarchies cannot 

be expressed with SKOS. 

 Member of a dimension is a concept: 

A member of a dimension in the RDF Data Cube Vocabulary is simultaneous 

a concept in SKOS. This means that all relationships of the concepts 

expressed within SKOS have also significance for the members in the RDF 

Data Cube Vocabulary. This must not always be semantically correct.  

For example there is a concept for a city that has a state as broader concept. 

On the semantic level, the city itself does not have a broader concept but it is 

the concept for the city that has a broader concept. 

 Relationships between concepts independent of concept schemes: 

The hierarchical relationships between two concepts are universal valid, 

independent of concept schemes. For example there should be defined the 
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two concept schemes ex:StrictScheme for a strict hierarchy 

countrylanguage and ex:NonStrictScheme for a non-strict hierarchy 

countrylanguage, but the last relationship in the following example should 

only be valid for the concept scheme ex:NonStrictScheme. This is not 

expressible with SKOS, since the relationships are universal valid.  

ex:Germany   skos:inScheme  ex:StrictScheme. 

ex:Germany   skos:inScheme  ex:NonStrictScheme. 

ex:Switzerland  skos:inScheme  ex:StrictScheme. 

ex:Switzerland  skos:inScheme  ex:NonStrictScheme. 

ex:Germany   skos:broader   ex:German. 

ex:Switzerland  skos:broader   ex:Swiss. 

ex:Switzerland  skos:broader   ex:German. 

 

Summarizing the above disadvantages of SKOS, the following figure gives an 

overview of such hierarchies that can be expressed in SKOS because of the attribute 

and level problematic: 

 

 

Figure 23: Hierarchies expressible with SKOS 
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3.3 Proposed extensions to SKOS 

To express all hierarchies with SKOS and enrich the way, the RDF Data Cube 

vocabulary uses SKOS, the following elements are needed to improve it. Besides the 

use of SKOSE, which is the proposed extension of this master thesis, also 

SKOSCLASS20, which is already a proposed extension to SKOS, is reused in this 

master thesis:  

 Introducing levels: 

To assign concepts to a level, information about levels is required.  

SKOSCLASS suggests the class skosclass:ClassificationLevel, whose 

instances are representing the levels of the hierarchy. Since a concept has no 

information that indicates the membership to a level, the property 

skos:member is suggested to assign a concept to a certain level. Levels are 

then assigned via the property skos:inScheme to a concept scheme and via 

skosclass:depth to a numeric value, representing the root distance. 

Furthermore, a label could be assigned to a certain level via rdfs:label. There 

are two ways of finding labels for a level:  

o Using generic and continuous keys: 

One way to find the labels for the hierarchy levels is using generic and 

continuous keys. For example there is a concept scheme with the 

following relationships for concepts: 

ex:A     skos:broader     ex:C. 

ex:B    skos:broader     ex:C. 

 

The concepts ex:A and ex:B could belong to the same level. Since 

there is nothing available in SKOS that indicates the level, a useful 

label could not be determined. So generic and continuous keys have to 

be used, e.g. „Level 1‟ for the level to which the concept ex:C belongs 

to and „Level 2‟ for the level to which the concepts ex:A and ex:B 

belong to.  

o Using labels of the concepts: 

                                                           
20

 http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS 

file:///D:/Eigene%20Dateien%20Dominik/Studium%20Informationswirtschaft%20KIT/Masterarbeit/ex%23A
file:///D:/Eigene%20Dateien%20Dominik/Studium%20Informationswirtschaft%20KIT/Masterarbeit/ex%23B
http://www.example.org/#C
file:///D:/Eigene%20Dateien%20Dominik/Studium%20Informationswirtschaft%20KIT/Masterarbeit/ex%23A
http://www.example.org/#B
http://www.example.org/#C
file:///D:/Eigene%20Dateien%20Dominik/Studium%20Informationswirtschaft%20KIT/Masterarbeit/ex%23A
http://www.example.org/#B
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Another way is to determine the label for the level with the help of the 

labels of the concepts. If all concepts, which belong to a certain level, 

have similar labels, the label for the level could be determined using 

these labels. E.g. there is a SKOS concept scheme with the following 

concepts and relationships: 

ex:Branch1   skos:broader     ex:Bank1. 

ex:Branch2   skos:broader     ex:Bank1. 

 

The label for the level, to which the two concepts ex:Branch1 and 

ex:Branch2 belong to, could be „Branch‟. 

 Introducing descriptive attributes: 

To define descriptive attributes of a certain level and fill them with 

characteristics, it is required that SKOS should have the possibility to define 

additional properties and fill them with characteristics. There should exist a 

class for descriptive attributes. A suggestion for this class is skose:Attribute. 

All instances of this class are properties. With such a property a concept could 

be linked to an object that indicates the characteristic of this attribute. The 

property of the triple is the attribute and the object of the triple is the 

characteristic of the attribute. Each instance of the class 

skosclass:ClassificationLevel should be linked via the property 

skose:hasAttribute to an instance of skose:Attribute. 

With reference to Figure 16 of a generalized hierarchy above, e.g. the 

customer address is a descriptive attribute of the customer ID in the level 

customer and the characteristic for one customer 123456 is „Town Street 22‟. 

This could be expressed as follows: 

ex:customer   rdf:type   skosclass:ClassificationLevel; 

     skose:hasAttribute  ex:customerAdress. 

ex:customerAdress  rdf:type  skose:Attribute. 

ex:123456   rdf:type   skos:Concept; 

    skos:member  ex:customer; 

    ex:customerAdress “Town Street 22”. 
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 Separation of members in the RDF Data Cube Vocabulary and concepts in 

SKOS: 

For the reasons above, the members of a dimension in the RDF Data Cube 

Vocabulary should be separated from the concepts in SKOS. Therefore the 

URIs for the members should distinguish from the URIs for the concepts. 

Furthermore, for each occurring value of a literal, a separate URI is required. 

Also a property is required that assigns the SKOS concepts to members of a 

dimension. For reuse reasons, this master thesis suggests to use already 

standardized properties for this assignment: 

o rdfs:seeAlso: 

If the dimension member is an URI, the property rdfs:seeAlso is used. 

The property skos:exactMatch or another skos:mappingRelation is not 

used, because domain and range of these properties is each time a 

skos:Concept and the actual dimension member should not be defined 

as skos:Concept.   

o rdfs:label: 

If the dimension member is a literal, the property rdfs:label is used. The 

property skos:notation is not used, because by convention it is only 

used for user-defined data types and this master thesis supports all 

data types, e.g. xsd:date.  

Hence, also several concepts of several schemes in SKOS could be assigned 

to a member without using owl:sameAs. 

 Reification of relationships between concepts: 

AS described above, relationships between concepts are independent of 

concept schemes. To express several concept schemes with the same 

concepts, but different relationships between concepts, relationships are 

reificated using skosclass:hasSource/TargetConcept and are defined as 

skosclass:ConceptAssociation, which can be assigned to the relevant concept 

scheme. For example the relationships of the above example are expressed 

as follows, whereby the last relationship is only assigned to the concept 

scheme ex:NonStrictScheme. 
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ex:Germany_German rdf:type   skosclass:ConceptAssociation; 

   skosclass:hasSourceConcept ex:Germany; 

   rdf:predicate   skos:broader; 

   skosclass:hasTargetConcept ex:German;  

   skos:inScheme   ex:StrictScheme;  

   skos:inScheme   ex:NonStrictScheme. 

ex:Switzerland_Swiss rdf:type   skosclass:ConceptAssociation; 

   skosclass:hasSourceConcept ex: Switzerland; 

   rdf:predicate   skos:broader; 

   skosclass:hasTargetConcept ex:Swiss;  

   skos:inScheme   ex:StrictScheme;  

   skos:inScheme   ex:NonStrictScheme. 

ex:Switzerland_German rdf:type   skosclass:ConceptAssociation; 

   skosclass:hasSourceConcept ex: Switzerland; 

   rdf:predicate   skos:broader; 

   skosclass:hasTargetConcept ex:German;  

   skos:inScheme   ex:NonStrictScheme. 

 

3.4 Resulting vocabulary 

To represent all proper OLAP hierarchies with RDF, the vocabularies of SKOS and 

SKOSCLASS are used and further extended by SKOSE. Since SKOS is already a 

W3C Recommendation, SKOSCLASS is as yet a proposed extension to SKOS. 

SKOSE is a further extension, proposed by this master thesis. The combination of 

these three vocabularies is used for precondition B, to express found hierarchies with 

RDF. The following table gives an overview of the used classes and properties. 

As it is common practice in many data warehouses, an element (e.g. member, level, 

hierarchy) may consist of a (technical) key, a (human-readable) label and a (human-

readable) description. In each time, the URIs of these elements are used as keys, 

rdfs:label as label and rdfs:comment as description.  
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Element or function Class or property Na

me 

hierarchy skos:ConceptScheme cs/ 

assigning a hierarchy to a dimension qb:codeList - 

concepts for members skos:Concept co/ 

linking a concept to its member in case of a resource rdfs:seeAlso - 

linking a concept to its member in case of a literal rdfs:label - 

assigning a concept to a hierarchy skos:inScheme - 

level skosclass:ClassificationLevel cl/ 

assigning a concept to a level skos:member - 

assigning a level to a hierarchy skos:inScheme - 

indicating the root distance of a level skosclass:depth - 

relationship between two concepts skosclass:ConceptAssociation ca/ 

children/parent of a relationship skosclass:hasSourceConcept - 

hierarchical type of a relationship skos:broader/skos:narrower - 

parent/children of a relationship skosclass:hasTargetConcept - 

assigning a relationship to a hierarchy skos:inScheme - 

descriptive attribute skose:Attribute da/ 

assigning an attribute to a level skose:hasAttribute - 

Table 5: Classes and properties to express all proper OLAP hierarchies in RDF 

 

The central element is a skos:ConceptScheme, which represents an OLAP 

hierarchy. To assign a hierarchy to a dimension of a cube, the property qb:codeList is 

used. As described above in the formal definition, an OLAP hierarchy consists of 

members, levels, assignments of members to levels and relationships between 

members. Therefore the following elements are used to represent all different types 

of hierarchies with RDF. 

Members of a dimension are represented as concepts. To avoid that a member of a 

dimension in the RDF Data Cube Vocabulary is simultaneous a concept in SKOS, 

concepts are linked to their corresponding members of a dimension via rdfs:seeAlso 

in case of the member being a resource or via rdfs:label in case of the member being 

a literal. A concept is linked via skos:inScheme to a certain hierarchy.  



3 Expressing OLAP hierarchies in RDF 

 
62 

 

Levels are represented by skosclass:ClassificationLevel. Concepts are assigned to a 

certain level via skos:member and levels are assigned to a certain hierarchy via 

skos:inScheme. This means that concepts are assigned also indirectly (by way of 

levels) to a hierarchy. The property skosclass:depth indicates the root distance of a 

particular level, meaning accordingly to the formal definition the number of levels 

without skipping an intermediate level between the root and a particular level. The 

uppermost level has root distance one. Because the depth of a level in a multiple 

alternative or parallel hierarchy is dependent of the path from this level to the root, 

skosclass:depth is only set for levels of a simple hierarchy, where the depth is 

unambigous.  

Because relationships between concepts depend on a specific hierarchy and are not 

generally valid, they have to be reificated. A skosclass:ConceptAssociation 

represents a relationships between two concepts and links via 

skosclass:hasSourceConcept and skosclass:hasTargetConcept to the children or 

parent of a relationship. To determine whether the source/target concept is the 

child/parent of the relationship, rdf:subject links a relationship to 

skos:broader/skos:narrower, indicating the hierarchical type of the relationship. To 

assign a certain relationship to a hierarchy, the property skos:inScheme is used. 

Descriptive attributes are represented by skose:Attribute. To assign descriptive 

attributes to a level, the property skose:hasAttribute is used. All descriptive attributes 

are properties, which could link concepts to their characteristics of these attributes. 

To guarantee a standardized naming of the different resources, the created URIs of 

the instances of classes are concatenations of the following naming convention: 

 „http://hierarchie.org/‟ 

 [Name of Table 5 „Classes and properties to express all proper OLAP 

hierarchies‟ above, indicating the class of the resource, e.g. „co/‟ for a concept] 

 [Free Part: Relevant substring(s) of related URI(s) without „http://‟ and 

replacement of dots and hashes by slashes or useful free names] 

For example, the concept for the resource <http://dbpedia.org/resource/Germany> 

would be <http://hierarchie.org/co/dbpedia/org/resource/Germany>. 
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4 Transforming Linked Data into OLAP hierarchies  

The transformation of the explicitly expressed hierarchies with the extended SKOS 

vocabulary into the OLAP4J21 standard is described in the following subsections in a 

way that they can be used in OLAP systems. 

 

4.1 OLAP4J 

OLAP4J is an open Java application programming interface (API) for accessing 

multi-dimensional data. It intends to standardize the access on multidimensional data 

on any OLAP server in a way that an OLAP application written in Java for one server 

can easily be switched to another.  

Generally speaking, an OLAP application interacts with an OLAP server by means of 

MDX statements. OLAP4J provides the possibility to create a query by parsing an 

MDX statement or to build a query by manipulating an MDX parse tree, whereby an 

MDX parser library allows an easy conversion of an MDX string to and from a parse 

tree. 

XML for Analysis (XMLA)22 is also a standardized API, designed specifically for the 

data access interaction between a client application and a multi-dimensional data 

provider over the web and had gained a broad support of companies like Hyperion, 

Microsoft, SAP and SAS.  

Both, XMLA and OLAP4J allow an application to execute OLAP queries and to 

browse the metadata of an OLAP schema. Since XMLA is a low-level web-service 

API which leaves a lot of work to the application writer, OLAP4J provides advanced 

functions for parsing MDX, building and transforming MDX query models and for 

mapping result sets into graphical layouts such as pivot tables. However, OLAP4J 

can easily be added to an XMLA back-end. 

In this master thesis OLAP4J serves as interface between the explicitly expressed 

hierarchies with RDF on the one side and an OLAP application on the other side. 

Corresponding to the API, the schema result sets are filled with the relevant 

                                                           
21

 http://www.olap4j.org/ 
22

 http://news.xmlforanalysis.com/what-is-xmla 
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information. Concerning hierarchies, the following three methods are the most 

important ones:  

 getHierarchies 

 getLevels 

 getMembers 

 

Corresponding to one implementation23, OLAP4J supports the following four 

hierarchy types: 

 Balanced: 

In a balanced hierarchy, the parent of each member comes from the level 

immediately above the member.  

 Ragged: 

In a ragged hierarchy, the parent of a member can come from any level above 

the level of the member, not just from the level immediately above. This type 

of hierarchy can also be referred to as ragged-balanced, because levels still 

exist.  

 Unbalanced:  

In an unbalanced hierarchy, the concept of levels is not applied.  

 Network: 

The distinguishing feature of a network hierarchy is that nodes can contain 

more than one parent.  

 

4.2 Mapping between SKOS and OLAP4J 

As described above, the standards XMLA and OLAP4J support four different types of 

hierarchies. However, the hierarchies in a multidimensional model which were 

conceptually introduced in section 2.3 can be more complex. For this reason, a 

mapping between the conceptual model and OLAP4J is required. The found 

hierarchies, which were expressed with SKOS and the proposed extensions, are 

interpreted analogously the conceptual model. 

                                                           
23

 http://msdn.microsoft.com/en-us/library/ms725445%28v=VS.85%29.aspx 
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The following table gives an overview of the mapping between the hierarchies in the 

extended SKOS vocabulary respectively the conceptual model and OLAP4J. It has to 

be noticed that the naming and the understanding of the hierarchies is different, but 

OLAP4J basically supports all simple hierarchies of the extended SKOS vocabulary 

respectively the conceptual model: 

SKOS/Conceptual Model OLAP4J Differences 

parallel independent - A parallel independent hierarchy can be 
transformed in several simple hierarchies, 
which can then be used in OLAP4J.  

parallel dependent - A parallel dependent hierarchy can be split 
in several simple hierarchies, which can 
then be used in OLAP4J. 

multiple alternative - A multiple alternative hierarchy can be split 
in several simple hierarchies, which can 
then be used in OLAP4J. 

simple strict symmetric balanced - 

asymmetric unbalanced - 

generalized 
(except non-
covering) 

balanced or 
unbalanced 

All levels on the same stage of a 
generalized hierarchy have to be 
transformed in one common level in the 
balanced or unbalanced hierarchy. 

non-covering ragged All levels on the same stage of a non-
covering hierarchy have to be transformed 
in one common level in the ragged 
hierarchy. 

non- 
strict 

symmetric 
asymmetric 
generalized 
(inclusive non-
covering) 

network All levels on the same stage of a 
generalized hierarchy have to be 
transformed in one common level in the 
network hierarchy. 

Table 6: Hierarchy mapping between SKOS and OLAP4J 

 

The metamodel of hierarchy classification [Figure 12] shows that both, multiple 

alternative and parallel hierarchies are aggregations of simple hierarchies. Since 

there is no pendant for these complex hierarchies in OLAP4J, this relationship is 

used to reduce the more complex hierarchies into simple hierarchies. After reducing 

multiple alternative and parallel hierarchies to simple hierarchies, all levels of a 

generalized hierarchy on the same stage have to be integrated in one common level 

and the depths of levels have to be set. The following subsections specify the 

transformation of the hierarchies in a way that they can be used in OLAP4J. 
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4.2.1 Transforming parallel hierarchies in individual hierarchies 

Parallel hierarchies are split in several individual hierarchies, whereby each analysis 

criterion results in an own individual hierarchy. All resulting individual hierarchies that 

are multiple alternative hierarchies must then be split further into several simple 

hierarchies.  

