

M A S T E R A R B E I T

Constructing OLAP hierarchies from Statistical Linked Data

von
Dominik Siegele

eingereicht am 17.02.2012 beim
Institut für Angewandte Informatik

und Formale Beschreibungsverfahren
des Karlsruher Instituts für Technologie

Referent: Prof. Dr. Rudi Studer
Betreuer: Dipl.-Inform. Benedikt Kämpgen

0 Eidestattliche Versicherung

2

Eidesstattliche Versicherung

Eidestattliche Versicherung
Ich, Dominik Siegele, versichere hiermit eidesstattlich, dass ich die hier vorliegende

Arbeit mit dem Titel

Constructing OLAP hierarchies from Statistical Linked Data

selbstständig verfasst und keine anderen als die von mir angegebenen Quellen und

Hilfsmittel benutzt habe. Wörtlich oder inhaltlich übernommene Stellen habe ich als

solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technologie

zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung habe

ich beachtet.

Karlsruhe, den 17.02.2012 __________________________

0 Vorwort

3

Vorwort

Vorwort
Mit diesem Vorwort möchte ich allen Personen danken, die mich bei der Erstellung

dieser Masterarbeit betreut und unterstützt haben:

Am Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)

der Fakultät für Wirtschaftswissenschaften des Karlsruher Instituts für Technologie

gilt mein Dank den Mitarbeitern der Forschungsgruppe Wissensmanagement, die mir

die Bearbeitung dieses Themas ermöglichten und mit konstruktiver Kritik zum

Gelingen dieser Arbeit beigetragen haben.

Besonderer Dank gilt hierbei dem Forschungsgruppenleiter Prof. Dr. Rudi Studer

sowie meinem Betreuer Benedikt Kämpgen, der mir jederzeit mit Rat und Tat zur

Seite stand.

Weiterhin möchte ich mich bei meiner Familie und meiner Freundin Caroline für die

Unterstützung während meines gesamten Studiums danken.

Zuletzt gilt mein Dank meinen Kommilitonen sowie allen sonstigen Personen, die

diese Arbeit und mein Studium auf irgendeine Art und Weise unterstützt haben.

0 Contents

4

Contents

Contents
1 Introduction ... 10

1.1 Problem description .. 10

1.2 Aims and organization of this thesis ... 12

1.3 Motivation ... 14

2 Theoretical background ... 16

2.1 Online Analytical Processing ... 16

2.1.1 Conceptual Model of OLAP ... 17

2.1.1.1 Data Cube .. 17

2.1.1.2 Aggregation functions and summarizability .. 18

2.1.2 Business Intelligence ... 21

2.1.2.1 BI process .. 21

2.1.2.2 Facets of BI .. 22

2.1.2.3 Data – Information - Knowledge ... 23

2.1.3 Data Warehouse .. 24

2.1.3.1 ETL process .. 25

2.1.3.2 Star and snowflake schema ... 26

2.2 Linked Data .. 28

2.2.1 RDF, RDFS and OWL... 29

2.2.2 RDF Data Cube Vocabulary and SDMX .. 31

2.2.3 SPARQL .. 33

2.2.4 Semantic Web ... 34

2.2.5 Linking Open Data Cloud and Statistical Linked Data sets .. 35

2.2.6 Linked Data as a source for data warehouses ... 38

2.3 Hierarchies ... 39

2.3.1 Individual hierarchies .. 42

2.3.1.1 Simple hierarchies ... 42

2.3.1.1.1 Type of simple hierarchies .. 42

2.3.1.1.1.1 Symmetric hierarchies .. 42

2.3.1.1.1.2 Asymmetric hierarchies .. 43

2.3.1.1.1.3 Generalized hierarchies .. 43

0 Contents

5

2.3.1.1.2 Strictness of simple hierarchies .. 45

2.3.1.1.2.1 Strict hierarchies .. 45

2.3.1.1.2.2 Non-strict hierarchies ... 45

2.3.1.2 Multiple alternative hierarchies .. 46

2.3.2 Parallel hierarchies .. 47

2.3.2.1 Parallel independent hierarchies .. 47

2.3.2.2 Parallel dependent hierarchies ... 47

2.3.3 Usefulness of hierarchies .. 48

2.3.3.1 Metrics corresponding to one approach ... 49

2.3.3.2 Metrics corresponding to one found hierarchy .. 50

3 Expressing OLAP hierarchies in RDF .. 53

3.1 Simple Knowledge Organization System (SKOS) ... 53

3.2 Weaknesses of SKOS ... 54

3.3 Proposed extensions to SKOS .. 57

3.4 Resulting vocabulary ... 60

4 Transforming Linked Data into OLAP hierarchies ... 63

4.1 OLAP4J ... 63

4.2 Mapping between SKOS and OLAP4J .. 64

4.2.1 Transforming parallel hierarchies in individual hierarchies .. 66

4.2.2 Transforming multiple alternative hierarchies in simple hierarchies 67

4.2.3 Transforming generalized hierarchies ... 67

4.3 OLAP4J methods .. 68

4.3.1 getHierarchies ... 70

4.3.2 getLevels .. 74

4.3.3 getMembers .. 75

5 Approaches for learning OLAP hierarchies from RDF ... 78

5.1 Steps of the approaches .. 78

5.1.1 Start ... 79

5.1.2 Creating a concept scheme ... 79

5.1.3 Loading relevant triples ... 80

5.1.4 Adding hierarchical information .. 80

5.1.5 End of the approach reached? .. 81

5.1.6 End ... 81

5.2 Technical implementation ... 82

0 Contents

6

5.3 Specific approaches ... 82

5.3.1 Approach ‘time’ ... 82

5.3.1.1 Overview .. 82

5.3.1.2 Algorithm ... 85

5.3.1.2.1 Start ... 85

5.3.1.2.2 Creating a concept scheme ... 86

5.3.1.2.3 Loading relevant triples ... 91

5.3.1.2.4 Adding hierarchical information ... 91

5.3.1.2.5 End of the approach reached? .. 96

5.3.1.2.6 End ... 96

5.3.1.3 Example ... 96

5.3.1.4 Resulting hierarchies ... 97

5.3.1.5 Criticism ... 97

5.3.2 Approach ‘geo’ .. 99

5.3.2.1 Overview .. 99

5.3.2.2 Algorithm ... 100

5.3.2.2.1 Start ... 100

5.3.2.2.2 Creating a concept scheme ... 100

5.3.2.2.3 Loading relevant triples ... 102

5.3.2.2.4 Adding hierarchical information ... 102

5.3.2.2.5 End of the approach reached? .. 105

5.3.2.2.6 End ... 105

5.3.2.3 Example ... 106

5.3.2.4 Resulting hierarchies ... 106

5.3.2.5 Criticism ... 106

5.4 Generic approaches ... 108

5.4.1 Approach ‘rdfs:subClassOf’ ... 108

5.4.1.1 Overview .. 108

5.4.1.2 Parameters .. 108

5.4.1.3 Algorithm ... 110

5.4.1.3.1 Start ... 110

5.4.1.3.2 Creating a concept scheme ... 110

5.4.1.3.3 Loading relevant triples ... 111

5.4.1.3.4 Adding hierarchical information ... 112

0 Contents

7

5.4.1.3.5 End of the approach reached? .. 114

5.4.1.3.6 End ... 114

5.4.1.4 Example ... 114

5.4.1.5 Resulting hierarchies ... 117

5.4.1.6 Criticism ... 118

5.4.2 Approach ‘properties’.. 119

5.4.2.1 Overview .. 119

5.4.2.2 Parameters .. 119

5.4.2.3 Algorithm ... 121

5.4.2.3.1 Start ... 121

5.4.2.3.2 Creating a concept scheme ... 121

5.4.2.3.3 Loading relevant triples ... 122

5.4.2.3.4 Adding hierarchical information ... 123

5.4.2.3.5 End of the approach reached? .. 127

5.4.2.3.6 End ... 127

5.4.2.4 Example ... 127

5.4.2.5 Resulting hierarchies ... 130

5.4.2.6 Criticism ... 131

6 Evaluation .. 132

6.1 Approach ‘time’ ... 132

6.2 Approach ‘geo’ .. 133

6.3 Approach ‘rdfs:subClassOf’ ... 134

6.4 Approach ‘properties’ ... 136

7 Conclusions .. 140

7.1 Summary ... 140

7.2 Resulting lessons learned .. 141

7.3 Future research topics ... 144

0 List of figures

8

List of figures

List of figures
Figure 1: Multidimensional data model: cube [modified from KeMU06, p.95] 17

Figure 2: A generic Business Intelligence process [modified from Humm08] 22

Figure 3: Facets of Business Intelligence [KeMU06, p.4] .. 23

Figure 4: Stairs of knowledge [modified from Nort05, p.32] .. 23

Figure 5: ETL-process ... 25

Figure 6: Star schema .. 27

Figure 7: Snowflake schema .. 28

Figure 8: Triple consisting of subject, predicate and object ... 29

Figure 9: RDF Data Cube vocabulary [CyRT10] .. 32

Figure 10: Semantic Web layer cake ... 35

Figure 11: Linking Open Data cloud diagram, September 2011 [CyJe11] ... 36

Figure 12: Metamodel of hierarchy classification ... 41

Figure 13: Notation of hierarchies in a multidimensional model: (a) level, (b) hierarchy, (c)

cardinalities, (d) analysis criterion, and (e) fact relationship .. 41

Figure 14: Example for a symmetric hierarchy: (a) model and (b) instances .. 42

Figure 15: Example for an asymmetric hierarchy: (a) schema and (b) instances 43

Figure 16: Example for a generalized hierarchy: (a) schema and (b) instances 44

Figure 17: Example for a non-covering hierarchy ... 44

Figure 18: Example for a symmetric non-strict hierarchy: (a) model and (b) instances 45

Figure 19: Example for a multiple alternative hierarchy: (a) model and (b) relations 46

Figure 20: Example for a parallel independent hierarchy ... 47

Figure 21: Example for a parallel dependent hierarchy: (a) model and (b) relations 48

Figure 22: Example of a hierarchy to explain the formulas .. 51

Figure 23: Hierarchies expressible with SKOS ... 56

Figure 24: Example for a transformation of a parallel independent hierarchy 66

Figure 25: Example for a transformation of a parallel dependent hierarchy 67

Figure 26: Example for a transformation of a multiple alternative hierarchy 67

Figure 27: Example for a transformation of a generalized hierarchy ... 68

Figure 28: Steps of the approaches ... 79

Figure 29: Examples for specific hierarchies of the time dimension: schema 83

Figure 30: Resulting multiple alternative hierarchy of the approach ‘Time’: schema 84

Figure 31: Simplified example for the approach 'rdfs:subClassOf': triples ... 115

Figure 32: Resulting hierarchy of the example with setting the flag: schema 117

Figure 33: Resulting hierarchy of the example without setting the flag: schema 117

Figure 34: Simplified example for the approach 'properties': triples ... 128

Figure 35: Resulting hierarchy of the approach 'time': schema.. 132

Figure 36: Resulting hierarchy of the approach 'geo': schema ... 133

Figure 37: Resulting hierarchy of the approach 'subClassOf': schema ... 135

Figure 38: Resulting hierarchy of the approach 'properties': schema .. 138

0 List of tables

9

List of tables

List of tables
Table 1: Consistency [modified from LeSh97] ... 21

Table 2: Examples of data sets using the RDF Data Cube Vocabulary .. 37

Table 3: Formal notation for a hierarchy .. 40

Table 4: Metrics of a simple hierarchy depending on type and strictness ... 50

Table 5: Classes and properties to express all proper OLAP hierarchies in RDF 61

Table 6: Hierarchy mapping between SKOS and OLAP4J .. 65

Table 7: Temporal data types .. 87

Table 8: Levels of the NUTS classification system ... 99

Table 9: Example for the approach 'geo' ... 106

Table 10: Mapping between ontology and hierarchy of the approach 'rdfs:subClassOf' 109

Table 11: Mapping between triple and hierarchy of the approach ‘properties’ 119

Table 12: Components for the evaluation of the approach 'time' .. 132

Table 13: Components for the evaluation of the approach 'geo' ... 133

Table 14: Components for the evaluation of the approach 'rdfs:subClassOf' 134

Table 15: Levels of the approach 'rdfs:subClassOf' ... 135

Table 16: Components for the evaluation of the approach 'properties' .. 136

Table 17: Candidates for levels of the approach 'properties' ... 137

Table 18: Resulting hierarchies of each approach .. 141

1 Introduction

10

1 Introduction

First of all, the following subsections introduce in this master thesis by describing the

problem situation, explaining the aims of this work and giving a motivation.

1.1 Problem description

The choice behavior in all areas of life is essentially determined by the available

information. To make intelligent and reasonable decisions information is required,

which can be obtained from relevant data.

On the one hand there is the trend that the available data is growing always faster

and faster. For example the research company Gartner, Inc. reports that data growth

is the biggest challenge in 2011 for large-enterprise data centers [Gart10]. Another

up to date example for publishing data is the German census of population in 2011,

where about 10% of the population is interviewed to acquire data for important

administrative and scientific objectives [Wagn10]. On the other hand, decision

makers like managers in companies or representatives in politics threat to be

overflowed with too much information. However, they complain about less

information, because they have the feeling that they do not have the relevant

information to make the right decision [GlGD08, S. 32].

Considering both aspects, there is an information deficiency simultaneous to an

increasing data appearance, e.g. in companies [GaGP09, S. 41]. This means that

there is much data available but in fact only less data can be used. The right

decision-making basis would be the relevant information, no more, no less. To

retrieve the relevant information out of the mass of data, there are some

requirements for content and structure of this data, so that the relevant information

can be extracted in an effective and efficient way.

Online analytical processing (OLAP) has become a popular technique to support the

process from retrieving information out of data [ChDa97]. The advantage of OLAP is

that observations (so called measures) can be viewed from different perspectives (so

called dimensions) and on different levels of detail (so called levels of hierarchies). A

1 Introduction

11

possible format for OLAP is OLAP4J1, an open Java application programming

interface (API) for accessing multi-dimensional data.

Usually, a data warehouse (DWH) is used where relevant data is provided for

analytical purposes. To do such analysis this large data repository has to be filled

with relevant data. This is done by the extract-transform-load (ETL) process, where

data is first extracted from different data sources, second transformed to suffice the

OLAP technique and third loaded, which means stored persistently in the DWH

[ChDa97].

One possibility to acquire data for a DWH is to extract published data from the web,

which exists there in different formats [PBAP08]. Linked Data is an approach, to

standardize the format for published data so that it can be interconnected on the web

[BiHB09]. The main idea is that each object of the real world (so called resource)

has a unique resource identifier (URI) and resources can be linked to other resources

for what the markup language Resource Description Framework (RDF) is used. One

special format for multi-dimensional data, such as statistics, is the RDF Data Cube

Vocabulary, which is compatible to RDF [CyRT10].

Regarding the process in reference to the above described standards, the data can

be extracted from the web, transformed from the RDF Data Cube vocabulary to the

OLAP4J format and loaded into a DWH. In so doing, the main problem is the

transformation of the data, which should work automatically without any manually

effort. One approach of an automatic transformation is based on a mapping between

the RDF Data Cube Vocabulary and a Multidimensional Data Model [KäHa11].

Although this approach provides the possibility to automatically transform data sets to

the Extensible Markup Language for Analysis (XMLA)2 format, which is an alternative

OLAP format to OLAP4J, some questions are still unanswered. One aspect that is

not solved at all is to deal with hierarchies, because the dimensions of the

transformed data in this approach have a flattened structure without any hierarchical

relationships. Since the data in the RDF Data Cube Vocabulary already has a certain

semantic, the authors of this approach of an automatic transformation believe that

there are more possibilities to find meaningful hierarchies in Statistical Linked Data

1
 http://olap4j.svn.sourceforge.net/viewvc/olap4j/trunk/doc/olap4j_fs.html

2
 http://news.xmlforanalysis.com/what-is-xmla

1 Introduction

12

[KäHa11]. For example hierarchical structures of the relationship between resources

could be used for the automatic formation of hierarchies. As a consequence, the

question how hierarchies that can be used in OLAP systems can be constructed from

Statistical Linked Data is not answered yet.

1.2 Aims and organization of this thesis

The aim of this master thesis is to support the extract-transform-load (ETL) process

from the RDF Data Cube Vocabulary to the OLAP data model, so that it can proceed

as much automated as possible. The semantics of the data should be automatically

interpreted and an OLAP data cube should be constructed. The main focus here is

on hierarchies. This means that this master thesis researches, how useful hierarchies

can be constructed automatically. To build on existing standards, it is assumed that

the RDF data is in the format of the RDF Data Cube Vocabulary and has to be

transformed in the specific OLAP4J standard of the multidimensional data model.

The concept of this thesis is successive and the sections are based on each other.

The organization of this thesis also corresponds to work procedure, thus the

chronological and logical sequence of the steps. To construct hierarchies out of

Statistical Linked data and use them in OLAP systems, the following questions have

to be answered. They are the essential parts of this master thesis. Each question is

answered in an own section after this section 1 „Introduction‟, which also serves as

motivation for this thesis:

 Which are useful Statistical Linked Data hierarchies?

First of all, to understand the relevant concepts, technologies and standards

and to know the possible hierarchies a qualified background is required. For

this reason this master thesis introduces the relevant concepts, technologies

and standards theoretically. To measure the usefulness of a hierarchy, a

catalog of relevant metrics is developed. Hence, this question is answered in

section 2 „Theoretical background‟.

 How can Statistical Linked Data hierarchies be expressed?

Linked Data publishers should have the possibility to explicitly express all

possible OLAP hierarchies with a firm and standardized Vocabulary in Linked

1 Introduction

13

Data. Since there is already a recommended way of expressing hierarchies

with the RDF Data Cube Vocabulary, this master thesis critically validates this

vocabulary. Furthermore it proposes an extension for this vocabulary to have

the possibility to express all different types of hierarchies. This vocabulary is

introduced in section 3 „Expressing OLAP hierarchies in RDF‟.

 How can Statistical Linked Data hierarchies be used?

There is a mapping required which transforms the explicit hierarchies,

expressed in a firm and standardized vocabulary in Linked Data into an OLAP

application to analyze the data. This master thesis describes the developed

algorithms to support the OLAP4J standard. This developed driver queries

against Statistical Linked Data, including explicitly expressed hierarchies and

transforms them into the standardized format for common OLAP applications.

This transformation of Linked Data into OLAP hierarchies is done in section 4

„Transforming Linked Data into OLAP hierarchies‟.

 How can Statistical Linked Data hierarchies be constructed?

If published data sets do not include explicit hierarchical information, there are

algorithms required to make implicit included hierarchies explicit. There may

be generic algorithms that potentially work for all data and also specific

algorithms which are customized for specific data. This master thesis

proposes several developed approaches to construct hierarchies from

Statistical Linked Data. There are specific approaches (time and geo) for often

occurring data and also generic approaches (rdfs:subClassOf and properties),

which can potentially be applied to all data. Considering these approaches,

this master thesis has to cope with the following challenges:

o How can hierarchies be constructed and what can be names for them?

o How can levels be constructed and what can be names for them?

o How can members be constructed and what can be names for them?

These approaches are explained in section 5 „Approaches for learning OLAP

hierarchies from RDF‟.

On this basis, section 6 „Evaluation‟ tests the functionality of the different approaches

on real data. The last part of this thesis is section 7 „Conclusions‟, where the resulting

lessons learned are described and a perspective for future work is given.

1 Introduction

14

1.3 Motivation

Besides the general advantages of the transformation of Statistical Linked Data to

OLAP cubes, the generation of hierarchies during this process, which is the main

focus in this master thesis, enables the following special advantages respectively use

cases:

 Automatic construction of hierarchies:

Linked Data is used to automatically construct hierarchies, which can then be

used in OLAP systems. Therefore several approaches are developed. This

means that no manually effort is necessary to generate hierarchies, because

the approaches can be used.

 Making hierarchies explicit:

Because of the application of algorithms on existing Linked Data, implicit

included hierarchical structures become explicit. This means that the

hierarchies are expressed in a standardized way so that the hierarchical

structures are clear.

 Additional hierarchies:

With the generation of additional hierarchies with new levels, new members

and new allocation of members to particular levels, the use of hierarchies

becomes more useful, because the data can be analyzed on more levels of

detail so that more and new knowledge can be derived out of this data.

 Additional types of hierarchies:

Besides the possibility to generate additional hierarchies with new levels and

allocation of members to particular levels, there also may arise new types of

hierarchies for a particular dimension. With these new types of hierarchies, the

data can be analyzed in another way, so that more and new knowledge can

be derived out of this data.

 Integration of more and less aggregated data:

Assuming that there are two or more data sets, which share at least one

common dimension but on different levels of detail, the transformation into a

cube and generation of hierarchies enables the possibility to analyze this data

together by using a common hierarchy level. The following cases can be

distinguished:

1 Introduction

15

o Some given dimension members of different data sets roll up to the same

member in a higher level of detail. For example within the time dimension

the member „December 2011‟ is used in one data set and the member

„August 2011‟ is used in another data set. Both data sets can be integrated

by using a hierarchy, which includes the two given members and the

additional member „Year 2011‟. Both given members roll up to the new

member „Year 2011‟.

o Some given dimension members of one data set roll up to given members

of another data set. For example within the time dimension the member

„August 2011‟ is used in one data set and the member „Year 2011‟ is used

in another data set. Both data sets can be integrated by using a hierarchy,

which includes these two given members and the member „August 2011‟

rolls up to the „Year 2011‟.

2 Theoretical background

16

2 Theoretical background

This thesis is called „Constructing OLAP hierarchies from Statistical Linked Data„. If

you look closely to this title, you will notice that mainly the following topics are

relevant:

 OLAP

 Hierarchies

 Statistical Linked Data

Therefore these concepts and technologies and their relevant surround are explained

in the following subsections, to give the reader of this thesis a qualified theoretical

background.

2.1 Online Analytical Processing

The term Online Analytical Processing (OLAP) was established by Codd et al., who

define OLAP as „the dynamic enterprise analysis required to create, manipulate,

animate, and synthesize information from exegetical, contemplative, and formulaic

data analysis models. This includes the ability to discern new or unanticipated

relationships between variables, the ability to identify the parameters necessary to

handle large amounts of data, to create an unlimited number of dimensions

(consolidation paths), and to specify cross-dimensional conditions and expressions‟

[CoCS93].

Considering their idea, the term OLAP is representing two facts. On the one hand it

emphasizes the analytical processing, where information is gained out of data, in

contrast to the transaction processing, where operational data is generated, e.g.

entering orders in a company, credit transfer in a bank [ChGl06, p. 145]. On the other

hand it emphasizes the interactive and multidimensional analysis on historic and

consolidated data [FBSV00, p. 88].

2 Theoretical background

17

2.1.1 Conceptual Model of OLAP

2.1.1.1 Data Cube

On the conceptual level, the data model of OLAP can be represented as a cube.

The essential feature of this cube is to subdivide the data into a set of facts (cells of

the cube) and dimensions (edges of the cube). The facts represent key figures, which

means the values that are assigned to a tuple. The dimensions relate the key figures

to properties or objective criteria. Therefore each dimension is described by a set of

attributes and the dimensions together uniquely determine the measures. Since the

cube in the following figure contains exactly three dimensions, the number of

dimensions in the multidimensional data model is unrestricted, so that a hypercube is

generated.

To provide information on different aggregation levels, hierarchies can be defined

over the dimensions. The cells are determined by the selected hierarchies and levels

of each dimension, so that a measure can be considered along one dimension on

different hierarchical levels [ChDa97].

Figure 1: Multidimensional data model: cube [modified from KeMU06, p.95]

2 Theoretical background

18

There are several popular operations that can be done with an OLAP cube to regard

the contained data from the desired perspective [ChDa97]:

 Slicing/Dicing: Reducing the dimensionality of the data by taking a projection

of the data on a subset of dimensions for selected data of other dimensions.

 Pivoting/Rotating: Re-orienting the multidimensional view of data.

 Roll-Up/Drill-Down: Navigating along a hierarchy to look at the data on a more

general resp. specific level. For these operations, hierarchies are used.

 Ranking: Sorting the data.

These operations can be executed by querying multidimensional data. Therefore, the

declarative query language Multidimensional Expressions (MDX) can be used, which

is a part of Microsoft‟s OLAP product3 [NiNT01].

2.1.1.2 Aggregation functions and summarizability

In this master thesis, the focus is on generating hierarchies. It doesn‟t make a

statement of correct aggregation of the measures, which is the next step, when

possible hierarchies are found. This means by implication, the process of finding

hierarchies in this master thesis is independent of aggregation functions and

summarizability conditions. If correct aggregation aspects were taken into account in

this master thesis, the algorithms to generate hierarchies possibly have to be

adapted. For example depending on the resulting hierarchy type, additional

information concerning correct summarizability has to be provided. For the sake of

completeness, the problematic of aggregating data is broached in this section. So it

may not be forgotten that not only hierarchies but also aggregation functions play an

important role, when data is summarized in a higher level of detail.

As described above, OLAP provides the possibility, to view the data of a cube in

different perspectives (dimensions) and on different levels of detail (hierarchies). The

advantage of this concept is that data can be viewed not on the single data points but

on an aggregated level. For example in a cube containing turnover data, only the

trend over the years (time dimension) or the variations between the countries (level

country in a hierarchy citycountrycontinent within the region dimension) is of

3
 http://msdn.microsoft.com/de-de/library/ms717005.aspx

2 Theoretical background

19

interest. To summarize the single data points to an aggregated value, some

conditions (so called summarizability) must be fulfilled and regulations are needed

that prescribe the mapping of many single values to one aggregated value (so called

aggregation functions) [NiNi10].

In common data warehouses, the following standard aggregation functions are

supported when executing operations on an OLAP cube:

 Minimum

 Maximum

 Sum

 Average

 Range

 (Distinct) Count

These and all other aggregation functions can be classified in the following three

types, describing if and how the already aggregated values can further be

aggregated to a higher level [LeTh09]:

 Distributive:

These aggregation functions can be defined as a structural recursion schema,

which means that a further aggregation in a higher level can be done without

any other information, e.g. minimum. Thus, for aggregates only a fraction of

the original storage space is required. The calculation of further aggregated

values only requires the current aggregates, which results in a good

performance as compared to the other types of aggregation functions.

 Algebraic:

These aggregation functions can be expressed by finite bounded algebraic

expressions, which means that a further aggregation in a higher level can be

done, but additional information is required, e.g. average, where count is the

additional information. Thus, for aggregates less storage space than for the

original data is required but more than for aggregates with distributive

aggregation functions. The calculation of further aggregated values also only

2 Theoretical background

20

requires the current aggregates, which results in a good performance as

compared to the other types of aggregation functions, too.

 Holistic:

These aggregation functions are not bound on the size of storage, needed to

describe the aggregates, which means that a further aggregation is only

possible on the original data, e.g. median. Thus the storage space for

aggregates is not less than the storage space for the original data. The

calculation of further aggregated values requires the original data, which

results in a bad performance as compared to the other types of aggregation

functions.

Summarizability is the correctness of aggregation operations, which means that a

function computed from the aggregated data is the same as it would be computed

from the original, not aggregated data. The following three conditions must be fulfilled

to guarantee summarizability [LeSh97]:

 Disjointness:

This rule means that a dimension member may belong to only one parent

member.