 Parallel independent hierarchies:  

Since a parallel independent hierarchy does not share levels, all levels that 

are in the paths of one analysis criterion are part in the resulting individual 

hierarchy. For example the above described parallel independent hierarchy 

[Figure 20] results in the following two simple hierarchies: 

 

Figure 24: Example for a transformation of a parallel independent hierarchy 

 

 Parallel dependent hierarchies: 

Since a parallel dependent hierarchy shares levels, all these levels are part of 

all resulting individual hierarchies. For example the level state in the above 

described parallel dependent hierarchy [Figure 21] is part in both resulting 

simple hierarchies: 
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Figure 25: Example for a transformation of a parallel dependent hierarchy 

 

4.2.2 Transforming multiple alternative hierarchies in simple hierarchies 

Since it is semantically not correct in such hierarchies to simultaneously traverse the 

different composing hierarchies, the user has to choose one of the alternative 

hierarchies. Therefore several simple hierarchies are generated, whereby the shared 

levels are part of each simple hierarchy. For example, the above described multiple 

alternative hierarchy [Figure 19] for the time dimension results in the following two 

simple hierarchies: 

 

Figure 26: Example for a transformation of a multiple alternative hierarchy 

 

4.2.3 Transforming generalized hierarchies 

Since OLAP4J does not allow different levels with the same depth, all levels on the 

same stage have to be integrated in one common level. For example, the above 
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described generalized hierarchy [Figure 16] results in the following symmetric 

hierarchy: 

 

Figure 27: Example for a transformation of a generalized hierarchy 

 

The two levels „Type‟ and „Profession‟ on stage 4 result in one common level „Level 

4‟ and the two levels „Sector‟ and „Class‟ result in one common level „Level 3‟. All 

attributes that have been part of both levels (e.g. „Description‟) result in an attribute in 

the common level. Other attributes, which have been level-specific, are not part of 

the new common level. 

 

4.3 OLAP4J methods 

To use the constructed hierarchies the following subsections specify the OLAP4J 

methods: 

 getHierarchies 

 getLevels 

 getMembers 

To use the specified SPARQL queries for the OLAP4J methods concerning 

hierarchies, the following preparations have to be done: 

 Transformation of hierarchies of the conceptual model into OLAP4J 

hierarchies: 

As described above, the hierarchies of the conceptual model have to be 

transformed into OLAP4J conform hierarchies corresponding to the specified 

mapping. All more complex hierarchies are reduced to simple hierarchies and 

all levels on the same stage in a generalized hierarchy have to be integrated 

in one common level. To select all hierarchies, which fulfill this assumption, 
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the following SPARQL query can be used. Only the selected hierarchies of 

this query are relevant hierarchies for the use in OLAP4J. The results of the 

queries for the methods can be filtered about the result of this query. In this 

query, it is grouped by ?HIERARCHY_UNIQUE_NAME and 

?LEVEL_NUMBER to count all levels per stage per hierarchy. The having 

condition is then used to select only the required hierarchies 

(?HIERARCHY_UNIQUE_NAME). 

 

Select distinct 

#Relevant hierarchies for OLAP4J 

?HIERARCHY_UNIQUE_NAME 

where{ 

Select distinct 

?HIERARCHY_UNIQUE_NAME 

?LEVEL_NUMBER 

(count(?LEVEL_NUMBER) AS ?numberOfLevelsOnTheSameStage) 

 

where{ 

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme. 

?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel. 

?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?LEVEL_UNIQUE_NAME skosclass:depth ?LEVEL_NUMBER. 

} 

GROUP BY  

?HIERARCHY_UNIQUE_NAME 

?LEVEL_NUMBER 

HAVING(?numberOfLevelsOnTheSameStage = 1)} 

 

 

 Only skos:broader instead of skos:narrower properties are used: 

Since there is the possibility to express hierarchical structures bottom-up or 

top-down, the used properties have to be harmonized to have the possibility to 

use only skos:broader instead of skos:narrower. This can be done with the 

following SPARQL construct query, whereby the resulting triples have to be 

added in the triple store. 

Construct { 

#Transforming skos:narrower in skos:broader concept associations  

?relationshipBroader rdf:type skosclass:ConceptAssociation. 

?relationshipBroader skos:inScheme ?conceptScheme. 

?relationshipBroader skosclass:hasSourceConcept ?member. 
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?relationshipBroader rdf:predicate skos:broader. 

?relationshipBroader skosclass:hasTargetConcept ?parent. 

} 

where{ 

?relationship rdf:type skosclass:ConceptAssociation. 

?relationship skos:inScheme ?conceptScheme. 

?relationship skosclass:hasSourceConcept ?parent. 

?relationship rdf:predicate skos:narrower. 

?relationship skosclass:hasTargetConcept ?member. 

BIND(URI(CONCAT(STR(?relationship),"_BROADER")) AS ?relationshipBroader) 

} 

 

4.3.1 getHierarchies 

Since it is not trivial to determine the structure of the resulting hierarchy for the use in 

OLAP4J, this part is separated from determining the remaining variables. For each of 

the four different structures, an own SPARQL query is created to select the 

hierarchies, having the particular structure: 

 MD_STRUCTURE_FULLYBALANCED (0): 

In this query it has to be proofed if each member 

(?MEMBER_UNIQUE_NAME) has a child (possibly indirect) on the leaf level. 

Therefore, a property path is used and the results have to be grouped by 

?HIERARCHY_UNIQUE_NAME and ?STRUCTURE. To select only the 

required hierarchies, the having condition is used. 

Select distinct  

#Structure of concept scheme  = MD_STRUCTURE_ FULLYBALANCED (0) 

?HIERARCHY_UNIQUE_NAME ?STRUCTURE 

where{ 

Select distinct 

?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME 

(max(xsd:integer(?CHILD_LEVEL_NUMBER))AS ?LEAF_LEVEL_NUMBER) ?STRUCTURE 

where{ 

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme. 

?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?MEMBER_UNIQUE_NAME skos:member ?MEMBER_LEVEL. 

?MEMBER_UNIQUE_NAME rdf:type skos:Concept. 

?MEMBER_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?MEMBER_LEVEL rdf:type skosclass:ClassificationLevel. 

#?MEMBER_LEVEL skosclass:depth "1". 

?MEMBER_UNIQUE_NAME (^skosclass:hasTargetConcept/skosclass:hasSourceConcept)* 

?CHILD_UNIQUE_NAME. 
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?CHILD_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?CHILD_UNIQUE_NAME skos:member ?CHILD_LEVEL. 

?CHILD_UNIQUE_NAME rdf:type skos:Concept. 

?CHILD_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?CHILD_LEVEL rdf:type skosclass:ClassificationLevel. 

?CHILD_LEVEL skosclass:depth ?CHILD_LEVEL_NUMBER. 

BIND("0" AS ?STRUCTURE) 

} GROUP BY ?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME ?STRUCTURE 

} GROUP BY ?HIERARCHY_UNIQUE_NAME ?STRUCTURE 

HAVING ( 

(max(xsd:integer(?LEAF_LEVEL_NUMBER)))*(count(xsd:integer(?LEAF_LEVEL_NUMBER)

)) = (sum(xsd:integer(?LEAF_LEVEL_NUMBER))) 

) 

 

 MD_STRUCTURE_RAGGEDBALANCED (1): 

In this query it has to be proofed if there is a difference between the depths of 

levels of a concept association which is higher than one.  

Select distinct 

#Structure of concept scheme  = MD_STRUCTURE_RAGGEDBALANCED (1) 

?HIERARCHY_UNIQUE_NAME ?STRUCTURE 

where{ 

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme. 

?relationship rdf:type skosclass:ConceptAssociation. 

?relationship skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?relationship skosclass:hasSourceConcept ?MEMBER_UNIQUE_NAME. 

?relationship rdf:predicate skos:broader. 

?relationship skosclass:hasTargetConcept ?PARENT_UNIQUE_NAME. 

 

?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?MEMBER_UNIQUE_NAME skos:member ?MEMBER_LEVEL. 

?MEMBER_UNIQUE_NAME rdf:type skos:Concept. 

?MEMBER_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?MEMBER_LEVEL rdf:type skosclass:ClassificationLevel. 

?MEMBER_LEVEL skosclass:depth ?MEMBER_LEVEL_NUMBER. 

 

?PARENT_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?PARENT_UNIQUE_NAME skos:member ?PARENT_LEVEL. 

?PARENT_UNIQUE_NAME rdf:type skos:Concept. 

?PARENT_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?PARENT_LEVEL rdf:type skosclass:ClassificationLevel. 

?PARENT_LEVEL skosclass:depth ?PARENT_LEVEL_NUMBER. 

 

BIND("1" AS ?STRUCTURE) 

FILTER(xsd:integer(?MEMBER_LEVEL_NUMBER) - 

(xsd:integer(?PARENT_LEVEL_NUMBER)) >1) 

} 
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 MD_STRUCTURE_UNBALANCED (2): 

In this query it has to be proofed if there is a member on a higher 

level(?MEMBER_UNIQUE_NAME) which has no child (possibly indirect) on 

the leaf level. This query is nearly the same to the first one, with the difference 

of the reverse having condition.  

Select distinct  

#Structure of concept scheme  = MD_STRUCTURE_UNBALANCED (2) 

?HIERARCHY_UNIQUE_NAME ?STRUCTURE 

where{ 

Select distinct 

?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME 

(max(xsd:integer(?CHILD_LEVEL_NUMBER))AS ?LEAF_LEVEL_NUMBER) ?STRUCTURE 

where{ 

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme. 

?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?MEMBER_UNIQUE_NAME skos:member ?MEMBER_LEVEL. 

?MEMBER_UNIQUE_NAME rdf:type skos:Concept. 

?MEMBER_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?MEMBER_LEVEL rdf:type skosclass:ClassificationLevel. 

#?MEMBER_LEVEL skosclass:depth "1". 

?MEMBER_UNIQUE_NAME (^skosclass:hasTargetConcept/skosclass:hasSourceConcept)* 

?CHILD_UNIQUE_NAME. 

 

?CHILD_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?CHILD_UNIQUE_NAME skos:member ?CHILD_LEVEL. 

?CHILD_UNIQUE_NAME rdf:type skos:Concept. 

?CHILD_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?CHILD_LEVEL rdf:type skosclass:ClassificationLevel. 

?CHILD_LEVEL skosclass:depth ?CHILD_LEVEL_NUMBER. 

 

BIND("2" AS ?STRUCTURE) 

} GROUP BY ?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME ?STRUCTURE 

} GROUP BY ?HIERARCHY_UNIQUE_NAME ?STRUCTURE 

HAVING ( 

(max(xsd:integer(?LEAF_LEVEL_NUMBER)))*(count(xsd:integer(?LEAF_LEVEL_NUMBER)

)) != (sum(xsd:integer(?LEAF_LEVEL_NUMBER))) 

) 

 

 MD_STRUCTURE_NETWORK (3): 

In this query it has to be proofed if there is a member, having more than one 

parent. For this reason the result is grouped by 

?HIERARCHY_UNIQUE_NAME and ?STRUCTURE with the having condition 

that the count of parents is greater than one. 
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Select distinct 

#Structure of concept scheme  = MD_STRUCTURE_NETWORK (3) 

?HIERARCHY_UNIQUE_NAME ?STRUCTURE  

where{ 

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme. 

?relationship rdf:type skosclass:ConceptAssociation. 

?relationship skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?relationship skosclass:hasSourceConcept ?MEMBER_UNIQUE_NAME. 

?relationship rdf:predicate skos:broader. 

?relationship skosclass:hasTargetConcept ?PARENT_UNIQUE_NAME. 

 

?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?MEMBER_UNIQUE_NAME skos:member ?MEMBER_LEVEL. 

?MEMBER_UNIQUE_NAME rdf:type skos:Concept. 

?MEMBER_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?MEMBER_LEVEL rdf:type skosclass:ClassificationLevel. 

 

?PARENT_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?PARENT_UNIQUE_NAME skos:member ?PARENT_LEVEL. 

?PARENT_UNIQUE_NAME rdf:type skos:Concept. 

?PARENT_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME. 

?PARENT_LEVEL rdf:type skosclass:ClassificationLevel. 

 

BIND("3" AS ?STRUCTURE) 

} GROUP BY 

?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME ?STRUCTURE 

HAVING(COUNT(?PARENT_UNIQUE_NAME) > 1) 

 

There may be special cases, where a concept scheme is in the result of the query for 

the structure MD_STRUCTURE_NETWORK (3) and in the result of another query. In 

this case, the structure of the concept scheme is MD_STRUCTURE_NETWORK (3).  

The following SPARQL query can be used for the other important variables for the 

OLAP4J method getHierarchies. In order to have no members in the result but 

anyway to count the number of members (?HIERARCHY_CARDINALITY), the result 

of the query is grouped by the important other variables. Since there may be several 

labels for a concept scheme (?HIERARCHY_UNIQUE_NAME), it is filtered by the 

English label. Distinct is needed to guarantee that the same line is not included 

several times in the result, because the same triple could exist several times. For 

example if the same English label is crawled several times, because it is included in 

several information resources, only one of these same triples is needed. 
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Select distinct 
#OLAP4J method getHierarchies 
?CUBE_NAME 
?DIMENSION_UNIQUE_NAME 
?HIERARCHY_NAME 
?HIERARCHY_UNIQUE_NAME 
(count(?MEMBER_UNIQUE_NAME) AS ?HIERARCHY_CARDINALITY) 
where{ 
?CUBE_NAME qb:component ?compSpec. 
?CUBE_NAME rdf:type qb:DataStructureDefinition. 
?compSpec qb:dimension ?DIMENSION_UNIQUE_NAME.  
?DIMENSION_UNIQUE_NAME qb:codeList ?HIERARCHY_UNIQUE_NAME. 
?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme. 
OPTIONAL{?HIERARCHY_UNIQUE_NAME rdfs:label ?HIERARCHY_NAME. 
Filter(lang(?HIERARCHY_NAME)="en")} 
 
?MEMBER_UNIQUE_NAME rdf:type skos:Concept. 
?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
?MEMBER_UNIQUE_NAME skos:member ?LEVEL_UNIQUE_NAME. 
 
?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel. 
?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
} 
GROUP BY 
?CUBE_NAME 
?DIMENSION_UNIQUE_NAME 
?HIERARCHY_NAME 
?HIERARCHY_UNIQUE_NAME 

 

In the result of this query, the structure is not included since it can be determined with 

the four queries above. For this reason, the structures of the hierarchies have to be 

determined with the four queries above and added to the result of this query.  

 

4.3.2 getLevels 

The following SPARQL query can be used for the OLAP4J method getLevels. In 

order to have no members in the result but anyway to count the number of members 

of the level (?LEVEL_CARDINALITY), the result of the query is grouped by the other 

important variables. Since there may be several labels for a concept scheme 

(?HIERARCHY_UNIQUE_NAME) and a level (?LEVEL_UNIQUE_NAME), each time 

it is filtered by the English label. Distinct is needed to guarantee that the same line is 

not included several times in the result, because the same triple could exist several 

times. For example if the same English label is crawled several times, because it is 

included in several information resources, only one of these same triples is needed. 
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Select distinct 
#OLAP4J method getLevels 
?CUBE_NAME 
?DIMENSION_UNIQUE_NAME 
?HIERARCHY_NAME 
?HIERARCHY_UNIQUE_NAME 
?LEVEL_NAME 
?LEVEL_UNIQUE_NAME 
?LEVEL_NUMBER 
(count(?MEMBER_UNIQUE_NAME) AS ?LEVEL_CARDINALITY) 
where{ 
?CUBE_NAME qb:component ?compSpec. 
?CUBE_NAME rdf:type qb:DataStructureDefinition. 
?compSpec qb:dimension ?DIMENSION_UNIQUE_NAME.  
?DIMENSION_UNIQUE_NAME qb:codeList ?HIERARCHY_UNIQUE_NAME. 
?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme. 
OPTIONAL{?HIERARCHY_UNIQUE_NAME rdfs:label ?HIERARCHY_NAME. 
Filter(lang(?HIERARCHY_NAME)="en")} 
 
?MEMBER_UNIQUE_NAME rdf:type skos:Concept. 
?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
?MEMBER_UNIQUE_NAME skos:member ?LEVEL_UNIQUE_NAME. 
 
?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel. 
?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
 
OPTIONAL{?LEVEL_UNIQUE_NAME rdfs:label ?LEVEL_NAME. 
Filter(lang(?LEVEL_NAME)="en")} 
?LEVEL_UNIQUE_NAME skosclass:depth ?LEVEL_NUMBER. 
} 
GROUP BY 
?CUBE_NAME 
?DIMENSION_UNIQUE_NAME 
?HIERARCHY_NAME 
?HIERARCHY_UNIQUE_NAME 
?LEVEL_NAME 
?LEVEL_UNIQUE_NAME 
?LEVEL_NUMBER 

 

4.3.3 getMembers 

The following SPARQL query can be used for the OLAP4J method getMembers. 

Hereby, the first part of the where clause which is before the UNION statement 

selects all members that are part of a concept association and the corresponding 

relationships. The second part of the where clause which is after the UNION 

statement selects all members of the uppermost level, since they have no parents. 

Since a member (?MEMBER_NAME) may have several labels, it is filtered for the 

English label. Distinct is needed to guarantee that the same line is not included 

several times in the result, because the same triple could exist several times. For 
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example if the same English label is crawled several times, because it is included in 

several information resources, only one of these same triples is needed. 

Select distinct 
#OLAP4J method getMembers 
?CUBE_NAME 
?DIMENSION_UNIQUE_NAME 
?HIERARCHY_UNIQUE_NAME  
?LEVEL_UNIQUE_NAME 
?LEVEL_NUMBER 
?MEMBER_NAME 
?MEMBER_UNIQUE_NAME   
?PARENT_LEVEL   
?PARENT_UNIQUE_NAME 
where { 
{?CUBE_NAME qb:component ?compSpec. 
?CUBE_NAME rdf:type qb:DataStructureDefinition. 
?compSpec qb:dimension ?DIMENSION_UNIQUE_NAME.  
?DIMENSION_UNIQUE_NAME qb:codeList ?HIERARCHY_UNIQUE_NAME. 
?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme. 
 
?MEMBER_UNIQUE_NAME skos:member ?LEVEL_UNIQUE_NAME. 
?MEMBER_UNIQUE_NAME rdf:type skos:Concept. 
?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
 
?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel. 
OPTIONAl{?MEMBER_UNIQUE_NAME rdfs:label ?MEMBER_NAME. 
Filter(lang(?MEMBER_NAME)="en")} 
?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
?LEVEL_UNIQUE_NAME skosclass:depth ?LEVEL_NUMBER. 
 
?relationship rdf:type skosclass:ConceptAssociation. 
?relationship skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
?relationship skosclass:hasSourceConcept ?MEMBER_UNIQUE_NAME. 
?relationship rdf:predicate skos:broader. 
?relationship skosclass:hasTargetConcept ?PARENT_UNIQUE_NAME. 
 
?PARENT_UNIQUE_NAME skos:member ?PARENT_LEVEL. 
?PARENT_UNIQUE_NAME rdf:type skos:Concept. 
?PARENT_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
?PARENT_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
?PARENT_LEVEL rdf:type skosclass:ClassificationLevel. 
} 
UNION 
{ 
?CUBE_NAME qb:component ?compSpec. 
?CUBE_NAME rdf:type qb:DataStructureDefinition. 
?compSpec qb:dimension ?DIMENSION_UNIQUE_NAME.  
?DIMENSION_UNIQUE_NAME qb:codeList ?HIERARCHY_UNIQUE_NAME. 
?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme. 
?MEMBER_UNIQUE_NAME skos:member ?LEVEL_UNIQUE_NAME. 
?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
?MEMBER_UNIQUE_NAME rdf:type skos:Concept. 
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?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel. 
OPTIONAl{?MEMBER_UNIQUE_NAME rdfs:label ?MEMBER_NAME. 
Filter(lang(?MEMBER_NAME)="en")} 
?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME. 
?LEVEL_UNIQUE_NAME skosclass:depth ?LEVEL_NUMBER. 
FILTER(xsd:integer(?LEVEL_NUMBER) =  1) 
}} 
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5 Approaches for learning OLAP hierarchies from RDF 

In this section the different approaches to generate useful hierarchies from Statistical 

Linked Data are explained in detail. There have been developed specific approaches 

for often occurring data (e.g. temporal and geographical) as well as generic 

approaches that can be applied to all data. Before describing the approaches itself, 

the steps are explained independently of a concrete approach and ideas for a 

possible web service are introduced.  

An intensive literature study concerning the generation of OLAP hierarchies from 

Statistical Linked Data has been made, but no algorithms or concepts have been 

found. Indeed, the developed approaches of this master thesis are not additional 

methods or extensions of already existing algorithms and can therefore be seen as 

new ideas to generate OLAP hierarchies. The essential precondition for all 

approaches is the existence of triples, in which members of a dimension of a data set 

are linked to other resources which can be used for constructing hierarchies. 

To each approach the following information is given, which respectively results in an 

own subsection. For reasons of clarity and comprehensibility, the naming of URIs is 

sometimes simplified when describing the approaches: 

 An overview of the approach 

 The possible parameters 

 The algorithm including possible SPARQL construct queries  

 An example on real data 

 The possible resulting hierarchies 

 Some criticism 

 

5.1 Steps of the approaches 

The following flow chart shows the steps of generating hierarchies which is 

independent of a concrete approach. This means that all approaches follow this 

universally valid schema. 
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Figure 28: Steps of the approaches 

 

5.1.1 Start 

For the start of each approach, the following elements have to be given. They all are 

crawled in a triple store, where the construction of the hierarchies takes place. Also 

the dictionary information, such as the resources that are owl:sameAs to the 

members of the given dimension, is loaded in the triple store:  

 One or more data sets 

 One or more corresponding data structure definitions 

 One (common) dimension  

 

5.1.2 Creating a concept scheme 

The given dimension may be linked via qb:codeList to one or more concept schemes. 

If there is a concept scheme, which includes concepts for exactly those members 

that are used in the given dimension of the data set(s), this concept scheme is used. 
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Otherwise if the concept scheme comprises more or less concepts than members 

actually are used in the data set(s), a new concept scheme is created, which is linked 

via the property qb:codeList to the given dimension. For all members of all data sets, 

including the given dimension, concepts are created, which are linked via 

rdfs:seeAlso or rdfs:label to the actual member and are assigned via the property 

skos:inScheme to the created concept scheme. The resulting triples are added to the 

triple store. The created concept schemes are specific for the given data set(s), but 

are linked via qb:codeList to the given dimension of the given data structure 

definition(s). 

 

5.1.3 Loading relevant triples 

To generate hierarchies out of the created concepts, further metadata of the 

members is needed. Therefore, relevant triples are loaded and added to the triple 

store. Loading means both, retrieving triples from a certain information resource and 

crawling which could for example be done with ldspider24, a Java implementation for 

a linked data web crawler. Potentially this could also involve RDF-izing sources, 

meaning that non-RDF data could also be crawled from relevant data sources which 

is then transformed into RDF. However, this additional possibility to RDF-izing data 

isn‟t used in the approaches of this master thesis.  

 

5.1.4 Adding hierarchical information 

The crawled triples are used to generate hierarchical information, meaning 

classification levels, to which concepts are assigned via skos:member and concept 

associations, to which concepts are assigned via skosclass:hasSourceConcept and 

skosclass:hasTargetConcept. Both, classification levels and concept associations are 

assigned to the concept scheme via skos:inScheme. Additional concepts could 

possibly be created that were also assigned to levels and the concept scheme. 

Technically speaking, this can be done with SPARQL construct queries in the triple 

store. The resulting triples are then added to the triple store. 

 

                                                           
24

 http://code.google.com/p/ldspider/ 

http://code.google.com/p/ldspider/
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5.1.5 End of the approach reached? 

After hierarchical information is added to the concept scheme, it has to be checked, if 

the end of the approach is reached. If this is the case, no additional triples are 

crawled and the run of the approach terminates. Otherwise, the run of the approach 

continues with step 2 „Loading relevant triples‟. 

 

5.1.6 End 

If the end of the approach is reached, the created concept scheme represents the 

resulting hierarchy of the run of the approach. It includes the hierarchical structures, 

expressed with the introduced SKOS vocabulary and proposed extensions. The 

resulting concept schemes can then be used in OLAP applications. 

Several data sets, including data sets on different aggregation layer, can potential be 

integrated, using the resulting concept scheme for the common dimension of the data 

structure definitions. Integration means that observations of different data sets can be 

combined. The following cases can be distinguished: 

 Some dimension members of different data sets have the same parent in a 

higher level in the created concept scheme. For example for the time 

dimension the member 2011-12 is used in one data set and the member 

2011-08 is used in another data set. Both data sets can be integrated, using 

the created concept scheme, which includes the parent 2011 of both 

members.  

 Some dimension members are the parents in a higher level of other members 

of the different data sets in the created concept scheme. For example for the 

time dimension the member 2011 is used in one data set and the member 

2011-08 is used in another data set. Both data sets can be integrated, using 

the created concept scheme, where 2011 is the parent of 2011-08 
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5.2 Technical implementation  

The technical implementation of the developed approaches to generate hierarchies 

could either be done as an own system or web based. The idea of this master thesis 

is to provide a web service which generates hierarchies from Statistical Linked Data.  

The different approaches could be represented as request-response port types of a 

web service. This means that per each approach one method is provided, which can 

be called by the service consumer. The following URL parameters of a request have 

to be filled by the service consumer: 

 ds: URI(s) of one or more data sets 

 dsd: URI(s) of one or more corresponding data structure definitions 

 dim: URI of one (common) dimension  

 (further approach-specific parameters) 

The web service then makes use of the developed approaches depending on the 

called methods and values of the parameters. Each approach works for the specified 

dimension, the given data set(s) and the corresponding data structure definition(s). 

The response of the service provider is a concept scheme that is linked to the given 

dimension, including the generated hierarchical structures. It is expressed with the 

introduced SKOS vocabulary and proposed extensions, serialized in RDF/XML. 

 

5.3 Specific approaches 

The specific approaches are developed for the temporal and geographical dimension 

of a cube. This means that special preconditions have to be fulfilled that these 

approaches can be used. To each approach, SPARQL construct queries are given, 

which can be executed to construct the required triples.  

 

5.3.1 Approach ‘time’ 

 

5.3.1.1 Overview 

This approach, called „time‟, is a special approach for constructing hierarchies within 

the time dimension in a cube. As postulated by Inmon, data in a data warehouse 
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should be analyzable within the time dimension, called „Time-variant‟ [Inmo02, p.31]. 

The time dimension is contained in many cubes due to the fact that time is always 

running and measured data is changing over the time. Because of this special 

character of the time dimension, it is possible to generate hierarchies statically with 

metadata of a central time service as explained in the following. 

Regarding the time dimension there may be specific hierarchies, for example types of 

days in a certain country (including members: working day, weekend, public holiday) 

or a university calendar as shown in the following figure: 

 

Figure 29: Examples for specific hierarchies of the time dimension: schema 

 

Furthermore, there may also be hierarchies which are universally valid for time points 

in a specific calendar, e.g. the Gregorian calendar, which is the idea of this approach. 

The following example of a multiple alternative hierarchy with the common levels 

„Day‟ and „Year‟ serves as running example for this approach. 
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Figure 30: Resulting multiple alternative hierarchy of the approach ‘Time’: schema 

 

Out of this multiple alternative hierarchy, the following two simple hierarchies that are 

both symmetric are constructed: 

 „DayToYearViaMonth‟: This hierarchy is strict and consists of the following 

three levels: 

DayMonthYear 

 „DayToYearViaWeek‟: This hierarchy consists of the three levels  

DayWeekYear 

and is non-strict since a week can belong to two years. For example the 

calendar week 01/2012 begins with 12/31/2011 and ends with 06/01/2012, so 

it belongs to the two years 2011 and 2012, because in a roll up to the level 

year, the day 12/31/2011 would roll up to the year 2011 and the day 

06/01/2012 would roll up to the year 2012 even if they are in the same 

calendar week.  

The assumption made in this example is that a day is the most granular value in 

statistical data, so the lowest level of the two hierarchies is always a day. For 

example this can be seen in the time dimension in an EUROSTAT data structure 

definition25, which also has as rdfs:range the datatype xsd:date, indicating that a day 

is the most granular value. However, this approach would also work for more 

granular data, e.g. on hour, minute and second level. Such a granularity would 

                                                           
25

 http://estatwrap.ontologycentral.com/dsd/teilm020 
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possibly be required in technical measured data. Therefore the hierarchies could be 

extended as follows: 

SecondMinuteHourDay 

Although it is assumed that the most general values in statistical data are years, this 

approach should also work for more general data, e.g. decades, centuries and 

millenniums. Hence the hierarchies could also be extended on the other side as 

follows: 

YearDecadeCenturyMillennium 

Finally, the hierarchies could also be extended by using more levels  which are 

between the month and the year level, e.g. quarters and half-years. So the 

hierarchies could also be extended in the middle as follows: 

MonthQuarterHalf-YearYear 

 

5.3.1.2 Algorithm 

To generate hierarchies out of the time dimension the following steps have to be 

done. 

 

5.3.1.2.1 Start  

The algorithm to generate URIs out of literal values works if the range of a 

qb:DimensionProperty or the data types of the members within a dimension have one 

of the following primitive XML Schema data types. If this is not the case, no 

hierarchies are generated:  

 xsd:dateTime 

 xsd:date 

 xsd:gYearMonth 

 xsd:gYear 
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5.3.1.2.2 Creating a concept scheme  

The main idea of this approach is using URIs instead of literals for the time 

dimension in statistical data sets. Thus, for all literal values that may potentially occur 

in the time dimension URIs are created. Due to the fact that explicit hierarchies can 

only be expressed with URIs it is not possible to use literals instead. Consequently, 

literal values cannot be assigned to concept schemes despite concept schemes for 

each dimension are needed to express hierarchies. Since only a limited number of 

different values in the time dimension can occur therefore only a limited number of 

URIs has to be created.  

The lexical representations of the data types are interpreted following the XML 

Schema specification26. For each literal value that occurs as different second, minute, 

hour, day, month or year an URI is used for representing the corresponding time 

instants. For reuse reasons the URIs of already existing time services are used. 

Because of the world-wide use of the Gregorian calendar, this approach also uses 

the Gregorian calendar, independent of time zones, for what the Gregorian URI set27 

of data.gov.uk28 is used. This URI set already includes temporal relationships 

between different time instants which is later used to define hierarchies. In fact, also 

more concept schemes could be provided using other calendars (e.g. Julian 

calender) or time-zone specific concept schemes for what the URIs of placetime29 

could be used.  

The following table shows the lexical representations for the data types including an 

example value which results in an example URI. For example the value 2011-10-17 

of the xsd:date data type would result in the URI refgovukday:2011-10-17 

representing the 17th of October, 2011.  

  

                                                           
26

 http://www.w3.org/TR/xmlschema-2/ 
27

 http://www.epimorphics.com/web/wiki/using-interval-set-uris-statistical-data 
28

 http://data.gov.uk/ 
29

 http://www.placetime.com/ 
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Datatype Lexical representation Resulting URI 

xsd:dateTime '-'? yyyy '-' mm '-' dd 'T' hh ':' mm 

':' ss ('.' s+)? (zzzzzz)?  

e.g.: 2011-10-17T14:23:17 

refgovukminute:2011-10-17T14:23:17 

xsd:date '-'? yyyy '-' mm '-' dd zzzzzz? 

e.g.: 2011-10-17 

refgovukday:2011-10-17 

xsd:gYearMonth '-'? yyyy '-' mm ' 

e.g.: 2011-10 

refgovukmonth:2011-10 

xsd:gYear '-'? yyyy  

e.g.: 2011 

refgovukyear:2011 

Table 7: Temporal data types 

 

After the generation of URIs for each literal value these URIs can be linked via the 

rdfs:label property to the corresponding literal values that are members of the 

dimension as follows:  

refgovukday:2011-10-17 rdfs:label   2011-10-17. 

 

To assign the created URIs to a concept scheme for each of the above described 

simple hierarchies a concept scheme has to be defined as follows. The label for the 

concept scheme could be „Day to year via month‟ respectively „Day to year via week‟. 

hrc:cs/DayToYearViaMonth rdf:type    skos:ConceptScheme; 

   rdfs:label   “Day to year via month”. 

hrc:cs/DayToYearViaWeek rdf:type    skos:ConceptScheme; 

   rdfs:label   “Day to year via week”. 

 

The dimension of a data structure definition is then linked via qb:codeList to the 

created concept schemes if the range of this dimension is one of the above 

described data types. It has to be noticed that the created concept schemes are 

specific for a certain data set but are linked via qb:codeList to a dimension of a data 

structure definition.  
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The created URIs are then defined as concepts and assigned to the respective 

schemes as follows. Since the created URIs for days and years are assigned to both 

concept schemes the created URIs for months are only assigned to the concept 

schemes „DayToYearViaMonth‟, since only this concept scheme includes months : 

refgovukday:2011-10-17 rdf:type   skos:Concept; 

   skos:inScheme  hrc:cs/DayToYearViaMonth; 

   skos:inScheme  hrc:cs/DayToYearViaWeek. 

refgovukmonth:2011-10  rdf:type   skos:Concept; 

   skos:inScheme  hrc:cs/DayToYearViaMonth. 

refgovukyear:2011  rdf:type   skos:Concept; 

   skos:inScheme  hrc:cs/DayToYearViaMonth; 

   skos:inScheme  hrc:cs/DayToYearViaWeek. 

 

For constructing these triples the following SPARQL construct query can be used. 

Hereby, the given data set(s), data structure definition(s) and dimension have to be 

filled in the filter statements and an URI for the resulting concept scheme has to be 

defined and filled in the bind statements (bold marked). 

 

Construct { 

#Generating concepts for time literals and assigning them to a concept scheme 

?dimension qb:codeList ?conceptScheme. 

?conceptScheme rdf:type skos:ConceptScheme. 

?conceptScheme rdfs:label “Day to year via month”@en. 

 

?yearConcept rdfs:label ?yearMember. 

?yearConcept skos:inScheme ?conceptScheme. 

?yearConcept rdf:type skos:Concept. 

 

?monthConcept rdfs:label ?monthMember. 

?monthConcept skos:inScheme ?conceptScheme. 

?monthConcept rdf:type skos:Concept. 

 

?dayConcept rdfs:label ?dayMember. 

?dayConcept skos:inScheme ?conceptScheme. 

?dayConcept rdf:type skos:Concept. 

} 

where{ 

{ 

{Select distinct ?conceptScheme ?dimension 
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?dayConcept ?dayMember  

where { 

?dataset rdf:type qb:DataSet. 

?dataset qb:structure ?dsd. 

?dsd rdf:type qb:DataStructureDefinition. 

?dsd qb:component ?component. 

?component qb:dimension ?dimension. 

{{?dimension rdfs:range <http://www.w3.org/2001/XMLSchema#date>.} UNION {?dimension 

rdfs:range <http://www.w3.org/2001/XMLSchema#dateTime>}} 

?obs rdf:type qb:Observation. 

?obs qb:dataSet ?dataset. 

?obs ?dimension ?member. 

BIND(URI("conceptSchemeURI") AS ?conceptScheme). 

BIND(URI(CONCAT("http://reference.data.gov.uk/id/gregorian-day/", substr(?member,1,10))) 

AS ?dayConcept). 

BIND(substr(?member,1,10) AS ?dayMember). 

FILTER(STRLEN(?member) > 9) 

FILTER( 

?dataset = <datasetURI1> ||  

?dataset = <datasetURI2> || 

… 

?dataset = <datasetURIn> 

) 

FILTER( 

?dsd = <dsdURI1> ||  

?dsd = <dsdURI2> || 

… 

?dsd = <dsdURIn> 

) 

FILTER(?dimension = <dimensionURI>) 

}}  

UNION  

{Select distinct ?conceptScheme ?dimension 

?monthConcept ?monthMember  

where { 

?dataset rdf:type qb:DataSet. 

?dataset qb:structure ?dsd. 

?dsd rdf:type qb:DataStructureDefinition. 

?dsd qb:component ?component. 

?component qb:dimension ?dimension. 

{{?dimension rdfs:range <http://www.w3.org/2001/XMLSchema#date>.} UNION {?dimension 

rdfs:range <http://www.w3.org/2001/XMLSchema#dateTime>} UNION {?dimension 

rdfs:range <http://www.w3.org/2001/XMLSchema#gYearMonth>}} 

?obs rdf:type qb:Observation. 

?obs qb:dataSet ?dataset. 

?obs ?dimension ?member. 

BIND(URI("conceptSchemeURI") AS ?conceptScheme). 
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BIND(URI(CONCAT("http://reference.data.gov.uk/id/gregorian-month/", ?member)) AS 

?monthConcept). 

BIND(?member AS ?monthMember). 

FILTER(STRLEN(?member) = 7) 

FILTER( 

?dataset = <datasetURI1> ||  

?dataset = <datasetURI2> || 

… 

?dataset = <datasetURIn> 

) 

FILTER( 

?dsd = <dsdURI1> ||  

?dsd = <dsdURI2> || 

… 

?dsd = <dsdURIn> 

) 

FILTER(?dimension = <dimensionURI>) 

}} 

UNION  

{Select distinct ?conceptScheme ?dimension 

?yearConcept ?yearMember  

where { 

?dataset rdf:type qb:DataSet. 