 Completeness:

o The first part of this rule means that each member of the higher levels

must have child members till to the lowest level of the hierarchy.

o The second part of this rule means that each member must belong to a

particular parent member.

 Consistency:

This rule means that it depends on the interaction of the following three

characteristics whether summarizability holds:

o Type of the dimension:

 Temporal

 Non-temporal

o Type of the measure:

 Stock (measured at a particular point of time, e.g. number of

citizens)

 Flow (refer to periods and are recorded at the end of these

periods, e.g. annual income)

2 Theoretical background

21

 Value-per-unit (determined for a fixed time, e.g. item price)

o Statistical aggregation function associated (described above)

For example, it does not make sense to summarize (aggregation function:

sum) the number of citizens (type of measure: stock) over the years (type of

dimension: temporal). The following table gives an overview of the

combinations that guarantee summarizability for temporal and non-temporal

dimensions, if disjointness and completeness are given.

 Temporal Non-temporal

Stock Flow Value-
per-unit

Stock Flow Value-
per-unit

Min ok ok ok ok ok ok

Max ok ok ok ok ok ok

Sum not ok ok not ok ok ok not ok

Avg ok ok ok ok ok ok

Range ok ok ok ok ok ok
Table 1: Consistency [modified from LeSh97]

2.1.2 Business Intelligence

The term Business Intelligence (BI) was mint by the Gartner group with the following

statement: „Data analysis, reporting, and query tools can help business users wade

through a sea of data to synthesize valuable information from it – today these tools

collectively fall into a category called ´Business Intelligence´ „[AnAS04, p.18 et seq.].

BI does not denote a specific system or application; it can rather be understood as a

conglomeration of concepts and technologies to support the decision process.

Kemper et. al. define Business Intelligence as an integrated, company-specific, IT-

based, entire approach to support operational decision-making [KeMU06, p.8].

2.1.2.1 BI process

From the process-driven perspective, BI also can be regarded as a process from

different and distributed data up to specific knowledge. Therefore, first the relevant

data has to be selected and a data preprocessing is necessary. After a

transformation, the data has to be provided in OLAP-Cubes, where different analysis

methods finally generate specific knowledge after interpretation of the results

[Humm08]. The following figure shows such a generic BI process.

2 Theoretical background

22

Figure 2: A generic Business Intelligence process [modified from Humm08]

The generation of OLAP cubes and hierarchies out of Statistical Linked Data is a

concretization of a part of this generic BI process. Linked Data can be understood as

distributed basis data and the above steps can take place till OLAP cubes are

generated. On these, different analysis can be made that were finally interpreted to

knowledge.

2.1.2.2 Facets of BI

The technologies and concepts, which are suitable to support decision making can

be arranged in a two-dimensional illustration. At this, the vertical axis shows the

phases from data preparation to data analysis. The horizontal axis shows the focus

from technology to application.

This illustration clarifies the differentiation of BI in different perspectives. Since BI in

the broad sense includes all technologies and concepts to support decision-making,

the analysis-oriented understanding of BI concludes all applications, in which a user

has a direct and interactive access to the system. BI in a strict sense only includes

applications that immediately support decision making. Since OLAP is a core

application of BI in a strict sense, it is an essential technology to support decision

making.

2 Theoretical background

23

Figure 3: Facets of Business Intelligence [KeMU06, p.4]

2.1.2.3 Data – Information - Knowledge

From the process-oriented perspective, BI can be regarded to generate knowledge

out of data. Thus, data is transformed to information, which is an intermediate step

and then transformed to knowledge, which is used to make decisions.

Figure 4: Stairs of knowledge [modified from Nort05, p.32]

Data, constructed out of signs on the basis of certain principles, is the basic module

of information science and represent facts.

By adding a meaning and a purpose to data, it is transformed to information and the

data becomes dependent of the context, in which it is used.

2 Theoretical background

24

Knowledge is formed by evaluating, comparing or combining information. This

implicates that knowledge is always committed to persons or organizations, where it

can be used to make useful and responsible decisions. Hence, a hierarchy also

illustrates an effective form of knowledge representation, because prior domain

knowledge relevant to data is encoded [PoRa99].

2.1.3 Data Warehouse

To prepare the data for analysis purposes such as OLAP, a special system, which

serves as data pool, is required. This special database is called data warehouse,

where all data and metadata can be stored for analysis and archiving purposes.

One of the first definitions points up the significant properties: „A data warehouse is a

subject oriented, integrated, non-volatile, and time variant collection of data in

support of management‟s decisions‟ [Inmo02, p.31]. These four properties, which all

are relevant for decision making, are explained below:

 Subject orientation: The focus of the system does not concentrate on

processes but on the modeling of a subject.

 Integration: There is integrated data existent, which may originate from several

and different sources.

 Non-volatility: The data is stored persistently, thus the data is not overwritten.

 Time-Variant: The data can be analyzed within the time dimension.

Considering these aspects, data warehouses elementary distinguish from

transactional databases in the following main characteristics [BaGü04, pp. 9-11]:

 Query-Performance: Data warehouses are optimized for long, large and

complex read accesses instead of short, small, easy and single-tuple read and

write accesses.

 Historical data: Decision support in data warehouses requires consolidated

and historical data from different and heterogeneous sources instead of only

the current data in one transactional database.

 User: Data warehouses are designed for a few data analysts, manager and

controller instead of a large number of case workers.

2 Theoretical background

25

In consequence of all these reasons, data warehouses are implemented separately

from operational databases, so that queries use the data pool of the data warehouse

instead of calculating the result on-the-fly by accessing the data sources of the data

warehouse in the running time of the query. To have always new data available, data

warehouses have to be updated in a pre-defined rhythm, e.g. every night, monthly.

This is done by the ETL process.

2.1.3.1 ETL process

To have data for the OLAP operations in a data warehouse available, they have to be

extracted from the data sources, transformed for analysis purposes and saved in the

data warehouse. This recurring procedure is called ETL-process and consists of the

following steps [BaGü04, p. 81 et seqq.]:

Figure 5: ETL-process

 Extraction: The first step is the extraction of the data from the sources, which

can be done in miscellaneous manners (e.g. periodic, event-triggered, query-

triggered). The outcome of this step is the transferring of the relevant data to a

work area, where it can be transformed.

 Transformation: The second step is the transformation of the data, which

means to adapt data, schema and data quality to the requirements of the end

users. Mainly, the heterogenic data has to be integrated (e.g. adapting data

types, harmonizing strings) and cleaned (e.g. avoiding redundancy, checking

for consistency)

 Loading: The last step is the loading of the data into the data base, where it is

stored persistently. After one initial load, the OLAP cubes are updated and the

data is available for analysis.

2 Theoretical background

26

This master thesis attaches importance to the ETL-process, since Linked Data is

extracted from the web and transformed that it is adequate to the OLAP4J standard,

whereby a special focus is on hierarchies. Besides the possibility to directly use

Linked Data hierarchies for example with OLAP4J, which is described in section 4

„Transforming Linked Data into OLAP hierarchies‟, the constructed hierarchies could

also be further transformed and loaded in a data warehouse, where they can be

used.

2.1.3.2 Star and snowflake schema

On the conceptual level, modeling the data is done in multidimensional cubes. The

conversion of the semantic, conceptual level to the logical, intern level of the

database he may occur in a multidimensional way, which is called MOLAP and in a

relational way, which is called ROLAP [BaGü04, p. 201 et seqq.]. Since the

advantages of ROLAP are open standards and scalability, the advantages of MOLAP

are direct implementation of the conceptual level of OLAP, intuitive operating and

analytical powerfulness [BaGü04, p. 242 et seqq.]. To combine the advantages of

ROLAP and MOLAP, the conversion can also be done in a hybrid way, which is

called HOLAP.

Because relational databases are popular in theory and practice, ROLAP is

explained in more detail, which can be further divided in the star and snowflake

schema:

 Star schema:

The star schema consists of one fact table and several dimension tables.

Since the measures are contained in the fact table, the dimension tables

contain the attributes of the dimensions. Each dimension table is connected

with its primary key with the fact table, thus the total of all foreign keys

referencing to the fact table is its primary key. If a dimension has a hierarchical

structure, the star schema is denormalized, since there are functional

dependencies between the non-key attributes representing the hierarchy.

2 Theoretical background

27

Figure 6: Star schema

 Snowflake schema:

The snowflake schema also consists of one fact table, which contains the

measures and several dimension tables. In contrast to the star schema, the

snowflake schema is normalized. Thus, one dimension covers several tables

for the hierarchy levels. The primary key of the lowest level of each hierarchy

is referencing to the fact table, where the total of all foreign keys referencing to

the fact table is its primary key.

2 Theoretical background

28

Figure 7: Snowflake schema

2.2 Linked Data

Linked Data is an approach to connect data from different sources on the World Wide

Web by creating typed links between different data sets [BiHB09]. If the data is freely

available, the term Linked Open Data is used. Linked Data is based on the Semantic

Web standards, whereby the unique identification of each thing, such as metadata

elements or certain entities is very important [ZaHM11]. Therefore Uniform Resource

Identifiers (URIs) are used. Tim Berners-Lee provided the four principles for Linked

Data [Bern06]:

2 Theoretical background

29

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up an URI, provide useful information, using the

standards (RDF*, SPARQL).

4. Include links to other URIs, so that they can discover more things.

The publication of data as Linked Data enables advantages for all, data providers,

developers and end-users [ZaHM11]. Data providers have the possibility to enrich

their own data by linking to other data sets on the web. Developers benefit from

Linked Data also, because they are not restricted on one data set and can easily

integrate data from other sources. Finally, both aspects are also relevant for end-

users, because they have useful applications and many data sets available.

2.2.1 RDF, RDFS and OWL

Resource Description Framework (RDF)4 is a formal language for representing

structured information about things on the World Wide Web [HiKR09, pp.19]. The

intention is not to display data correctly, but rather re-combination of information

contained in it.

The conceptual representation of an RDF document is a set of nodes, which are

linked by directed edges, so that a graph is formed. Each statement is structured by

subject-predicate-object sentences, whereby all parts consist of an URI. A statement

is also called a triple [HiKR09, pp. 20-25].

Figure 8: Triple consisting of subject, predicate and object

4
 http://www.w3.org/TR/rdf-primer/

2 Theoretical background

30

There are several serialization formats of RDF. Since many programming languages

support Extensible Markup Language (XML)5 libraries, the XML based serialization

RDF/XML is a common practice. XML itself is a markup language, intended to use for

data exchange and electronic publishing. To define structures for XML documents,

XML Schema6 can be used. Both, XML and XML Schema are W3C

Recommendations [HiKR09, pp. 353-361].

However, this master thesis uses the Turtle representation of RDF, because it can

more easily be accessed by humans. A triple is denoted with turtle like this:

ex:subject ex:predicate ex:object

The part before the double dot is an abbreviation for a longer part. This concept is

called namespaces. There may be different abbreviations for different longer parts. A

list of all relevant namespaces for this master thesis can be found in the appendix.

The abbreviation ex: always stands for an example namespace.

RDF can semantically be enriched by using Resource Description Framework

Schema (RDFS)7. This also graph-based language provides the possibility to

generate simple ontologies, so that knowledge about a domain of interest can be

represented in a standardized way [HiKR09, pp. 46-67].

Resources can be typed, i.e. to mark them as elements of a certain aggregation. The

individual elements are called instances; a set of resources is called class. Classes

can be sub-classes of other classes, so that a class hierarchy is generated. This

hierarchical relationship is used in one approach of this master thesis to generate

OLAP hierarchies.

Predicates in a triple are also called properties, since they describe a relationship

between two other resources (subject and object). Also properties can be sub

properties of other properties, so that a property hierarchy is generated. Furthermore,

properties can be restricted, by setting limits for possible classes of subject and

object.

5
 http://www.w3.org/XML/

6
 http://www.w3.org/XML/Schema

7
 http://www.w3.org/TR/rdf-primer/#rdfschema

2 Theoretical background

31

Considering RDF and RDFS, we have to distinguish assertional knowledge, which is

represented in RDF and makes propositions about concrete entities and

terminological knowledge, which is represented in RDFS and gives background

information about the domain of interest [HiKR09, p. 66]. Both, RDF and RDFS are

W3C Recommendations.

Since RDF and RDFS provide only very limited expressive means, the Web Ontology

Language (OWL)8 is used, to represent more complex knowledge [HiKR09, p. 111].

This language is also a W3C Recommendation and has three increasingly-

expressive sublanguages: OWL Lite, OWL DL, and OWL Full. The basic buildings of

OWL are classes, roles and individuals [HiKR09, pp. 111-158]. Individuals are

instances of classes and classes are the same like in RDFS. In contrast to RDFS,

OWL properties are called roles. There are abstract roles, which link two classes and

concrete roles, which link two individuals. The essential contrasts to RDFS are the

advanced concepts class restrictions and role restrictions. With these concepts, it is

possible to express a stronger semantic meaning than in RDFS.

2.2.2 RDF Data Cube Vocabulary and SDMX

The RDF Data Cube Vocabulary is an approach to publish multi-dimensional data on

the web [CyRT10]. It is built upon the Statistical Data and Metadata eXchange

(SDMX), which is the ISO-standard (ISO/TS 17369:2005) for statistical data

exchange. The RDF Data Cube Vocabulary is an OWL ontology and compatible to

Linked Data, which enables the following advantages:

 Observations become web-addressable to be annotated or linked to.

 Data between statistical and non-statistical data sets can be combined.

 Flexible, non-proprietary and machine readable means of publication.

 Standardized tools and components can be reused.

The following figure gives an outline of the RDF Data Cube Vocabulary:

8
 http://www.w3.org/TR/owl-features/

2 Theoretical background

32

Figure 9: RDF Data Cube vocabulary [CyRT10]

A cube is represented by qb:DataSet and is linked by qb:structure to a

qb:DataStructureDefinition. The qb:DataStructureDefinition defines the structure of

one or more cubes, which consists of a set of components, which are represented by

qb:ComponentSpecification. There is the possibility to qualify a

qb:ComponentSpecification by the following:

 qb:componentRequired to set a component optional.

 qb:order to order the components for user interfaces.

 qb:componentAttachement to attach attributes at other levels of the structure.

Furthermore, each qb:ComponentSpecification refers by the qb:ComponentProperty

to one of three kinds of components, which are subclasses of

qb:ComponentProperty:

2 Theoretical background

33

 qb:DimensionProperty: To identify the observations, e.g. time, region.

 qb:AttributeProperty: To qualify and interpret the observed value(s), e.g. unit,

scaling factor.

 Qb:MeasureProperty: The Phenomenon being observed, e.g. turnover, costs.

Each qb:ComponentProperty refers by the qb:concept to a skos:Concept, a

predefinied terminology to support interoperability and comparability. An observation,

to which all corresponding dimensions, measurements, attributes are attached, is

typed as qb:Observation and is linked by the qb:dataSet to the qb:DataSet.

The RDF Data Cube Vocabulary also provides the possibility to define slices, which

allow to group subsets of observations together. Since a slice is also a result of an

OLAP operation on a multidimensional cube, a defined slice in the RDF Data Cube

Vocabulary is not relevant for this master thesis.

To define members of a dimension unambiguously, a qb:DimensionProperty can be

linked via rdfs:range to a certain data type or via qb:codeList to a

skos:ConceptScheme. By using a skos:ConceptScheme and other parts of the

Simple Knowledge Organization System (SKOS)9, hierarchical structures between

members can be expressed. This vocabulary is described and critically validated in

section 3 „Expressing OLAP hierarchies in RDF„.

2.2.3 SPARQL

The SPARQL Protocol And RDF Query Language (SPARQL)10 is a W3C

Recommendation for querying RDF based information and for representing the

results. The core of it are simple graph patterns, which can be extended with

advanced query patterns, such as filtering, grouping, alternatives. Although the

syntax and usage of SPARQL is similar to the query language for relational

databases Structured Query Language (SQL), it must be noticed that the two

languages operate on very different data structures [HiKR09, p. 262].

9
 http://www.w3.org/TR/2009/REC-skos-reference-20090818/

10
 http://www.w3.org/TR/rdf-sparql-query/

2 Theoretical background

34

Since the official W3C Recommendation of SPARQL is version 1.0, there is already a

W3C working draft for SPARQL version 1.111 with extended features, which is used

in this master thesis to query RDF data.

2.2.4 Semantic Web

Linked Data as approach to connect data on the web is a special aspect of the

broader Semantic Web [Sack10, pp. 17-18]. The Semantic Web itself is defined as

an extension of the current Web, in which information is given a well-defined

meaning, better enabling computers and people to work in cooperation [BeHL01].

This definition intonates that the meaning and use of information is essential for the

collaboration over the web. Many aspects, such as the stronger collaboration in

scientific progresses (data interchange) or the interconnection of workflows and

business processes because of increased cost pressure and competition in business

are fueling the effort of the Semantic Web [KaBM08, pp. 4-5].

From the technology-oriented perspective, the Semantic Web consists of different

standards that are based on each other. They can be arranged in a Semantic Web

Layer Cake [Brat07]. For this master thesis, the layers above OWL are not relevant.

11

 http://www.w3.org/TR/sparql11-query/

2 Theoretical background

35

Figure 10: Semantic Web layer cake
12

2.2.5 Linking Open Data Cloud and Statistical Linked Data sets

As described above, the main idea of Linked Data is to interconnect different data

sources on the World Wide Web by creating typed links between different data sets.

All data sets, following the four Linked Data principles, which are connected to each

other, can be taken together in a cloud diagram, which is updated periodically if

additional data sets are available [CyJe11]. Within this cloud diagram, also Statistical

Linked Data sets can be found.

12

 http://www.w3.org/2007/03/layerCake.png

2 Theoretical background

36

Figure 11: Linking Open Data cloud diagram, September 2011 [CyJe11]

Since it is the aim of this master thesis to derive hierarchies out of Statistical Linked

Data, relevant data sets are searched. The following assumptions are made that a

data set can be used to test and evaluate the developed approaches:

 The data set follows the four Linked Data principles.

 The data set includes Statistical Linked Data.

 The data set has a correct and corresponding qb:DataStructureDefinition from

the RDF Data Cube Vocabulary.

The following table includes some examples of data sets that were found on the web

and fulfill all assumptions. The full table, including links to the data sets and data

structure definitions has also been published. 13

13

 http://planet-data-wiki.sti2.at/web/Datasets

2 Theoretical background

37

Topic/Example Publisher Measures Dimensions

electoral

statistics of a

German state14

GESIS – Leibniz

Institute for the

Social Sciences

obsValue geo

party

financial data for the

UK government

(COINS)15

data.gov.uk amount refPeriod

dataType

dataSubtype

departmentCode

accountCode

programmeObjectCode

counterpartyCode

Real GDP growth

rate in Europe16

Eurostat obsValue date

unit

geo

timeFormat

freq

obsStatus

data of companies,

required by law to

file forms(EDGAR)17

U.S. Securities

and Exchange

Commission

accountsPayableCurrent

accruedLiabilitiesCurrent

(…)

issuer

date

segment

payments to

suppliers18

Lichfield District

Council

netAmount reference

payer

payee

date

expenditureLine

expenditureCategory

payment

Table 2: Examples of data sets using the RDF Data Cube Vocabulary

14

 http://gesis-lod.appspot.com/
15

 http://data.gov.uk/resources/coins
16

 http://estatwrap.ontologycentral.com/page/tsieb020
17

 http://edgarwrap.ontologycentral.com/
18

 http://spending.lichfielddc.gov.uk/

2 Theoretical background

38

2.2.6 Linked Data as a source for data warehouses

The concept of this master thesis is a concretization of the generic BI process, since

Statistical Linked Data is transformed to an OLAP cube, whereby hierarchies are

generated.

There are several general advantages of using ontologies for the design of data

warehouses, because ontological knowledge may enrich a multidimensional model,

e.g. to find hierarchies [PaMa11]. A concrete ontology is the RDF Data Cube

Vocabulary, including Statistical Linked Data. If this serves as data source for data

warehouses, the following advantages can be recognized:

 Additional method to analyze Linked Data:

Besides the possibility to browse Linked Data with a Semantic Web Browser

or a Faceted Search Browser, it can now be viewed with the common OLAP

operations in different perspectives and on different levels of detail.

 Additional type of data sources for data warehouses:

Data warehouses can be filled with Linked Data, which is an additional type of

a data source. So not only other data, for example out of relational databases

or other web data, for example published in XML, can be integrated.

 Integration of Linked Data and OLAP cubes:

Statistical Linked Data, both external and captive, can be transformed to a

cube in a data warehouse, where it can be combined with other data, for

example captive data out of customer relationship (CRM) or Enterprise

Resource Planning (ERP) systems in already existing OLAP cubes.

 Additional semantics:

The additional semantics of the Linked Data can be used to enrich the data or

metadata of the existing data warehouse.

Summarizing these aspects it can be noticed that the two concepts Linked Data and

OLAP profit by each other.

2 Theoretical background

39

2.3 Hierarchies

A hierarchy is a system of elements, which are subordinate or superordinate to each

other. The need for hierarchies in a dimension of a cube is, because things in real

world can also exhibit hierarchical structures. Because of this special relationship, the

elements of dimensions, called members, can be arranged in one or more

hierarchies.

Since a subordinate member is called child, a superordinate member is called parent

[MaZi04]. Dependent on the children and parents, each member is assigned to a

certain level. The sequence of levels is called path and the number of levels, which

are forming a path is called path length. The uppermost level, having no parent level,

is called root and levels having no children are called leaf levels. The minimum and

maximum numbers of members in one level which are related to a member of

another level is indicated by the cardinality. This master thesis completes these

terms, used in [MaZi04], by the terms root distance and stage. The number of levels

without skipping an intermediate level between the root and a particular level is called

root distance of this level and all levels that have the same distance to the root are

located on the same stage.

In the context of OLAP, a formal definition for a hierarchy is as follows: “A hierarchy

is a set of variables which represent different levels of aggregation of the same

dimension and which are linked between them by a mapping” [PoRa99]. This means,

a hierarchy shows the relationships between domains of values (variables), called

levels and the variable instances, called members.

Hierarchies enable both, navigation paths through a dimension for end-users and

aggregation paths for the associated measures [GaGP09, p.58]. Going along a

hierarchy, drill-down operations towards a lower, more detailed level and roll-up

operations towards a higher, more generalized level are possible. This master thesis

introduces the restriction that there are no loops within a path, meaning that a roll up

respectively drill down operation never links back to a lower, more detailed

respectively higher, more generalized level.

From the view of mathematics, these operations are transformations of values from

one domain to values of another smaller or bigger domain, whereby a mapping

2 Theoretical background

40

between the domains is used [PoRa99]. If the summarizability conditions of

disjointness and completeness are fulfilled, the mapping defines a containment

function and it is called full mapping. If there is a full mapping between each adjacent

couple of variables, the hierarchy is called classification hierarchy, otherwise

aggregation hierarchy.

A proposal for a formal notation of hierarchies in a multidimensional model can be

found in [Vass98]. More than one parent member in a higher level (non-strict

hierarchies) and descriptive attributes of a level are not expressible with this notation.

For this reason the following table gives an overview of the already developed

notation and a proposal for an extension to express all required elements of a proper

hierarchy. It has to be noticed that the formal defined operations, in particular

level_climbing and function_application in [Vass98] also have to be adapted, since

the notation is extended. Because the correct aggregation is not part of this master

thesis, these cube operations are not defined formally.

Element Explanation Notation

Notation proposed by [Vass98]:

Dimension 𝐷𝑖
Level 𝐷𝐿𝑖
Levels of a dimension levels(𝐷𝑖)
Hierarchy Lattice of levels (H,≤)
Dimension path Linear, totally ordered list of

levels
𝐷𝑝𝑖

Levels of a dimension
path

 levels(𝐷𝑝𝑖)

Paths of a dimension paths(𝐷𝑖)
Member x
Members of a level dom(𝐷𝐿𝑖)
Operator h Assigning levels to dimensions h(𝐷𝐿𝑖) = D if 𝐷𝐿𝑖 𝜖 levels(D)
Function level 𝐷𝐿𝑖 is the k-th level of

dimension path 𝐷𝑝𝑖 with 𝐷𝐿0

denoting the lowest level

level(𝐷𝐿𝑖)= k, if 𝐷𝐿𝑖=
levels(𝐷𝑝𝑖)[k]

Children of a member Relationship to members on a
lower level

descendants(x, DL) = {𝑥1, 𝑥2 ..., 𝑥𝑘},
𝑥1, 𝑥2 ..., 𝑥𝑘𝜖 dom(DL), DL < 𝐷𝐿0

Proposed extension:

Parents of a member Relationship to members on a
higher level

ancestors(x, DL) = {𝑦1 , 𝑦2 ..., 𝑦𝑘},
𝑦1 , 𝑦2 ..., 𝑦𝑘 𝜖 dom(DL), 𝐷𝐿0< DL

Descriptive Attribute a
Descriptive Attributes
of a level

 attributes(𝐷𝐿𝑖)

Characteristic of
attributes

 characteristic(x, a, 𝐷𝐿𝑖)

Table 3: Formal notation for a hierarchy

2 Theoretical background

41

According to the proposal of [MaZi05], hierarchies in a multidimensional model can

also be classified by different criteria, which are described in the following

subsections. The following figure gives an overview, including the relationships of the

criteria:

Figure 12: Metamodel of hierarchy classification

A graphical example both on the schema level, which describes the relationships of

the levels, and instance level, where concrete instances are populated, is given for

each type. Therefore the following notation is used:

Figure 13: Notation of hierarchies in a multidimensional model: (a) level, (b) hierarchy, (c) cardinalities, (d) analysis

criterion, and (e) fact relationship

The main distinction of different hierarchies is substantiated in the number of analysis

criteria within one dimension. An analysis criterion represents a substantially criterion

2 Theoretical background

42

used in analysis. For example the regional dimension can have the two analysis

criteria geographical location and organizational structure. So we fundamentally

differentiate individual and parallel hierarchies.

2.3.1 Individual hierarchies

In an individual hierarchy, only one criterion for analysis is used. There may be one

to n paths through the hierarchy, but finally all paths end at the schema level on the

same level. So the distinction between simple and multiple alternative hierarchies is

caused in the number of paths through the hierarchy at the schema level.

2.3.1.1 Simple hierarchies

A simple hierarchy is a specialization of an individual hierarchy, where exactly one

path at the schema level is possible. It can be represented as a tree and it is

characterized by two properties, namely type and strictness.

2.3.1.1.1 Type of simple hierarchies

2.3.1.1.1.1 Symmetric hierarchies

In a symmetric hierarchy, all levels are mandatory, so that all branches have the

same length. At the instance level, each parent member must at least have one child

member.

Figure 14: Example for a symmetric hierarchy: (a) model and (b) instances

2 Theoretical background

43

2.3.1.1.1.2 Asymmetric hierarchies

In contrast to symmetric hierarchies, not all levels are mandatory in an asymmetric

hierarchy. This implicates that the branches do not have the same length so that this

type can be represented as an unbalanced tree. A child member exactly belongs to

one parent member.