?dataset qb:structure ?dsd. 

?dsd rdf:type qb:DataStructureDefinition. 

?dsd qb:component ?component. 

?component qb:dimension ?dimension. 

{{?dimension rdfs:range <http://www.w3.org/2001/XMLSchema#date>.} UNION {?dimension 

rdfs:range <http://www.w3.org/2001/XMLSchema#dateTime>} UNION {?dimension 

rdfs:range <http://www.w3.org/2001/XMLSchema#gYearMonth>} UNION {?dimension 

rdfs:range <http://www.w3.org/2001/XMLSchema#gYear>}} 

?obs rdf:type qb:Observation. 

?obs qb:dataSet ?dataset. 

?obs ?dimension ?member. 

BIND(URI("conceptSchemeURI") AS ?conceptScheme). 

BIND(URI(CONCAT("http://reference.data.gov.uk/id/gregorian-year/", ?member)) AS 

?yearConcept). 

BIND(?member AS ?yearMember). 

FILTER(STRLEN(?member) = 4) 

FILTER( 

?dataset = <datasetURI1> ||  

?dataset = <datasetURI2> || 

… 

?dataset = <datasetURIn> 

) 

FILTER( 

?dsd = <dsdURI1> ||  
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?dsd = <dsdURI2> || 

… 

?dsd = <dsdURIn> 

) 

FILTER(?dimension = <dimensionURI>) 

}}  

}} 

 

5.3.1.2.3 Loading relevant triples  

This approach uses URIs from data.gov.uk. These triples already include temporal 

relationships such as interval:intervalContainsMonth. For this reason these triples 

have to be crawled by the following manner and loaded in the triple store. 

Since the needed triples for the temporal relationships are only located in the URIs of 

the temporal units which include other temporal units these URIs have to be created 

and they are crawled. If URIs for days are the result of the step before then URIs for 

months, weeks and years have to be created. If URIs for months are the result of the 

step before, then URIs for years have to be created. They are crawled and loaded in 

the triple store. For example if the URI refgovukday:2011-10-17 is given, then the 

URIs refgovukmonth:2011-10 and refgovukyear:2011 have to be created, crawled 

and loaded in the triple store. Furthermore, all URIs for weeks in 2011, the URI for 

the last week in 2010 and the URI for the first week in 2012 have to be created, 

crawled and loaded in the triple store. 

 

5.3.1.2.4 Adding hierarchical information  

After the construction of the concept schemes in step 2, it is required to add the 

hierarchical information about the included concepts. At first, the hierarchical 

relationships between the concepts have to be defined and assigned to the 

respective concept schemes. They are expressed as concept associations which are  

linked to a source/target concept and to the property skos:broader. For example the 

concept refgovukday:2011-10-17  indicating the 17th October, 2011 will roll up to the 

concept refgovukmonth:2011-10 in the simple hierarchy „DayToYearViaMonth‟ and to 

the concept refgovukweek:2011-W42 indicating the 42th calendar week in 2011 in 

the simple hierarchy „DayToYearViaWeek‟. Both, the concept refgovukmonth:2011-
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10 and the concept refgovukweek:2011-W42 itself roll up to the concept 

refgovukyear:2011 indicating the year 2011.  

hrc:ca/reference.data.gov.uk/id/gregorian-day:2011-10-17_reference.data.gov.uk/id/ 

gregorian-month/2011-10 rdf:type   skosclass:ConceptAssociation; 

  skosclass:hasSourceConcept refgovukday:2011-10-17; 

  rdf:predicate   skos:broader; 

  skosclass:hasTargetConcept refgovukmonth:2011-10; 

  skos:inScheme   hrc:cs/DayToYearViaMonth. 

hrc:ca/reference.data.gov.uk/id/gregorian-month/2011-10_reference.data.gov.uk/id/ 

gregorian-year/2011 rdf:type   skosclass:ConceptAssociation; 

  skosclass:hasSourceConcept refgovukmonth:2011-10; 

  rdf:predicate   skos:broader; 

  skosclass:hasTargetConcept refgovukyear:2011; 

  skos:inScheme   hrc:cs/DayToYearViaMonth. 

hrc:ca/reference.data.gov.uk/id/gregorian-day:2011-10-17_reference.data.gov.uk/id/ 

gregorian-week/2011-W42 rdf:type   skosclass:ConceptAssociation; 

  skosclass:hasSourceConcept refgovukday:2011-10-17; 

  rdf:predicate   skos:broader; 

  skosclass:hasTargetConcept refgovukweek:2011-W42; 

  skos:inScheme   hrc:cs/DayToYearViaWeek. 

hrc:ca/reference.data.gov.uk/id/gregorian-week/2011-W42_reference.data.gov.uk/id/ 

gregorian-year/2011 rdf:type   skosclass:ConceptAssociation; 

  skosclass:hasSourceConcept refgovukweek:2011-W42; 

  rdf:predicate   skos:broader; 

  skosclass:hasTargetConcept refgovukyear:2011; 

  skos:inScheme   hrc:cs/DayToYearViaWeek. 

 

Since concepts for those time values that can be found in the data are always part of 

the concept scheme there may be parent concepts of these (range of 

skosclass:hasTargetConcept) that are yet not part of the concept scheme. These 

parents also have to be defined as concepts, linked to the literal value and assigned 

to the concept scheme. For example the literal value „2011-10-17‟ is found in the data 

for what the URI refgovukday:2011-10-17 is created and the literals „2011-10‟ and 

„2011‟ are not found in the data. This means that the URIs refgovukmonth:2011-10 
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and refgovukyear:2011 have to be created, defined as concepts, linked to its labels 

and assigned to the concept scheme.  

Furthermore, information about levels has to be added to the concept scheme. 

Therefore, separate levels that are part of the respective concept scheme have to be 

defined for each temporal unit and assigned to the respective schemes. Also the 

depth has to be assigned to a certain level as follows: 

hrc:cl/day  rdf:type    skosclass:ClassificationLevel; 

   skos:inScheme  hrc:cs/DayToYearViaMonth; 

   skos:inScheme  hrc:cs/DayToYearViaWeek; 

   skosclass:depth  “3”. 

hrc:cl/month  rdf:type    skosclass:ClassificationLevel; 

   skos:inScheme  hrc:cs/DayToYearViaMonth; 

   skosclass:depth  “2”. 

hrc:cl/week  rdf:type    skosclass:ClassificationLevel; 

   skos:inScheme  hrc:cs/DayToYearViaWeek; 

   skosclass:depth  “2”. 

hrc:cl/year  rdf:type    skosclass:ClassificationLevel; 

   skos:inScheme  hrc:cs/DayToYearViaMonth; 

   skos:inScheme  hrc:cs/DayToYearViaWeek; 

   skosclass:depth  “1”. 

 

The created URIs are then assigned to the respective levels as follows: 

refgovukday:2011-10-17 skos:member  hrc:cl/day. 

refgovukmonth:2011-10 skos:member  hrc:cl/month. 

refgovukweek:2011-W42 skos:member  hrc:cl/week. 

refgovukyear:2011  skos:member  hrc:cl/year. 

 

To add this hierarchical information, the following SPARQL construct query can be 

used. With this query, specific concept schemes corresponding to the simple 

hierarchy „DayToYearViaMonth‟ are constructed. For concept schemes 

corresponding to the simple hierarchy „DayToYearViaWeek‟ another query is 

needed. The naming of URIs for levels is depending on the URIs for the concept 

scheme. The resulting triples are also added to the triple store. If the hierarchical 

information should only be added to certain concept schemes, it has to be filtered by 

these concept schemes. 
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Construct { 

#Adding hierarchical information to the concept scheme  

?yearConcept skos:member ?yearlevel. 

?yearConcept skos:inScheme ?conceptScheme. 

?yearConcept rdf:type skos:Concept. 

?yearConcept rdfs:label ?yearLabel. 

?yearlevel skos:inScheme ?conceptScheme. 

?yearlevel rdf:type skosclass:ClassificationLevel. 

?yearlevel skosclass:depth "1". 

?yearlevel rdfs:label "Year"@en. 

 

?monthConcept skos:member ?monthlevel. 

?monthConcept skos:inScheme ?conceptScheme. 

?monthConcept rdf:type skos:Concept. 

?monthConcept rdfs:label ?monthLabel. 

?monthlevel skos:inScheme ?conceptScheme. 

?monthlevel rdf:type skosclass:ClassificationLevel. 

?monthlevel skosclass:depth "2". 

?monthlevel rdfs:label "Month"@en. 

 

?dayConcept skos:member ?daylevel. 

?dayConcept skos:inScheme ?conceptScheme. 

?dayConcept rdf:type skos:Concept. 

?dayConcept rdfs:label ?dayLabel. 

?daylevel skos:inScheme ?conceptScheme. 

?daylevel rdf:type skosclass:ClassificationLevel. 

?daylevel skosclass:depth "3". 

?daylevel rdfs:label "Day"@en. 

 

?relMonthYear rdf:type skosclass:ConceptAssociation. 

?relMonthYear skosclass:hasSourceConcept ?monthConcept. 

?relMonthYear rdf:predicate skos:broader. 

?relMonthYear skosclass:hasTargetConcept ?yearConcept. 

?relMonthYear skos:inScheme ?conceptScheme. 

 

?relDayMonth rdf:type skosclass:ConceptAssociation. 

?relDayMonth skosclass:hasSourceConcept ?dayConcept. 

?relDayMonth rdf:predicate skos:broader. 

?relDayMonth skosclass:hasTargetConcept ?monthConcept. 

?relDayMonth skos:inScheme ?conceptScheme. 

} 

where 

 

{ 

Select distinct ?conceptScheme  

?yearConcept ?yearlevel ?yearLabel 

?monthConcept ?monthlevel ?monthLabel 
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?dayConcept ?daylevel ?dayLabel 

?relMonthYear ?relDayMonth 

where { 

?dsd rdf:type qb:DataStructureDefinition. 

?dsd qb:component ?component. 

?component qb:dimension ?dimension. 

 

{{?dimension rdfs:range <http://www.w3.org/2001/XMLSchema#date>.} UNION {?dimension 

rdfs:range <http://www.w3.org/2001/XMLSchema#dateTime>} UNION {?dimension 

rdfs:range <http://www.w3.org/2001/XMLSchema#gYearMonth>} UNION {?dimension 

rdfs:range <http://www.w3.org/2001/XMLSchema#gYear>}} 

?dimension qb:codeList ?conceptScheme. 

 

{{?yearConcept skos:inScheme ?conceptScheme. 

?yearConcept rdf:type skos:Concept. 

?yearConcept rdf:type interval:Year. 

}  

UNION 

{?monthConcept skos:inScheme ?conceptScheme. 

?monthConcept rdf:type skos:Concept. 

?monthConcept rdf:type interval:Month. 

?yearConcept interval:intervalContainsMonth ?monthConcept. 

?yearConcept rdf:type interval:Year. 

}  

UNION  

{?dayConcept skos:inScheme ?conceptScheme. 

?dayConcept rdf:type skos:Concept. 

?dayConcept rdf:type interval:Day. 

?monthConcept interval:intervalContainsDay ?dayConcept. 

?monthConcept rdf:type interval:Month. 

?yearConcept interval:intervalContainsMonth ?monthConcept. 

?yearConcept rdf:type interval:Year. 

}} 

 

BIND(substr(str(?yearConcept),48) AS ?yearLabel). 

BIND(substr(str(?monthConcept),49) AS ?monthLabel). 

BIND(substr(str(?dayConcept),47) AS ?dayLabel). 

 

BIND(URI(CONCAT("http://hierarchie.org/cl/time/year/", 

substr(str(REPLACE(str(?conceptScheme),"\\.","/")),26))) AS ?yearlevel). 

BIND(URI(CONCAT("http://hierarchie.org/cl/time/month/", 

substr(str(REPLACE(str(?conceptScheme),"\\.","/")),26))) AS ?monthlevel). 

BIND(URI(CONCAT("http://hierarchie.org/cl/time/day/", 

substr(str(REPLACE(str(?conceptScheme),"\\.","/")),26))) AS ?daylevel). 
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BIND(URI(CONCAT("http://hierarchie.org/ca/", 

substr(str(REPLACE(str(?monthConcept),"\\.","/")),8),"_",substr(str(REPLACE(str(?yearConc

ept),"\\.","/")),8) )) AS ?relMonthYear ). 

BIND(URI(CONCAT("http://hierarchie.org/ca/", 

substr(str(REPLACE(str(?dayConcept),"\\.","/")),8),"_",substr(str(REPLACE(str(?monthConce

pt),"\\.","/")),8) )) AS ?relDayMonth ). 

}} 

 

5.3.1.2.5 End of the approach reached?  

This approach is straight forward which means that there are no iterations, because 

the needed URIs have already been created and crawled, since only the URIs of the 

higher temporal unit include the temporal relationships. For example the URIs for 

months include the triples for the relationships of months to the included days.  

 

5.3.1.2.6 End  

In the end of the approach „time‟ the constructed concept scheme includes the 

hierarchical relationships which can then be used.  

 

5.3.1.3 Example 

There are two data sets30 31 which have the common dimension dcterms:date. The 

range of this dimension is defined as xsd:date in the corresponding data structure 

definitions32 33 and the following values occur in this dimension: 

Data set Values 

http://estatwrap.ontologycentral.com/id/teilm020#ds 2011-04 till 2011-11 

http://estatwrap.ontologycentral.com/id/tsieb020#ds 2006 till 2013 

 

Before the above queries, which generate concept schemes for the time dimension 

with the levels day, month and year can be executed, the filters for the these specific 

data sets (SPARQL-variable ?dataset), the corresponding data structure definitions 

                                                           
30

 http://estatwrap.ontologycentral.com/id/teilm020#ds 
31

 http://estatwrap.ontologycentral.com/id/tsieb020#ds 
32

 http://estatwrap.ontologycentral.com/dsd/teilm020#dsd 
33

 http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd 
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(SPARQL-variable ?dsd) and the dimension (SPARQL-variable ?dimension) have to 

be set in the first query. After executing both queries, there are generated concepts 

for the months 2011-04 till 2011-11 and years 2006 till 2013, since only these values 

occur in the dimension.  

 

5.3.1.4 Resulting hierarchies 

All resulting hierarchies are simple hierarchies. They can be symmetric or 

asymmetric which depends on the occurring values of the time dimension. All 

concept schemes that include levels for months are strict. The resulting concept 

schemes which include levels for weeks could possibly be non-strict, if they include 

the last week of a calendar year, which rolls up to two years.  

 

5.3.1.5 Criticism 

Although this approach can probably be applied to many data sets, because many 

data sets include a temporal dimension this approach can only be used for these 

dimensions. So this approach has to be seen as a specific and not generic approach.  

If a time dimension is used in several data structure definitions, there are created 

several data set specific concept schemes, one for each data set. This means that 

only concepts for the occurring values in data sets and their parents till to the root 

level are part of a created concept scheme and not all theoretical possible values. If a 

data set is analyzed, the corresponding concept scheme has to be chosen. If various 

data sets are analyzed together, the different concept schemes can be combined by 

setting the particular levels and the concept schemes owl:sameAs. 

Because the time dimension is contained in many cubes, it would also make sense to 

provide concept schemes including all days, months, weeks and years between two 

particular time instants, for example for all days, months, weeks and years beginning 

with the 1st January, 1900 and for now ending with the 31st December, 2099. The 

advantage of such universal valid concept schemes is that several data sets could be 

integrated without setting the created data set specific concept schemes and the 

included levels owl:sameAs. However, the disadvantage of such universal valid 
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concept schemes is that many days, months, weeks and years would be needless 

and would possibly impact negatively the performance.  

Since the OWL time ontology34 is an official W3C working draft the Gregorian URI 

set35 of data.gov.uk36 could also be extended with classes and properties of the OWL 

time ontology to gain a broad support of this approach. The resources for each time 

point of the temporal units day, week, month and year have also be defined as 

DateTimeDescription of the OWL time ontology. Depending on the temporal unit the 

meaningful properties are generated and filled with values. For example the resource 

refgovukday:2011-10-17 could be enriched as follows: 

refgovukday:2011-10-17 rdf:type     time:DateTimeDescription; 

   time:unitType    time:unitMonth; 

   time:year    2011; 

   time:month    10; 

   time:week   42; 

   time:day    17. 

 

Since there is no temporal unit in the OWL time ontology designated for quarters or 

half years the simple hierarchy „DayToYearViaMonth‟ cannot be extended by these 

two more levels. For this purpose the central concept scheme has to extended or 

another concept scheme has to be defined where the concepts and levels for 

quarters or half years are not in union instances of the OWL time ontology.  

Furthermore, temporal relationships of triples in refgovuk are only located in the URIs 

of the temporal units, which include other temporal units, but not reverse. For 

example the following triple can be found in the information resource of the URI 

refgovukyear:2011 but not in the information resource of the URI 

refgovukmonth:2011-10.  

refgovukyear:2011  interval:intervalContainsMonth  refgovukmonth:2011-10 

 

                                                           
34

 http://www.w3.org/TR/owl-time/ 
35

 http://www.epimorphics.com/web/wiki/using-interval-set-uris-statistical-data 
36

 http://data.gov.uk/ 



5 Approaches for learning OLAP hierarchies from RDF 

 
99 

 

To generate parents of temporal units such triples should also be included in the 

URIs of the temporal units which are included in other temporal units. For example 

the triple above should also be found in the information resource of the URI 

refgovukmonth:2011-10.  

 

5.3.2 Approach ‘geo’ 

 

5.3.2.1 Overview 

Besides the temporal relatedness of observations also the geographic relatedness is 

very often expressed in Statistical Linked Data. For this reason this approach, called 

„geo‟, shows how geographical hierarchies can be constructed.  

There are a few vocabularies in the Linked Data Cloud providing geographical data 

(e.g. geonames37, freebase38). This approach uses the Nomenclature of Territorial 

Units for Statistics (NUTS)39 which is a classification service for the territory of the 

European Union defined by the Eurostat office of the European Union.  

NUTS is based on the existing national administrative structures. It categorizes the 

regions in four levels, although the national administrative structures of the particular 

countries vary in fact. The aim is to group similar regions together in the same level 

in order to make comparison and analysis [CGSH10]. Hereby each region in the 

same level is either the expression of a political will or meant to provide comparable 

features for statistics. The following table with the not rigidly applied thresholds for 

inhabitants shows the levels for the established regions of the NUTS classification.  

Level Description Minimum Maximum 
NUTS 0 Countries - - 
NUTS 1 States 3 million 7 million 
NUTS 2 Administrative regions  800.000  3 million 
NUTS 3 Counties/districts and greater metropolitan areas 150.000 800.000 

Table 8: Levels of the NUTS classification system 

 

                                                           
37

 http://www.geonames.org 
38

 http://www.freebase.org 
39

 http://nuts.geovocab.org 
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For those countries where the administrative is not structured that way or the size 

regarding inhabitants of existing regions is too small, additional members are 

created. They may be assigned to different levels: 

 1st level (eg. no states like „Centro‟ in Spain) 

 2nd level (eg. no administrative regions like „Freiburg‟ in Germany)  

 3rd level (eg. three members in Level NUTS 3 for the arrondissement 

„Verviers‟ in Belgium) 

 

5.3.2.2 Algorithm 

To generate hierarchies out of the geo dimension with help of the hierarchical 

classification system NUTS the following steps have to be done. 

 

5.3.2.2.1 Start  

The algorithm to generate hierarchies with this approach works in two cases. Either 

the range of the given dimension or the data types of the members within the given 

dimension of the given data sets have the data type nutsdef:NUTSRegion. If this is 

not the case, no hierarchies are generated:  

 

5.3.2.2.2 Creating a concept scheme 

To assign the created URIs to a concept scheme at first for each of the above 

described simple hierarchies, a concept scheme has to be defined as follows. The 

name of the concept scheme could be „NUTS.‟ 

hrccs:NUTS  rdf:type    skos:ConceptScheme; 

   rdfs:label   “NUTS”@en. 

 

The dimension of a data structure definition is then linked via qb:codeList to the 

created concept scheme. It has to be noticed that the created concept schemes are 

specific for a certain data set, but are linked via qb:codeList to a dimension of a data 

structure definition.  
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As described above, the members of a dimension in the RDF Data Cube Vocabulary 

should be separated from the concepts in SKOS. Therefore for each member of the 

given dimension in the given data sets, a new resource is created. The URIs for the 

created concepts is a concatenation of „http://hierarchie.org/co/NUTS/‟ and the NUTS 

shorthand symbol. For example for the NUTS resource 

<http://nuts.psi.enakting.org/id/DE>, which is owl:sameAs to the member 

<http://estatwrap.ontologycentral.com/dic/geo#DE> of a data set the new resource  

hrcco:NUTS/DE is created, which is then defined as SKOS concept, linked to the 

original member via rdfs:seeAlso and assigned to the created concept scheme. 

hrcco:NUTS/DE rdf:type  skos:Concept; 

  skos:inScheme hrccs:NUTS; 

   rdfs:seeAlso  <http://nuts.psi.enakting.org/id/DE>. 

 

For constructing these triples, the following SPARQL construct query can be used. 

Hereby, the given data set(s) and dimension have to be filled in the filter statements 

and an URI for the resulting concept scheme has to be defined and filled in the bind 

statements (bold marked). 

Construct{ 

#Creating a concept scheme for the approach „geo‟ 

?concept rdf:type skos:Concept. 

?concept rdfs:seeAlso ?nutsRegion. 

?concept skos:inScheme ?conceptScheme. 

?conceptScheme rdf:type skos:ConceptScheme. 

?conceptScheme rdfs:label “NUTS”@en. 

?dimension qb:codeList ?conceptScheme. 

} 

where { 

?obs rdf:type qb:Observation. 

?obs qb:dataSet ?dataset. 

?dataset rdf:type qb:DataSet. 

?dataset qb:structure ?dsd. 

?obs ?dimension ?member. 

BIND(URI(CONCAT("http://hierarchie.org/co/NUTS/", SUBSTR(STR(?member),46))) AS 

?concept). 

?member owl:sameAs ?nutsRegion. 

Filter(STRSTARTS(str(?nutsRegion),"http://nuts.psi.enakting.org")) 

FILTER( 

?dataset = <datasetURI1> ||  
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?dataset = <datasetURI2> || 

… 

?dataset = <datasetURIn> 

) 

FILTER( 

?dsd = <dsdURI1> ||  

?dsd = <dsdURI2> || 

… 

?dsd = <dsdURIn> 

) 

FILTER(?dimension = <dimensionURI>) 

BIND(URI("conceptSchemeURI") AS ?conceptScheme). 

} 

 

5.3.2.2.3 Loading relevant triples  

In this step, triples have to be crawled to retrieve the relationships between the NUTS 

regions. Before this step is executed, new concepts have been assigned in the step 

before to the concept scheme. All URIs of NUTS resources that were linked via 

rdfs:seeAlso to these concepts are crawled and the triples are added to the triple 

store. This is done to determine the resulting parents of the crawled resources. For 

example if a concept for the NUTS resource nuts:DE12 has been added to the 

concept scheme in the step before, then the triples of this URI are crawled. This is for 

example the following triple, where the subject nuts:DE1 indicates the parent of the 

concept for the NUTS resource nuts:DE12. 

nuts:DE1    spatial:contains   nuts:DE12 

 

5.3.2.2.4 Adding hierarchical information 

After the concept schemes have constructed in step 2, hierarchical information about 

the included concepts has to be added. At first the hierarchical relationships between 

the concepts have to be defined and assigned to the respective concept schemes. 

They are expressed as concept associations, linked to a source/target concept and 

to the property skos:broader. The determination of the relationships between child 

and parent is done with the help of the property spatial:contains, which is used in 

NUTS. 

hrcca:NUTS/DE1_/DE rdf:type   skosclass:ConceptAssociation; 
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   skosclass:hasSourceConcept hrcco:NUTS/DE1; 

   rdf:predicate   skos:broader; 

   skosclass:hasTargetConcept hrcco:NUTS/DE; 

   skos:inScheme   hrccs:NUTS. 

 

Since concepts for those members that can be found in the data are always part of 

the concept scheme, there may be parent concepts of these (range of 

skosclass:hasTargetConcept) that are yet not part of the concept scheme. These 

parents also have to be defined as concepts and assigned to the concept scheme.  

Furthermore information about levels has to be added to the concept scheme. 

Therefore separate levels that are part of the respective concept scheme have to be 

defined for NUTS Level and assigned to the respective schemes. Also the depth has 

to be assigned to a certain level as follows. For example the level NUTS0 results in 

the uppermost level which has depth 1. The names for the levels could be a 

concatenation of „NUTS‟ and the NUTS level. 

hrccl:NUTS/NUTS0 rdf:type    skosclass:ClassificationLevel; 

   skos:inScheme  hrccs:NUTS; 

    skosclass:depth  “1”; 

   rdfs:label   „NUTS0“@en. 

hrccl: NUTS/NUTS1 rdf:type    skosclass:ClassificationLevel; 

   skos:inScheme  hrccs:NUTS; 

   skosclass:depth  “2”; 

   rdfs:label   „NUTS1“@en. 

 

The created URIs are then assigned to the respective levels as follows: 

hrcco:NUTS/DE  skos:member  hrccl:NUTS/NUTS0 

hrcco:NUTS/DE1  skos:member  hrccl:NUTS/NUTS1. 

 

These steps can be performed with the following SPARQL construct query: The 

naming of URIs for levels is dependent of the URIs for the concept scheme. Hereby, 
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the URI of the concept scheme has to be filled in (bold marked). The resulting triples 

are also added to the triple store: 

Construct { 

#Adding hierarchical information to the concept scheme 

?relationship skosclass:hasSourceConcept ?childConcept. 

?relationship rdf:predicate skos:broader. 

?relationship skosclass:hasTargetConcept ?parentConcept. 

?relationship rdf:type skosclass:ConceptAssociation. 

?relationship skos:inScheme ?conceptScheme. 

 

?childConcept  skos:member ?childLevel. 

?parentConcept skos:member ?parentLevel. 

?childLevel    rdf:type skosclass:ClassificationLevel. 

?parentLevel   rdf:type skosclass:ClassificationLevel. 

?childLevel    skos:inScheme ?conceptScheme. 

?parentLevel   skos:inScheme ?conceptScheme. 

?childLevel    skosclass:depth ?childDepth. 

?parentLevel   skosclass:depth ?parentDepth. 

?childLevel    rdfs:label ?childLevelLabel. 

?parentLevel   rdfs:label ?parentLevelLabel. 

 

?parentConcept rdf:type skos:Concept. 

?parentConcept skos:inScheme ?conceptScheme. 

?parentConcept rdfs:seeAlso ?parent. 

?parentConcept rdfs:label ?parentLabel. 

 

} 

where { 

OPTIONAL{ ?parent spatial:contains ?child.} 

?child  rdf:type nutsdef:NUTSRegion. 

?parent rdf:type nutsdef:NUTSRegion. 

?child  nutsdef:code ?childCode. 

?parent nutsdef:code ?parentCode. 

BIND(URI(CONCAT("http://hierarchie.org/ca/NUTS/", SUBSTR(str(?child),33) ,"_" , 

SUBSTR(str(?parent),33))) AS ?relationship). 

 

?childConcept skos:inScheme ?conceptScheme. 

Filter(?conceptScheme = <conceptSchemeURI>) 

?childConcept rdf:type skos:Concept. 

?childConcept rdfs:seeAlso ?child. 

 

BIND(URI(CONCAT("http://hierarchie.org/co/NUTS/", SUBSTR(STR(?parent),33))) AS 

?parentConcept). 

 

BIND(URI(CONCAT("http://hierarchie.org/cl/NUTS/",substr(REPLACE(str(?conceptScheme),

"\\.","/"),26),SUBSTR(str(datatype(?childCode)),34,5))) AS ?childLevel). 
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BIND(URI(CONCAT("http://hierarchie.org/cl/NUTS/",substr(REPLACE(str(?conceptScheme),

"\\.","/"),26),SUBSTR(str(datatype(?parentCode)),34,5))) AS ?parentLevel). 

BIND(xsd:integer(SUBSTR(str(datatype(?childCode)),38,1))+1 AS ?childDepth) 

BIND(xsd:integer(SUBSTR(str(datatype(?parentCode)),38,1))+1 AS ?parentDepth) 

BIND(CONCAT("NUTS",str(xsd:integer(SUBSTR(str(datatype(?childCode)),38,1)))) AS 

?childLevelLabel) 

BIND(CONCAT("NUTS",str(xsd:integer(SUBSTR(str(datatype(?parentCode)),38,1)))) AS 

?parentLevelLabel) 

} 

 

5.3.2.2.5 End of the approach reached?  

The end of the approach is reached, if no new triples have been constructed with the 

last step. Otherwise the algorithm continues with step 2.  

 

5.3.2.2.6 End 

In the end of the approach „geo‟, the labels of the members have also to be assigned 

to the concepts, which can be done with the following SPARQL construct query. The 

URI for the concept scheme has to be inserted (bold marked). 

Construct { 

?concept rdfs:label ?label. 

} 

where { 

?concept rdfs:seeAlso ?member. 

?concept rdf:type skos:Concept. 

?member rdfs:label ?label. 

?concept skos:inScheme ?conceptScheme. 

Filter(?conceptScheme = <conceptSchemeURI>) 

} 

 

The constructed concept scheme includes then the hierarchical relationships which 

can be used.  
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5.3.2.3 Example  

There are two data sets40 41, which have the common dimension eus:geo. The range 

of this dimension is defined as <http://rdfdata.eionet.europa.eu/ramon/ontology/ 

NUTSRegion> in the corresponding data structure definitions42 43 and NUTS regions 

of the following NUTS levels occur in this dimension as members: 

Data set NUTS levels 

http://estatwrap.ontologycentral.com/id/agr_r_landuse#ds NUTS0, NUTS1, NUTS2 

http://estatwrap.ontologycentral.com/id/tsieb020#ds NUTS0 

Table 9: Example for the approach 'geo' 

 

Before the above queries can be executed, the filters for the these specific data sets 

(SPARQL-variable ?dataset), the corresponding data structure definitions (SPARQL-

variable ?dsd) and the dimension (SPARQL-variable ?dimension) have to be set in 

the first query. After executing both queries, there are generated concepts for the 

NUTS regions in level NUTS0, NUTS1 and NUTS2 since only these values occur in the 

dimension.  

 

5.3.2.4 Resulting hierarchies  

The resulting hierarchies are all simple hierarchies that are symmetric or asymmetric, 

depending on the occurring values of the given dimension. Furthermore they are 

strict, since one NUTS region is included in at most one another NUTS region. 

 

5.3.2.5 Criticism 

Besides the time approach, this approach can also be seen as a specific approach, 

since it doesn‟t work for generic vocabularies but only for NUTS. So this approach 

can be applied to all data sets, including geographical dimensions, whose members 

are linked to NUTS.  

                                                           
40

 http://estatwrap.ontologycentral.com/id/agr_r_landuse#ds 
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 http://estatwrap.ontologycentral.com/id/tsieb020#ds 
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 http://estatwrap.ontologycentral.com/dsd/agr_r_landuse#dsd 
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 http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd 
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Since NUTS itself is only a classification scheme for Europe, other vocabularies or 

extensions to NUTS are required for worldwide statistical data, including other parts 

of the world with additional countries. This means that this approach works only for 

members of the given dimension that are all defined as NUTS regions. If the given 

data sets also include members that are not defined as NUTS region, these 

members have to be assigned to a created level, in case of doubt to the lowest level.  

Furthermore NUTS does not consider the administrative structure of the regions at 

all, because it tries to squeeze all regions in one classification system with four 

common levels. On the one hand this has positive effects on the comparability 

between regions. On the other hand the real world is represented incorrectly, since 

additional members are created. The developed extension of SKOS provides the 

possibility to consider the structural specialties by using a generalized hierarchy. 

Therefore different levels for each type of region such as state, administrative district, 

arrondissement, province, etc. would be required. 

NUTS has one specialty, because the arrondissement Verviers (nuts:BE333) in the 

province Liège (nuts:BE33) in Belgium is split in a German (nuts:BE336) and French 

(nuts:BE335) speaking part. This is represented in NUTS as 3 members in level 

NUTS 3 and the following relationships: 

nuts:BE33   spatial:contains   nuts:BE333 

nuts:BE33   spatial:contains   nuts:BE335 

nuts:BE33   spatial:contains   nuts:BE336 

nuts:BE333    nutsdef:splitted   nuts:BE335 

nuts:BE333   nutsdef:splitted   nuts:BE336 

 

Although the NUTS classification itself and the resulting concept scheme are 

symmetric, the resulting concept scheme could also be asymmetric, considering this 

specialty. This means that for example the concept for the French speaking part 

(hrc:co/nuts.psi.enakting.org/id/BE335) would be assigned to the arrondissement 

Verviers (hrc:co/nuts.psi.enakting.org/id/BE333) and not directly to the province 

Liège (hrc:co/nuts.psi.enakting.org/id/BE33), which is the broader concept of Verviers 
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(hrc:co/nuts.psi.enakting.org/id/BE333). So the members 

hrc:co/nuts.psi.enakting.org/id/BE335 and hrc:co/nuts.psi.enakting.org/id/BE336 

could be assigned to an additional level that is not mandatory for all members, which 

would result in an asymmetric hierarchy. However, this approach does not consider 

this specialty.  

 

5.4 Generic approaches 

The generic approaches are developed for general use. This means that they are not 

limited to special dimensions like the approach „time‟ or „geo‟. Therefore the possible 

result set of generated hierarchies can be influenced with some parameters. For 

these generic approaches it is assumed that the members of a dimension in a given 

data set are of the same granularity. As a consequence, the members of a dimension 

are assigned to the same hierarchy level after execution the algorithms of the generic 

approaches.  

 

5.4.1 Approach ‘rdfs:subClassOf’ 

 

5.4.1.1 Overview  

This approach, called ‚rdfs:subClassOf„, uses the types (rdf:type) of the dimension 

members and the relationships of the typed RDF classes (rdfs:subClassOf). Since 

the property rdf:type is used to state that a resource is an instance of a class, the 

property rdfs:subClassOf is used to state that all the instances of one class are 

instances of another [HiKR09, pp. 46-67]. This approach considers only dimension 

members, which are URIs and not literals, since literals cannot be typed to a class. 

Essential condition for this approach is the existence of further metadata to each 

member in a way that hierarchies can be derived. 

 

5.4.1.2 Parameters  

This approach is developed for general use. Theoretically, many possible hierarchies 

can result with this approach. The result set of possibly hierarchies of this approach 
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can be influenced with the following parameters, which are in union termination 

criteria for the algorithm: 

 Minimal number of stages: 

This parameter defines how many stages a resulting hierarchy has at least.  

 Maximal number of stages: 

This parameter defines how many stages a resulting hierarchy has at most. 

 Flag for schema: 

If this flag is set, the schema of the ontology is considered. This means that 

superclasses, subclasses and instances result each time in another element 

of the hierarchy. If this flag is not set, superclasses, subclasses and instances 

result each time in a member. The following table gives on overview of this 

mapping.  

 

Ontology Hierarchy 
Flag for schema set Flag for schema not set 

superclass level member 

subclass member of the parent level & level member 

instance member member 

Table 10: Mapping between ontology and hierarchy of the approach 'rdfs:subClassOf' 

 

 Flag for the strictness: 

This parameter serves as decision criterion for the strictness of the resulting 

hierarchy. If this flag is set, the resulting hierarchy is strict. This may 

semantically be not correct, since there may be cases where a resource is an 

instance of several classes or a class is sub class of several other classes. 

This would result in several parent members. If this flag is set, one class is 

chosen to have only one parent member. If non-strictness is required, this flag 

has not to be set.  

 Flag for more members than parents: 

If there would exist more parent members within one level than members, this 

would rather correspond to a drill down and not to a roll up. Because higher 

hierarchy levels should rather be reached by a roll up operation, more parents 

than members would not be reasonable in many cases. So if this flag is set, 
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there have to exist more members than parent members within one level. If 

this is not the case, the actual classes are forming no higher level.  

 

5.4.1.3 Algorithm 

 

5.4.1.3.1 Start 

It is assumed that the members of a given dimension result in the lowest level of the 

hierarchy. This means they are the subjects from which this approach starts from. 

The following steps have then to be done. 

 

5.4.1.3.2 Creating a concept scheme 

To assign the created URIs to a concept scheme, for each of the above described 

simple hierarchies, a concept scheme has to be defined as follows. The given 

dimension of the given data structure definition(s) is then linked via qb:codeList to it. 

hrccs:properties  rdf:type    skos:ConceptScheme. 