Figure 15: Example for an asymmetric hierarchy: (a) schema and (b) instances

For this hierarchy, completeness is not given, so that the summarizability condition is

not fulfilled. Therefore two alternative solutions are provided:

 Transforming an asymmetric hierarchy into a symmetric one using

placeholders

 Creating parent child relations

2.3.1.1.1.3 Generalized hierarchies

A generalized hierarchy represents a generalization/specialization relationship. This

concept is also used in object oriented programming, where it is called inheritance.

There are two types of levels: Common levels, where the members within one level

have the same attributes and specific levels, where the members within one level

have different attributes. At the schema level, multiple exclusive paths that share

some levels are possible and at the instance level a member exactly belongs to one

2 Theoretical background

44

path. The levels where the paths are split respectively joined are called splitting or

joining level.

Figure 16: Example for a generalized hierarchy: (a) schema and (b) instances

A special case of generalized hierarchies is a non-covering hierarchy, where at the

schema level alternative paths can be achieved by skipping one or more intermediate

levels. A child member exactly has one parent member, but the length of the paths

from the leaves to the same parent level may vary for different members.

Figure 17: Example for a non-covering hierarchy

In a generalized hierarchy the mapping from a splitting level to a parent level is

incomplete, because not all members of the splitting level roll up to a member of

each parent level. Thus, completeness is not given so the summarizability condition

2 Theoretical background

45

is not fulfilled. For this reason, special aggregation mechanisms are required in roll

up operations.

2.3.1.1.2 Strictness of simple hierarchies

2.3.1.1.2.1 Strict hierarchies

In a strict hierarchy, there is at the schema level a one-to-many cardinality between

all parent and child levels. At the instance level a child member exactly belongs to

one parent member and a parent member may have several child members. All

previous examples were strict hierarchies, so there is no figure for this hierarchy.

2.3.1.1.2.2 Non-strict hierarchies

If there is at the schema level at least one many-to-many cardinality between a

parent and a child level, a non-strict hierarchy is present. Thus a child member can

be related to several parent members and also a parent member may have several

child members at the instance level, so this hierarchy forms a graph.

Figure 18: Example for a symmetric non-strict hierarchy: (a) model and (b) instances

For this hierarchy, disjointness is not given, so that the summarizability condition is

not fulfilled. Therefore special data structures and algorithms are needed, to

aggregate data within this hierarchy. One approach is called bridge table, where the

percentage distribution of a child member to several parent members is used to

2 Theoretical background

46

aggregate the measures. For example employee X in the above figure is assigned to

section 1 with 20%, to section 2 with 30% and section 3 with 50%. When calculating

the average on the section level for example, this given percentage distribution is

considered.

2.3.1.2 Multiple alternative hierarchies

The previously described hierarchies all were specializations of a simple hierarchy.

Their common property was that only one path at the schema level is possible. In

contrast to them, multiple alternative hierarchies share some levels of several non-

exclusive simple hierarchies at the schema level. At the instance level, a child

member may belong to more than one parent member and n paths through the

hierarchy are possible. As a consequence, a graph is formed. In analysis, the user

has to choose one of the alternative paths, because it is semantically not correct to

simultaneously traverse the different composing simple hierarchies.

Figure 19: Example for a multiple alternative hierarchy: (a) model and (b) relations

2 Theoretical background

47

2.3.2 Parallel hierarchies

Parallel hierarchies are complementary to individual hierarchies, because not exactly

one analysis criterion is used, but rather more analysis criteria can be used within

one dimension. These hierarchies can be dependent or independent.

2.3.2.1 Parallel independent hierarchies

In a parallel independent hierarchy, there is at the schema level no connection

between the different analysis criteria, which means they do not share levels. So they

represent non-overlapping sets of hierarchies, which can be of different kind.

Figure 20: Example for a parallel independent hierarchy

2.3.2.2 Parallel dependent hierarchies

In a parallel dependent hierarchy, there is at the schema level a connection between

the different analysis criteria, which means that at the minimum one level of different

hierarchies is shared.

2 Theoretical background

48

Figure 21: Example for a parallel dependent hierarchy: (a) model and (b) relations

2.3.3 Usefulness of hierarchies

After all different types of hierarchies have been introduced; this subsection answers

the question how the usefulness of a hierarchy can be measured formally. This has

to be explained because the developed approaches generate hierarchies, but make

no statement about the usefulness of them. So in this subsection metrics for

measuring the usefulness of a hierarchy are introduced and explained formally.

The proposed metrics should be seen as an indicator for a human for the usefulness

of a hierarchy. The ultimately usefulness of a hierarchy definitely depends on more

aspects:

 User:

Usefulness always depends on the personal favorites of a user. Somebody

preferring for example a clear and excessive structure in a book with many

classification levels would possibly prefer rather more than less levels in an

OLAP hierarchy.

2 Theoretical background

49

 Use Case:

Usefulness also depends on the use case of analyzing the data in an OLAP

cube. For example to get an overview and a feeling for the data included in a

cube, possibly a balanced hierarchy with some, but not too many levels is

reasonable. However, a data analyst searching for specific information on

many different levels possibly would prefer a proper hierarchy with many

levels.

Because the metrics each time depend on and correspond to different things, it has

to be distinguished between the type of metrics and the correspondence of metrics:

 Type of metrics:

o Quantitative metrics: Can be computed with mathematic formulas, since

they fully depend on number and relationships of levels and members

of a hierarchy. They are denoted by (n).

o Qualitative metrics: Have to be estimated by a user, since they depend

on the usefulness out of the human view. They are denoted by (q).

 Correspondence of metrics:

o Metrics corresponding to one approach: They are valid for one

approach across all hierarchies that are found with this approach.

o Metrics corresponding to one found hierarchy: They are valid for one

distinct hierarchy and they do not depend on the approach, with which

this hierarchy was found.

To compare and apply against each other, the following metrics are normalized on

the interval [0;1]. The higher the value is the better the evaluation is. The formulas of

the quantitative metrics are explained with an example and the qualitative metrics are

explained in prose. It is denoted in brackets, on which element the formula is

referring to.

2.3.3.1 Metrics corresponding to one approach

The metrics corresponding to one approach refer to the different approaches to

generate hierarchies, described in section 3. The following metrics are used:

 Number of found hierarchies (n):

Number of found hierarchies(dimension) =
ℎ

ℎ𝑚𝑎𝑥

2 Theoretical background

50

h = number of found simple hierarchies in a dimension

hmax = maximum number of found simple hierarchies in a dimension

The number of found hierarchies of one approach corresponds then to the

average of the number of found hierarchies of all dimensions.

 Number of dimensions with at least one hierarchy (n)

Number of dimensions with at least one hierarchy(approach) =
dh

d

dh = number of dimensions with at least one hierarchy

d = total number of dimensions

2.3.3.2 Metrics corresponding to one found hierarchy

Metrics corresponding to one found hierarchy cannot be generalized sine they

depend on the type and strictness of a simple hierarchy. Therefore the following table

distinguishes strictness on columns and type on rows:

 Strict Non-Strict

Symetric

 Balance (n)

 Cardinality (n)

 Label-uniqueness (n)

 Labels of the analysis

criterions (q)

 Label-uniqueness (n)

 Labels of the analysis

criterions (q)

Asymetric

 Balance of the symmetric

part (n)

 Cardinalit of the symmetric

part (n)

 Label-uniqueness (n)

 Labels of the analysis

criterions (q)

 Label-uniqueness (n)

 Labels of the analysis

criterions (q)

Generalized

 Label-uniqueness (n)

 Labels of the analysis

criterions (q)

 Label-uniqueness (n)

 Labels of the analysis

criterions (q)

Table 4: Metrics of a simple hierarchy depending on type and strictness

2 Theoretical background

51

To explain the formulas of the metrics, the following abstract example is used. There

is one hierarchy with the root, one level and the leafs. Some of the metrics

correspond to a certain level, some metrics correspond to a certain member.

Figure 22: Example of a hierarchy to explain the formulas

 Balance (n):

Balance(level) = 1 −
 pi−μ

P
i=1

(P−1)μ + (C−μ)

P = total number of parent members

pi= number of child members of the i-th member

μ = average number of child members

C = total number of child members

This metric is changed borrowed from [OrDD06], since it is an indicator for

navigation efficiency. Here, the denotation is changed to guarantee more

clarity. The balance of level 1 in the example is then calculated as follows:

balance(level 1) = 1 −
 8−4 + 2−4 + 2−4

(3−1)4+(12−4)
=0,5

The balance of the whole hierarchy corresponds to the average of the

balances of each level except the root and the leaf level.

 Cardinality (n):

Cardinality(member) =
0 if c ≤ 1

exp
−

(c−α)2

2β2

c = number of child members

2 Theoretical background

52

α = parameter for the minimum cardinality

β = parameter for the maximum cardinality

This metric is changed borrowed from [OrDD06], since a suitable parent

member has a limited but higher than one amount of children. Here, the

denotation is changed to guarantee more clarity. The cardinality of member A

in the example with the assumption of a minimum cardinality of 2 and a

maximum cardinality of 20 children is then calculated as follows:

Cardinality(A) = exp
−

(8−2)2

2∗202 =0,956

The cardinality of the whole hierarchy corresponds to the average of the

cardinalities of each member except the cardinality for the leaf level.

 Label-uniqueness (n)

Label-uniqueness(member) =
cu

c

c = number of child members

cu = number of unique-labeled child members

The label-uniqueness of member A in the example is then calculated as

follows:

label-uniqueness(A) =
5

8
 = 0,625

The label-uniqueness of the whole hierarchy corresponds to the average of

the label-uniqueness of each member except the label-uniqueness for the leaf

level.

3 Expressing OLAP hierarchies in RDF

53

3 Expressing OLAP hierarchies in RDF

To express all different types of hierarchies in Linked Data, a proper vocabulary is

required. Therefore this section critically validates the recommendation of the RDF

Data Cube Vocabulary for expressing hierarchies and proposes an extension for this

vocabulary.

3.1 Simple Knowledge Organization System (SKOS)

To express hierarchical structures, the RDF Data Cube Vocabulary recommends the

use of Simple Knowledge Organization System (SKOS)19, a W3C Recommendation

for expressing the basic structure and content of concept schemes.

The central elements in SKOS are concepts, which can be defined as „units of

thougths‟, e.g. ideas, meanings, or (categories of) objects and events. Each concept

is an instance of the class skos:Concept. Concepts can be grouped together to a

skos:ConceptScheme to generate a predefined vocabulary, such as thesauri or

classification schemes.

To represent hierarchical relationships between concepts, the properties

skos:narrower and skos:broader are used. The subject of the property skos:narrower

is the more generalized concept, so this property should be read as „has narrower

concept‟. The two properties skos:narrower and skos:broader are in each case

inverse to each other and each concept may have both, many narrower and many

broader concepts.

These two properties are not defined to be transitive. So if a concept A is broader

than a concept B, which is itself broader than a concept C, the concept A is not

broader than the concept C. To express these semantics, it is required to use the two

properties skos:narrowerTransitive and skos:broaderTransitive.

Each member of a dimension in the RDF Data Cube Vocabulary can be defined as

skos:Concept. So the actual hierarchy is not expressed with the RDF Data Cube

Vocabulary but rather with SKOS.

19

 http://www.w3.org/TR/skos-primer/

3 Expressing OLAP hierarchies in RDF

54

It must be noticed that all concepts that belong to a concept scheme are potential the

members of the dimension. A member of a dimension is in union a concept in SKOS.

If a dimension is linked to a concept scheme and there is a member within this

dimension that is not included in this concept scheme, this is a mistake in modeling.

In SKOS it is not forbidden to model loops of broader and narrower relationships.

E.g. a concept A is broader than a concept B that is itself broader than the concept A.

In OLAP hierarchies, where the aim is to roll up values, this would not be meaningful

and cannot be expressed. So if loops in a concept scheme are found, there does not

exist a standard way to handle this problematic and a human user has to be

interacted, who defines the relationships in the hierarchy.

Furthermore, there may exist some concepts with broader and narrower relationships

that are not members of the dimension. If they are not relevant for the remaining

hierarchy with the existing members, they may be deleted. There is also the

possibility to retain them for completeness reasons. So if some additional members,

for which the concepts have been deleted, occur in a future transformation, the

hierarchy has not to be constructed anew. This has to be decided beforehand.

3.2 Weaknesses of SKOS

Although SKOS is the recommended way of representing hierarchical structures in

statistical data of the RDF Data Cube Vocabulary, it has the following disadvantages

when modeling hierarchies without further metadata:

 No membership of a concept to a certain level:

SKOS works on instance level. This means that a certain concept does not

belong to a certain level. As a consequence, the following hierarchies can‟t be

expressed with SKOS because there is no assignment of concepts to levels:

o Parallel hierarchies

o Multiple alternative hierarchies

o Generalized hierarchies

With reference to Figure 16 of a generalized hierarchy above, for example

class 1 and sector 1 have the same broader concept branch 1. When

generating the hierarchy with SKOS, it is not clear that the concepts for class

3 Expressing OLAP hierarchies in RDF

55

1 and sector 1 do not belong to the same level. Class 1 and sector 1 would be

narrower concepts from branch 1, but cannot be distinguished by the levels.

As a further consequence, also labels for levels are missing, since a concept

in SKOS is not assigned to a certain level and there is no information about

levels.

 No Attributes of a level:

In the multidimensional model of [MaZi05], each level can have besides its key

attribute certain descriptive attributes and characteristics for these attributes

for each instance of this level. SKOS however, does not make a statement to

descriptive attributes of a certain concept. This means that using this

approach, which is a W3C recommendation, descriptive attributes cannot be

defined and their characteristics cannot be filled when generating the levels of

a hierarchy with this approach.

With reference to Figure 16 of a generalized hierarchy above, e.g. the

customer address is an attribute of the customer ID in the level customer. In

SKOS, it cannot be expressed that the customer address is a descriptive

attribute of the customer ID and its characteristic (e.g. „Town Street 22‟)

cannot be linked to a certain customer.

Furthermore, to express generalized hierarchies, it is required that levels can

be distinguished by its descriptive attributes. That being not the case,

generalized hierarchies and its special cases non-covering hierarchies cannot

be expressed with SKOS.

 Member of a dimension is a concept:

A member of a dimension in the RDF Data Cube Vocabulary is simultaneous

a concept in SKOS. This means that all relationships of the concepts

expressed within SKOS have also significance for the members in the RDF

Data Cube Vocabulary. This must not always be semantically correct.

For example there is a concept for a city that has a state as broader concept.

On the semantic level, the city itself does not have a broader concept but it is

the concept for the city that has a broader concept.

 Relationships between concepts independent of concept schemes:

The hierarchical relationships between two concepts are universal valid,

independent of concept schemes. For example there should be defined the

3 Expressing OLAP hierarchies in RDF

56

two concept schemes ex:StrictScheme for a strict hierarchy

countrylanguage and ex:NonStrictScheme for a non-strict hierarchy

countrylanguage, but the last relationship in the following example should

only be valid for the concept scheme ex:NonStrictScheme. This is not

expressible with SKOS, since the relationships are universal valid.

ex:Germany skos:inScheme ex:StrictScheme.

ex:Germany skos:inScheme ex:NonStrictScheme.

ex:Switzerland skos:inScheme ex:StrictScheme.

ex:Switzerland skos:inScheme ex:NonStrictScheme.

ex:Germany skos:broader ex:German.

ex:Switzerland skos:broader ex:Swiss.

ex:Switzerland skos:broader ex:German.

Summarizing the above disadvantages of SKOS, the following figure gives an

overview of such hierarchies that can be expressed in SKOS because of the attribute

and level problematic:

Figure 23: Hierarchies expressible with SKOS

3 Expressing OLAP hierarchies in RDF

57

3.3 Proposed extensions to SKOS

To express all hierarchies with SKOS and enrich the way, the RDF Data Cube

vocabulary uses SKOS, the following elements are needed to improve it. Besides the

use of SKOSE, which is the proposed extension of this master thesis, also

SKOSCLASS20, which is already a proposed extension to SKOS, is reused in this

master thesis:

 Introducing levels:

To assign concepts to a level, information about levels is required.

SKOSCLASS suggests the class skosclass:ClassificationLevel, whose

instances are representing the levels of the hierarchy. Since a concept has no

information that indicates the membership to a level, the property

skos:member is suggested to assign a concept to a certain level. Levels are

then assigned via the property skos:inScheme to a concept scheme and via

skosclass:depth to a numeric value, representing the root distance.

Furthermore, a label could be assigned to a certain level via rdfs:label. There

are two ways of finding labels for a level:

o Using generic and continuous keys:

One way to find the labels for the hierarchy levels is using generic and

continuous keys. For example there is a concept scheme with the

following relationships for concepts:

ex:A skos:broader ex:C.

ex:B skos:broader ex:C.

The concepts ex:A and ex:B could belong to the same level. Since

there is nothing available in SKOS that indicates the level, a useful

label could not be determined. So generic and continuous keys have to

be used, e.g. „Level 1‟ for the level to which the concept ex:C belongs

to and „Level 2‟ for the level to which the concepts ex:A and ex:B

belong to.

o Using labels of the concepts:

20

 http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS

file:///D:/Eigene%20Dateien%20Dominik/Studium%20Informationswirtschaft%20KIT/Masterarbeit/ex%23A
file:///D:/Eigene%20Dateien%20Dominik/Studium%20Informationswirtschaft%20KIT/Masterarbeit/ex%23B
http://www.example.org/#C
file:///D:/Eigene%20Dateien%20Dominik/Studium%20Informationswirtschaft%20KIT/Masterarbeit/ex%23A
http://www.example.org/#B
http://www.example.org/#C
file:///D:/Eigene%20Dateien%20Dominik/Studium%20Informationswirtschaft%20KIT/Masterarbeit/ex%23A
http://www.example.org/#B

3 Expressing OLAP hierarchies in RDF

58

Another way is to determine the label for the level with the help of the

labels of the concepts. If all concepts, which belong to a certain level,

have similar labels, the label for the level could be determined using

these labels. E.g. there is a SKOS concept scheme with the following

concepts and relationships:

ex:Branch1 skos:broader ex:Bank1.

ex:Branch2 skos:broader ex:Bank1.

The label for the level, to which the two concepts ex:Branch1 and

ex:Branch2 belong to, could be „Branch‟.

 Introducing descriptive attributes:

To define descriptive attributes of a certain level and fill them with

characteristics, it is required that SKOS should have the possibility to define

additional properties and fill them with characteristics. There should exist a

class for descriptive attributes. A suggestion for this class is skose:Attribute.

All instances of this class are properties. With such a property a concept could

be linked to an object that indicates the characteristic of this attribute. The

property of the triple is the attribute and the object of the triple is the

characteristic of the attribute. Each instance of the class

skosclass:ClassificationLevel should be linked via the property

skose:hasAttribute to an instance of skose:Attribute.

With reference to Figure 16 of a generalized hierarchy above, e.g. the

customer address is a descriptive attribute of the customer ID in the level

customer and the characteristic for one customer 123456 is „Town Street 22‟.

This could be expressed as follows:

ex:customer rdf:type skosclass:ClassificationLevel;

 skose:hasAttribute ex:customerAdress.

ex:customerAdress rdf:type skose:Attribute.

ex:123456 rdf:type skos:Concept;

 skos:member ex:customer;

 ex:customerAdress “Town Street 22”.

3 Expressing OLAP hierarchies in RDF

59

 Separation of members in the RDF Data Cube Vocabulary and concepts in

SKOS:

For the reasons above, the members of a dimension in the RDF Data Cube

Vocabulary should be separated from the concepts in SKOS. Therefore the

URIs for the members should distinguish from the URIs for the concepts.

Furthermore, for each occurring value of a literal, a separate URI is required.

Also a property is required that assigns the SKOS concepts to members of a

dimension. For reuse reasons, this master thesis suggests to use already

standardized properties for this assignment:

o rdfs:seeAlso:

If the dimension member is an URI, the property rdfs:seeAlso is used.

The property skos:exactMatch or another skos:mappingRelation is not

used, because domain and range of these properties is each time a

skos:Concept and the actual dimension member should not be defined

as skos:Concept.

o rdfs:label:

If the dimension member is a literal, the property rdfs:label is used. The

property skos:notation is not used, because by convention it is only

used for user-defined data types and this master thesis supports all

data types, e.g. xsd:date.

Hence, also several concepts of several schemes in SKOS could be assigned

to a member without using owl:sameAs.

 Reification of relationships between concepts:

AS described above, relationships between concepts are independent of

concept schemes. To express several concept schemes with the same

concepts, but different relationships between concepts, relationships are

reificated using skosclass:hasSource/TargetConcept and are defined as

skosclass:ConceptAssociation, which can be assigned to the relevant concept

scheme. For example the relationships of the above example are expressed

as follows, whereby the last relationship is only assigned to the concept

scheme ex:NonStrictScheme.

3 Expressing OLAP hierarchies in RDF

60

ex:Germany_German rdf:type skosclass:ConceptAssociation;

 skosclass:hasSourceConcept ex:Germany;

 rdf:predicate skos:broader;

 skosclass:hasTargetConcept ex:German;

 skos:inScheme ex:StrictScheme;

 skos:inScheme ex:NonStrictScheme.

ex:Switzerland_Swiss rdf:type skosclass:ConceptAssociation;

 skosclass:hasSourceConcept ex: Switzerland;

 rdf:predicate skos:broader;

 skosclass:hasTargetConcept ex:Swiss;

 skos:inScheme ex:StrictScheme;

 skos:inScheme ex:NonStrictScheme.

ex:Switzerland_German rdf:type skosclass:ConceptAssociation;

 skosclass:hasSourceConcept ex: Switzerland;

 rdf:predicate skos:broader;

 skosclass:hasTargetConcept ex:German;

 skos:inScheme ex:NonStrictScheme.

3.4 Resulting vocabulary

To represent all proper OLAP hierarchies with RDF, the vocabularies of SKOS and

SKOSCLASS are used and further extended by SKOSE. Since SKOS is already a

W3C Recommendation, SKOSCLASS is as yet a proposed extension to SKOS.

SKOSE is a further extension, proposed by this master thesis. The combination of

these three vocabularies is used for precondition B, to express found hierarchies with

RDF. The following table gives an overview of the used classes and properties.

As it is common practice in many data warehouses, an element (e.g. member, level,

hierarchy) may consist of a (technical) key, a (human-readable) label and a (human-

readable) description. In each time, the URIs of these elements are used as keys,

rdfs:label as label and rdfs:comment as description.

3 Expressing OLAP hierarchies in RDF

61

Element or function Class or property Na

me

hierarchy skos:ConceptScheme cs/

assigning a hierarchy to a dimension qb:codeList -

concepts for members skos:Concept co/

linking a concept to its member in case of a resource rdfs:seeAlso -

linking a concept to its member in case of a literal rdfs:label -

assigning a concept to a hierarchy skos:inScheme -

level skosclass:ClassificationLevel cl/

assigning a concept to a level skos:member -

assigning a level to a hierarchy skos:inScheme -

indicating the root distance of a level skosclass:depth -

relationship between two concepts skosclass:ConceptAssociation ca/

children/parent of a relationship skosclass:hasSourceConcept -

hierarchical type of a relationship skos:broader/skos:narrower -

parent/children of a relationship skosclass:hasTargetConcept -

assigning a relationship to a hierarchy skos:inScheme -

descriptive attribute skose:Attribute da/

assigning an attribute to a level skose:hasAttribute -

Table 5: Classes and properties to express all proper OLAP hierarchies in RDF

The central element is a skos:ConceptScheme, which represents an OLAP

hierarchy. To assign a hierarchy to a dimension of a cube, the property qb:codeList is

used. As described above in the formal definition, an OLAP hierarchy consists of

members, levels, assignments of members to levels and relationships between

members. Therefore the following elements are used to represent all different types

of hierarchies with RDF.

Members of a dimension are represented as concepts. To avoid that a member of a

dimension in the RDF Data Cube Vocabulary is simultaneous a concept in SKOS,

concepts are linked to their corresponding members of a dimension via rdfs:seeAlso

in case of the member being a resource or via rdfs:label in case of the member being

a literal. A concept is linked via skos:inScheme to a certain hierarchy.

3 Expressing OLAP hierarchies in RDF

62

Levels are represented by skosclass:ClassificationLevel. Concepts are assigned to a

certain level via skos:member and levels are assigned to a certain hierarchy via

skos:inScheme. This means that concepts are assigned also indirectly (by way of

levels) to a hierarchy. The property skosclass:depth indicates the root distance of a

particular level, meaning accordingly to the formal definition the number of levels

without skipping an intermediate level between the root and a particular level. The

uppermost level has root distance one. Because the depth of a level in a multiple

alternative or parallel hierarchy is dependent of the path from this level to the root,

skosclass:depth is only set for levels of a simple hierarchy, where the depth is

unambigous.

Because relationships between concepts depend on a specific hierarchy and are not

generally valid, they have to be reificated. A skosclass:ConceptAssociation

represents a relationships between two concepts and links via

skosclass:hasSourceConcept and skosclass:hasTargetConcept to the children or

parent of a relationship. To determine whether the source/target concept is the

child/parent of the relationship, rdf:subject links a relationship to

skos:broader/skos:narrower, indicating the hierarchical type of the relationship. To

assign a certain relationship to a hierarchy, the property skos:inScheme is used.

Descriptive attributes are represented by skose:Attribute. To assign descriptive

attributes to a level, the property skose:hasAttribute is used. All descriptive attributes

are properties, which could link concepts to their characteristics of these attributes.

To guarantee a standardized naming of the different resources, the created URIs of

the instances of classes are concatenations of the following naming convention:

 „http://hierarchie.org/‟

 [Name of Table 5 „Classes and properties to express all proper OLAP

hierarchies‟ above, indicating the class of the resource, e.g. „co/‟ for a concept]

 [Free Part: Relevant substring(s) of related URI(s) without „http://‟ and

replacement of dots and hashes by slashes or useful free names]

For example, the concept for the resource <http://dbpedia.org/resource/Germany>

would be <http://hierarchie.org/co/dbpedia/org/resource/Germany>.

4 Transforming Linked Data into OLAP hierarchies

63

4 Transforming Linked Data into OLAP hierarchies

The transformation of the explicitly expressed hierarchies with the extended SKOS

vocabulary into the OLAP4J21 standard is described in the following subsections in a

way that they can be used in OLAP systems.

4.1 OLAP4J

OLAP4J is an open Java application programming interface (API) for accessing

multi-dimensional data. It intends to standardize the access on multidimensional data

on any OLAP server in a way that an OLAP application written in Java for one server

can easily be switched to another.

Generally speaking, an OLAP application interacts with an OLAP server by means of

MDX statements. OLAP4J provides the possibility to create a query by parsing an

MDX statement or to build a query by manipulating an MDX parse tree, whereby an

MDX parser library allows an easy conversion of an MDX string to and from a parse

tree.

XML for Analysis (XMLA)22 is also a standardized API, designed specifically for the

data access interaction between a client application and a multi-dimensional data

provider over the web and had gained a broad support of companies like Hyperion,

Microsoft, SAP and SAS.

Both, XMLA and OLAP4J allow an application to execute OLAP queries and to

browse the metadata of an OLAP schema. Since XMLA is a low-level web-service

API which leaves a lot of work to the application writer, OLAP4J provides advanced

functions for parsing MDX, building and transforming MDX query models and for

mapping result sets into graphical layouts such as pivot tables. However, OLAP4J

can easily be added to an XMLA back-end.