 

As described above, the members of a dimension in the RDF Data Cube Vocabulary 

should be separated from the concepts of the classification hierarchy. Therefore for 

each member of the given dimension in the given data sets a new URI is created. 

The new URI can be orientated towards the URI of the member. For example for the 

URI <http://estatwrap.ontologycentral.com/dic/geo#DE> the new URI 

hrcco:estatwrap/ontologycentral/com/dic/geo/DE is created, which is then used as 

SKOS concept and assigned to the created concept scheme. The concept is then 

linked via rdfs:seeAlso to the original member: 

hrcco:estatwrap/ontologycentral/com/dic/geo/DE rdf:type  skos:Concept; 

  skos:inScheme hrccs:subClassOf; 

   rdfs:seeAlso  <http://estatwrap.ontologycentral.com/dic/geo#DE>. 

 

For constructing these triples the following SPARQL construct query can be used. 

Hereby the given data set(s) and dimension have to be filled in the filter statements 
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and an URI for the resulting concept scheme has to be defined and filled in the bind 

statements (bold marked). 

Construct{ 

#Creating a concept scheme  

?concept rdf:type skos:Concept. 

?concept rdfs:seeAlso ?member. 

?concept skos:inScheme ?conceptScheme. 

?conceptScheme rdf:type skos:ConceptScheme. 

?dimension qb:codeList ?conceptScheme. 

} 

 

where{ 

?obs rdf:type qb:Observation. 

?obs qb:dataSet ?dataset. 

?dataset rdf:type qb:DataSet. 

?obs ?dimension ?member. 

?dataset qb:structure ?dsd. 

BIND(URI(CONCAT("http://hierarchie.org/co/", 

REPLACE(REPLACE(SUBSTR(STR(?member),8),"\\.","/"),"#","/"))) AS ?concept). 

 

FILTER( 

?dataset = <datasetURI1> ||  

?dataset = <datasetURI2> || 

… 

?dataset = <datasetURIn> 

) 

FILTER( 

?dsd = <dsdURI1> ||  

?dsd = <dsdURI2> || 

… 

?dsd = <dsdURIn> 

) 

FILTER(?dimension = <dimensionURI>) 

BIND(URI("conceptSchemeURI") AS ?conceptScheme). 

} 

 

5.4.1.3.3 Loading relevant triples 

For this approach only additional triples are required, which have the following 

properties. All other triples are not needed, since they are not used:  

 rdf:type 

 rdfs:subClassOf 
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 rdfs:label 

 owl:equivalentClass 

 owl:sameAs 

In the first run all classes of the member and the resources that are linked to it with 

the owl:sameAs property are determined using the rdf:type property. This means 

triples are crawled from the URI of the member of the given dimension and to 

owl:sameAs resources of the member.  

With each further iteration each further super classes of the present found classes 

are determined using the rdfs:subClassOf property. Hereby all owl:eqivalentClass 

relationships are considered. This is done till no more super classes are needed 

because of the parameter „Maximal number of stages‟ or no more further super 

classes are found.  

All these triples are added to the triple store. 

 

5.4.1.3.4 Adding hierarchical information 

Since this approach can have recursions, there has to be distinguished between the 

first and the other passes of this step.  

At the first pass of this step, a leaf level is created, to which the concepts of the 

created concept scheme are assigned to via skos:member. This level is assigned to 

the concept scheme via skos:inScheme.  

hrccl:properties/leaf  rdf:type   skosclass:ClassificationLevel; 

    skos:inScheme Properties. 

hrcco:estatwrap/ontologycentral/com/dic/geo/DE   

    skos:member hrccl:properties/leaf. 

 

When generating hierarchies with this approach each redundant instantiation of a 

super class is ignored so it does not result in a member of a level. This means that 

each time only the type of the lowest class is relevant, since this additional 

instantiation of the super class in the ontology could be derived by reasoning.  
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As a consequence, the hierarchical information can only be added to the concept 

scheme when all relationships between classes are known. This means that this 

additional hierarchical information is not added to the concept scheme before not all 

relevant triples are crawled. Therefore, the recursions serve only for crawling relevant 

triples and add them to the triple store. Only at the last recursion, triples are 

generated, which express the hierarchical information.   

In the last recursion the generation of hierarchies is as follows. Basically, it has to be 

distinguished if the parameter „Flag for schema‟ is set or not, because the process of 

generating hierarchies is different: 

 If the „Flag for schema‟ is set: 

The basic idea of generating levels is that each class of the ontology results in 

an own level of the hierarchy. The label of the class in the ontology results in 

the name of the level in the hierarchy. All subclasses of a class result in the 

members of the level whereby the labels of the subclasses result in the labels 

of the members. Also each instance of a class results in a member of the 

hierarchy, whereby its label results in the label of the member. If this flag is 

set, the resulting hierarchy is a generalized hierarchy, since levels are split. 

Because a member can only roll up to one level in a generalized hierarchy, 

one parent has to be chosen, if levels are split.  

 If the „Flag for schema‟ is not set: 

The basic idea of generating levels is that a class of the ontology results in a 

member of the hierarchy. Levels are formed by the sequence of 

rdfs:subClassOf relationships, which means that all classes that are on the 

same stage within one simple hierarchy are forming one level. Each instance 

of a class results in a member of the level below the class, whereby its label 

results in the label of the member.  

In each case each uppermost class that is crawled results in an uppermost level, 

which means that the hierarchy is parallel. 
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5.4.1.3.5 End of the approach reached? 

With each further iteration each further super classes of the present found classes 

are determined, using the rdfs:subClassOf property. This is done till no more super 

classes are needed because of the parameter „Maximal number of stages‟ or no 

more further super classes are found. Only in the last iteration the hierarchical 

information is added to the concept scheme, since all classes have to be known. This 

means that the end of the approach is reached, if hierarchical information has been 

added to the concept scheme in the step before. Otherwise the algorithm continues 

with the second step, where additional super classes are determined.  

For example, if the value for the parameter „Maximal number of stages‟ is set to 

three, there are the following iterations: 

1. Determination of all classes of which the members are an instance of. 

Creating the leaf level an assigning the given members to the leaf level.  

2. Determination of further super classes of the already found classes. 

No hierarchical information is added to the concept scheme. 

3. Determination of further super classes of the already found classes. 

The hierarchical information is added to the concept scheme, because all 

needed classes are known. 

If the value for the parameter „Maximal number of stages‟ is increased, the second 

part would be repeated as often the value for the parameter „Maximal number of 

stages‟ increases. 

 

5.4.1.3.6 End 

In the end of the approach „rdfs:subClassOf‟ the constructed concept scheme 

includes the hierarchical relationships which can then be used.  

 

5.4.1.4 Example 

There is a data set44, which has the dimension eus:geo. The members of this 

dimension include owl:sameAs links to resources from dbpedia45, an structured 

                                                           
44
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extract of wikipedia46. The following figure shows the simplified example of some 

resources and their relationships. The ellipses are denoting the classes, the arrows 

are indicating a rdfs:subClassOf relationship and the rectangles are denoting the 

dimension members that are instances of one or more classes. For illustration 

reasons the following simplifications are made: 

 Only six members/instances are used  

 Only eight classes are used 

 For illustration reasons the class „Alliance of states‟ is fictional and the 

subClassOf relationship between the classes „Federal Countries‟ and „Country‟ 

is removed 

 The label is used instead of the URI 

 

Figure 31: Simplified example for the approach 'rdfs:subClassOf': triples 

 

At first it has to be noticed that in each case a parallel hierarchy is constructed, 

because there are two uppermost classes. The values of the parameters for this 

example are shown and the effect on the algorithm and the resulting hierarchy is 
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 http://dbpedia.org/About 
46

 http://www.wikipedia.org/ 
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described in the following. Because there is a basic distinction if the parameter for 

scheme is set or not, the hierarchy generation is explained for all two cases: 

 Minimal number of stages: 2 

This means that the resulting hierarchy at least has two levels. This is here 

fulfilled, since three levels are derived.  

 Maximal number of stages: 3 

This means that the resulting hierarchy at most has three levels. This is here 

fulfilled, since three levels are derived. 

 Flag for the strictness: not set 

This means that a member can have several parent members. Here, for 

example Belgium has two parents. 

 Flag for more members than parents: not set 

This means that it is allowed that a parent level contains more members than 

the child level. This is here not the case, since each time there are more 

members than parents.  

 Flag for schema:  

o set: 

If the flag for schema is set, each class that is super class of another 

class results in an own level. Each sub class results as a member in the 

created level. For example the class „Alpine Countries‟ results not in a 

level, because it has no sub class, but it results as a member in the 

class „Country‟. The members „Germany‟ and „France‟ result as children 

of the member „Alpine Countries‟. Because a member can only roll up 

to one level in a generalized hierarchy, one parent has to be chosen. 

This has for example to be done for the member „Germany‟, where the 

parent „Federal Countries‟ in the level „Alliance of states‟ or the parent 

„Alpine Countries‟ in the level „Country‟ has to be chosen. The following 

hierarchy is then generated. 



5 Approaches for learning OLAP hierarchies from RDF 

 
117 

 

 

Figure 32: Resulting hierarchy of the example with setting the flag: schema 

 

o not set: 

If the flag for schema is not set, each class results in a member and the 

sequence of classes determines the sequence of levels. The labels for 

the levels have to be determined generic, since no universal valid label 

can be found. For example the „Alpine Countries‟ and „Federal 

Countries‟ are members in „Level 2 B‟, but no name could be found for 

this level. The following hierarchy is then generated. 

 

Figure 33: Resulting hierarchy of the example without setting the flag: schema 

 

5.4.1.5 Resulting hierarchies 

With this approach there may be generated almost all introduced OLAP hierarchies.  

If there is one uppermost class, this results in a simple hierarchy. Otherwise, if there 

is more than one uppermost class, this results in a parallel hierarchy. The parallel 

hierarchy may be independent if no levels are shared or dependent, if levels are 

shared.  
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The included simple hierarchies are potential generalized, if the flag for schema is 

set, because generally speaking, each class results in an own level. If the flag for 

schema is not set, symmetric hierarchies are generated.  

If the flag for strictness is set or there result only one parent per member, the 

hierarchy is strict. Otherwise the hierarchy is non-strict. 

Asymmetric hierarchies cannot be found with this approach, since this approach is a 

bottom up approach. Also multiple alternative hierarchies cannot be found, because 

either there is generated a simple hierarchy if there is one uppermost level or a 

parallel hierarchy if there are several uppermost levels. 

 

5.4.1.6 Criticism 

This approach assigns all members of a given dimension of the data set(s) to one 

leaf level. This may not always correct. For this reason all members that should not 

be members of the leaf level have to be assigned to another level manually or in a 

further optimization step that is not part of this thesis.  

Because a member can only roll up to one level in a generalized hierarchy, one 

parent has to be chosen if the flag for schema is set. This means when the algorithm 

is run several times with the same parameters, there may be constructed different 

hierarchies. As a consequence, the semantics is modified, because not all 

rdfs:subClassOf relationships are taken into account. 

 If the flag for schema is not set, the semantics is also modified when generating the 

hierarchy out of the ontology, because levels are constructed by the sequence of 

rdfs:subClassOf relationships between classes. This means that an instance of a 

class is treated the same way like a sub class. Labels of a level could not be 

determined using information out of the ontology, but have to be counted. This is why 

no universal valid label can be found for a certain level. 

To ensure good results with this approach, the parameters could be set by default or 

some recommendations could be given. To give such a helpful recommendation, this 

approach could be applied on several data sets with several constellations of 
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parameters and the resulting hierarchies could be compared to each other, e.g. with 

help of the developed metrics. 

 

5.4.2 Approach ‘properties’ 

 

5.4.2.1 Overview 

This approach, called „properties‟, derives hierarchies from the used properties of the 

members. A property can be defined as a describing feature of a resource. The main 

idea is to use the three elements of a triple (subject, predicate and object) as 

elements of the hierarchy in a recursive way. The triples are regarding the members 

of a dimension which means that the member of a dimension is the subject of the 

existing triples. 

As described in the RDF specification47, the part that identifies the thing the 

statement is about is called the subject. The part that identifies the property or 

characteristic of the subject that the statement specifies is called the predicate. The 

part that identifies the value of that property is called the object. The following table 

gives an overview of the mapping between existing element of a triple and resulting 

element of the hierarchy: 

Triple Hierarchy 

Subject Member of a level 

Predicate/Property Level above the subject level 

Object Parent member of the level above the subject level 
Table 11: Mapping between triple and hierarchy of the approach ‘properties’ 

 

5.4.2.2 Parameters 

This approach is developed for at most general use. Theoretically, many possible 

hierarchies can result with this approach. The result set of possibly hierarchies of this 

approach can be influenced with the following parameters, which are in union 

termination criteria for the algorithm: 

 Minimal number of stages: 

This parameter defines how many stages a resulting hierarchy has at least.  
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 Maximal number of stages: 

This parameter defines how many stages a resulting hierarchy has at most. 

 Flag for generalized or specialized properties: 

Since there is the possibility to define a specialization relationship between 

two properties via the property rdfs:subPropertyOf, only all uppermost (most 

generalized) properties are relevant, if this flag is set. As a consequence, the 

relevant properties are not sub property of any other property. If this flag is not 

set, only the bottommost (most specialized) properties are relevant. In this 

case the relevant properties do not have any sub property. 

 Percentage of subjects that have a particular property: 

This parameter defines, how many percent of the subjects (members in a 

particular level) must have a particular property (parent level) so that this 

particular property results in a parent level. If the value of this parameter is 

100%, only those properties are relevant which are properties of all members. 

In this case, a property which is not a property of all members is forming no 

level.  

 Flag for the strictness: 

This parameter serves as decision criterion for the strictness of the resulting 

hierarchy. If this flag is set, the resulting hierarchy is strict. This may 

semantically be not correct, since there may be cases where a subject has 

several times the same property with different objects. This would result in 

several parent members. If this flag is set, one object is chosen to have only 

one parent member. If non-strictness is required, this flag has not to be set.  

 Flag for more members than parents: 

If there would exist more parent members within one level than members, this 

would rather correspond to a drill down and not to a roll up. Because higher 

hierarchy levels should rather be reached by a roll up operation, more parents 

than members would not be reasonable in many cases. So if this flag is set, 

there have to exist more members than parent members within one level. If 

this is not the case, the actual property is forming no higher level.  
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5.4.2.3 Algorithm 

 

5.4.2.3.1 Start  

It is assumed that the members of a given dimension result in the lowest level of the 

hierarchy, so they are the subjects, from which this approach starts from. The 

following steps have then to be done: 

 

5.4.2.3.2 Creating a concept scheme 

To assign the created URIs to a concept scheme, for each of the above described 

simple hierarchies, a concept scheme has to be defined as follows. The given 

dimension of the given data structure definition(s) is then linked via qb:codeList to it: 

hrccs:properties  rdf:type    skos:ConceptScheme. 

 

As described above, the members of a dimension in the RDF Data Cube Vocabulary 

should be separated from the concepts of the classification hierarchy. Therefore, for 

each member of the given dimension in the given data sets, a new URI is created. 

The new URI can be orientated towards the URI of the member. For example for the 

URI <http://estatwrap.ontologycentral.com/dic/geo#DE> the new URI 

hrcco:estatwrap/ontologycentral/com/dic/geo/DE is created. Then, this is used as 

SKOS concept and assigned to the created concept scheme. The concept is then 

linked via rdfs:seeAlso to the original member: 

hrcco:estatwrap/ontologycentral/com/dic/geo/DE rdf:type  skos:Concept; 

  skos:inScheme hrccs:Properties; 

   rdfs:seeAlso  <http://estatwrap.ontologycentral.com/dic/geo#DE>. 

 

For constructing these triples, the following SPARQL construct query can be used. 

Hereby, the given data set(s) and dimension have to be filled in the filter statements 

and an URI for the resulting concept scheme has to be defined and filled in the bind 

statements (bold marked). 

Construct{ 

#Creating a concept scheme  
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?concept rdf:type skos:Concept. 

?concept rdfs:seeAlso ?member. 

?concept skos:inScheme ?conceptScheme. 

?conceptScheme rdf:type skos:ConceptScheme. 

?dimension qb:codeList ?conceptScheme. 

} 

where{ 

?obs rdf:type qb:Observation. 

?obs qb:dataSet ?dataset. 

?dataset rdf:type qb:DataSet. 

?obs ?dimension ?member. 

?dataset qb:structure ?dsd. 

BIND(URI(CONCAT("http://hierarchie.org/co/", 

REPLACE(REPLACE(SUBSTR(STR(?member),8),"\\.","/"),"#","/"))) AS ?concept). 

 

FILTER( 

?dataset = <datasetURI1> ||  

?dataset = <datasetURI2> || 

… 

?dataset = <datasetURIn> 

) 

FILTER( 

?dsd = <dsdURI1> ||  

?dsd = <dsdURI2> || 

… 

?dsd = <dsdURIn> 

) 

FILTER(?dimension = <dimensionURI>) 

BIND(URI("conceptSchemeURI") AS ?conceptScheme). 

} 

  

5.4.2.3.3 Loading relevant triples  

With the first run of this step, all triples are crawled of which the member and the 

resources that are linked to it with the owl:sameAs property are subject. This means 

triples are crawled from the URI of the member of the given dimension and to 

owl:sameAs resources of the member.  

With each further iteration, additional concepts may have been assigned to the 

concept scheme in a higher level in the step before. The corresponding resources 

that are linked to the concepts via rdfs:seeAlso, are crawled, respecting owl:sameAs 

resources. 

All these triples are added to the triple store.  
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5.4.2.3.4 Adding hierarchical information  

Since this approach can have recursions, there has to be distinguished between the 

first and the other passes of this step. In each case, the depths of the levels are not 

set in this step, since there may be constructed more parents level with each further 

pass of this step. With each recursion, a new stage, meaning all levels with the same 

depth, is created. 

At the first pass of this step, a leaf level is created. The concepts of the created 

concept scheme are assigned to this leaf level via skos:member. This level is 

assigned to the concept scheme via skos:inScheme:  

hrccl:properties/leaf  rdf:type   skosclass:ClassificationLevel; 

    skos:inScheme Properties. 

hrcco:estatwrap/ontologycentral/com/dic/geo/DE   

    skos:member hrccl:properties/leaf. 

 

The following description is valid for the first and all other passes of this step: 

Each property can have several sub properties, which itself also can have sub 

properties. If the flag for generalized or specialized properties is set, only the 

uppermost (most generalized) properties are relevant. Consequently, a reasoning 

has to be done, whereby the rdfs:subPropertyOf relationship plays an important role. 