In this master thesis OLAP4J serves as interface between the explicitly expressed

hierarchies with RDF on the one side and an OLAP application on the other side.

Corresponding to the API, the schema result sets are filled with the relevant

21

 http://www.olap4j.org/
22

 http://news.xmlforanalysis.com/what-is-xmla

4 Transforming Linked Data into OLAP hierarchies

64

information. Concerning hierarchies, the following three methods are the most

important ones:

 getHierarchies

 getLevels

 getMembers

Corresponding to one implementation23, OLAP4J supports the following four

hierarchy types:

 Balanced:

In a balanced hierarchy, the parent of each member comes from the level

immediately above the member.

 Ragged:

In a ragged hierarchy, the parent of a member can come from any level above

the level of the member, not just from the level immediately above. This type

of hierarchy can also be referred to as ragged-balanced, because levels still

exist.

 Unbalanced:

In an unbalanced hierarchy, the concept of levels is not applied.

 Network:

The distinguishing feature of a network hierarchy is that nodes can contain

more than one parent.

4.2 Mapping between SKOS and OLAP4J

As described above, the standards XMLA and OLAP4J support four different types of

hierarchies. However, the hierarchies in a multidimensional model which were

conceptually introduced in section 2.3 can be more complex. For this reason, a

mapping between the conceptual model and OLAP4J is required. The found

hierarchies, which were expressed with SKOS and the proposed extensions, are

interpreted analogously the conceptual model.

23

 http://msdn.microsoft.com/en-us/library/ms725445%28v=VS.85%29.aspx

4 Transforming Linked Data into OLAP hierarchies

65

The following table gives an overview of the mapping between the hierarchies in the

extended SKOS vocabulary respectively the conceptual model and OLAP4J. It has to

be noticed that the naming and the understanding of the hierarchies is different, but

OLAP4J basically supports all simple hierarchies of the extended SKOS vocabulary

respectively the conceptual model:

SKOS/Conceptual Model OLAP4J Differences

parallel independent - A parallel independent hierarchy can be
transformed in several simple hierarchies,
which can then be used in OLAP4J.

parallel dependent - A parallel dependent hierarchy can be split
in several simple hierarchies, which can
then be used in OLAP4J.

multiple alternative - A multiple alternative hierarchy can be split
in several simple hierarchies, which can
then be used in OLAP4J.

simple strict symmetric balanced -

asymmetric unbalanced -

generalized
(except non-
covering)

balanced or
unbalanced

All levels on the same stage of a
generalized hierarchy have to be
transformed in one common level in the
balanced or unbalanced hierarchy.

non-covering ragged All levels on the same stage of a non-
covering hierarchy have to be transformed
in one common level in the ragged
hierarchy.

non-
strict

symmetric
asymmetric
generalized
(inclusive non-
covering)

network All levels on the same stage of a
generalized hierarchy have to be
transformed in one common level in the
network hierarchy.

Table 6: Hierarchy mapping between SKOS and OLAP4J

The metamodel of hierarchy classification [Figure 12] shows that both, multiple

alternative and parallel hierarchies are aggregations of simple hierarchies. Since

there is no pendant for these complex hierarchies in OLAP4J, this relationship is

used to reduce the more complex hierarchies into simple hierarchies. After reducing

multiple alternative and parallel hierarchies to simple hierarchies, all levels of a

generalized hierarchy on the same stage have to be integrated in one common level

and the depths of levels have to be set. The following subsections specify the

transformation of the hierarchies in a way that they can be used in OLAP4J.

4 Transforming Linked Data into OLAP hierarchies

66

4.2.1 Transforming parallel hierarchies in individual hierarchies

Parallel hierarchies are split in several individual hierarchies, whereby each analysis

criterion results in an own individual hierarchy. All resulting individual hierarchies that

are multiple alternative hierarchies must then be split further into several simple

hierarchies.

 Parallel independent hierarchies:

Since a parallel independent hierarchy does not share levels, all levels that

are in the paths of one analysis criterion are part in the resulting individual

hierarchy. For example the above described parallel independent hierarchy

[Figure 20] results in the following two simple hierarchies:

Figure 24: Example for a transformation of a parallel independent hierarchy

 Parallel dependent hierarchies:

Since a parallel dependent hierarchy shares levels, all these levels are part of

all resulting individual hierarchies. For example the level state in the above

described parallel dependent hierarchy [Figure 21] is part in both resulting

simple hierarchies:

4 Transforming Linked Data into OLAP hierarchies

67

Figure 25: Example for a transformation of a parallel dependent hierarchy

4.2.2 Transforming multiple alternative hierarchies in simple hierarchies

Since it is semantically not correct in such hierarchies to simultaneously traverse the

different composing hierarchies, the user has to choose one of the alternative

hierarchies. Therefore several simple hierarchies are generated, whereby the shared

levels are part of each simple hierarchy. For example, the above described multiple

alternative hierarchy [Figure 19] for the time dimension results in the following two

simple hierarchies:

Figure 26: Example for a transformation of a multiple alternative hierarchy

4.2.3 Transforming generalized hierarchies

Since OLAP4J does not allow different levels with the same depth, all levels on the

same stage have to be integrated in one common level. For example, the above

4 Transforming Linked Data into OLAP hierarchies

68

described generalized hierarchy [Figure 16] results in the following symmetric

hierarchy:

Figure 27: Example for a transformation of a generalized hierarchy

The two levels „Type‟ and „Profession‟ on stage 4 result in one common level „Level

4‟ and the two levels „Sector‟ and „Class‟ result in one common level „Level 3‟. All

attributes that have been part of both levels (e.g. „Description‟) result in an attribute in

the common level. Other attributes, which have been level-specific, are not part of

the new common level.

4.3 OLAP4J methods

To use the constructed hierarchies the following subsections specify the OLAP4J

methods:

 getHierarchies

 getLevels

 getMembers

To use the specified SPARQL queries for the OLAP4J methods concerning

hierarchies, the following preparations have to be done:

 Transformation of hierarchies of the conceptual model into OLAP4J

hierarchies:

As described above, the hierarchies of the conceptual model have to be

transformed into OLAP4J conform hierarchies corresponding to the specified

mapping. All more complex hierarchies are reduced to simple hierarchies and

all levels on the same stage in a generalized hierarchy have to be integrated

in one common level. To select all hierarchies, which fulfill this assumption,

4 Transforming Linked Data into OLAP hierarchies

69

the following SPARQL query can be used. Only the selected hierarchies of

this query are relevant hierarchies for the use in OLAP4J. The results of the

queries for the methods can be filtered about the result of this query. In this

query, it is grouped by ?HIERARCHY_UNIQUE_NAME and

?LEVEL_NUMBER to count all levels per stage per hierarchy. The having

condition is then used to select only the required hierarchies

(?HIERARCHY_UNIQUE_NAME).

Select distinct

#Relevant hierarchies for OLAP4J

?HIERARCHY_UNIQUE_NAME

where{

Select distinct

?HIERARCHY_UNIQUE_NAME

?LEVEL_NUMBER

(count(?LEVEL_NUMBER) AS ?numberOfLevelsOnTheSameStage)

where{

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme.

?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel.

?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?LEVEL_UNIQUE_NAME skosclass:depth ?LEVEL_NUMBER.

}

GROUP BY

?HIERARCHY_UNIQUE_NAME

?LEVEL_NUMBER

HAVING(?numberOfLevelsOnTheSameStage = 1)}

 Only skos:broader instead of skos:narrower properties are used:

Since there is the possibility to express hierarchical structures bottom-up or

top-down, the used properties have to be harmonized to have the possibility to

use only skos:broader instead of skos:narrower. This can be done with the

following SPARQL construct query, whereby the resulting triples have to be

added in the triple store.

Construct {

#Transforming skos:narrower in skos:broader concept associations

?relationshipBroader rdf:type skosclass:ConceptAssociation.

?relationshipBroader skos:inScheme ?conceptScheme.

?relationshipBroader skosclass:hasSourceConcept ?member.

4 Transforming Linked Data into OLAP hierarchies

70

?relationshipBroader rdf:predicate skos:broader.

?relationshipBroader skosclass:hasTargetConcept ?parent.

}

where{

?relationship rdf:type skosclass:ConceptAssociation.

?relationship skos:inScheme ?conceptScheme.

?relationship skosclass:hasSourceConcept ?parent.

?relationship rdf:predicate skos:narrower.

?relationship skosclass:hasTargetConcept ?member.

BIND(URI(CONCAT(STR(?relationship),"_BROADER")) AS ?relationshipBroader)

}

4.3.1 getHierarchies

Since it is not trivial to determine the structure of the resulting hierarchy for the use in

OLAP4J, this part is separated from determining the remaining variables. For each of

the four different structures, an own SPARQL query is created to select the

hierarchies, having the particular structure:

 MD_STRUCTURE_FULLYBALANCED (0):

In this query it has to be proofed if each member

(?MEMBER_UNIQUE_NAME) has a child (possibly indirect) on the leaf level.

Therefore, a property path is used and the results have to be grouped by

?HIERARCHY_UNIQUE_NAME and ?STRUCTURE. To select only the

required hierarchies, the having condition is used.

Select distinct

#Structure of concept scheme = MD_STRUCTURE_ FULLYBALANCED (0)

?HIERARCHY_UNIQUE_NAME ?STRUCTURE

where{

Select distinct

?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME

(max(xsd:integer(?CHILD_LEVEL_NUMBER))AS ?LEAF_LEVEL_NUMBER) ?STRUCTURE

where{

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme.

?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?MEMBER_UNIQUE_NAME skos:member ?MEMBER_LEVEL.

?MEMBER_UNIQUE_NAME rdf:type skos:Concept.

?MEMBER_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?MEMBER_LEVEL rdf:type skosclass:ClassificationLevel.

#?MEMBER_LEVEL skosclass:depth "1".

?MEMBER_UNIQUE_NAME (^skosclass:hasTargetConcept/skosclass:hasSourceConcept)*

?CHILD_UNIQUE_NAME.

4 Transforming Linked Data into OLAP hierarchies

71

?CHILD_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?CHILD_UNIQUE_NAME skos:member ?CHILD_LEVEL.

?CHILD_UNIQUE_NAME rdf:type skos:Concept.

?CHILD_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?CHILD_LEVEL rdf:type skosclass:ClassificationLevel.

?CHILD_LEVEL skosclass:depth ?CHILD_LEVEL_NUMBER.

BIND("0" AS ?STRUCTURE)

} GROUP BY ?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME ?STRUCTURE

} GROUP BY ?HIERARCHY_UNIQUE_NAME ?STRUCTURE

HAVING (

(max(xsd:integer(?LEAF_LEVEL_NUMBER)))*(count(xsd:integer(?LEAF_LEVEL_NUMBER)

)) = (sum(xsd:integer(?LEAF_LEVEL_NUMBER)))

)

 MD_STRUCTURE_RAGGEDBALANCED (1):

In this query it has to be proofed if there is a difference between the depths of

levels of a concept association which is higher than one.

Select distinct

#Structure of concept scheme = MD_STRUCTURE_RAGGEDBALANCED (1)

?HIERARCHY_UNIQUE_NAME ?STRUCTURE

where{

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme.

?relationship rdf:type skosclass:ConceptAssociation.

?relationship skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?relationship skosclass:hasSourceConcept ?MEMBER_UNIQUE_NAME.

?relationship rdf:predicate skos:broader.

?relationship skosclass:hasTargetConcept ?PARENT_UNIQUE_NAME.

?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?MEMBER_UNIQUE_NAME skos:member ?MEMBER_LEVEL.

?MEMBER_UNIQUE_NAME rdf:type skos:Concept.

?MEMBER_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?MEMBER_LEVEL rdf:type skosclass:ClassificationLevel.

?MEMBER_LEVEL skosclass:depth ?MEMBER_LEVEL_NUMBER.

?PARENT_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?PARENT_UNIQUE_NAME skos:member ?PARENT_LEVEL.

?PARENT_UNIQUE_NAME rdf:type skos:Concept.

?PARENT_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?PARENT_LEVEL rdf:type skosclass:ClassificationLevel.

?PARENT_LEVEL skosclass:depth ?PARENT_LEVEL_NUMBER.

BIND("1" AS ?STRUCTURE)

FILTER(xsd:integer(?MEMBER_LEVEL_NUMBER) -

(xsd:integer(?PARENT_LEVEL_NUMBER)) >1)

}

4 Transforming Linked Data into OLAP hierarchies

72

 MD_STRUCTURE_UNBALANCED (2):

In this query it has to be proofed if there is a member on a higher

level(?MEMBER_UNIQUE_NAME) which has no child (possibly indirect) on

the leaf level. This query is nearly the same to the first one, with the difference

of the reverse having condition.

Select distinct

#Structure of concept scheme = MD_STRUCTURE_UNBALANCED (2)

?HIERARCHY_UNIQUE_NAME ?STRUCTURE

where{

Select distinct

?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME

(max(xsd:integer(?CHILD_LEVEL_NUMBER))AS ?LEAF_LEVEL_NUMBER) ?STRUCTURE

where{

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme.

?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?MEMBER_UNIQUE_NAME skos:member ?MEMBER_LEVEL.

?MEMBER_UNIQUE_NAME rdf:type skos:Concept.

?MEMBER_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?MEMBER_LEVEL rdf:type skosclass:ClassificationLevel.

#?MEMBER_LEVEL skosclass:depth "1".

?MEMBER_UNIQUE_NAME (^skosclass:hasTargetConcept/skosclass:hasSourceConcept)*

?CHILD_UNIQUE_NAME.

?CHILD_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?CHILD_UNIQUE_NAME skos:member ?CHILD_LEVEL.

?CHILD_UNIQUE_NAME rdf:type skos:Concept.

?CHILD_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?CHILD_LEVEL rdf:type skosclass:ClassificationLevel.

?CHILD_LEVEL skosclass:depth ?CHILD_LEVEL_NUMBER.

BIND("2" AS ?STRUCTURE)

} GROUP BY ?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME ?STRUCTURE

} GROUP BY ?HIERARCHY_UNIQUE_NAME ?STRUCTURE

HAVING (

(max(xsd:integer(?LEAF_LEVEL_NUMBER)))*(count(xsd:integer(?LEAF_LEVEL_NUMBER)

)) != (sum(xsd:integer(?LEAF_LEVEL_NUMBER)))

)

 MD_STRUCTURE_NETWORK (3):

In this query it has to be proofed if there is a member, having more than one

parent. For this reason the result is grouped by

?HIERARCHY_UNIQUE_NAME and ?STRUCTURE with the having condition

that the count of parents is greater than one.

4 Transforming Linked Data into OLAP hierarchies

73

Select distinct

#Structure of concept scheme = MD_STRUCTURE_NETWORK (3)

?HIERARCHY_UNIQUE_NAME ?STRUCTURE

where{

?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme.

?relationship rdf:type skosclass:ConceptAssociation.

?relationship skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?relationship skosclass:hasSourceConcept ?MEMBER_UNIQUE_NAME.

?relationship rdf:predicate skos:broader.

?relationship skosclass:hasTargetConcept ?PARENT_UNIQUE_NAME.

?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?MEMBER_UNIQUE_NAME skos:member ?MEMBER_LEVEL.

?MEMBER_UNIQUE_NAME rdf:type skos:Concept.

?MEMBER_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?MEMBER_LEVEL rdf:type skosclass:ClassificationLevel.

?PARENT_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?PARENT_UNIQUE_NAME skos:member ?PARENT_LEVEL.

?PARENT_UNIQUE_NAME rdf:type skos:Concept.

?PARENT_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?PARENT_LEVEL rdf:type skosclass:ClassificationLevel.

BIND("3" AS ?STRUCTURE)

} GROUP BY

?HIERARCHY_UNIQUE_NAME ?MEMBER_UNIQUE_NAME ?STRUCTURE

HAVING(COUNT(?PARENT_UNIQUE_NAME) > 1)

There may be special cases, where a concept scheme is in the result of the query for

the structure MD_STRUCTURE_NETWORK (3) and in the result of another query. In

this case, the structure of the concept scheme is MD_STRUCTURE_NETWORK (3).

The following SPARQL query can be used for the other important variables for the

OLAP4J method getHierarchies. In order to have no members in the result but

anyway to count the number of members (?HIERARCHY_CARDINALITY), the result

of the query is grouped by the important other variables. Since there may be several

labels for a concept scheme (?HIERARCHY_UNIQUE_NAME), it is filtered by the

English label. Distinct is needed to guarantee that the same line is not included

several times in the result, because the same triple could exist several times. For

example if the same English label is crawled several times, because it is included in

several information resources, only one of these same triples is needed.

4 Transforming Linked Data into OLAP hierarchies

74

Select distinct
#OLAP4J method getHierarchies
?CUBE_NAME
?DIMENSION_UNIQUE_NAME
?HIERARCHY_NAME
?HIERARCHY_UNIQUE_NAME
(count(?MEMBER_UNIQUE_NAME) AS ?HIERARCHY_CARDINALITY)
where{
?CUBE_NAME qb:component ?compSpec.
?CUBE_NAME rdf:type qb:DataStructureDefinition.
?compSpec qb:dimension ?DIMENSION_UNIQUE_NAME.
?DIMENSION_UNIQUE_NAME qb:codeList ?HIERARCHY_UNIQUE_NAME.
?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme.
OPTIONAL{?HIERARCHY_UNIQUE_NAME rdfs:label ?HIERARCHY_NAME.
Filter(lang(?HIERARCHY_NAME)="en")}

?MEMBER_UNIQUE_NAME rdf:type skos:Concept.
?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.
?MEMBER_UNIQUE_NAME skos:member ?LEVEL_UNIQUE_NAME.

?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel.
?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.
}
GROUP BY
?CUBE_NAME
?DIMENSION_UNIQUE_NAME
?HIERARCHY_NAME
?HIERARCHY_UNIQUE_NAME

In the result of this query, the structure is not included since it can be determined with

the four queries above. For this reason, the structures of the hierarchies have to be

determined with the four queries above and added to the result of this query.

4.3.2 getLevels

The following SPARQL query can be used for the OLAP4J method getLevels. In

order to have no members in the result but anyway to count the number of members

of the level (?LEVEL_CARDINALITY), the result of the query is grouped by the other

important variables. Since there may be several labels for a concept scheme

(?HIERARCHY_UNIQUE_NAME) and a level (?LEVEL_UNIQUE_NAME), each time

it is filtered by the English label. Distinct is needed to guarantee that the same line is

not included several times in the result, because the same triple could exist several

times. For example if the same English label is crawled several times, because it is

included in several information resources, only one of these same triples is needed.

4 Transforming Linked Data into OLAP hierarchies

75

Select distinct
#OLAP4J method getLevels
?CUBE_NAME
?DIMENSION_UNIQUE_NAME
?HIERARCHY_NAME
?HIERARCHY_UNIQUE_NAME
?LEVEL_NAME
?LEVEL_UNIQUE_NAME
?LEVEL_NUMBER
(count(?MEMBER_UNIQUE_NAME) AS ?LEVEL_CARDINALITY)
where{
?CUBE_NAME qb:component ?compSpec.
?CUBE_NAME rdf:type qb:DataStructureDefinition.
?compSpec qb:dimension ?DIMENSION_UNIQUE_NAME.
?DIMENSION_UNIQUE_NAME qb:codeList ?HIERARCHY_UNIQUE_NAME.
?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme.
OPTIONAL{?HIERARCHY_UNIQUE_NAME rdfs:label ?HIERARCHY_NAME.
Filter(lang(?HIERARCHY_NAME)="en")}

?MEMBER_UNIQUE_NAME rdf:type skos:Concept.
?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.
?MEMBER_UNIQUE_NAME skos:member ?LEVEL_UNIQUE_NAME.

?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel.
?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

OPTIONAL{?LEVEL_UNIQUE_NAME rdfs:label ?LEVEL_NAME.
Filter(lang(?LEVEL_NAME)="en")}
?LEVEL_UNIQUE_NAME skosclass:depth ?LEVEL_NUMBER.
}
GROUP BY
?CUBE_NAME
?DIMENSION_UNIQUE_NAME
?HIERARCHY_NAME
?HIERARCHY_UNIQUE_NAME
?LEVEL_NAME
?LEVEL_UNIQUE_NAME
?LEVEL_NUMBER

4.3.3 getMembers

The following SPARQL query can be used for the OLAP4J method getMembers.

Hereby, the first part of the where clause which is before the UNION statement

selects all members that are part of a concept association and the corresponding

relationships. The second part of the where clause which is after the UNION

statement selects all members of the uppermost level, since they have no parents.

Since a member (?MEMBER_NAME) may have several labels, it is filtered for the

English label. Distinct is needed to guarantee that the same line is not included

several times in the result, because the same triple could exist several times. For

4 Transforming Linked Data into OLAP hierarchies

76

example if the same English label is crawled several times, because it is included in

several information resources, only one of these same triples is needed.

Select distinct
#OLAP4J method getMembers
?CUBE_NAME
?DIMENSION_UNIQUE_NAME
?HIERARCHY_UNIQUE_NAME
?LEVEL_UNIQUE_NAME
?LEVEL_NUMBER
?MEMBER_NAME
?MEMBER_UNIQUE_NAME
?PARENT_LEVEL
?PARENT_UNIQUE_NAME
where {
{?CUBE_NAME qb:component ?compSpec.
?CUBE_NAME rdf:type qb:DataStructureDefinition.
?compSpec qb:dimension ?DIMENSION_UNIQUE_NAME.
?DIMENSION_UNIQUE_NAME qb:codeList ?HIERARCHY_UNIQUE_NAME.
?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme.

?MEMBER_UNIQUE_NAME skos:member ?LEVEL_UNIQUE_NAME.
?MEMBER_UNIQUE_NAME rdf:type skos:Concept.
?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.

?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel.
OPTIONAl{?MEMBER_UNIQUE_NAME rdfs:label ?MEMBER_NAME.
Filter(lang(?MEMBER_NAME)="en")}
?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.
?LEVEL_UNIQUE_NAME skosclass:depth ?LEVEL_NUMBER.

?relationship rdf:type skosclass:ConceptAssociation.
?relationship skos:inScheme ?HIERARCHY_UNIQUE_NAME.
?relationship skosclass:hasSourceConcept ?MEMBER_UNIQUE_NAME.
?relationship rdf:predicate skos:broader.
?relationship skosclass:hasTargetConcept ?PARENT_UNIQUE_NAME.

?PARENT_UNIQUE_NAME skos:member ?PARENT_LEVEL.
?PARENT_UNIQUE_NAME rdf:type skos:Concept.
?PARENT_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.
?PARENT_LEVEL skos:inScheme ?HIERARCHY_UNIQUE_NAME.
?PARENT_LEVEL rdf:type skosclass:ClassificationLevel.
}
UNION
{
?CUBE_NAME qb:component ?compSpec.
?CUBE_NAME rdf:type qb:DataStructureDefinition.
?compSpec qb:dimension ?DIMENSION_UNIQUE_NAME.
?DIMENSION_UNIQUE_NAME qb:codeList ?HIERARCHY_UNIQUE_NAME.
?HIERARCHY_UNIQUE_NAME rdf:type skos:ConceptScheme.
?MEMBER_UNIQUE_NAME skos:member ?LEVEL_UNIQUE_NAME.
?MEMBER_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.
?MEMBER_UNIQUE_NAME rdf:type skos:Concept.

4 Transforming Linked Data into OLAP hierarchies

77

?LEVEL_UNIQUE_NAME rdf:type skosclass:ClassificationLevel.
OPTIONAl{?MEMBER_UNIQUE_NAME rdfs:label ?MEMBER_NAME.
Filter(lang(?MEMBER_NAME)="en")}
?LEVEL_UNIQUE_NAME skos:inScheme ?HIERARCHY_UNIQUE_NAME.
?LEVEL_UNIQUE_NAME skosclass:depth ?LEVEL_NUMBER.
FILTER(xsd:integer(?LEVEL_NUMBER) = 1)
}}

5 Approaches for learning OLAP hierarchies from RDF

78

5 Approaches for learning OLAP hierarchies from RDF

In this section the different approaches to generate useful hierarchies from Statistical

Linked Data are explained in detail. There have been developed specific approaches

for often occurring data (e.g. temporal and geographical) as well as generic

approaches that can be applied to all data. Before describing the approaches itself,

the steps are explained independently of a concrete approach and ideas for a

possible web service are introduced.

An intensive literature study concerning the generation of OLAP hierarchies from

Statistical Linked Data has been made, but no algorithms or concepts have been

found. Indeed, the developed approaches of this master thesis are not additional

methods or extensions of already existing algorithms and can therefore be seen as

new ideas to generate OLAP hierarchies. The essential precondition for all

approaches is the existence of triples, in which members of a dimension of a data set

are linked to other resources which can be used for constructing hierarchies.

To each approach the following information is given, which respectively results in an

own subsection. For reasons of clarity and comprehensibility, the naming of URIs is

sometimes simplified when describing the approaches:

 An overview of the approach

 The possible parameters

 The algorithm including possible SPARQL construct queries

 An example on real data

 The possible resulting hierarchies

 Some criticism

5.1 Steps of the approaches

The following flow chart shows the steps of generating hierarchies which is

independent of a concrete approach. This means that all approaches follow this

universally valid schema.

5 Approaches for learning OLAP hierarchies from RDF

79

Figure 28: Steps of the approaches

5.1.1 Start

For the start of each approach, the following elements have to be given. They all are

crawled in a triple store, where the construction of the hierarchies takes place. Also

the dictionary information, such as the resources that are owl:sameAs to the

members of the given dimension, is loaded in the triple store:

 One or more data sets

 One or more corresponding data structure definitions

 One (common) dimension

5.1.2 Creating a concept scheme

The given dimension may be linked via qb:codeList to one or more concept schemes.

If there is a concept scheme, which includes concepts for exactly those members

that are used in the given dimension of the data set(s), this concept scheme is used.

5 Approaches for learning OLAP hierarchies from RDF

80

Otherwise if the concept scheme comprises more or less concepts than members

actually are used in the data set(s), a new concept scheme is created, which is linked

via the property qb:codeList to the given dimension. For all members of all data sets,

including the given dimension, concepts are created, which are linked via

rdfs:seeAlso or rdfs:label to the actual member and are assigned via the property

skos:inScheme to the created concept scheme. The resulting triples are added to the

triple store. The created concept schemes are specific for the given data set(s), but

are linked via qb:codeList to the given dimension of the given data structure

definition(s).

5.1.3 Loading relevant triples

To generate hierarchies out of the created concepts, further metadata of the

members is needed. Therefore, relevant triples are loaded and added to the triple

store. Loading means both, retrieving triples from a certain information resource and

crawling which could for example be done with ldspider24, a Java implementation for

a linked data web crawler. Potentially this could also involve RDF-izing sources,

meaning that non-RDF data could also be crawled from relevant data sources which

is then transformed into RDF. However, this additional possibility to RDF-izing data

isn‟t used in the approaches of this master thesis.