After applying the following rules, the members have all possibly properties, including 

the uppermost (most generalized properties):  

[rdfs5:  (?x rdfs:subPropertyOf ?y), (?y rdfs:subPropertyOf ?z) -> (?x rdfs:subPropertyOf ?z)] 

[rdfs6:  (?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)] 

 

These rules can be executed with the following SPARQL construct queries, whereby 

the construct query for the rule rdfs5 has to be executed several times until no 

additional triples are constructed: 

Construct{ 

#rule rdfs5  

?x rdfs:subPropertyOf ?z. 

} 

where{ 
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?x rdfs:subPropertyOf ?y. 

?y rdfs:subPropertyOf ?z. 

} 

 

Construct{ 

#rule rdfs6  

?a ?q ?b. 

} 

where{ 

?a ?p ?b. 

?p rdfs:subPropertyOf ?q. 

} 

 

This approach works stage by stage. With each passing of this step, an additional 

stage with several parent levels is created. Therefore, the parent levels, including 

parent members, of the levels of the actual stage have to be determined. Therefore, 

the following SPARQL Query can be run against the data, which has to be executed 

for each level of this stage separately. Hereby the URI of the actual level have to be 

filled in the brackets (bold marked). Some properties, e.g. owl:sameAs, rdfs:label, 

can be filtered out, because it makes no sense to use them as a parent level. 

SELECT  distinct ?concept ?parentLevel ?parentConcept 

#Determine candidates for the parent levels 

WHERE { 

?concept rdfs:seeAlso ?member. 

?concept skosclass:member ?level. 

?level rdf:type skosclass:ClassificationLevel. 

OPTIONAL{?member owl:sameAs ?sameAsMember.} 

{{?member ?property ?parent.} UNION {?sameAsMember ?property ?parent.}} 

FILTER( ?property != owl:sameAs && ?property != rdfs:label ) 

FILTER( ?level = <levelURI> ) 

BIND(URI(CONCAT("http://hierarchie.org/co/", 

REPLACE(REPLACE(SUBSTR(STR(?parent),8),"\\.","/"),"#","/"))) AS ?parentConcept). 

BIND(URI(CONCAT("http://hierarchie.org/cl/", 

REPLACE(REPLACE(SUBSTR(STR(?property),8),"\\.","/"),"#","/"))) AS ?parentLevel). 

 [PROPERTY STATEMENT TO BE INSERTED HERE] 

} 

 

The following two property statements are possible: 
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 If the flag for generalized or specialized properties is set, the following 

statement has to be inserted, to retrieve only the uppermost properties: 

FILTER NOT EXISTS {?parentLevel rdfs:subPropertyOf ?x} 

 

 Otherwise, the following statement has to be inserted, to retrieve only the 

bottommost properties of a particular member: 

FILTER NOT EXISTS { ?x rdfs:subPropertyOf ?parentLevel. 

     ?member ?x ?parent.} 

 

The query retrieves the following elements: 

 Members of the actual level (?concept)  

 Parent Levels (?parentLevel) 

 Parents (?parentConcept) 

These elements can be seen as candidates for elements of the hierarchy. It has to be 

proofed for each parent level, if the following conditions are fulfilled. If one of these 

conditions is not fulfilled, the particular property is forming no parent level: 

 Percentage of subjects that have a particular property: 

It has to be proofed, if the percentage of subjects, which have a particular 

property that is forming a parent level, is greater or equal the value of the 

parameter. If not, the actual property is forming no parent level since there are 

too less subjects that have this particular property. 

 No Loop:  

If the actual property is linking the subject back to a resource that is member 

of a lower level, the actual property is forming no parent level, since there may 

be no loops in an OLAP hierarchy. 

As a consequence, each property that fulfills these conditions is forming a parent 

level. If the value of the parameter for the percentage of subjects that have a 

particular property is smaller than 100%, there may exist subjects that do not have 

this particular property, which is forming a parent level. Hence, they also have no 

object, which can be their parent in this parent level. For these reasons, all such 
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subjects are assigned to a dummy in the parent level, which serves as parent 

member in the parent level.  

For each parent, concepts have to be created that are linked to the crawled 

resources via rdfs:seeAlso if the parent is a resource or rdfs:label if the parent is a 

label. This means that an URI is created for each different value of an occurring 

literal or resource, which is then defined as SKOS concept and assigned to the 

created concept scheme. If the flag for strictness is set, one parent is chosen 

randomly, if the property for the parent level is linked multiple times to the member. 

Also, for each property, levels have to be created, to which the created concepts are 

assigned to via skos:member. These levels are defined as 

skosclass:ClassificationLevel. Additionally, they have to be assigned to the scheme 

via the property skos:inScheme.  

Furthermore, there have to be defined concept associations with 

skosclass:hasSourceConcept and skosclass:hasTargetConcept properties to child 

and parent of a relationship and an rdf:predicate link to skos:broader. This concept 

associations are also linked to the concept scheme via skos:inScheme.  

For example, the query above retrieves the following triple, in which the property 

dbpedia:owl-language can be seen as a candidate for a parent level:  

hrcco:estatwrap/ontologycentral/com/dic/geo/DE dbpedia-owl:language dbpedia:Germans. 

 

Assuming that the two conditions are fulfilled, the following triples are created and 

added to the triple store: 

hrcco:dbpedia/org/resource/Germans rdf:type   skos:Concept; 

    skos:inScheme hrccs:Properties; 

     rdfs:seeAlso  dbpedia:Germans; 

    skos:member       hrccl:dbpedia/org/ontology/language. 

hrccl:dbpedia/org/ontology/language  rdf:type  skosclass:ClassificationLevel; 

    skos:inScheme hrccs:Properties. 

hrcca:dbpedia/org/resource/Germans_dbpedia/org/ontology/language  

 rdf:type    skosclass:ConceptAssociation; 

 skosclass:hasSourceConcept hrcco:dbpedia/org/resource/Germans; 
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 rdf:predicate   skos:broader; 

 skosclass:hasTargetConcept hrcco:dbpedia/org/resource/Germans; 

 skos:inScheme   hrccs:Properties. 

 

5.4.2.3.5 End of the approach reached?  

The end of the approach is reached, if one of the following termination criteria is 

fulfilled: 

 Maximal number of stages exceeded: 

If the number of stages exceeds the maximal number of stages, no more 

parent level is created and the algorithm terminates.  

 No additional levels added: 

If there were no additional levels added in the step before, the algorithm 

terminates. 

Otherwise the algorithm continues with the second step, where triples to the 

members that have been assigned to the concept scheme beforehand, are crawled. 

The next iteration creates parent levels that are one stage above the stage that has 

been created beforehand. This means the algorithm works stage for stage. With each 

iteration, the next higher stage is created. In each stage there may be several parent 

levels.  

 

5.4.2.3.6 End  

At the end of the approach „properties‟ the constructed concept scheme includes the 

hierarchical relationships which can then be used.  

 

5.4.2.4 Example 

There is a data set48, which has the dimension eus:geo. The members of this 

dimension include owl:sameAs links to resources from dbpedia49, a structured extract 

of wikipedia50. For illustration reasons, the following simplification reasons are made: 

                                                           
48

 http://estatwrap.ontologycentral.com/id/tsieb020#ds 
49

 http://dbpedia.org/About 
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 Only six members are used  

 The prefix dbpedia is excluded in the figure below 

 Only the two following properties are used: 

o dbpedia-owl:language  

o dbpedia-owl:languageFamily  

The following figure shows the resources and the two properties: 

 

 

Figure 34: Simplified example for the approach 'properties': triples 

At first, the algorithm independent of its parameters is explained: The first property 

dbpedia-owl:language results in the first level. Since Poland does not have this 

property, a dummy member is created in this level. This dummy is used as parent of 

all members that do not have the property dbpedia-owl:language. The second 

property dbpedia-owl:languageFamily results in the second level. Since Germans 

                                                                                                                                                                                     
50

 http://www.wikipedia.org/ 
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does not have this property, also in this level a dummy member is created, again. 

This is a parent of all members that do not have the property dbpedia-

owl:languageFamily.  

There may be special cases, where a certain resource (e.g. Germanic_languages) is 

an object of the property owl:languageFamily and also an object of the property 

dbpedia-owl:language, which could be both properties of a member in the leaf level 

(e.g. Belgium). In this case, it has to be ensured that in each resulting simple 

hierarchy, this resource is assigned to only one level.  

Now, the values of the parameters for this example are shown and the effect on the 

algorithm and the resulting hierarchy is described: 

 Minimal number of stages: 2 

The resulting hierarchy at least has two levels. This is here fulfilled, since 

three levels are derived.  

 Maximal number of stages: 3 

The resulting hierarchy at most has three levels. This is here fulfilled, since 

three levels are derived. 

 Flag for generalized or specialized properties: not set 

This means that the rules for determining the uppermost properties are not 

applied. The already existing properties (dbpedia-owl:language and dbpedia-

owl:languageFamily) instead of their possible super properties result in levels. 

 Percentage of subjects that have a particular property: 0.6 

This means that 60% of the subjects must have a particular property so that 

this property results in a higher level. This is fulfilled, because 5 of 6 members 

have the property dbpedia-owl:language and 5 of 7 members have the 

property dbpedia-owl:languageFamily. 

 Flag for the strictness: not set 

A member can have several parent members. Here, for example Belgium has 

three parents. 

 Flag for more members than parents: not set 

This means that it is allowed that a parent level contains more members than 

the child level. This is here the case since the level owl:languageFamily has 

14 members and the level dbpedia-owl:language has 7 members.  
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The resulting hierarchy in this example is a symmetric hierarchy, since all levels are 

populated with members. Furthermore, the resulting hierarchy is non-strict, since a 

member has several parents.  

 

5.4.2.5 Resulting hierarchies 

With this approach there may be generated almost all introduced OLAP hierarchies.  

Each different uppermost level results in an individual hierarchy. If there is more than 

one uppermost level, this results in a parallel hierarchy. The parallel hierarchy may 

be dependent, if some levels are shared or independent otherwise. If there is only 

one uppermost level, the resulting hierarchy is individual.  

If there are parallel levels on the same stage between the leaf and the uppermost 

level that are not part of a generalized hierarchy, this results in a multiple alternative 

hierarchy.  

If the bottommost (most specialized) properties are used, there may result 

generalized and non-covering hierarchies. For each property that has several sub 

properties which are used for the members, an own generalized hierarchy is 

generated. Here, each property is forming one level at the same stage. If a member 

has a property and a sub property of this property, only the object of the bottommost 

property of this particular member results as a parent. If there are several sub 

properties of one particular property used for the members, only one of these sub 

properties results as parent level to guarantee exclusive paths in a generalized 

hierarchy. If there are several uppermost levels at the uppermost stage in a 

generalized hierarchy after executing the algorithm, all these uppermost levels are 

taken together in one common uppermost level to retrieve a proper generalized 

hierarchy.  

Furthermore, the resulting simple hierarchies can potential be strict, if there is always 

used the same property once for a certain subject or if the parameter for strictness is 

set. Otherwise the hierarchy is non-strict. If the parameter for strictness is set, only 

one object is chosen as parent member, since a particular property can be used 

many times for the same subject.  
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Asymmetric hierarchies cannot be found with this approach, since this approach is a 

bottom up approach.  

 

5.4.2.6 Criticism 

With this approach, properties of a member result in parent levels of this member. 

However, properties could also be used to derive descriptive attributes of the 

members, where the object of a triple is the characteristic of this attribute. This 

means that if descriptive attributes are relevant for the resulting level, the properties 

could fulfill two functions, as level and descriptive attribute. If a property is used only 

once for a given member (which would result in a strict hierarchy) and the object of a 

triple fully functional depends on the subject of a triple, this is an indication of an 

attribute, since the value of this characteristic fully functional depends on the 

member. So this approach generates levels from properties instead of descriptive 

attributes, which should sometimes rather be modeled than levels. 

Furthermore, this approach assigns all members of a given dimension of the data 

set(s) to one leaf level. This may not always correct. For this reason, all members 

that should not be members of the leaf level have to be assigned to another level 

manually or in a further optimization step that is not part of this thesis.  

To ensure good results with this approach, the parameters could be set by default or 

some recommendations could be given. To give such a helpful recommendation, this 

approach could be applied on several data sets with several constellations of 

parameters and the resulting hierarchies could be compared to each other, e.g. with 

help of the developed metrics. 
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6 Evaluation 

This section evaluates the developed approaches by testing them on real-world 

datasets from Eurostat51. Hereby the same datasets like in the examples of the 

particular approaches are used. The evaluation is based on the integration of two 

datasets. Therefore, two datasets are integrated for each approach.  

 

6.1 Approach ‘time’ 

To evaluate the approach „time‟, the components of the following table are used: 

Component URI 

data sets http://estatwrap.ontologycentral.com/id/teilm020#ds 

http://estatwrap.ontologycentral.com/id/tsieb020#ds 

data structure definitions http://estatwrap.ontologycentral.com/dsd/teilm020#dsd 

http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd 

dimension http://purl.org/dc/terms/date 

Table 12: Components for the evaluation of the approach 'time' 

 

After the approach „time‟ is executed on these given components, a hierarchy with 

the following levels is constructed: 

 

Figure 35: Resulting hierarchy of the approach 'time': schema 

 

The integration of the two data sets is given via the member 2011, since the months 

2011-04 till 2011-11, which occur in the first data set roll up to the year 2011, which is 

also included in the second data set. The resulting hierarchy is asymmetric, because 

not all members on in the level year have children in the level month and strict, 

                                                           
51

 http://estatwrap.ontologycentral.com/ 
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because each member in the level months rolls up to only one parent member in the 

level year. 

 

6.2 Approach ‘geo’ 

To evaluate the approach „geo‟, the components of the following table are used: 

Component URI 

data sets http://estatwrap.ontologycentral.com/id/agr_r_landuse#ds 

http://estatwrap.ontologycentral.com/id/tsieb020#ds 

data structure definitions http://estatwrap.ontologycentral.com/dsd/agr_r_landuse#dsd 

http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd 

dimension http://ontologycentral.com/2009/01/eurostat/ns#geo 

Table 13: Components for the evaluation of the approach 'geo' 

 

After the approach „geo‟ is executed on these given components, a hierarchy with the 

following levels is constructed: 

 

Figure 36: Resulting hierarchy of the approach 'geo': schema 

 

The integration of the two data sets is given via the members of the level NUTS0, 

since some members of this level occur in both data sets and the members of the 

level NUTS1 roll up to some of these members of level NUTS0. The resulting 

hierarchy is asymmetric, because not all members in the level NUTS0 have children 

in the levels NUTS1 and NUTS2. Furthermore, the resulting hierarchy is strict, 

because each member in the level NUTS2 and NUTS1 rolls up to only one parent 

member. 
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6.3 Approach ‘rdfs:subClassOf’ 

To evaluate the approach „rdfs:subClassOf‟, the components of the following table 

are used: 

Component URI 

data sets http://estatwrap.ontologycentral.com/id/cpc_siemp#ds 

http://estatwrap.ontologycentral.com/id/tsieb020#ds 

data structure definitions http://estatwrap.ontologycentral.com/dsd/cpc_siemp#dsd 

http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd 

dimension http://ontologycentral.com/2009/01/eurostat/ns#geo 

Table 14: Components for the evaluation of the approach 'rdfs:subClassOf' 

 

There are 45 members in this given dimension, 29 members with owl:sameAs links 

and 16 members without owl:sameAs links to other resources. For the evaluation 

triples from dbpedia are used since there exist owl:sameAs links from members to 

resources from dbpedia. The parameters are set like in the example to the approach 

above and the parameter „Flag for schema‟ is set. The following table gives an 

overview of the resulting levels on stage 2 which are above the leaf level and on 

stage 1 which are the uppermost levels. 

 

Classes/Levels on stage 2 Property Classes/Levels on stage 1 

dbpedia-class: 
yago/Archipelago109203827 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/Land109334396 

dbpedia-class: 
yago/AdministrativeDistrict108491826 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/District108552138 

dbpedia-class: 
yago/System108435388 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/Group100031264 

dbpedia-class: 
yago/Crisis113933560 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/SituAtion114411243 

dbpedia-class: 
yago/Empire108557482 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/Domain108556491 

dbpedia-class: 
yago/Capital108518505 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/Seat108647945 

dbpedia-class: 
yago/Home108559508 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/Residence108558963 

dbpedia-class: 
yago/Country108544813 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/AdministrativeDistrict108491826 

dbpedia-class: 
yago/Location100027167 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/Object100002684 

dbpedia-class: 
yago/Location100027167 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/YagoGeoEntity 



6 Evaluation 

 
135 

 

dbpedia-class: 
yago/Location100027167 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/YagoLegalActorGeo 

dbpedia-class: 
yago/Island109316454 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/Land109334396 

dbpedia-class: 
yago/Region108630039 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/Location100027167 

dbpedia-class: 
yago/Economy108366753 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/System108435388 

dbpedia-class: 
yago/Clang107380144 

rdfs:sub
ClassOf 

dbpedia-class: 
yago/Noise107387509 

dbpedia-owl: 
PopulatedPlace 

rdfs:sub
ClassOf 

dbpedia-owl: 
Place 

Table 15: Levels of the approach 'rdfs:subClassOf' 

 

After the approach „rdfs:subClassOf‟ is executed on these given components, a 

hierarchy with the following levels is constructed. For illustration reasons, only the 

last seven levels on stage 1 of the above table are shown: 

 

Figure 37: Resulting hierarchy of the approach 'subClassOf': schema 



6 Evaluation 

 
136 

 

The integration of the two datasets is given via the members in the created levels on 

stage 2, since some members of this level are parents of members of both data sets. 

The resulting hierarchy is a parallel hierarchy, composed of several simple 

hierarchies. These simple hierarchies are symmetric, since all levels are populated 

with members. Depending on the number of rdf:type properties and rdfs:subClassOf 

relationships, the resulting simple hierarchies are strict or non-strict. 