5.1.4 Adding hierarchical information

The crawled triples are used to generate hierarchical information, meaning

classification levels, to which concepts are assigned via skos:member and concept

associations, to which concepts are assigned via skosclass:hasSourceConcept and

skosclass:hasTargetConcept. Both, classification levels and concept associations are

assigned to the concept scheme via skos:inScheme. Additional concepts could

possibly be created that were also assigned to levels and the concept scheme.

Technically speaking, this can be done with SPARQL construct queries in the triple

store. The resulting triples are then added to the triple store.

24

 http://code.google.com/p/ldspider/

http://code.google.com/p/ldspider/

5 Approaches for learning OLAP hierarchies from RDF

81

5.1.5 End of the approach reached?

After hierarchical information is added to the concept scheme, it has to be checked, if

the end of the approach is reached. If this is the case, no additional triples are

crawled and the run of the approach terminates. Otherwise, the run of the approach

continues with step 2 „Loading relevant triples‟.

5.1.6 End

If the end of the approach is reached, the created concept scheme represents the

resulting hierarchy of the run of the approach. It includes the hierarchical structures,

expressed with the introduced SKOS vocabulary and proposed extensions. The

resulting concept schemes can then be used in OLAP applications.

Several data sets, including data sets on different aggregation layer, can potential be

integrated, using the resulting concept scheme for the common dimension of the data

structure definitions. Integration means that observations of different data sets can be

combined. The following cases can be distinguished:

 Some dimension members of different data sets have the same parent in a

higher level in the created concept scheme. For example for the time

dimension the member 2011-12 is used in one data set and the member

2011-08 is used in another data set. Both data sets can be integrated, using

the created concept scheme, which includes the parent 2011 of both

members.

 Some dimension members are the parents in a higher level of other members

of the different data sets in the created concept scheme. For example for the

time dimension the member 2011 is used in one data set and the member

2011-08 is used in another data set. Both data sets can be integrated, using

the created concept scheme, where 2011 is the parent of 2011-08

5 Approaches for learning OLAP hierarchies from RDF

82

5.2 Technical implementation

The technical implementation of the developed approaches to generate hierarchies

could either be done as an own system or web based. The idea of this master thesis

is to provide a web service which generates hierarchies from Statistical Linked Data.

The different approaches could be represented as request-response port types of a

web service. This means that per each approach one method is provided, which can

be called by the service consumer. The following URL parameters of a request have

to be filled by the service consumer:

 ds: URI(s) of one or more data sets

 dsd: URI(s) of one or more corresponding data structure definitions

 dim: URI of one (common) dimension

 (further approach-specific parameters)

The web service then makes use of the developed approaches depending on the

called methods and values of the parameters. Each approach works for the specified

dimension, the given data set(s) and the corresponding data structure definition(s).

The response of the service provider is a concept scheme that is linked to the given

dimension, including the generated hierarchical structures. It is expressed with the

introduced SKOS vocabulary and proposed extensions, serialized in RDF/XML.

5.3 Specific approaches

The specific approaches are developed for the temporal and geographical dimension

of a cube. This means that special preconditions have to be fulfilled that these

approaches can be used. To each approach, SPARQL construct queries are given,

which can be executed to construct the required triples.

5.3.1 Approach ‘time’

5.3.1.1 Overview

This approach, called „time‟, is a special approach for constructing hierarchies within

the time dimension in a cube. As postulated by Inmon, data in a data warehouse

5 Approaches for learning OLAP hierarchies from RDF

83

should be analyzable within the time dimension, called „Time-variant‟ [Inmo02, p.31].

The time dimension is contained in many cubes due to the fact that time is always

running and measured data is changing over the time. Because of this special

character of the time dimension, it is possible to generate hierarchies statically with

metadata of a central time service as explained in the following.

Regarding the time dimension there may be specific hierarchies, for example types of

days in a certain country (including members: working day, weekend, public holiday)

or a university calendar as shown in the following figure:

Figure 29: Examples for specific hierarchies of the time dimension: schema

Furthermore, there may also be hierarchies which are universally valid for time points

in a specific calendar, e.g. the Gregorian calendar, which is the idea of this approach.

The following example of a multiple alternative hierarchy with the common levels

„Day‟ and „Year‟ serves as running example for this approach.

5 Approaches for learning OLAP hierarchies from RDF

84

Figure 30: Resulting multiple alternative hierarchy of the approach ‘Time’: schema

Out of this multiple alternative hierarchy, the following two simple hierarchies that are

both symmetric are constructed:

 „DayToYearViaMonth‟: This hierarchy is strict and consists of the following

three levels:

DayMonthYear

 „DayToYearViaWeek‟: This hierarchy consists of the three levels

DayWeekYear

and is non-strict since a week can belong to two years. For example the

calendar week 01/2012 begins with 12/31/2011 and ends with 06/01/2012, so

it belongs to the two years 2011 and 2012, because in a roll up to the level

year, the day 12/31/2011 would roll up to the year 2011 and the day

06/01/2012 would roll up to the year 2012 even if they are in the same

calendar week.

The assumption made in this example is that a day is the most granular value in

statistical data, so the lowest level of the two hierarchies is always a day. For

example this can be seen in the time dimension in an EUROSTAT data structure

definition25, which also has as rdfs:range the datatype xsd:date, indicating that a day

is the most granular value. However, this approach would also work for more

granular data, e.g. on hour, minute and second level. Such a granularity would

25

 http://estatwrap.ontologycentral.com/dsd/teilm020

5 Approaches for learning OLAP hierarchies from RDF

85

possibly be required in technical measured data. Therefore the hierarchies could be

extended as follows:

SecondMinuteHourDay

Although it is assumed that the most general values in statistical data are years, this

approach should also work for more general data, e.g. decades, centuries and

millenniums. Hence the hierarchies could also be extended on the other side as

follows:

YearDecadeCenturyMillennium

Finally, the hierarchies could also be extended by using more levels which are

between the month and the year level, e.g. quarters and half-years. So the

hierarchies could also be extended in the middle as follows:

MonthQuarterHalf-YearYear

5.3.1.2 Algorithm

To generate hierarchies out of the time dimension the following steps have to be

done.

5.3.1.2.1 Start

The algorithm to generate URIs out of literal values works if the range of a

qb:DimensionProperty or the data types of the members within a dimension have one

of the following primitive XML Schema data types. If this is not the case, no

hierarchies are generated:

 xsd:dateTime

 xsd:date

 xsd:gYearMonth

 xsd:gYear

5 Approaches for learning OLAP hierarchies from RDF

86

5.3.1.2.2 Creating a concept scheme

The main idea of this approach is using URIs instead of literals for the time

dimension in statistical data sets. Thus, for all literal values that may potentially occur

in the time dimension URIs are created. Due to the fact that explicit hierarchies can

only be expressed with URIs it is not possible to use literals instead. Consequently,

literal values cannot be assigned to concept schemes despite concept schemes for

each dimension are needed to express hierarchies. Since only a limited number of

different values in the time dimension can occur therefore only a limited number of

URIs has to be created.

The lexical representations of the data types are interpreted following the XML

Schema specification26. For each literal value that occurs as different second, minute,

hour, day, month or year an URI is used for representing the corresponding time

instants. For reuse reasons the URIs of already existing time services are used.

Because of the world-wide use of the Gregorian calendar, this approach also uses

the Gregorian calendar, independent of time zones, for what the Gregorian URI set27

of data.gov.uk28 is used. This URI set already includes temporal relationships

between different time instants which is later used to define hierarchies. In fact, also

more concept schemes could be provided using other calendars (e.g. Julian

calender) or time-zone specific concept schemes for what the URIs of placetime29

could be used.

The following table shows the lexical representations for the data types including an

example value which results in an example URI. For example the value 2011-10-17

of the xsd:date data type would result in the URI refgovukday:2011-10-17

representing the 17th of October, 2011.

26

 http://www.w3.org/TR/xmlschema-2/
27

 http://www.epimorphics.com/web/wiki/using-interval-set-uris-statistical-data
28

 http://data.gov.uk/
29

 http://www.placetime.com/

5 Approaches for learning OLAP hierarchies from RDF

87

Datatype Lexical representation Resulting URI

xsd:dateTime '-'? yyyy '-' mm '-' dd 'T' hh ':' mm

':' ss ('.' s+)? (zzzzzz)?

e.g.: 2011-10-17T14:23:17

refgovukminute:2011-10-17T14:23:17

xsd:date '-'? yyyy '-' mm '-' dd zzzzzz?

e.g.: 2011-10-17

refgovukday:2011-10-17

xsd:gYearMonth '-'? yyyy '-' mm '

e.g.: 2011-10

refgovukmonth:2011-10

xsd:gYear '-'? yyyy

e.g.: 2011

refgovukyear:2011

Table 7: Temporal data types

After the generation of URIs for each literal value these URIs can be linked via the

rdfs:label property to the corresponding literal values that are members of the

dimension as follows:

refgovukday:2011-10-17 rdfs:label 2011-10-17.

To assign the created URIs to a concept scheme for each of the above described

simple hierarchies a concept scheme has to be defined as follows. The label for the

concept scheme could be „Day to year via month‟ respectively „Day to year via week‟.

hrc:cs/DayToYearViaMonth rdf:type skos:ConceptScheme;

 rdfs:label “Day to year via month”.

hrc:cs/DayToYearViaWeek rdf:type skos:ConceptScheme;

 rdfs:label “Day to year via week”.

The dimension of a data structure definition is then linked via qb:codeList to the

created concept schemes if the range of this dimension is one of the above

described data types. It has to be noticed that the created concept schemes are

specific for a certain data set but are linked via qb:codeList to a dimension of a data

structure definition.

5 Approaches for learning OLAP hierarchies from RDF

88

The created URIs are then defined as concepts and assigned to the respective

schemes as follows. Since the created URIs for days and years are assigned to both

concept schemes the created URIs for months are only assigned to the concept

schemes „DayToYearViaMonth‟, since only this concept scheme includes months :

refgovukday:2011-10-17 rdf:type skos:Concept;

 skos:inScheme hrc:cs/DayToYearViaMonth;

 skos:inScheme hrc:cs/DayToYearViaWeek.

refgovukmonth:2011-10 rdf:type skos:Concept;

 skos:inScheme hrc:cs/DayToYearViaMonth.

refgovukyear:2011 rdf:type skos:Concept;

 skos:inScheme hrc:cs/DayToYearViaMonth;

 skos:inScheme hrc:cs/DayToYearViaWeek.

For constructing these triples the following SPARQL construct query can be used.

Hereby, the given data set(s), data structure definition(s) and dimension have to be

filled in the filter statements and an URI for the resulting concept scheme has to be

defined and filled in the bind statements (bold marked).

Construct {

#Generating concepts for time literals and assigning them to a concept scheme

?dimension qb:codeList ?conceptScheme.

?conceptScheme rdf:type skos:ConceptScheme.

?conceptScheme rdfs:label “Day to year via month”@en.

?yearConcept rdfs:label ?yearMember.

?yearConcept skos:inScheme ?conceptScheme.

?yearConcept rdf:type skos:Concept.

?monthConcept rdfs:label ?monthMember.

?monthConcept skos:inScheme ?conceptScheme.

?monthConcept rdf:type skos:Concept.

?dayConcept rdfs:label ?dayMember.

?dayConcept skos:inScheme ?conceptScheme.

?dayConcept rdf:type skos:Concept.

}

where{

{

{Select distinct ?conceptScheme ?dimension

5 Approaches for learning OLAP hierarchies from RDF

89

?dayConcept ?dayMember

where {

?dataset rdf:type qb:DataSet.

?dataset qb:structure ?dsd.

?dsd rdf:type qb:DataStructureDefinition.

?dsd qb:component ?component.

?component qb:dimension ?dimension.

{{?dimension rdfs:range <http://www.w3.org/2001/XMLSchema#date>.} UNION {?dimension

rdfs:range <http://www.w3.org/2001/XMLSchema#dateTime>}}

?obs rdf:type qb:Observation.

?obs qb:dataSet ?dataset.

?obs ?dimension ?member.

BIND(URI("conceptSchemeURI") AS ?conceptScheme).

BIND(URI(CONCAT("http://reference.data.gov.uk/id/gregorian-day/", substr(?member,1,10)))

AS ?dayConcept).

BIND(substr(?member,1,10) AS ?dayMember).

FILTER(STRLEN(?member) > 9)

FILTER(

?dataset = <datasetURI1> ||

?dataset = <datasetURI2> ||

…

?dataset = <datasetURIn>

)

FILTER(

?dsd = <dsdURI1> ||

?dsd = <dsdURI2> ||

…

?dsd = <dsdURIn>

)

FILTER(?dimension = <dimensionURI>)

}}

UNION

{Select distinct ?conceptScheme ?dimension

?monthConcept ?monthMember

where {

?dataset rdf:type qb:DataSet.

?dataset qb:structure ?dsd.

?dsd rdf:type qb:DataStructureDefinition.

?dsd qb:component ?component.

?component qb:dimension ?dimension.

{{?dimension rdfs:range <http://www.w3.org/2001/XMLSchema#date>.} UNION {?dimension

rdfs:range <http://www.w3.org/2001/XMLSchema#dateTime>} UNION {?dimension

rdfs:range <http://www.w3.org/2001/XMLSchema#gYearMonth>}}

?obs rdf:type qb:Observation.

?obs qb:dataSet ?dataset.

?obs ?dimension ?member.

BIND(URI("conceptSchemeURI") AS ?conceptScheme).

5 Approaches for learning OLAP hierarchies from RDF

90

BIND(URI(CONCAT("http://reference.data.gov.uk/id/gregorian-month/", ?member)) AS

?monthConcept).

BIND(?member AS ?monthMember).

FILTER(STRLEN(?member) = 7)

FILTER(

?dataset = <datasetURI1> ||

?dataset = <datasetURI2> ||

…

?dataset = <datasetURIn>

)

FILTER(

?dsd = <dsdURI1> ||

?dsd = <dsdURI2> ||

…

?dsd = <dsdURIn>

)

FILTER(?dimension = <dimensionURI>)

}}

UNION

{Select distinct ?conceptScheme ?dimension

?yearConcept ?yearMember

where {

?dataset rdf:type qb:DataSet.

?dataset qb:structure ?dsd.

?dsd rdf:type qb:DataStructureDefinition.

?dsd qb:component ?component.

?component qb:dimension ?dimension.

{{?dimension rdfs:range <http://www.w3.org/2001/XMLSchema#date>.} UNION {?dimension

rdfs:range <http://www.w3.org/2001/XMLSchema#dateTime>} UNION {?dimension

rdfs:range <http://www.w3.org/2001/XMLSchema#gYearMonth>} UNION {?dimension

rdfs:range <http://www.w3.org/2001/XMLSchema#gYear>}}

?obs rdf:type qb:Observation.

?obs qb:dataSet ?dataset.

?obs ?dimension ?member.

BIND(URI("conceptSchemeURI") AS ?conceptScheme).

BIND(URI(CONCAT("http://reference.data.gov.uk/id/gregorian-year/", ?member)) AS

?yearConcept).

BIND(?member AS ?yearMember).

FILTER(STRLEN(?member) = 4)

FILTER(

?dataset = <datasetURI1> ||

?dataset = <datasetURI2> ||

…

?dataset = <datasetURIn>

)

FILTER(

?dsd = <dsdURI1> ||

5 Approaches for learning OLAP hierarchies from RDF

91

?dsd = <dsdURI2> ||

…

?dsd = <dsdURIn>

)

FILTER(?dimension = <dimensionURI>)

}}

}}

5.3.1.2.3 Loading relevant triples

This approach uses URIs from data.gov.uk. These triples already include temporal

relationships such as interval:intervalContainsMonth. For this reason these triples

have to be crawled by the following manner and loaded in the triple store.

Since the needed triples for the temporal relationships are only located in the URIs of

the temporal units which include other temporal units these URIs have to be created

and they are crawled. If URIs for days are the result of the step before then URIs for

months, weeks and years have to be created. If URIs for months are the result of the

step before, then URIs for years have to be created. They are crawled and loaded in

the triple store. For example if the URI refgovukday:2011-10-17 is given, then the

URIs refgovukmonth:2011-10 and refgovukyear:2011 have to be created, crawled

and loaded in the triple store. Furthermore, all URIs for weeks in 2011, the URI for

the last week in 2010 and the URI for the first week in 2012 have to be created,

crawled and loaded in the triple store.

5.3.1.2.4 Adding hierarchical information

After the construction of the concept schemes in step 2, it is required to add the

hierarchical information about the included concepts. At first, the hierarchical

relationships between the concepts have to be defined and assigned to the

respective concept schemes. They are expressed as concept associations which are

linked to a source/target concept and to the property skos:broader. For example the

concept refgovukday:2011-10-17 indicating the 17th October, 2011 will roll up to the

concept refgovukmonth:2011-10 in the simple hierarchy „DayToYearViaMonth‟ and to

the concept refgovukweek:2011-W42 indicating the 42th calendar week in 2011 in

the simple hierarchy „DayToYearViaWeek‟. Both, the concept refgovukmonth:2011-

5 Approaches for learning OLAP hierarchies from RDF

92

10 and the concept refgovukweek:2011-W42 itself roll up to the concept

refgovukyear:2011 indicating the year 2011.

hrc:ca/reference.data.gov.uk/id/gregorian-day:2011-10-17_reference.data.gov.uk/id/

gregorian-month/2011-10 rdf:type skosclass:ConceptAssociation;

 skosclass:hasSourceConcept refgovukday:2011-10-17;

 rdf:predicate skos:broader;

 skosclass:hasTargetConcept refgovukmonth:2011-10;

 skos:inScheme hrc:cs/DayToYearViaMonth.

hrc:ca/reference.data.gov.uk/id/gregorian-month/2011-10_reference.data.gov.uk/id/

gregorian-year/2011 rdf:type skosclass:ConceptAssociation;

 skosclass:hasSourceConcept refgovukmonth:2011-10;

 rdf:predicate skos:broader;

 skosclass:hasTargetConcept refgovukyear:2011;

 skos:inScheme hrc:cs/DayToYearViaMonth.

hrc:ca/reference.data.gov.uk/id/gregorian-day:2011-10-17_reference.data.gov.uk/id/

gregorian-week/2011-W42 rdf:type skosclass:ConceptAssociation;

 skosclass:hasSourceConcept refgovukday:2011-10-17;

 rdf:predicate skos:broader;

 skosclass:hasTargetConcept refgovukweek:2011-W42;

 skos:inScheme hrc:cs/DayToYearViaWeek.

hrc:ca/reference.data.gov.uk/id/gregorian-week/2011-W42_reference.data.gov.uk/id/

gregorian-year/2011 rdf:type skosclass:ConceptAssociation;

 skosclass:hasSourceConcept refgovukweek:2011-W42;

 rdf:predicate skos:broader;

 skosclass:hasTargetConcept refgovukyear:2011;

 skos:inScheme hrc:cs/DayToYearViaWeek.

Since concepts for those time values that can be found in the data are always part of

the concept scheme there may be parent concepts of these (range of

skosclass:hasTargetConcept) that are yet not part of the concept scheme. These

parents also have to be defined as concepts, linked to the literal value and assigned

to the concept scheme. For example the literal value „2011-10-17‟ is found in the data

for what the URI refgovukday:2011-10-17 is created and the literals „2011-10‟ and

„2011‟ are not found in the data. This means that the URIs refgovukmonth:2011-10

5 Approaches for learning OLAP hierarchies from RDF

93

and refgovukyear:2011 have to be created, defined as concepts, linked to its labels

and assigned to the concept scheme.

Furthermore, information about levels has to be added to the concept scheme.

Therefore, separate levels that are part of the respective concept scheme have to be

defined for each temporal unit and assigned to the respective schemes. Also the

depth has to be assigned to a certain level as follows:

hrc:cl/day rdf:type skosclass:ClassificationLevel;

 skos:inScheme hrc:cs/DayToYearViaMonth;

 skos:inScheme hrc:cs/DayToYearViaWeek;

 skosclass:depth “3”.

hrc:cl/month rdf:type skosclass:ClassificationLevel;

 skos:inScheme hrc:cs/DayToYearViaMonth;

 skosclass:depth “2”.

hrc:cl/week rdf:type skosclass:ClassificationLevel;

 skos:inScheme hrc:cs/DayToYearViaWeek;

 skosclass:depth “2”.

hrc:cl/year rdf:type skosclass:ClassificationLevel;

 skos:inScheme hrc:cs/DayToYearViaMonth;

 skos:inScheme hrc:cs/DayToYearViaWeek;

 skosclass:depth “1”.

The created URIs are then assigned to the respective levels as follows:

refgovukday:2011-10-17 skos:member hrc:cl/day.

refgovukmonth:2011-10 skos:member hrc:cl/month.

refgovukweek:2011-W42 skos:member hrc:cl/week.

refgovukyear:2011 skos:member hrc:cl/year.

To add this hierarchical information, the following SPARQL construct query can be

used. With this query, specific concept schemes corresponding to the simple

hierarchy „DayToYearViaMonth‟ are constructed. For concept schemes

corresponding to the simple hierarchy „DayToYearViaWeek‟ another query is

needed. The naming of URIs for levels is depending on the URIs for the concept

scheme. The resulting triples are also added to the triple store. If the hierarchical

information should only be added to certain concept schemes, it has to be filtered by

these concept schemes.

5 Approaches for learning OLAP hierarchies from RDF

94

Construct {

#Adding hierarchical information to the concept scheme

?yearConcept skos:member ?yearlevel.

?yearConcept skos:inScheme ?conceptScheme.

?yearConcept rdf:type skos:Concept.

?yearConcept rdfs:label ?yearLabel.

?yearlevel skos:inScheme ?conceptScheme.

?yearlevel rdf:type skosclass:ClassificationLevel.

?yearlevel skosclass:depth "1".

?yearlevel rdfs:label "Year"@en.

?monthConcept skos:member ?monthlevel.

?monthConcept skos:inScheme ?conceptScheme.

?monthConcept rdf:type skos:Concept.

?monthConcept rdfs:label ?monthLabel.

?monthlevel skos:inScheme ?conceptScheme.

?monthlevel rdf:type skosclass:ClassificationLevel.

?monthlevel skosclass:depth "2".

?monthlevel rdfs:label "Month"@en.

?dayConcept skos:member ?daylevel.

?dayConcept skos:inScheme ?conceptScheme.

?dayConcept rdf:type skos:Concept.

?dayConcept rdfs:label ?dayLabel.

?daylevel skos:inScheme ?conceptScheme.

?daylevel rdf:type skosclass:ClassificationLevel.

?daylevel skosclass:depth "3".

?daylevel rdfs:label "Day"@en.

?relMonthYear rdf:type skosclass:ConceptAssociation.

?relMonthYear skosclass:hasSourceConcept ?monthConcept.

?relMonthYear rdf:predicate skos:broader.

?relMonthYear skosclass:hasTargetConcept ?yearConcept.

?relMonthYear skos:inScheme ?conceptScheme.

?relDayMonth rdf:type skosclass:ConceptAssociation.

?relDayMonth skosclass:hasSourceConcept ?dayConcept.

?relDayMonth rdf:predicate skos:broader.

?relDayMonth skosclass:hasTargetConcept ?monthConcept.

?relDayMonth skos:inScheme ?conceptScheme.

}

where

{

Select distinct ?conceptScheme

?yearConcept ?yearlevel ?yearLabel

?monthConcept ?monthlevel ?monthLabel

5 Approaches for learning OLAP hierarchies from RDF

95

?dayConcept ?daylevel ?dayLabel

?relMonthYear ?relDayMonth

where {

?dsd rdf:type qb:DataStructureDefinition.

?dsd qb:component ?component.

?component qb:dimension ?dimension.

{{?dimension rdfs:range <http://www.w3.org/2001/XMLSchema#date>.} UNION {?dimension

rdfs:range <http://www.w3.org/2001/XMLSchema#dateTime>} UNION {?dimension

rdfs:range <http://www.w3.org/2001/XMLSchema#gYearMonth>} UNION {?dimension

rdfs:range <http://www.w3.org/2001/XMLSchema#gYear>}}

?dimension qb:codeList ?conceptScheme.

{{?yearConcept skos:inScheme ?conceptScheme.

?yearConcept rdf:type skos:Concept.

?yearConcept rdf:type interval:Year.

}

UNION

{?monthConcept skos:inScheme ?conceptScheme.

?monthConcept rdf:type skos:Concept.

?monthConcept rdf:type interval:Month.

?yearConcept interval:intervalContainsMonth ?monthConcept.

?yearConcept rdf:type interval:Year.

}

UNION

{?dayConcept skos:inScheme ?conceptScheme.

?dayConcept rdf:type skos:Concept.

?dayConcept rdf:type interval:Day.

?monthConcept interval:intervalContainsDay ?dayConcept.

?monthConcept rdf:type interval:Month.

?yearConcept interval:intervalContainsMonth ?monthConcept.

?yearConcept rdf:type interval:Year.

}}

BIND(substr(str(?yearConcept),48) AS ?yearLabel).

BIND(substr(str(?monthConcept),49) AS ?monthLabel).

BIND(substr(str(?dayConcept),47) AS ?dayLabel).

BIND(URI(CONCAT("http://hierarchie.org/cl/time/year/",

substr(str(REPLACE(str(?conceptScheme),"\\.","/")),26))) AS ?yearlevel).

BIND(URI(CONCAT("http://hierarchie.org/cl/time/month/",

substr(str(REPLACE(str(?conceptScheme),"\\.","/")),26))) AS ?monthlevel).

BIND(URI(CONCAT("http://hierarchie.org/cl/time/day/",

substr(str(REPLACE(str(?conceptScheme),"\\.","/")),26))) AS ?daylevel).

5 Approaches for learning OLAP hierarchies from RDF

96

BIND(URI(CONCAT("http://hierarchie.org/ca/",

substr(str(REPLACE(str(?monthConcept),"\\.","/")),8),"_",substr(str(REPLACE(str(?yearConc

ept),"\\.","/")),8))) AS ?relMonthYear).

BIND(URI(CONCAT("http://hierarchie.org/ca/",

substr(str(REPLACE(str(?dayConcept),"\\.","/")),8),"_",substr(str(REPLACE(str(?monthConce

pt),"\\.","/")),8))) AS ?relDayMonth).

}}

5.3.1.2.5 End of the approach reached?

This approach is straight forward which means that there are no iterations, because

the needed URIs have already been created and crawled, since only the URIs of the

higher temporal unit include the temporal relationships. For example the URIs for

months include the triples for the relationships of months to the included days.

5.3.1.2.6 End

In the end of the approach „time‟ the constructed concept scheme includes the

hierarchical relationships which can then be used.

5.3.1.3 Example

There are two data sets30 31 which have the common dimension dcterms:date. The

range of this dimension is defined as xsd:date in the corresponding data structure

definitions32 33 and the following values occur in this dimension:

Data set Values

http://estatwrap.ontologycentral.com/id/teilm020#ds 2011-04 till 2011-11

http://estatwrap.ontologycentral.com/id/tsieb020#ds 2006 till 2013

Before the above queries, which generate concept schemes for the time dimension

with the levels day, month and year can be executed, the filters for the these specific

data sets (SPARQL-variable ?dataset), the corresponding data structure definitions

30

 http://estatwrap.ontologycentral.com/id/teilm020#ds
31

 http://estatwrap.ontologycentral.com/id/tsieb020#ds
32

 http://estatwrap.ontologycentral.com/dsd/teilm020#dsd
33

 http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd

5 Approaches for learning OLAP hierarchies from RDF

97

(SPARQL-variable ?dsd) and the dimension (SPARQL-variable ?dimension) have to

be set in the first query. After executing both queries, there are generated concepts

for the months 2011-04 till 2011-11 and years 2006 till 2013, since only these values

occur in the dimension.

5.3.1.4 Resulting hierarchies

All resulting hierarchies are simple hierarchies. They can be symmetric or

asymmetric which depends on the occurring values of the time dimension. All

concept schemes that include levels for months are strict. The resulting concept

schemes which include levels for weeks could possibly be non-strict, if they include

the last week of a calendar year, which rolls up to two years.

5.3.1.5 Criticism

Although this approach can probably be applied to many data sets, because many

data sets include a temporal dimension this approach can only be used for these

dimensions. So this approach has to be seen as a specific and not generic approach.

If a time dimension is used in several data structure definitions, there are created

several data set specific concept schemes, one for each data set. This means that

only concepts for the occurring values in data sets and their parents till to the root

level are part of a created concept scheme and not all theoretical possible values. If a

data set is analyzed, the corresponding concept scheme has to be chosen. If various

data sets are analyzed together, the different concept schemes can be combined by

setting the particular levels and the concept schemes owl:sameAs.

Because the time dimension is contained in many cubes, it would also make sense to

provide concept schemes including all days, months, weeks and years between two

particular time instants, for example for all days, months, weeks and years beginning

with the 1st January, 1900 and for now ending with the 31st December, 2099. The

advantage of such universal valid concept schemes is that several data sets could be

integrated without setting the created data set specific concept schemes and the

included levels owl:sameAs. However, the disadvantage of such universal valid

5 Approaches for learning OLAP hierarchies from RDF

98

concept schemes is that many days, months, weeks and years would be needless

and would possibly impact negatively the performance.

Since the OWL time ontology34 is an official W3C working draft the Gregorian URI

set35 of data.gov.uk36 could also be extended with classes and properties of the OWL

time ontology to gain a broad support of this approach. The resources for each time

point of the temporal units day, week, month and year have also be defined as

DateTimeDescription of the OWL time ontology. Depending on the temporal unit the

meaningful properties are generated and filled with values. For example the resource

refgovukday:2011-10-17 could be enriched as follows:

refgovukday:2011-10-17 rdf:type time:DateTimeDescription;

 time:unitType time:unitMonth;

 time:year 2011;

 time:month 10;

 time:week 42;

 time:day 17.

Since there is no temporal unit in the OWL time ontology designated for quarters or

half years the simple hierarchy „DayToYearViaMonth‟ cannot be extended by these

two more levels. For this purpose the central concept scheme has to extended or

another concept scheme has to be defined where the concepts and levels for

quarters or half years are not in union instances of the OWL time ontology.

Furthermore, temporal relationships of triples in refgovuk are only located in the URIs

of the temporal units, which include other temporal units, but not reverse. For

example the following triple can be found in the information resource of the URI

refgovukyear:2011 but not in the information resource of the URI

refgovukmonth:2011-10.

refgovukyear:2011 interval:intervalContainsMonth refgovukmonth:2011-10

34

 http://www.w3.org/TR/owl-time/
35

 http://www.epimorphics.com/web/wiki/using-interval-set-uris-statistical-data
36

 http://data.gov.uk/

5 Approaches for learning OLAP hierarchies from RDF

99

To generate parents of temporal units such triples should also be included in the

URIs of the temporal units which are included in other temporal units. For example

the triple above should also be found in the information resource of the URI

refgovukmonth:2011-10.

5.3.2 Approach ‘geo’

5.3.2.1 Overview

Besides the temporal relatedness of observations also the geographic relatedness is

very often expressed in Statistical Linked Data. For this reason this approach, called

„geo‟, shows how geographical hierarchies can be constructed.

There are a few vocabularies in the Linked Data Cloud providing geographical data

(e.g. geonames37, freebase38). This approach uses the Nomenclature of Territorial

Units for Statistics (NUTS)39 which is a classification service for the territory of the

European Union defined by the Eurostat office of the European Union.

NUTS is based on the existing national administrative structures. It categorizes the

regions in four levels, although the national administrative structures of the particular

countries vary in fact. The aim is to group similar regions together in the same level

in order to make comparison and analysis [CGSH10]. Hereby each region in the

same level is either the expression of a political will or meant to provide comparable

features for statistics. The following table with the not rigidly applied thresholds for

inhabitants shows the levels for the established regions of the NUTS classification.

Level Description Minimum Maximum
NUTS 0 Countries - -
NUTS 1 States 3 million 7 million
NUTS 2 Administrative regions 800.000 3 million
NUTS 3 Counties/districts and greater metropolitan areas 150.000 800.000

Table 8: Levels of the NUTS classification system

37

 http://www.geonames.org
38

 http://www.freebase.org
39

 http://nuts.geovocab.org

5 Approaches for learning OLAP hierarchies from RDF

100

For those countries where the administrative is not structured that way or the size

regarding inhabitants of existing regions is too small, additional members are

created. They may be assigned to different levels:

 1st level (eg. no states like „Centro‟ in Spain)

 2nd level (eg. no administrative regions like „Freiburg‟ in Germany)

 3rd level (eg. three members in Level NUTS 3 for the arrondissement

„Verviers‟ in Belgium)

5.3.2.2 Algorithm

To generate hierarchies out of the geo dimension with help of the hierarchical

classification system NUTS the following steps have to be done.

5.3.2.2.1 Start

The algorithm to generate hierarchies with this approach works in two cases. Either

the range of the given dimension or the data types of the members within the given

dimension of the given data sets have the data type nutsdef:NUTSRegion. If this is

not the case, no hierarchies are generated:

5.3.2.2.2 Creating a concept scheme

To assign the created URIs to a concept scheme at first for each of the above

described simple hierarchies, a concept scheme has to be defined as follows. The

name of the concept scheme could be „NUTS.‟

hrccs:NUTS rdf:type skos:ConceptScheme;

 rdfs:label “NUTS”@en.

The dimension of a data structure definition is then linked via qb:codeList to the

created concept scheme. It has to be noticed that the created concept schemes are

specific for a certain data set, but are linked via qb:codeList to a dimension of a data

structure definition.

5 Approaches for learning OLAP hierarchies from RDF

101

As described above, the members of a dimension in the RDF Data Cube Vocabulary

should be separated from the concepts in SKOS. Therefore for each member of the

given dimension in the given data sets, a new resource is created. The URIs for the

created concepts is a concatenation of „http://hierarchie.org/co/NUTS/‟ and the NUTS

shorthand symbol. For example for the NUTS resource

<http://nuts.psi.enakting.org/id/DE>, which is owl:sameAs to the member

<http://estatwrap.ontologycentral.com/dic/geo#DE> of a data set the new resource

hrcco:NUTS/DE is created, which is then defined as SKOS concept, linked to the

original member via rdfs:seeAlso and assigned to the created concept scheme.

hrcco:NUTS/DE rdf:type skos:Concept;

 skos:inScheme hrccs:NUTS;

 rdfs:seeAlso <http://nuts.psi.enakting.org/id/DE>.

For constructing these triples, the following SPARQL construct query can be used.

Hereby, the given data set(s) and dimension have to be filled in the filter statements

and an URI for the resulting concept scheme has to be defined and filled in the bind

statements (bold marked).

Construct{

#Creating a concept scheme for the approach „geo‟

?concept rdf:type skos:Concept.

?concept rdfs:seeAlso ?nutsRegion.

?concept skos:inScheme ?conceptScheme.

?conceptScheme rdf:type skos:ConceptScheme.

?conceptScheme rdfs:label “NUTS”@en.

?dimension qb:codeList ?conceptScheme.

}

where {

?obs rdf:type qb:Observation.

?obs qb:dataSet ?dataset.

?dataset rdf:type qb:DataSet.

?dataset qb:structure ?dsd.

?obs ?dimension ?member.

BIND(URI(CONCAT("http://hierarchie.org/co/NUTS/", SUBSTR(STR(?member),46))) AS

?concept).

?member owl:sameAs ?nutsRegion.

Filter(STRSTARTS(str(?nutsRegion),"http://nuts.psi.enakting.org"))

FILTER(

?dataset = <datasetURI1> ||

5 Approaches for learning OLAP hierarchies from RDF

102

?dataset = <datasetURI2> ||

…

?dataset = <datasetURIn>

)

FILTER(

?dsd = <dsdURI1> ||

?dsd = <dsdURI2> ||

…

?dsd = <dsdURIn>

)

FILTER(?dimension = <dimensionURI>)

BIND(URI("conceptSchemeURI") AS ?conceptScheme).

}

5.3.2.2.3 Loading relevant triples

In this step, triples have to be crawled to retrieve the relationships between the NUTS

regions. Before this step is executed, new concepts have been assigned in the step

before to the concept scheme. All URIs of NUTS resources that were linked via

rdfs:seeAlso to these concepts are crawled and the triples are added to the triple

store. This is done to determine the resulting parents of the crawled resources. For

example if a concept for the NUTS resource nuts:DE12 has been added to the

concept scheme in the step before, then the triples of this URI are crawled. This is for

example the following triple, where the subject nuts:DE1 indicates the parent of the

concept for the NUTS resource nuts:DE12.

nuts:DE1 spatial:contains nuts:DE12

5.3.2.2.4 Adding hierarchical information

After the concept schemes have constructed in step 2, hierarchical information about

the included concepts has to be added. At first the hierarchical relationships between

the concepts have to be defined and assigned to the respective concept schemes.

They are expressed as concept associations, linked to a source/target concept and

to the property skos:broader. The determination of the relationships between child

and parent is done with the help of the property spatial:contains, which is used in

NUTS.

hrcca:NUTS/DE1_/DE rdf:type skosclass:ConceptAssociation;

5 Approaches for learning OLAP hierarchies from RDF

103

 skosclass:hasSourceConcept hrcco:NUTS/DE1;

 rdf:predicate skos:broader;

 skosclass:hasTargetConcept hrcco:NUTS/DE;

 skos:inScheme hrccs:NUTS.

Since concepts for those members that can be found in the data are always part of

the concept scheme, there may be parent concepts of these (range of

skosclass:hasTargetConcept) that are yet not part of the concept scheme. These

parents also have to be defined as concepts and assigned to the concept scheme.

Furthermore information about levels has to be added to the concept scheme.

Therefore separate levels that are part of the respective concept scheme have to be

defined for NUTS Level and assigned to the respective schemes. Also the depth has

to be assigned to a certain level as follows. For example the level NUTS0 results in

the uppermost level which has depth 1. The names for the levels could be a

concatenation of „NUTS‟ and the NUTS level.

hrccl:NUTS/NUTS0 rdf:type skosclass:ClassificationLevel;

 skos:inScheme hrccs:NUTS;

 skosclass:depth “1”;

 rdfs:label „NUTS0“@en.

hrccl: NUTS/NUTS1 rdf:type skosclass:ClassificationLevel;

 skos:inScheme hrccs:NUTS;

 skosclass:depth “2”;

 rdfs:label „NUTS1“@en.

The created URIs are then assigned to the respective levels as follows:

hrcco:NUTS/DE skos:member hrccl:NUTS/NUTS0

hrcco:NUTS/DE1 skos:member hrccl:NUTS/NUTS1.

These steps can be performed with the following SPARQL construct query: The

naming of URIs for levels is dependent of the URIs for the concept scheme. Hereby,

5 Approaches for learning OLAP hierarchies from RDF

104

the URI of the concept scheme has to be filled in (bold marked). The resulting triples

are also added to the triple store:

Construct {

#Adding hierarchical information to the concept scheme

?relationship skosclass:hasSourceConcept ?childConcept.

?relationship rdf:predicate skos:broader.

?relationship skosclass:hasTargetConcept ?parentConcept.

?relationship rdf:type skosclass:ConceptAssociation.

?relationship skos:inScheme ?conceptScheme.

?childConcept skos:member ?childLevel.

?parentConcept skos:member ?parentLevel.

?childLevel rdf:type skosclass:ClassificationLevel.

?parentLevel rdf:type skosclass:ClassificationLevel.

?childLevel skos:inScheme ?conceptScheme.

?parentLevel skos:inScheme ?conceptScheme.

?childLevel skosclass:depth ?childDepth.

?parentLevel skosclass:depth ?parentDepth.

?childLevel rdfs:label ?childLevelLabel.

?parentLevel rdfs:label ?parentLevelLabel.

?parentConcept rdf:type skos:Concept.

?parentConcept skos:inScheme ?conceptScheme.

?parentConcept rdfs:seeAlso ?parent.

?parentConcept rdfs:label ?parentLabel.

}

where {

OPTIONAL{ ?parent spatial:contains ?child.}

?child rdf:type nutsdef:NUTSRegion.

?parent rdf:type nutsdef:NUTSRegion.

?child nutsdef:code ?childCode.

?parent nutsdef:code ?parentCode.

BIND(URI(CONCAT("http://hierarchie.org/ca/NUTS/", SUBSTR(str(?child),33) ,"_" ,

SUBSTR(str(?parent),33))) AS ?relationship).

?childConcept skos:inScheme ?conceptScheme.

Filter(?conceptScheme = <conceptSchemeURI>)

?childConcept rdf:type skos:Concept.

?childConcept rdfs:seeAlso ?child.

BIND(URI(CONCAT("http://hierarchie.org/co/NUTS/", SUBSTR(STR(?parent),33))) AS

?parentConcept).

BIND(URI(CONCAT("http://hierarchie.org/cl/NUTS/",substr(REPLACE(str(?conceptScheme),

"\\.","/"),26),SUBSTR(str(datatype(?childCode)),34,5))) AS ?childLevel).

5 Approaches for learning OLAP hierarchies from RDF

105

BIND(URI(CONCAT("http://hierarchie.org/cl/NUTS/",substr(REPLACE(str(?conceptScheme),

"\\.","/"),26),SUBSTR(str(datatype(?parentCode)),34,5))) AS ?parentLevel).

BIND(xsd:integer(SUBSTR(str(datatype(?childCode)),38,1))+1 AS ?childDepth)

BIND(xsd:integer(SUBSTR(str(datatype(?parentCode)),38,1))+1 AS ?parentDepth)

BIND(CONCAT("NUTS",str(xsd:integer(SUBSTR(str(datatype(?childCode)),38,1)))) AS

?childLevelLabel)

BIND(CONCAT("NUTS",str(xsd:integer(SUBSTR(str(datatype(?parentCode)),38,1)))) AS

?parentLevelLabel)

}

5.3.2.2.5 End of the approach reached?

The end of the approach is reached, if no new triples have been constructed with the

last step. Otherwise the algorithm continues with step 2.

5.3.2.2.6 End

In the end of the approach „geo‟, the labels of the members have also to be assigned

to the concepts, which can be done with the following SPARQL construct query. The

URI for the concept scheme has to be inserted (bold marked).

Construct {

?concept rdfs:label ?label.

}

where {

?concept rdfs:seeAlso ?member.

?concept rdf:type skos:Concept.

?member rdfs:label ?label.

?concept skos:inScheme ?conceptScheme.

Filter(?conceptScheme = <conceptSchemeURI>)

}

The constructed concept scheme includes then the hierarchical relationships which

can be used.

5 Approaches for learning OLAP hierarchies from RDF

106

5.3.2.3 Example

There are two data sets40 41, which have the common dimension eus:geo. The range

of this dimension is defined as <http://rdfdata.eionet.europa.eu/ramon/ontology/

NUTSRegion> in the corresponding data structure definitions42 43 and NUTS regions

of the following NUTS levels occur in this dimension as members:

Data set NUTS levels

http://estatwrap.ontologycentral.com/id/agr_r_landuse#ds NUTS0, NUTS1, NUTS2

http://estatwrap.ontologycentral.com/id/tsieb020#ds NUTS0

Table 9: Example for the approach 'geo'

Before the above queries can be executed, the filters for the these specific data sets

(SPARQL-variable ?dataset), the corresponding data structure definitions (SPARQL-

variable ?dsd) and the dimension (SPARQL-variable ?dimension) have to be set in

the first query. After executing both queries, there are generated concepts for the

NUTS regions in level NUTS0, NUTS1 and NUTS2 since only these values occur in the

dimension.

5.3.2.4 Resulting hierarchies

The resulting hierarchies are all simple hierarchies that are symmetric or asymmetric,

depending on the occurring values of the given dimension. Furthermore they are

strict, since one NUTS region is included in at most one another NUTS region.

5.3.2.5 Criticism

Besides the time approach, this approach can also be seen as a specific approach,

since it doesn‟t work for generic vocabularies but only for NUTS. So this approach

can be applied to all data sets, including geographical dimensions, whose members

are linked to NUTS.

40

 http://estatwrap.ontologycentral.com/id/agr_r_landuse#ds
41

 http://estatwrap.ontologycentral.com/id/tsieb020#ds
42

 http://estatwrap.ontologycentral.com/dsd/agr_r_landuse#dsd
43

 http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd

5 Approaches for learning OLAP hierarchies from RDF

107

Since NUTS itself is only a classification scheme for Europe, other vocabularies or

extensions to NUTS are required for worldwide statistical data, including other parts

of the world with additional countries. This means that this approach works only for

members of the given dimension that are all defined as NUTS regions. If the given

data sets also include members that are not defined as NUTS region, these

members have to be assigned to a created level, in case of doubt to the lowest level.

Furthermore NUTS does not consider the administrative structure of the regions at

all, because it tries to squeeze all regions in one classification system with four

common levels. On the one hand this has positive effects on the comparability

between regions. On the other hand the real world is represented incorrectly, since

additional members are created. The developed extension of SKOS provides the

possibility to consider the structural specialties by using a generalized hierarchy.

Therefore different levels for each type of region such as state, administrative district,

arrondissement, province, etc. would be required.

NUTS has one specialty, because the arrondissement Verviers (nuts:BE333) in the

province Liège (nuts:BE33) in Belgium is split in a German (nuts:BE336) and French

(nuts:BE335) speaking part. This is represented in NUTS as 3 members in level

NUTS 3 and the following relationships:

nuts:BE33 spatial:contains nuts:BE333

nuts:BE33 spatial:contains nuts:BE335

nuts:BE33 spatial:contains nuts:BE336

nuts:BE333 nutsdef:splitted nuts:BE335

nuts:BE333 nutsdef:splitted nuts:BE336

Although the NUTS classification itself and the resulting concept scheme are

symmetric, the resulting concept scheme could also be asymmetric, considering this

specialty. This means that for example the concept for the French speaking part

(hrc:co/nuts.psi.enakting.org/id/BE335) would be assigned to the arrondissement

Verviers (hrc:co/nuts.psi.enakting.org/id/BE333) and not directly to the province

Liège (hrc:co/nuts.psi.enakting.org/id/BE33), which is the broader concept of Verviers

5 Approaches for learning OLAP hierarchies from RDF

108

(hrc:co/nuts.psi.enakting.org/id/BE333). So the members

hrc:co/nuts.psi.enakting.org/id/BE335 and hrc:co/nuts.psi.enakting.org/id/BE336

could be assigned to an additional level that is not mandatory for all members, which

would result in an asymmetric hierarchy. However, this approach does not consider

this specialty.

5.4 Generic approaches

The generic approaches are developed for general use. This means that they are not

limited to special dimensions like the approach „time‟ or „geo‟. Therefore the possible

result set of generated hierarchies can be influenced with some parameters. For

these generic approaches it is assumed that the members of a dimension in a given

data set are of the same granularity. As a consequence, the members of a dimension

are assigned to the same hierarchy level after execution the algorithms of the generic

approaches.

5.4.1 Approach ‘rdfs:subClassOf’

5.4.1.1 Overview

This approach, called ‚rdfs:subClassOf„, uses the types (rdf:type) of the dimension

members and the relationships of the typed RDF classes (rdfs:subClassOf). Since

the property rdf:type is used to state that a resource is an instance of a class, the

property rdfs:subClassOf is used to state that all the instances of one class are

instances of another [HiKR09, pp. 46-67]. This approach considers only dimension

members, which are URIs and not literals, since literals cannot be typed to a class.

Essential condition for this approach is the existence of further metadata to each

member in a way that hierarchies can be derived.

5.4.1.2 Parameters

This approach is developed for general use. Theoretically, many possible hierarchies

can result with this approach. The result set of possibly hierarchies of this approach

5 Approaches for learning OLAP hierarchies from RDF

109

can be influenced with the following parameters, which are in union termination

criteria for the algorithm:

 Minimal number of stages:

This parameter defines how many stages a resulting hierarchy has at least.

 Maximal number of stages:

This parameter defines how many stages a resulting hierarchy has at most.

 Flag for schema:

If this flag is set, the schema of the ontology is considered. This means that

superclasses, subclasses and instances result each time in another element

of the hierarchy. If this flag is not set, superclasses, subclasses and instances

result each time in a member. The following table gives on overview of this

mapping.

Ontology Hierarchy
Flag for schema set Flag for schema not set

superclass level member

subclass member of the parent level & level member

instance member member

Table 10: Mapping between ontology and hierarchy of the approach 'rdfs:subClassOf'

 Flag for the strictness:

This parameter serves as decision criterion for the strictness of the resulting

hierarchy. If this flag is set, the resulting hierarchy is strict. This may

semantically be not correct, since there may be cases where a resource is an

instance of several classes or a class is sub class of several other classes.

This would result in several parent members. If this flag is set, one class is

chosen to have only one parent member. If non-strictness is required, this flag

has not to be set.

 Flag for more members than parents:

If there would exist more parent members within one level than members, this

would rather correspond to a drill down and not to a roll up. Because higher

hierarchy levels should rather be reached by a roll up operation, more parents

than members would not be reasonable in many cases. So if this flag is set,

5 Approaches for learning OLAP hierarchies from RDF

110

there have to exist more members than parent members within one level. If

this is not the case, the actual classes are forming no higher level.

5.4.1.3 Algorithm

5.4.1.3.1 Start

It is assumed that the members of a given dimension result in the lowest level of the

hierarchy. This means they are the subjects from which this approach starts from.

The following steps have then to be done.

5.4.1.3.2 Creating a concept scheme

To assign the created URIs to a concept scheme, for each of the above described

simple hierarchies, a concept scheme has to be defined as follows. The given

dimension of the given data structure definition(s) is then linked via qb:codeList to it.

hrccs:properties rdf:type skos:ConceptScheme.

As described above, the members of a dimension in the RDF Data Cube Vocabulary

should be separated from the concepts of the classification hierarchy. Therefore for

each member of the given dimension in the given data sets a new URI is created.

The new URI can be orientated towards the URI of the member. For example for the

URI <http://estatwrap.ontologycentral.com/dic/geo#DE> the new URI

hrcco:estatwrap/ontologycentral/com/dic/geo/DE is created, which is then used as

SKOS concept and assigned to the created concept scheme. The concept is then

linked via rdfs:seeAlso to the original member:

hrcco:estatwrap/ontologycentral/com/dic/geo/DE rdf:type skos:Concept;

 skos:inScheme hrccs:subClassOf;

 rdfs:seeAlso <http://estatwrap.ontologycentral.com/dic/geo#DE>.

For constructing these triples the following SPARQL construct query can be used.

Hereby the given data set(s) and dimension have to be filled in the filter statements

5 Approaches for learning OLAP hierarchies from RDF

111

and an URI for the resulting concept scheme has to be defined and filled in the bind

statements (bold marked).

Construct{

#Creating a concept scheme

?concept rdf:type skos:Concept.

?concept rdfs:seeAlso ?member.

?concept skos:inScheme ?conceptScheme.

?conceptScheme rdf:type skos:ConceptScheme.

?dimension qb:codeList ?conceptScheme.

}

where{

?obs rdf:type qb:Observation.

?obs qb:dataSet ?dataset.

?dataset rdf:type qb:DataSet.

?obs ?dimension ?member.

?dataset qb:structure ?dsd.

BIND(URI(CONCAT("http://hierarchie.org/co/",

REPLACE(REPLACE(SUBSTR(STR(?member),8),"\\.","/"),"#","/"))) AS ?concept).

FILTER(

?dataset = <datasetURI1> ||

?dataset = <datasetURI2> ||

…

?dataset = <datasetURIn>

)

FILTER(

?dsd = <dsdURI1> ||

?dsd = <dsdURI2> ||

…

?dsd = <dsdURIn>

)

FILTER(?dimension = <dimensionURI>)

BIND(URI("conceptSchemeURI") AS ?conceptScheme).

}

5.4.1.3.3 Loading relevant triples

For this approach only additional triples are required, which have the following

properties. All other triples are not needed, since they are not used:

 rdf:type

 rdfs:subClassOf

5 Approaches for learning OLAP hierarchies from RDF

112

 rdfs:label

 owl:equivalentClass

 owl:sameAs

In the first run all classes of the member and the resources that are linked to it with

the owl:sameAs property are determined using the rdf:type property. This means

triples are crawled from the URI of the member of the given dimension and to

owl:sameAs resources of the member.

With each further iteration each further super classes of the present found classes

are determined using the rdfs:subClassOf property. Hereby all owl:eqivalentClass

relationships are considered. This is done till no more super classes are needed

because of the parameter „Maximal number of stages‟ or no more further super

classes are found.

All these triples are added to the triple store.

5.4.1.3.4 Adding hierarchical information

Since this approach can have recursions, there has to be distinguished between the

first and the other passes of this step.

At the first pass of this step, a leaf level is created, to which the concepts of the

created concept scheme are assigned to via skos:member. This level is assigned to

the concept scheme via skos:inScheme.

hrccl:properties/leaf rdf:type skosclass:ClassificationLevel;

 skos:inScheme Properties.

hrcco:estatwrap/ontologycentral/com/dic/geo/DE

 skos:member hrccl:properties/leaf.

When generating hierarchies with this approach each redundant instantiation of a

super class is ignored so it does not result in a member of a level. This means that

each time only the type of the lowest class is relevant, since this additional

instantiation of the super class in the ontology could be derived by reasoning.

5 Approaches for learning OLAP hierarchies from RDF

113

As a consequence, the hierarchical information can only be added to the concept

scheme when all relationships between classes are known. This means that this

additional hierarchical information is not added to the concept scheme before not all

relevant triples are crawled. Therefore, the recursions serve only for crawling relevant

triples and add them to the triple store. Only at the last recursion, triples are

generated, which express the hierarchical information.

In the last recursion the generation of hierarchies is as follows. Basically, it has to be

distinguished if the parameter „Flag for schema‟ is set or not, because the process of

generating hierarchies is different:

 If the „Flag for schema‟ is set:

The basic idea of generating levels is that each class of the ontology results in

an own level of the hierarchy. The label of the class in the ontology results in

the name of the level in the hierarchy. All subclasses of a class result in the

members of the level whereby the labels of the subclasses result in the labels

of the members. Also each instance of a class results in a member of the

hierarchy, whereby its label results in the label of the member. If this flag is

set, the resulting hierarchy is a generalized hierarchy, since levels are split.

Because a member can only roll up to one level in a generalized hierarchy,

one parent has to be chosen, if levels are split.