 

6.4 Approach ‘properties’ 

To evaluate the approach „properties‟, the components of the following table are 

used: 

Component URI 

data sets http://estatwrap.ontologycentral.com/id/cpc_siemp#ds 

http://estatwrap.ontologycentral.com/id/tsieb020#ds 

data structure definitions http://estatwrap.ontologycentral.com/dsd/cpc_siemp#dsd 

http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd 

dimension http://ontologycentral.com/2009/01/eurostat/ns#geo 

Table 16: Components for the evaluation of the approach 'properties' 

 

There are 45 members in this given dimension, 29 members with owl:sameAs links 

and 16 members without owl:sameAs links to other resources. For the evaluation 

triples from dbpedia are used since there exist owl:sameAs links from members to 

resources from dbpedia. The parameters are set like in the example to the approach 

above. For illustration reasons, only one stage above the leaf level is created. The 

following table gives an overview of the properties that are candidates for higher 

levels. Since the parameter „Percentage of subjects that have a particular property‟ is 

set to 60%, only properties result in a parent level, where the distinct count of 

subjects is at least 27 members (0.6 * 45 members = 27 subjects). 
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Property 

Distinct count of 
subjects having 

this property 

Distinct 
count of 
objects 

<http://dbpedia.org/property/leaderTitle> 28 74 

<http://dbpedia.org/ontology/leaderName> 28 83 

<http://dbpedia.org/ontology/capital> 28 28 

<http://dbpedia.org/ontology/language> 27 70 

<http://dbpedia.org/ontology/governmentType> 27 35 

<http://dbpedia.org/ontology/currency> 27 29 

<http://dbpedia.org/ontology/officialLanguage> 26 37 

<http://dbpedia.org/property/timeZoneDst> 24 24 

<http://dbpedia.org/property/timeZone> 24 24 

<http://dbpedia.org/property/leaderName> 24 49 

<http://dbpedia.org/property/capital> 24 24 

<http://dbpedia.org/property/sovereigntyType> 22 22 

<http://dbpedia.org/ontology/anthem> 22 25 

<http://dbpedia.org/ontology/ethnicGroup> 21 67 

<http://dbpedia.org/property/officialLanguages> 20 34 

<http://dbpedia.org/property/governmentType> 19 26 

<http://dbpedia.org/property/establishedEvent> 19 63 

<http://dbpedia.org/property/demonym> 16 17 

<http://dbpedia.org/property/legislature> 13 13 

<http://dbpedia.org/property/currency> 11 12 

<http://dbpedia.org/property/cctld> 11 12 

<http://dbpedia.org/ontology/largestCity> 9 9 

<http://dbpedia.org/property/upperHouse> 8 8 

<http://dbpedia.org/property/lowerHouse> 8 8 

<http://dbpedia.org/ontology/regionalLanguage> 7 20 

<http://dbpedia.org/property/nationalAnthem> 4 4 

<http://dbpedia.org/property/religion> 2 2 

<http://dbpedia.org/property/regionalLanguages> 2 3 

<http://dbpedia.org/property/callingCode> 2 2 

<http://dbpedia.org/property/stateLanguage> 1 1 

<http://dbpedia.org/property/sovereigntyNote> 1 1 

<http://dbpedia.org/property/otherSymbolType> 1 1 

<http://dbpedia.org/property/nonOfficialLanguages> 1 1 

<http://dbpedia.org/property/nationalTree> 1 1 

<http://dbpedia.org/property/nationalPoet> 1 1 

<http://dbpedia.org/property/nationalPlant> 1 1 

<http://dbpedia.org/property/nationalMotto> 1 1 

<http://dbpedia.org/property/nationalLanguage> 1 1 

<http://dbpedia.org/property/nationalBird> 1 1 

<http://dbpedia.org/property/largestSettlement> 1 1 

<http://dbpedia.org/property/largestCity> 1 1 

<http://dbpedia.org/property/languagesType> 1 1 

<http://dbpedia.org/property/languages> 1 1 

<http://dbpedia.org/property/frMetropole> 1 1 

<http://dbpedia.org/property/establishedDate> 1 1 

<http://dbpedia.org/property/caption> 1 1 

<http://dbpedia.org/ontology/wikiPageRedirects> 1 1 

<http://dbpedia.org/ontology/largestSettlement> 1 1 
Table 17: Candidates for levels of the approach 'properties' 
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When crawling these triples, the following properties have not been considered, since 

they are not very useful to generate hierarchies or they are used in another 

approach. For example rdf:type is used in the approach „rdfs:subClassOf‟ and 

<http://xmlns.com/foaf/0.1/page> links to a homepage: 

 <http://www.w3.org/2002/07/owl#sameAs>  

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>  

 <http://www.w3.org/2000/01/rdf-schema#comment>  

 <http://www.w3.org/2000/01/rdf-schema#label>  

 <http://dbpedia.org/ontology/abstract>  

 <http://dbpedia.org/ontology/wikiPageExternalLink>  

 <http://xmlns.com/foaf/0.1/homepage>  

 <http://xmlns.com/foaf/0.1/page>   

 <http://xmlns.com/foaf/0.1/depiction>  

 <http://dbpedia.org/property/wikiPageUsesTemplate>  

 <http://dbpedia.org/ontology/thumbnail> 

 <http://purl.org/dc/terms/subject> 

After the approach „properties‟ is executed on these given components, a hierarchy 

with the following levels on the first stage is constructed: 

 

Figure 38: Resulting hierarchy of the approach 'properties': schema 
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The integration of the two datasets is given via the members in the created levels on 

stage 1, since some members of this level are parents of members of both data sets. 

The resulting hierarchy is a parallel hierarchy, composed of several simple 

hierarchies. These simple hierarchies are symmetric, since all levels are populated 

with members and there are no rdfs:subPropertyOf relationships between the 

properties. Furthermore, the resulting simple hierarchies that have more parents than 

members are non-strict and the simple hierarchy leafcapital is strict, because this 

property is used only once for a subject. 
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7 Conclusions 

Upon finishing the main parts of this thesis, this last section summarizes them, 

describes the resulting lessons learned and looks ahead for possible future research 

topics. 

 

7.1 Summary 

This master thesis showed how hierarchies can be constructed from Statistical 

Linked Data and be used in OLAP systems. After a general introduction and 

explanation of the used technologies, it answered the following main questions: 

 Which are useful Statistical Linked Data hierarchies? 

This question was answered in section 2 „Theoretical background‟, where the 

relevant concepts, technologies and standards, especially the conceptual 

model of OLAP hierarchies, have been introduced. Furthermore, the 

developed metrics for measuring the usefulness of a hierarchy was described. 

 How can Statistical Linked Data hierarchies be expressed? 

A solution on this question was given in section 3 „Expressing OLAP 

hierarchies in RDF‟, where SKOS and the proposed extension have been 

explained so that all hierarchies of the conceptual model can be expressed 

with RDF. 

 How can Statistical Linked Data hierarchies be used? 

The answer on this question was explained in section 4 „Transforming Linked 

Data into OLAP hierarchies‟, where OLAP4J for the use in OLAP clients have 

been introduced. There have been developed SPARQL queries, which provide 

the content for the variables of the hierarchy relevant OLAP4J methods.  

 How can Statistical Linked Data hierarchies be constructed? 

This question was answered in section 5 „Approaches for learning OLAP 

hierarchies from RDF‟, where the different approaches to generate useful 

hierarchies have been explained. There have been developed specific 

approaches for temporal and geographical dimensions and generic 

approaches for potential all dimensions. The following table shows, which 

hierarchy can potentially be constructed with each approach.  
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Hierarchy Approach 

time geo rdfs: 
subClassOf 

properties 

parallel independent - - X X 

parallel dependent - - X X 

multiple alternative X - - X 

simple strict symmetric X X X X 

asymmetric X X - - 

generalized 
(except 
non-
covering) 

- - X X 

non-
covering 

- - X X 

non- 
strict 

symmetric X - X X 

asymmetric X - - - 

generalized 
(except 
non-
covering) 

- - X X 

non-
covering 

- - X X 

Table 18: Resulting hierarchies of each approach 

 

7.2 Resulting lessons learned 

While working on this thesis, the following experiences have been made for 

constructing OLAP hierarchies from Statistical Linked Data. They can be seen as 

lessons learned for future research: 

 Proper vocabulary required: 

There has been much effort to develop and propose the extensions for SKOS 

to have the possibility to express all types of hierarchies and distinguish 

different hierarchies from each other. As a consequence, the time for 

developing the approaches to generate hierarchies was reduced, which was 

the most important part of this thesis. This means that a proper vocabulary is 

an essential requirement, before the approaches to generate hierarchies could 

be developed. If such a proper vocabulary had already been existed, more 

effort would have been left over for developing, evaluating and optimizing the 

approaches. 

 Different aggregation level: 

Data publisher often publish values on different aggregation level altogether in 

one data set, but do not express the included hierarchies. For example the 
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dimension eus:sex of a dataset52 includes members for females53, males54 

and total55. Since no hierarchical relationships between females/males and 

total is given, a data consumer or service provider has to handle this 

problematic, e.g. by filtering on female and male. This master thesis 

recommends to publish only observations on the most granular level and to 

define hierarchies. With the help of aggregation functions, which are not part 

of this thesis, and hierarchies, data consumer or service provider are able to 

compute the aggregated value theirselves. Hence, replicability is ensured and 

misinterpretations are avoided. Possible other methods to handle this 

problematic are the following: 

o Introducing a parameter: 

There could be defined a flag that indicates the aggregation level of the 

members in the given data sets. If such a flag is set, all given members 

would result in the same level. If such a flag is not set, members of a 

given dimension of a dataset should be assigned to different levels.   

o Specifying the most granular values: 

The members on the most granular level could be specified for example 

by a human in a separate preprocessing step before the approaches 

could be executed. All specified members would result in the leaf level. 

o Extending the RDF Data Cube Vocabulary: 

All members on the most granular level in a certain data set could be 

marked with an extension of the RDF Data Cube Vocabulary. All 

marked members would result in the leaf level. 

 Data quality: 

Data quality is an important success factor for finding useful hierarchies. If 

there are incorrect triples, which should be used to find hierarchies, also the 

resulting hierarchy can be wrong. Incorrect triples means that wrong 

information is included in a triple on the semantic level. For example, the 

following triple is wrong, saying that a language in Germany is the German 

people: 

                                                           
52

 estatwrap.ontologycentral.com/id/tsiem020#ds 
53

 http://estatwrap.ontologycentral.com/dic/sex#F 
54

 http://estatwrap.ontologycentral.com/dic/sex#M 
55

 http://estatwrap.ontologycentral.com/dic/sex#T 
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dbpedia:Germany   dbpedia-owl:language  dbpedia:Germans. 

 

The right triple would be the following, saying that the German language is a 

language in Germany: 

dbpedia:Germany   dbpedia-owl:language dbpedia:German_language. 

 

This wrong triple would for example lead to a wrong parent member in the 

approach „properties‟ in a hierarchy countrylanguage. 

 Technical problems: 

When developing the approaches, appearing technical problems have to be 

handled. For example when queries should be executed or triples should be 

added to the triple store the following problem appeared: The RDF/XML 

information resource56 of a certain URI57 was not XML well-formed, which 

means that this is not an RDF document and the triples could not be used. 

 Hard- and software: 

Hard- and software is needed for developing the approaches. Mainly a proper 

triple store is required, where the approaches could be tested. Since not all 

triple stores provide SPARQL1.158 functionalities, which were needed for the 

developed SPARQL queries, this master thesis had to use a triple store, which 

fulfills this requirement. This was done on an Open RDF Sesame Server59 in 

version 2.6.2. 

 OLAP driver: 

To use the constructed hierarchies in OLAP systems, an OLAP driver is 

required, which transforms the resulting triples for the use in OLAP 

applications. This master thesis makes use of OLAP4 as OLAP application. 

Because of expressing hierarchies in Linked Data, also other OLAP 

applications could potential be supported. In the case of XMLA, the supported 

hierarchies are the same as in OLAP4J. This means that using Linked Data 

for expressing statistical data provides the possibility to support a broad range 

of applications and technologies. 

                                                           
56

 http://dbpedia.org/data/German_language 
57

 http://dbpedia.org/resource/German_language 
58

 http://www.w3.org/TR/sparql11-query/ 
59

 www.openrdf.org/ 
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7.3 Future research topics 

Hierarchies in the context of OLAP and Statistical Linked Data have been the focus 

of this master thesis. For doing further research in this area, the following topics are 

possibly the most relevant ones: 

 Aggregation functions: 

As described in section 2.1.1.2 „Aggregation functions and summarizability‟, 

this master thesis does not make a statement of aggregating the measures in 

a roll-up operation along a constructed hierarchy. Since the main focus of 

OLAP systems is to derive knowledge out of data, aggregated data is potential 

more interesting than the single granular values. For this reason, besides the 

need of hierarchies, research in aggregating values with use of these 

hierarchies can surely be seen as the next major work.  

 Performance: 

If useful ways are found to aggregate the data with help of the generated 

hierarchies, performance will surely play in important role, when end users 

analyze Statistical Linked Data. To reduce the response times, research for 

improving the performance will positively influence the relevance of Statistical 

Linked Data. Therefore roll-up operations could be executed every time the 

data changes and the aggregated values could be saved. This concept is 

called small materialized aggregates (SMAs) [Moer98]. Possibly extending the 

RDF Data Cube Vocabulary and SKOS, it would be interesting to transfer this 

concept to Statistical Linked Data. 

 Storage technologies:  

As described in section 2.1.3.2 „Star and snowflake schema‟, there is a 

difference between the semantic, conceptual level of modeling 

multidimensional data and the logical, intern level of the database. Since 

Statistical Linked Data is in format of RDF, which is constructed out of triples, 

research in storage technologies for especially RDF triples would possibly be 

interesting to influence the performance. Therefore the existing technologies 

relational OLAP (ROLAP), multidimensional OLAP ( MOLAP) and hybrid 

OLAP (HOLAP) could influence the storage of RDF triples. Also buffering 

triples in the main memory could be of research interest to enhance the 

response time. 
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 Approaches: 

Besides the other main parts of this master thesis, how hierarchies can be 

expressed and used, generating hierarchies is also a main part of this thesis. 

Further research in generating hierarchies could consist of improving and 

extending the developed approaches, especially the generic ones. 

Furthermore, there could be developed further approaches to generate 

hierarchies. The following ideas show, how possibly further approaches could 

be look like to find useful OLAP hierarchies: 

o Machine learning approaches: 

 Clustering:  

With the help of existing triples, in which the members of a 

dimension are part in the subject or object part, the members 

could be clustered.  

 Classification: 

With the help of triples, the members could be classified. For 

example if the range of a dimension is a literal with a numeric 

data type, e.g. xsd:integer,  there could be defined thresholds 

statically or dynamically and the members could be classified in 

different classes in the sense of classification, e.g. small, 

medium, large. The resulting hierarchy would consist of two 

levels, one for the members one for the classes, in which the 

members were classified.  

o Human-centered approaches: 

 MDX-Query: 

If a user queries data, MDX queries are created. Hierarchies 

could possibly be found with the help of them, by using the 

required levels that are part of the MDX query. 

 Gaming: 

With the help of mini online games, human users could possibly 

optimize or construct hierarchical structures, which could then be 

used for OLAP. 

o Semantic approaches:  

 Special properties:  
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There could be identified special properties, which already 

represent hierarchical structures, for example the properties 

dbprop:fam and dbprop:child. They could be used to derive 

hierarchies.   

 rdfs:subPropertyOf: 

Since there can be defined hierarchical structures between 

properties by using rdfs:subPropertyOf, this relationships can 

potentially be used, if there exist triples to a member, where 

these properties are included. 

o Transforming approaches: 

 Already existing SKOS concept schemes: 

There may potentially exist SKOS concept schemes, where 

relationships are defined by skos:broader and skos:narrower, but 

the proposed extensions, e.g. skosclass:ClassificationLevel are 

not used. These concept schemes can be extended, so that they 

can be used by the developed SPARQL queries for the OLAP4J 

methods. 

 Other vocabularies: 

Besides SKOS, there may exist or be developed other 

vocabularies for expressing thesauri or other hierarchical 

structures, which could possibly be transformed in the extended 

SKOS vocabulary. 

 Change of hierarchies: 

Although the approaches are parameterized equally in two runs of an 

approach, there may be generated different hierarchies, because additional 

triples could be found on the web, which could be used for adding hierarchical 

information to a certain concept scheme or the triples in the given data sets 

and data structure definitions may change. For this reason, a comprehensive 

change management of hierarchies is required.  

 Usage: 

Usage means both, on the one side usage of the approaches to generate 

hierarchies and on the other side usage of the hierarchies to derive new 

knowledge.  
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o Usage of the approaches: 

To benefit from the developed approaches, they have to be provided for 

other users and applications in a way that hierarchies could be 

constructed. With use of the introduced possibility to provide a web 

service, the resulting triples could be added to a triple store, where 

OLAP applications can use them. 

o Usage of the hierarchies: 

Since hierarchies can be used to integrate and analyze data on 

different aggregation level, intelligent strategies and concepts could be 

developed to finally use hierarchies for data on different aggregation 

levels in innovative applications, e.g. agents for decision support or 

recommender systems.  
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Appendix: Namespaces 

Appendix: Namespaces 
Prefix Namespace 

dbpedia http://dbpedia.org/resource/ 

dbpedia-class http://dbpedia.org/class/ 

dbpedia-owl http://dbpedia.org/ontology/ 

dbprop  http://dbpedia.org/property/ 

dcterms http://purl.org/dc/terms/ 

eus http://ontologycentral.com/2009/01/eurostat/ns# 

ex http://example.org/ 

hrc http://hierarchie.org/ 

hrcca http://hierarchie.org/ca/ 

hrccl http://hierarchie.org/cl/ 

hrcco http://hierarchie.org/co/ 

hrccs http://hierarchie.org/cs/ 

interval http://reference.data.gov.uk/def/intervals/ 

nuts http://nuts.psi.enakting.org/id/ 

nutsdef http://nuts.psi.enakting.org/def/ 

owl http://www.w3.org/2002/07/owl# 

qb http://purl.org/linked-data/cube# 

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# 

rdfs http://www.w3.org/2000/01/rdf-schema# 

refgovukday http://reference.data.gov.uk/id/gregorian-day/ 

refgovukmonth http://reference.data.gov.uk/id/gregorian-month/ 

refgovukweek http://reference.data.gov.uk/id/gregorian-week/ 

refgovukyear http://reference.data.gov.uk/id/gregorian-year/ 

skos http://www.w3.org/2004/02/skos/core# 

skosclass http://ddialliance.org/ontologies/skosclass# 

spatial http://data.ordnancesurvey.co.uk/ontology/spatialrelations/ 

time http://www.w3.org/2006/time# 

xsd http://www.w3.org/2001/XMLSchema# 

 