 If the „Flag for schema‟ is not set:

The basic idea of generating levels is that a class of the ontology results in a

member of the hierarchy. Levels are formed by the sequence of

rdfs:subClassOf relationships, which means that all classes that are on the

same stage within one simple hierarchy are forming one level. Each instance

of a class results in a member of the level below the class, whereby its label

results in the label of the member.

In each case each uppermost class that is crawled results in an uppermost level,

which means that the hierarchy is parallel.

5 Approaches for learning OLAP hierarchies from RDF

114

5.4.1.3.5 End of the approach reached?

With each further iteration each further super classes of the present found classes

are determined, using the rdfs:subClassOf property. This is done till no more super

classes are needed because of the parameter „Maximal number of stages‟ or no

more further super classes are found. Only in the last iteration the hierarchical

information is added to the concept scheme, since all classes have to be known. This

means that the end of the approach is reached, if hierarchical information has been

added to the concept scheme in the step before. Otherwise the algorithm continues

with the second step, where additional super classes are determined.

For example, if the value for the parameter „Maximal number of stages‟ is set to

three, there are the following iterations:

1. Determination of all classes of which the members are an instance of.

Creating the leaf level an assigning the given members to the leaf level.

2. Determination of further super classes of the already found classes.

No hierarchical information is added to the concept scheme.

3. Determination of further super classes of the already found classes.

The hierarchical information is added to the concept scheme, because all

needed classes are known.

If the value for the parameter „Maximal number of stages‟ is increased, the second

part would be repeated as often the value for the parameter „Maximal number of

stages‟ increases.

5.4.1.3.6 End

In the end of the approach „rdfs:subClassOf‟ the constructed concept scheme

includes the hierarchical relationships which can then be used.

5.4.1.4 Example

There is a data set44, which has the dimension eus:geo. The members of this

dimension include owl:sameAs links to resources from dbpedia45, an structured

44

 http://estatwrap.ontologycentral.com/id/tsieb020#ds

5 Approaches for learning OLAP hierarchies from RDF

115

extract of wikipedia46. The following figure shows the simplified example of some

resources and their relationships. The ellipses are denoting the classes, the arrows

are indicating a rdfs:subClassOf relationship and the rectangles are denoting the

dimension members that are instances of one or more classes. For illustration

reasons the following simplifications are made:

 Only six members/instances are used

 Only eight classes are used

 For illustration reasons the class „Alliance of states‟ is fictional and the

subClassOf relationship between the classes „Federal Countries‟ and „Country‟

is removed

 The label is used instead of the URI

Figure 31: Simplified example for the approach 'rdfs:subClassOf': triples

At first it has to be noticed that in each case a parallel hierarchy is constructed,

because there are two uppermost classes. The values of the parameters for this

example are shown and the effect on the algorithm and the resulting hierarchy is

45

 http://dbpedia.org/About
46

 http://www.wikipedia.org/

5 Approaches for learning OLAP hierarchies from RDF

116

described in the following. Because there is a basic distinction if the parameter for

scheme is set or not, the hierarchy generation is explained for all two cases:

 Minimal number of stages: 2

This means that the resulting hierarchy at least has two levels. This is here

fulfilled, since three levels are derived.

 Maximal number of stages: 3

This means that the resulting hierarchy at most has three levels. This is here

fulfilled, since three levels are derived.

 Flag for the strictness: not set

This means that a member can have several parent members. Here, for

example Belgium has two parents.

 Flag for more members than parents: not set

This means that it is allowed that a parent level contains more members than

the child level. This is here not the case, since each time there are more

members than parents.

 Flag for schema:

o set:

If the flag for schema is set, each class that is super class of another

class results in an own level. Each sub class results as a member in the

created level. For example the class „Alpine Countries‟ results not in a

level, because it has no sub class, but it results as a member in the

class „Country‟. The members „Germany‟ and „France‟ result as children

of the member „Alpine Countries‟. Because a member can only roll up

to one level in a generalized hierarchy, one parent has to be chosen.

This has for example to be done for the member „Germany‟, where the

parent „Federal Countries‟ in the level „Alliance of states‟ or the parent

„Alpine Countries‟ in the level „Country‟ has to be chosen. The following

hierarchy is then generated.

5 Approaches for learning OLAP hierarchies from RDF

117

Figure 32: Resulting hierarchy of the example with setting the flag: schema

o not set:

If the flag for schema is not set, each class results in a member and the

sequence of classes determines the sequence of levels. The labels for

the levels have to be determined generic, since no universal valid label

can be found. For example the „Alpine Countries‟ and „Federal

Countries‟ are members in „Level 2 B‟, but no name could be found for

this level. The following hierarchy is then generated.

Figure 33: Resulting hierarchy of the example without setting the flag: schema

5.4.1.5 Resulting hierarchies

With this approach there may be generated almost all introduced OLAP hierarchies.

If there is one uppermost class, this results in a simple hierarchy. Otherwise, if there

is more than one uppermost class, this results in a parallel hierarchy. The parallel

hierarchy may be independent if no levels are shared or dependent, if levels are

shared.

5 Approaches for learning OLAP hierarchies from RDF

118

The included simple hierarchies are potential generalized, if the flag for schema is

set, because generally speaking, each class results in an own level. If the flag for

schema is not set, symmetric hierarchies are generated.

If the flag for strictness is set or there result only one parent per member, the

hierarchy is strict. Otherwise the hierarchy is non-strict.

Asymmetric hierarchies cannot be found with this approach, since this approach is a

bottom up approach. Also multiple alternative hierarchies cannot be found, because

either there is generated a simple hierarchy if there is one uppermost level or a

parallel hierarchy if there are several uppermost levels.

5.4.1.6 Criticism

This approach assigns all members of a given dimension of the data set(s) to one

leaf level. This may not always correct. For this reason all members that should not

be members of the leaf level have to be assigned to another level manually or in a

further optimization step that is not part of this thesis.

Because a member can only roll up to one level in a generalized hierarchy, one

parent has to be chosen if the flag for schema is set. This means when the algorithm

is run several times with the same parameters, there may be constructed different

hierarchies. As a consequence, the semantics is modified, because not all

rdfs:subClassOf relationships are taken into account.

 If the flag for schema is not set, the semantics is also modified when generating the

hierarchy out of the ontology, because levels are constructed by the sequence of

rdfs:subClassOf relationships between classes. This means that an instance of a

class is treated the same way like a sub class. Labels of a level could not be

determined using information out of the ontology, but have to be counted. This is why

no universal valid label can be found for a certain level.

To ensure good results with this approach, the parameters could be set by default or

some recommendations could be given. To give such a helpful recommendation, this

approach could be applied on several data sets with several constellations of

5 Approaches for learning OLAP hierarchies from RDF

119

parameters and the resulting hierarchies could be compared to each other, e.g. with

help of the developed metrics.

5.4.2 Approach ‘properties’

5.4.2.1 Overview

This approach, called „properties‟, derives hierarchies from the used properties of the

members. A property can be defined as a describing feature of a resource. The main

idea is to use the three elements of a triple (subject, predicate and object) as

elements of the hierarchy in a recursive way. The triples are regarding the members

of a dimension which means that the member of a dimension is the subject of the

existing triples.

As described in the RDF specification47, the part that identifies the thing the

statement is about is called the subject. The part that identifies the property or

characteristic of the subject that the statement specifies is called the predicate. The

part that identifies the value of that property is called the object. The following table

gives an overview of the mapping between existing element of a triple and resulting

element of the hierarchy:

Triple Hierarchy

Subject Member of a level

Predicate/Property Level above the subject level

Object Parent member of the level above the subject level
Table 11: Mapping between triple and hierarchy of the approach ‘properties’

5.4.2.2 Parameters

This approach is developed for at most general use. Theoretically, many possible

hierarchies can result with this approach. The result set of possibly hierarchies of this

approach can be influenced with the following parameters, which are in union

termination criteria for the algorithm:

 Minimal number of stages:

This parameter defines how many stages a resulting hierarchy has at least.

47

 http://www.w3.org/TR/rdf-primer/

5 Approaches for learning OLAP hierarchies from RDF

120

 Maximal number of stages:

This parameter defines how many stages a resulting hierarchy has at most.

 Flag for generalized or specialized properties:

Since there is the possibility to define a specialization relationship between

two properties via the property rdfs:subPropertyOf, only all uppermost (most

generalized) properties are relevant, if this flag is set. As a consequence, the

relevant properties are not sub property of any other property. If this flag is not

set, only the bottommost (most specialized) properties are relevant. In this

case the relevant properties do not have any sub property.

 Percentage of subjects that have a particular property:

This parameter defines, how many percent of the subjects (members in a

particular level) must have a particular property (parent level) so that this

particular property results in a parent level. If the value of this parameter is

100%, only those properties are relevant which are properties of all members.

In this case, a property which is not a property of all members is forming no

level.

 Flag for the strictness:

This parameter serves as decision criterion for the strictness of the resulting

hierarchy. If this flag is set, the resulting hierarchy is strict. This may

semantically be not correct, since there may be cases where a subject has

several times the same property with different objects. This would result in

several parent members. If this flag is set, one object is chosen to have only

one parent member. If non-strictness is required, this flag has not to be set.

 Flag for more members than parents:

If there would exist more parent members within one level than members, this

would rather correspond to a drill down and not to a roll up. Because higher

hierarchy levels should rather be reached by a roll up operation, more parents

than members would not be reasonable in many cases. So if this flag is set,

there have to exist more members than parent members within one level. If

this is not the case, the actual property is forming no higher level.

5 Approaches for learning OLAP hierarchies from RDF

121

5.4.2.3 Algorithm

5.4.2.3.1 Start

It is assumed that the members of a given dimension result in the lowest level of the

hierarchy, so they are the subjects, from which this approach starts from. The

following steps have then to be done:

5.4.2.3.2 Creating a concept scheme

To assign the created URIs to a concept scheme, for each of the above described

simple hierarchies, a concept scheme has to be defined as follows. The given

dimension of the given data structure definition(s) is then linked via qb:codeList to it:

hrccs:properties rdf:type skos:ConceptScheme.

As described above, the members of a dimension in the RDF Data Cube Vocabulary

should be separated from the concepts of the classification hierarchy. Therefore, for

each member of the given dimension in the given data sets, a new URI is created.

The new URI can be orientated towards the URI of the member. For example for the

URI <http://estatwrap.ontologycentral.com/dic/geo#DE> the new URI

hrcco:estatwrap/ontologycentral/com/dic/geo/DE is created. Then, this is used as

SKOS concept and assigned to the created concept scheme. The concept is then

linked via rdfs:seeAlso to the original member:

hrcco:estatwrap/ontologycentral/com/dic/geo/DE rdf:type skos:Concept;

 skos:inScheme hrccs:Properties;

 rdfs:seeAlso <http://estatwrap.ontologycentral.com/dic/geo#DE>.

For constructing these triples, the following SPARQL construct query can be used.

Hereby, the given data set(s) and dimension have to be filled in the filter statements

and an URI for the resulting concept scheme has to be defined and filled in the bind

statements (bold marked).

Construct{

#Creating a concept scheme

5 Approaches for learning OLAP hierarchies from RDF

122

?concept rdf:type skos:Concept.

?concept rdfs:seeAlso ?member.

?concept skos:inScheme ?conceptScheme.

?conceptScheme rdf:type skos:ConceptScheme.

?dimension qb:codeList ?conceptScheme.

}

where{

?obs rdf:type qb:Observation.

?obs qb:dataSet ?dataset.

?dataset rdf:type qb:DataSet.

?obs ?dimension ?member.

?dataset qb:structure ?dsd.

BIND(URI(CONCAT("http://hierarchie.org/co/",

REPLACE(REPLACE(SUBSTR(STR(?member),8),"\\.","/"),"#","/"))) AS ?concept).

FILTER(

?dataset = <datasetURI1> ||

?dataset = <datasetURI2> ||

…

?dataset = <datasetURIn>

)

FILTER(

?dsd = <dsdURI1> ||

?dsd = <dsdURI2> ||

…

?dsd = <dsdURIn>

)

FILTER(?dimension = <dimensionURI>)

BIND(URI("conceptSchemeURI") AS ?conceptScheme).

}

5.4.2.3.3 Loading relevant triples

With the first run of this step, all triples are crawled of which the member and the

resources that are linked to it with the owl:sameAs property are subject. This means

triples are crawled from the URI of the member of the given dimension and to

owl:sameAs resources of the member.

With each further iteration, additional concepts may have been assigned to the

concept scheme in a higher level in the step before. The corresponding resources

that are linked to the concepts via rdfs:seeAlso, are crawled, respecting owl:sameAs

resources.

All these triples are added to the triple store.

5 Approaches for learning OLAP hierarchies from RDF

123

5.4.2.3.4 Adding hierarchical information

Since this approach can have recursions, there has to be distinguished between the

first and the other passes of this step. In each case, the depths of the levels are not

set in this step, since there may be constructed more parents level with each further

pass of this step. With each recursion, a new stage, meaning all levels with the same

depth, is created.

At the first pass of this step, a leaf level is created. The concepts of the created

concept scheme are assigned to this leaf level via skos:member. This level is

assigned to the concept scheme via skos:inScheme:

hrccl:properties/leaf rdf:type skosclass:ClassificationLevel;

 skos:inScheme Properties.

hrcco:estatwrap/ontologycentral/com/dic/geo/DE

 skos:member hrccl:properties/leaf.

The following description is valid for the first and all other passes of this step:

Each property can have several sub properties, which itself also can have sub

properties. If the flag for generalized or specialized properties is set, only the

uppermost (most generalized) properties are relevant. Consequently, a reasoning

has to be done, whereby the rdfs:subPropertyOf relationship plays an important role.

After applying the following rules, the members have all possibly properties, including

the uppermost (most generalized properties):

[rdfs5: (?x rdfs:subPropertyOf ?y), (?y rdfs:subPropertyOf ?z) -> (?x rdfs:subPropertyOf ?z)]

[rdfs6: (?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)]

These rules can be executed with the following SPARQL construct queries, whereby

the construct query for the rule rdfs5 has to be executed several times until no

additional triples are constructed:

Construct{

#rule rdfs5

?x rdfs:subPropertyOf ?z.

}

where{

5 Approaches for learning OLAP hierarchies from RDF

124

?x rdfs:subPropertyOf ?y.

?y rdfs:subPropertyOf ?z.

}

Construct{

#rule rdfs6

?a ?q ?b.

}

where{

?a ?p ?b.

?p rdfs:subPropertyOf ?q.

}

This approach works stage by stage. With each passing of this step, an additional

stage with several parent levels is created. Therefore, the parent levels, including

parent members, of the levels of the actual stage have to be determined. Therefore,

the following SPARQL Query can be run against the data, which has to be executed

for each level of this stage separately. Hereby the URI of the actual level have to be

filled in the brackets (bold marked). Some properties, e.g. owl:sameAs, rdfs:label,

can be filtered out, because it makes no sense to use them as a parent level.

SELECT distinct ?concept ?parentLevel ?parentConcept

#Determine candidates for the parent levels

WHERE {

?concept rdfs:seeAlso ?member.

?concept skosclass:member ?level.

?level rdf:type skosclass:ClassificationLevel.

OPTIONAL{?member owl:sameAs ?sameAsMember.}

{{?member ?property ?parent.} UNION {?sameAsMember ?property ?parent.}}

FILTER(?property != owl:sameAs && ?property != rdfs:label)

FILTER(?level = <levelURI>)

BIND(URI(CONCAT("http://hierarchie.org/co/",

REPLACE(REPLACE(SUBSTR(STR(?parent),8),"\\.","/"),"#","/"))) AS ?parentConcept).

BIND(URI(CONCAT("http://hierarchie.org/cl/",

REPLACE(REPLACE(SUBSTR(STR(?property),8),"\\.","/"),"#","/"))) AS ?parentLevel).

 [PROPERTY STATEMENT TO BE INSERTED HERE]

}

The following two property statements are possible:

5 Approaches for learning OLAP hierarchies from RDF

125

 If the flag for generalized or specialized properties is set, the following

statement has to be inserted, to retrieve only the uppermost properties:

FILTER NOT EXISTS {?parentLevel rdfs:subPropertyOf ?x}

 Otherwise, the following statement has to be inserted, to retrieve only the

bottommost properties of a particular member:

FILTER NOT EXISTS { ?x rdfs:subPropertyOf ?parentLevel.

 ?member ?x ?parent.}

The query retrieves the following elements:

 Members of the actual level (?concept)

 Parent Levels (?parentLevel)

 Parents (?parentConcept)

These elements can be seen as candidates for elements of the hierarchy. It has to be

proofed for each parent level, if the following conditions are fulfilled. If one of these

conditions is not fulfilled, the particular property is forming no parent level:

 Percentage of subjects that have a particular property:

It has to be proofed, if the percentage of subjects, which have a particular

property that is forming a parent level, is greater or equal the value of the

parameter. If not, the actual property is forming no parent level since there are

too less subjects that have this particular property.

 No Loop:

If the actual property is linking the subject back to a resource that is member

of a lower level, the actual property is forming no parent level, since there may

be no loops in an OLAP hierarchy.

As a consequence, each property that fulfills these conditions is forming a parent

level. If the value of the parameter for the percentage of subjects that have a

particular property is smaller than 100%, there may exist subjects that do not have

this particular property, which is forming a parent level. Hence, they also have no

object, which can be their parent in this parent level. For these reasons, all such

5 Approaches for learning OLAP hierarchies from RDF

126

subjects are assigned to a dummy in the parent level, which serves as parent

member in the parent level.

For each parent, concepts have to be created that are linked to the crawled

resources via rdfs:seeAlso if the parent is a resource or rdfs:label if the parent is a

label. This means that an URI is created for each different value of an occurring

literal or resource, which is then defined as SKOS concept and assigned to the

created concept scheme. If the flag for strictness is set, one parent is chosen

randomly, if the property for the parent level is linked multiple times to the member.

Also, for each property, levels have to be created, to which the created concepts are

assigned to via skos:member. These levels are defined as

skosclass:ClassificationLevel. Additionally, they have to be assigned to the scheme

via the property skos:inScheme.

Furthermore, there have to be defined concept associations with

skosclass:hasSourceConcept and skosclass:hasTargetConcept properties to child

and parent of a relationship and an rdf:predicate link to skos:broader. This concept

associations are also linked to the concept scheme via skos:inScheme.

For example, the query above retrieves the following triple, in which the property

dbpedia:owl-language can be seen as a candidate for a parent level:

hrcco:estatwrap/ontologycentral/com/dic/geo/DE dbpedia-owl:language dbpedia:Germans.

Assuming that the two conditions are fulfilled, the following triples are created and

added to the triple store:

hrcco:dbpedia/org/resource/Germans rdf:type skos:Concept;

 skos:inScheme hrccs:Properties;

 rdfs:seeAlso dbpedia:Germans;

 skos:member hrccl:dbpedia/org/ontology/language.

hrccl:dbpedia/org/ontology/language rdf:type skosclass:ClassificationLevel;

 skos:inScheme hrccs:Properties.

hrcca:dbpedia/org/resource/Germans_dbpedia/org/ontology/language

 rdf:type skosclass:ConceptAssociation;

 skosclass:hasSourceConcept hrcco:dbpedia/org/resource/Germans;

5 Approaches for learning OLAP hierarchies from RDF

127

 rdf:predicate skos:broader;

 skosclass:hasTargetConcept hrcco:dbpedia/org/resource/Germans;

 skos:inScheme hrccs:Properties.

5.4.2.3.5 End of the approach reached?

The end of the approach is reached, if one of the following termination criteria is

fulfilled:

 Maximal number of stages exceeded:

If the number of stages exceeds the maximal number of stages, no more

parent level is created and the algorithm terminates.

 No additional levels added:

If there were no additional levels added in the step before, the algorithm

terminates.

Otherwise the algorithm continues with the second step, where triples to the

members that have been assigned to the concept scheme beforehand, are crawled.

The next iteration creates parent levels that are one stage above the stage that has

been created beforehand. This means the algorithm works stage for stage. With each

iteration, the next higher stage is created. In each stage there may be several parent

levels.

5.4.2.3.6 End

At the end of the approach „properties‟ the constructed concept scheme includes the

hierarchical relationships which can then be used.

5.4.2.4 Example

There is a data set48, which has the dimension eus:geo. The members of this

dimension include owl:sameAs links to resources from dbpedia49, a structured extract

of wikipedia50. For illustration reasons, the following simplification reasons are made:

48

 http://estatwrap.ontologycentral.com/id/tsieb020#ds
49

 http://dbpedia.org/About

5 Approaches for learning OLAP hierarchies from RDF

128

 Only six members are used

 The prefix dbpedia is excluded in the figure below

 Only the two following properties are used:

o dbpedia-owl:language

o dbpedia-owl:languageFamily

The following figure shows the resources and the two properties:

Figure 34: Simplified example for the approach 'properties': triples

At first, the algorithm independent of its parameters is explained: The first property

dbpedia-owl:language results in the first level. Since Poland does not have this

property, a dummy member is created in this level. This dummy is used as parent of

all members that do not have the property dbpedia-owl:language. The second

property dbpedia-owl:languageFamily results in the second level. Since Germans

50

 http://www.wikipedia.org/

5 Approaches for learning OLAP hierarchies from RDF

129

does not have this property, also in this level a dummy member is created, again.

This is a parent of all members that do not have the property dbpedia-

owl:languageFamily.

There may be special cases, where a certain resource (e.g. Germanic_languages) is

an object of the property owl:languageFamily and also an object of the property

dbpedia-owl:language, which could be both properties of a member in the leaf level

(e.g. Belgium). In this case, it has to be ensured that in each resulting simple

hierarchy, this resource is assigned to only one level.

Now, the values of the parameters for this example are shown and the effect on the

algorithm and the resulting hierarchy is described:

 Minimal number of stages: 2

The resulting hierarchy at least has two levels. This is here fulfilled, since

three levels are derived.

 Maximal number of stages: 3

The resulting hierarchy at most has three levels. This is here fulfilled, since

three levels are derived.

 Flag for generalized or specialized properties: not set

This means that the rules for determining the uppermost properties are not

applied. The already existing properties (dbpedia-owl:language and dbpedia-

owl:languageFamily) instead of their possible super properties result in levels.

 Percentage of subjects that have a particular property: 0.6

This means that 60% of the subjects must have a particular property so that

this property results in a higher level. This is fulfilled, because 5 of 6 members

have the property dbpedia-owl:language and 5 of 7 members have the

property dbpedia-owl:languageFamily.

 Flag for the strictness: not set

A member can have several parent members. Here, for example Belgium has

three parents.

 Flag for more members than parents: not set

This means that it is allowed that a parent level contains more members than

the child level. This is here the case since the level owl:languageFamily has

14 members and the level dbpedia-owl:language has 7 members.

5 Approaches for learning OLAP hierarchies from RDF

130

The resulting hierarchy in this example is a symmetric hierarchy, since all levels are

populated with members. Furthermore, the resulting hierarchy is non-strict, since a

member has several parents.

5.4.2.5 Resulting hierarchies

With this approach there may be generated almost all introduced OLAP hierarchies.

Each different uppermost level results in an individual hierarchy. If there is more than

one uppermost level, this results in a parallel hierarchy. The parallel hierarchy may

be dependent, if some levels are shared or independent otherwise. If there is only

one uppermost level, the resulting hierarchy is individual.

If there are parallel levels on the same stage between the leaf and the uppermost

level that are not part of a generalized hierarchy, this results in a multiple alternative

hierarchy.

If the bottommost (most specialized) properties are used, there may result

generalized and non-covering hierarchies. For each property that has several sub

properties which are used for the members, an own generalized hierarchy is

generated. Here, each property is forming one level at the same stage. If a member

has a property and a sub property of this property, only the object of the bottommost

property of this particular member results as a parent. If there are several sub

properties of one particular property used for the members, only one of these sub

properties results as parent level to guarantee exclusive paths in a generalized

hierarchy. If there are several uppermost levels at the uppermost stage in a

generalized hierarchy after executing the algorithm, all these uppermost levels are

taken together in one common uppermost level to retrieve a proper generalized

hierarchy.

Furthermore, the resulting simple hierarchies can potential be strict, if there is always

used the same property once for a certain subject or if the parameter for strictness is

set. Otherwise the hierarchy is non-strict. If the parameter for strictness is set, only

one object is chosen as parent member, since a particular property can be used

many times for the same subject.

5 Approaches for learning OLAP hierarchies from RDF

131

Asymmetric hierarchies cannot be found with this approach, since this approach is a

bottom up approach.

5.4.2.6 Criticism

With this approach, properties of a member result in parent levels of this member.

However, properties could also be used to derive descriptive attributes of the

members, where the object of a triple is the characteristic of this attribute. This

means that if descriptive attributes are relevant for the resulting level, the properties

could fulfill two functions, as level and descriptive attribute. If a property is used only

once for a given member (which would result in a strict hierarchy) and the object of a

triple fully functional depends on the subject of a triple, this is an indication of an

attribute, since the value of this characteristic fully functional depends on the

member. So this approach generates levels from properties instead of descriptive

attributes, which should sometimes rather be modeled than levels.

Furthermore, this approach assigns all members of a given dimension of the data

set(s) to one leaf level. This may not always correct. For this reason, all members

that should not be members of the leaf level have to be assigned to another level

manually or in a further optimization step that is not part of this thesis.

To ensure good results with this approach, the parameters could be set by default or

some recommendations could be given. To give such a helpful recommendation, this

approach could be applied on several data sets with several constellations of

parameters and the resulting hierarchies could be compared to each other, e.g. with

help of the developed metrics.

6 Evaluation

132

6 Evaluation

This section evaluates the developed approaches by testing them on real-world

datasets from Eurostat51. Hereby the same datasets like in the examples of the

particular approaches are used. The evaluation is based on the integration of two

datasets. Therefore, two datasets are integrated for each approach.

6.1 Approach ‘time’

To evaluate the approach „time‟, the components of the following table are used:

Component URI

data sets http://estatwrap.ontologycentral.com/id/teilm020#ds

http://estatwrap.ontologycentral.com/id/tsieb020#ds

data structure definitions http://estatwrap.ontologycentral.com/dsd/teilm020#dsd

http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd

dimension http://purl.org/dc/terms/date

Table 12: Components for the evaluation of the approach 'time'

After the approach „time‟ is executed on these given components, a hierarchy with

the following levels is constructed:

Figure 35: Resulting hierarchy of the approach 'time': schema

The integration of the two data sets is given via the member 2011, since the months

2011-04 till 2011-11, which occur in the first data set roll up to the year 2011, which is

also included in the second data set. The resulting hierarchy is asymmetric, because

not all members on in the level year have children in the level month and strict,

51

 http://estatwrap.ontologycentral.com/

6 Evaluation

133

because each member in the level months rolls up to only one parent member in the

level year.

6.2 Approach ‘geo’

To evaluate the approach „geo‟, the components of the following table are used:

Component URI

data sets http://estatwrap.ontologycentral.com/id/agr_r_landuse#ds

http://estatwrap.ontologycentral.com/id/tsieb020#ds

data structure definitions http://estatwrap.ontologycentral.com/dsd/agr_r_landuse#dsd

http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd

dimension http://ontologycentral.com/2009/01/eurostat/ns#geo

Table 13: Components for the evaluation of the approach 'geo'

After the approach „geo‟ is executed on these given components, a hierarchy with the

following levels is constructed:

Figure 36: Resulting hierarchy of the approach 'geo': schema

The integration of the two data sets is given via the members of the level NUTS0,

since some members of this level occur in both data sets and the members of the

level NUTS1 roll up to some of these members of level NUTS0. The resulting

hierarchy is asymmetric, because not all members in the level NUTS0 have children

in the levels NUTS1 and NUTS2. Furthermore, the resulting hierarchy is strict,

because each member in the level NUTS2 and NUTS1 rolls up to only one parent

member.

6 Evaluation

134

6.3 Approach ‘rdfs:subClassOf’

To evaluate the approach „rdfs:subClassOf‟, the components of the following table

are used:

Component URI

data sets http://estatwrap.ontologycentral.com/id/cpc_siemp#ds

http://estatwrap.ontologycentral.com/id/tsieb020#ds

data structure definitions http://estatwrap.ontologycentral.com/dsd/cpc_siemp#dsd

http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd

dimension http://ontologycentral.com/2009/01/eurostat/ns#geo

Table 14: Components for the evaluation of the approach 'rdfs:subClassOf'

There are 45 members in this given dimension, 29 members with owl:sameAs links

and 16 members without owl:sameAs links to other resources. For the evaluation

triples from dbpedia are used since there exist owl:sameAs links from members to

resources from dbpedia. The parameters are set like in the example to the approach

above and the parameter „Flag for schema‟ is set. The following table gives an

overview of the resulting levels on stage 2 which are above the leaf level and on

stage 1 which are the uppermost levels.

Classes/Levels on stage 2 Property Classes/Levels on stage 1

dbpedia-class:
yago/Archipelago109203827

rdfs:sub
ClassOf

dbpedia-class:
yago/Land109334396

dbpedia-class:
yago/AdministrativeDistrict108491826

rdfs:sub
ClassOf

dbpedia-class:
yago/District108552138

dbpedia-class:
yago/System108435388

rdfs:sub
ClassOf

dbpedia-class:
yago/Group100031264

dbpedia-class:
yago/Crisis113933560

rdfs:sub
ClassOf

dbpedia-class:
yago/SituAtion114411243

dbpedia-class:
yago/Empire108557482

rdfs:sub
ClassOf

dbpedia-class:
yago/Domain108556491

dbpedia-class:
yago/Capital108518505

rdfs:sub
ClassOf

dbpedia-class:
yago/Seat108647945

dbpedia-class:
yago/Home108559508

rdfs:sub
ClassOf

dbpedia-class:
yago/Residence108558963

dbpedia-class:
yago/Country108544813

rdfs:sub
ClassOf

dbpedia-class:
yago/AdministrativeDistrict108491826

dbpedia-class:
yago/Location100027167

rdfs:sub
ClassOf

dbpedia-class:
yago/Object100002684

dbpedia-class:
yago/Location100027167

rdfs:sub
ClassOf

dbpedia-class:
yago/YagoGeoEntity

6 Evaluation

135

dbpedia-class:
yago/Location100027167

rdfs:sub
ClassOf

dbpedia-class:
yago/YagoLegalActorGeo

dbpedia-class:
yago/Island109316454

rdfs:sub
ClassOf

dbpedia-class:
yago/Land109334396

dbpedia-class:
yago/Region108630039

rdfs:sub
ClassOf

dbpedia-class:
yago/Location100027167

dbpedia-class:
yago/Economy108366753

rdfs:sub
ClassOf

dbpedia-class:
yago/System108435388

dbpedia-class:
yago/Clang107380144

rdfs:sub
ClassOf

dbpedia-class:
yago/Noise107387509

dbpedia-owl:
PopulatedPlace

rdfs:sub
ClassOf

dbpedia-owl:
Place

Table 15: Levels of the approach 'rdfs:subClassOf'

After the approach „rdfs:subClassOf‟ is executed on these given components, a

hierarchy with the following levels is constructed. For illustration reasons, only the

last seven levels on stage 1 of the above table are shown:

Figure 37: Resulting hierarchy of the approach 'subClassOf': schema

6 Evaluation

136

The integration of the two datasets is given via the members in the created levels on

stage 2, since some members of this level are parents of members of both data sets.

The resulting hierarchy is a parallel hierarchy, composed of several simple

hierarchies. These simple hierarchies are symmetric, since all levels are populated

with members. Depending on the number of rdf:type properties and rdfs:subClassOf

relationships, the resulting simple hierarchies are strict or non-strict.

6.4 Approach ‘properties’

To evaluate the approach „properties‟, the components of the following table are

used:

Component URI

data sets http://estatwrap.ontologycentral.com/id/cpc_siemp#ds

http://estatwrap.ontologycentral.com/id/tsieb020#ds

data structure definitions http://estatwrap.ontologycentral.com/dsd/cpc_siemp#dsd

http://estatwrap.ontologycentral.com/dsd/tsieb020#dsd

dimension http://ontologycentral.com/2009/01/eurostat/ns#geo

Table 16: Components for the evaluation of the approach 'properties'

There are 45 members in this given dimension, 29 members with owl:sameAs links

and 16 members without owl:sameAs links to other resources. For the evaluation

triples from dbpedia are used since there exist owl:sameAs links from members to

resources from dbpedia. The parameters are set like in the example to the approach

above. For illustration reasons, only one stage above the leaf level is created. The

following table gives an overview of the properties that are candidates for higher

levels. Since the parameter „Percentage of subjects that have a particular property‟ is

set to 60%, only properties result in a parent level, where the distinct count of

subjects is at least 27 members (0.6 * 45 members = 27 subjects).

6 Evaluation

137

Property

Distinct count of
subjects having

this property

Distinct
count of
objects

<http://dbpedia.org/property/leaderTitle> 28 74

<http://dbpedia.org/ontology/leaderName> 28 83

<http://dbpedia.org/ontology/capital> 28 28

<http://dbpedia.org/ontology/language> 27 70

<http://dbpedia.org/ontology/governmentType> 27 35

<http://dbpedia.org/ontology/currency> 27 29

<http://dbpedia.org/ontology/officialLanguage> 26 37

<http://dbpedia.org/property/timeZoneDst> 24 24

<http://dbpedia.org/property/timeZone> 24 24

<http://dbpedia.org/property/leaderName> 24 49

<http://dbpedia.org/property/capital> 24 24

<http://dbpedia.org/property/sovereigntyType> 22 22

<http://dbpedia.org/ontology/anthem> 22 25

<http://dbpedia.org/ontology/ethnicGroup> 21 67

<http://dbpedia.org/property/officialLanguages> 20 34

<http://dbpedia.org/property/governmentType> 19 26

<http://dbpedia.org/property/establishedEvent> 19 63

<http://dbpedia.org/property/demonym> 16 17

<http://dbpedia.org/property/legislature> 13 13

<http://dbpedia.org/property/currency> 11 12

<http://dbpedia.org/property/cctld> 11 12

<http://dbpedia.org/ontology/largestCity> 9 9

<http://dbpedia.org/property/upperHouse> 8 8

<http://dbpedia.org/property/lowerHouse> 8 8

<http://dbpedia.org/ontology/regionalLanguage> 7 20

<http://dbpedia.org/property/nationalAnthem> 4 4

<http://dbpedia.org/property/religion> 2 2

<http://dbpedia.org/property/regionalLanguages> 2 3

<http://dbpedia.org/property/callingCode> 2 2

<http://dbpedia.org/property/stateLanguage> 1 1

<http://dbpedia.org/property/sovereigntyNote> 1 1

<http://dbpedia.org/property/otherSymbolType> 1 1

<http://dbpedia.org/property/nonOfficialLanguages> 1 1

<http://dbpedia.org/property/nationalTree> 1 1

<http://dbpedia.org/property/nationalPoet> 1 1

<http://dbpedia.org/property/nationalPlant> 1 1

<http://dbpedia.org/property/nationalMotto> 1 1

<http://dbpedia.org/property/nationalLanguage> 1 1

<http://dbpedia.org/property/nationalBird> 1 1

<http://dbpedia.org/property/largestSettlement> 1 1

<http://dbpedia.org/property/largestCity> 1 1

<http://dbpedia.org/property/languagesType> 1 1

<http://dbpedia.org/property/languages> 1 1

<http://dbpedia.org/property/frMetropole> 1 1

<http://dbpedia.org/property/establishedDate> 1 1

<http://dbpedia.org/property/caption> 1 1

<http://dbpedia.org/ontology/wikiPageRedirects> 1 1

<http://dbpedia.org/ontology/largestSettlement> 1 1
Table 17: Candidates for levels of the approach 'properties'

6 Evaluation

138

When crawling these triples, the following properties have not been considered, since

they are not very useful to generate hierarchies or they are used in another

approach. For example rdf:type is used in the approach „rdfs:subClassOf‟ and

<http://xmlns.com/foaf/0.1/page> links to a homepage:

 <http://www.w3.org/2002/07/owl#sameAs>

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 <http://www.w3.org/2000/01/rdf-schema#comment>

 <http://www.w3.org/2000/01/rdf-schema#label>

 <http://dbpedia.org/ontology/abstract>

 <http://dbpedia.org/ontology/wikiPageExternalLink>

 <http://xmlns.com/foaf/0.1/homepage>

 <http://xmlns.com/foaf/0.1/page>

 <http://xmlns.com/foaf/0.1/depiction>

 <http://dbpedia.org/property/wikiPageUsesTemplate>

 <http://dbpedia.org/ontology/thumbnail>

 <http://purl.org/dc/terms/subject>

After the approach „properties‟ is executed on these given components, a hierarchy

with the following levels on the first stage is constructed:

Figure 38: Resulting hierarchy of the approach 'properties': schema

6 Evaluation

139

The integration of the two datasets is given via the members in the created levels on

stage 1, since some members of this level are parents of members of both data sets.

The resulting hierarchy is a parallel hierarchy, composed of several simple

hierarchies. These simple hierarchies are symmetric, since all levels are populated

with members and there are no rdfs:subPropertyOf relationships between the

properties. Furthermore, the resulting simple hierarchies that have more parents than

members are non-strict and the simple hierarchy leafcapital is strict, because this

property is used only once for a subject.

7 Conclusions

140

7 Conclusions

Upon finishing the main parts of this thesis, this last section summarizes them,

describes the resulting lessons learned and looks ahead for possible future research

topics.

7.1 Summary

This master thesis showed how hierarchies can be constructed from Statistical

Linked Data and be used in OLAP systems. After a general introduction and

explanation of the used technologies, it answered the following main questions:

 Which are useful Statistical Linked Data hierarchies?

This question was answered in section 2 „Theoretical background‟, where the

relevant concepts, technologies and standards, especially the conceptual

model of OLAP hierarchies, have been introduced. Furthermore, the

developed metrics for measuring the usefulness of a hierarchy was described.

 How can Statistical Linked Data hierarchies be expressed?

A solution on this question was given in section 3 „Expressing OLAP

hierarchies in RDF‟, where SKOS and the proposed extension have been

explained so that all hierarchies of the conceptual model can be expressed

with RDF.

 How can Statistical Linked Data hierarchies be used?

The answer on this question was explained in section 4 „Transforming Linked

Data into OLAP hierarchies‟, where OLAP4J for the use in OLAP clients have

been introduced. There have been developed SPARQL queries, which provide

the content for the variables of the hierarchy relevant OLAP4J methods.

 How can Statistical Linked Data hierarchies be constructed?

This question was answered in section 5 „Approaches for learning OLAP

hierarchies from RDF‟, where the different approaches to generate useful

hierarchies have been explained. There have been developed specific

approaches for temporal and geographical dimensions and generic

approaches for potential all dimensions. The following table shows, which

hierarchy can potentially be constructed with each approach.

7 Conclusions

141

Hierarchy Approach

time geo rdfs:
subClassOf

properties

parallel independent - - X X

parallel dependent - - X X

multiple alternative X - - X

simple strict symmetric X X X X

asymmetric X X - -

generalized
(except
non-
covering)

- - X X

non-
covering

- - X X

non-
strict

symmetric X - X X

asymmetric X - - -

generalized
(except
non-
covering)

- - X X

non-
covering

- - X X

Table 18: Resulting hierarchies of each approach

7.2 Resulting lessons learned

While working on this thesis, the following experiences have been made for

constructing OLAP hierarchies from Statistical Linked Data. They can be seen as

lessons learned for future research:

 Proper vocabulary required:

There has been much effort to develop and propose the extensions for SKOS

to have the possibility to express all types of hierarchies and distinguish

different hierarchies from each other. As a consequence, the time for

developing the approaches to generate hierarchies was reduced, which was

the most important part of this thesis. This means that a proper vocabulary is

an essential requirement, before the approaches to generate hierarchies could

be developed. If such a proper vocabulary had already been existed, more

effort would have been left over for developing, evaluating and optimizing the

approaches.

 Different aggregation level:

Data publisher often publish values on different aggregation level altogether in

one data set, but do not express the included hierarchies. For example the

7 Conclusions

142

dimension eus:sex of a dataset52 includes members for females53, males54

and total55. Since no hierarchical relationships between females/males and

total is given, a data consumer or service provider has to handle this

problematic, e.g. by filtering on female and male. This master thesis

recommends to publish only observations on the most granular level and to

define hierarchies. With the help of aggregation functions, which are not part

of this thesis, and hierarchies, data consumer or service provider are able to

compute the aggregated value theirselves. Hence, replicability is ensured and

misinterpretations are avoided. Possible other methods to handle this

problematic are the following:

o Introducing a parameter:

There could be defined a flag that indicates the aggregation level of the

members in the given data sets. If such a flag is set, all given members

would result in the same level. If such a flag is not set, members of a

given dimension of a dataset should be assigned to different levels.

o Specifying the most granular values:

The members on the most granular level could be specified for example

by a human in a separate preprocessing step before the approaches

could be executed. All specified members would result in the leaf level.

o Extending the RDF Data Cube Vocabulary:

All members on the most granular level in a certain data set could be

marked with an extension of the RDF Data Cube Vocabulary. All

marked members would result in the leaf level.

 Data quality:

Data quality is an important success factor for finding useful hierarchies. If

there are incorrect triples, which should be used to find hierarchies, also the

resulting hierarchy can be wrong. Incorrect triples means that wrong

information is included in a triple on the semantic level. For example, the

following triple is wrong, saying that a language in Germany is the German

people:

52

 estatwrap.ontologycentral.com/id/tsiem020#ds
53

 http://estatwrap.ontologycentral.com/dic/sex#F
54

 http://estatwrap.ontologycentral.com/dic/sex#M
55

 http://estatwrap.ontologycentral.com/dic/sex#T

7 Conclusions

143

dbpedia:Germany dbpedia-owl:language dbpedia:Germans.

The right triple would be the following, saying that the German language is a

language in Germany:

dbpedia:Germany dbpedia-owl:language dbpedia:German_language.

This wrong triple would for example lead to a wrong parent member in the

approach „properties‟ in a hierarchy countrylanguage.

 Technical problems:

When developing the approaches, appearing technical problems have to be

handled. For example when queries should be executed or triples should be

added to the triple store the following problem appeared: The RDF/XML

information resource56 of a certain URI57 was not XML well-formed, which

means that this is not an RDF document and the triples could not be used.

 Hard- and software:

Hard- and software is needed for developing the approaches. Mainly a proper

triple store is required, where the approaches could be tested. Since not all

triple stores provide SPARQL1.158 functionalities, which were needed for the

developed SPARQL queries, this master thesis had to use a triple store, which

fulfills this requirement. This was done on an Open RDF Sesame Server59 in

version 2.6.2.

 OLAP driver:

To use the constructed hierarchies in OLAP systems, an OLAP driver is

required, which transforms the resulting triples for the use in OLAP

applications. This master thesis makes use of OLAP4 as OLAP application.

Because of expressing hierarchies in Linked Data, also other OLAP

applications could potential be supported. In the case of XMLA, the supported

hierarchies are the same as in OLAP4J. This means that using Linked Data

for expressing statistical data provides the possibility to support a broad range

of applications and technologies.

56

 http://dbpedia.org/data/German_language
57

 http://dbpedia.org/resource/German_language
58

 http://www.w3.org/TR/sparql11-query/
59

 www.openrdf.org/

7 Conclusions

144

7.3 Future research topics

Hierarchies in the context of OLAP and Statistical Linked Data have been the focus

of this master thesis. For doing further research in this area, the following topics are

possibly the most relevant ones:

 Aggregation functions:

As described in section 2.1.1.2 „Aggregation functions and summarizability‟,

this master thesis does not make a statement of aggregating the measures in

a roll-up operation along a constructed hierarchy. Since the main focus of

OLAP systems is to derive knowledge out of data, aggregated data is potential

more interesting than the single granular values. For this reason, besides the

need of hierarchies, research in aggregating values with use of these

hierarchies can surely be seen as the next major work.

 Performance:

If useful ways are found to aggregate the data with help of the generated

hierarchies, performance will surely play in important role, when end users

analyze Statistical Linked Data. To reduce the response times, research for

improving the performance will positively influence the relevance of Statistical

Linked Data. Therefore roll-up operations could be executed every time the

data changes and the aggregated values could be saved. This concept is

called small materialized aggregates (SMAs) [Moer98]. Possibly extending the

RDF Data Cube Vocabulary and SKOS, it would be interesting to transfer this

concept to Statistical Linked Data.

 Storage technologies:

As described in section 2.1.3.2 „Star and snowflake schema‟, there is a

difference between the semantic, conceptual level of modeling

multidimensional data and the logical, intern level of the database. Since

Statistical Linked Data is in format of RDF, which is constructed out of triples,

research in storage technologies for especially RDF triples would possibly be

interesting to influence the performance. Therefore the existing technologies

relational OLAP (ROLAP), multidimensional OLAP (MOLAP) and hybrid

OLAP (HOLAP) could influence the storage of RDF triples. Also buffering

triples in the main memory could be of research interest to enhance the

response time.

7 Conclusions

145

 Approaches:

Besides the other main parts of this master thesis, how hierarchies can be

expressed and used, generating hierarchies is also a main part of this thesis.

Further research in generating hierarchies could consist of improving and

extending the developed approaches, especially the generic ones.

Furthermore, there could be developed further approaches to generate

hierarchies. The following ideas show, how possibly further approaches could

be look like to find useful OLAP hierarchies:

o Machine learning approaches:

 Clustering:

With the help of existing triples, in which the members of a

dimension are part in the subject or object part, the members

could be clustered.

 Classification:

With the help of triples, the members could be classified. For

example if the range of a dimension is a literal with a numeric

data type, e.g. xsd:integer, there could be defined thresholds

statically or dynamically and the members could be classified in

different classes in the sense of classification, e.g. small,

medium, large. The resulting hierarchy would consist of two

levels, one for the members one for the classes, in which the

members were classified.

o Human-centered approaches:

 MDX-Query:

If a user queries data, MDX queries are created. Hierarchies

could possibly be found with the help of them, by using the

required levels that are part of the MDX query.

 Gaming:

With the help of mini online games, human users could possibly

optimize or construct hierarchical structures, which could then be

used for OLAP.

o Semantic approaches:

 Special properties:

7 Conclusions

146

There could be identified special properties, which already

represent hierarchical structures, for example the properties

dbprop:fam and dbprop:child. They could be used to derive

hierarchies.

 rdfs:subPropertyOf:

Since there can be defined hierarchical structures between

properties by using rdfs:subPropertyOf, this relationships can

potentially be used, if there exist triples to a member, where

these properties are included.

o Transforming approaches:

 Already existing SKOS concept schemes:

There may potentially exist SKOS concept schemes, where

relationships are defined by skos:broader and skos:narrower, but

the proposed extensions, e.g. skosclass:ClassificationLevel are

not used. These concept schemes can be extended, so that they

can be used by the developed SPARQL queries for the OLAP4J

methods.

 Other vocabularies:

Besides SKOS, there may exist or be developed other

vocabularies for expressing thesauri or other hierarchical

structures, which could possibly be transformed in the extended

SKOS vocabulary.

 Change of hierarchies:

Although the approaches are parameterized equally in two runs of an

approach, there may be generated different hierarchies, because additional

triples could be found on the web, which could be used for adding hierarchical

information to a certain concept scheme or the triples in the given data sets

and data structure definitions may change. For this reason, a comprehensive

change management of hierarchies is required.

 Usage:

Usage means both, on the one side usage of the approaches to generate

hierarchies and on the other side usage of the hierarchies to derive new

knowledge.

7 Conclusions

147

o Usage of the approaches:

To benefit from the developed approaches, they have to be provided for

other users and applications in a way that hierarchies could be

constructed. With use of the introduced possibility to provide a web

service, the resulting triples could be added to a triple store, where

OLAP applications can use them.

o Usage of the hierarchies:

Since hierarchies can be used to integrate and analyze data on

different aggregation level, intelligent strategies and concepts could be

developed to finally use hierarchies for data on different aggregation

levels in innovative applications, e.g. agents for decision support or

recommender systems.

0 References

148

References

References
[AnAS04]

Anandarajan, M.; Anandarajan, A.; Srinivasan, C.: Business Intelligence Techniques:

A Perspective from Accounting and Finance, 1. Auflage, Springer, Berlin, 2004.

[Bern06]

Berners-Lee, T. Linked Data - Design Issues, 2006, Retrieved 2011-06-02 from

http://www.w3.org/DesignIssues/LinkedData.html

[Brat07]

Bratt, S.: Semantic Web, and Other Technologies to Watch, 2007, Retrieved 2011-

06-04 from http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)

[BaGü04]

Bauer, A.; Günzel, H.: Data Warehouse Systeme – Architektur, Entwicklung,

Anwendung, 2. edition, dpunkt, Heidelberg, 2004.

[BiHB09]

Bizer, C.; Heath, T.; Berners-Lee, T.: Linked Data – The story so far. International

Journal on Semantic Web and Information Systems (IJSWIS), 2009, Volume 5(3),

pp. 1-22.

[BeHL01]

Berners-Lee, T.; Hendler, J.; Lassila, O.: The Semantic Web - A new form of Web

content that is meaningful to computers will unleash a revolution of new possibilities,

Scientific American, 2001, Volume 284 (5), pp. 34–43.

[CoCS93]

Codd, E.; Codd, S.; Salley, C.: Providing OLAP (On-Line Analytical Processing) to

User Analyst: An IT Mandate. White Paper, 1993.

[ChDa97]

Chaudhuri, S.; Dayal, U.: An overview of data warehousing and OLAP technology. In:

ACM SIGMOD Record, 1997, Volume 26 Issue 1, pp. 65 – 74.

[ChGl06]

Chamoni, P.; Gluchowski, P.: Entwicklungslinien und Architekturkonzepte des On-

Line Analytical Processing. In: Chamoni, P.; Gluchowski, P. (Hrsg.): Analytische

0 References

149

Informationssysteme - Business Intelligence-Technologien und –Anwendungen, 3.

Auflage, Springer, Berlin, 2006, pp. 143 – 176.

[CGSH10]

Correndo, G.; Granzotto, A.; Salvadores, M.; Hall, w.; Shadbolt, N.: A Linked Data

representation of the Nomenclature of Territorial Units for Statistics, 2010, Retrieved

2011-10-21 from http://linkeddata.future-

internet.eu/images/f/f0/FIA2010_A_Linked_Data_representation_of_the_Nomenclatu

re_of_Territorial_Units_for_Statistics.pdf

[CyJe11]

Cyganiak, R.; Jentzsch, A.: The Linking Open Data cloud diagram, 2011, Retrieved

2011-10-26 from http://lod-cloud.net/

[CyRT10]

Cyganiak, R.; Reynolds, D.; Tennison, J.: The RDF Data Cube vocabulary, 2010,

Retrieved 2011-09-23 from http://publishing-statistical-

data.googlecode.com/svn/trunk/specs/src/main/html/cube.html

[FBSV00]

Franconi, E.; Baader, F.; Sattler, U.; Vassiliasis, P.: Multidimensional Data Models

and Aggregation. In: Jarke, M.; Lenzerini, M; Vassiliou, Y.; Vassiliadis, P. (Hrsg.):

Fundamentals of Data Warehouses, Springer, Berlin, 2000, pp. 87-105.

[Gart10]

Gartner, Inc.: User Survey Analysis: Key Trends Shaping the Future of Data Center

Infrastructure Through 2011, 2010, Retrieved 2011-10-25 from

http://www.gartner.com/resId=1456135

[GlGD08]

Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und

Business Intelligence – Computergestützte Informationssysteme für Fach- und

Führungskräfte. 2. Auflage, Springer, Berlin, 2008.

[GaGP09]

Gabriel, R.; Gluchowski, P.; Pastwa, A.: Data Warehouse & Data Mining, W3L,

Witten-Herdecke, 2009.

[Humm08]

Hummeltenberg, W.: Business Intelligence, Retrieved 2011-06-05 from

http://www.oldenbourg.de:8080/wi-enzyklopaedie/lexikon/daten-wissen/Business-

Intelligence

[HiKR09]

http://www.gartner.com/resId=1456135
http://www.gartner.com/resId=1456135

0 References

150

Hitzler, P.; Krötzsch, M.; Rudolph, S.: Foundations of Semantic Web Technologies,

Chapman & Hall/CRC, Boca Raton, 2009.

[Inmo02]

Inmon, W.: Building the Data Warehouse, 3. edition, John Wiley & Sons, New York,

2002.

[KaBM08]

Kashyap, V.; Bussler, C.; Moran, M.: The Semantic Web – Semantics for Data and

Services on the web, Springer, Berlin, 2008.

[KäHa11]

Kämpgen, B.; Harth, A.: Transforming Statistical Linked Data for Use in OLAP

Systems, 2011, Retrieved 2011-10-26 from

http://www.aifb.kit.edu/images/2/28/Kaempgen_harth_isem11_olap.pdf

[KeMU06]

Kemper, H.; Mehanna, W.; Unger, C.: Business Intelligence: Grundlagen und

praktische Anwendung: Eine Einführung in die IT-basierte

Managementunterstützung, 2. Auflage, Friedr. Vieweg & Sohn, Wiesbaden, 2006.

[LeSh97]

Lenz, H. J.; Shoshani, A.: Summarizability in OLAP and statistical data bases. In:

Proceedings Ninth International Conference on Scientific and Statistical Database

Management Cat No97TB100150, IEEE Computer Society, 1997, pp. 132-143.

[LeTh09]

Lenz, H. J.; Thalheim, B.: A Formal Framework of Aggregation for the OLAP-OLTP

Model. In: Journal of Universal Computer Science, Volume 15 Issue 1, Verlag der

Technischen Universität Graz, Graz, 2009, pp. 273-303.

[Moer98]

Moerkotte, G.: Small materialized aggregates: A light weight index structure for data

warehousing, 1998, Retrieved 2012-02-10 from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.38.7211&rep=rep1&type=p

df

[MaZi04]

Malinowski, E.; Zimányi, E: OLAP Hierarchies: A Conceptual Perspective. In:

Lecture Notes in Computer Science, Volume 3084/2004, Springer, Berlin, 2004,

pp.19-35.

[MaZi05]

0 References

151

Malinowski, E.; Zimányi, E.: Hierarchies in a multidimensional model: From

conceptual modeling to logical representation. In: Data & Knowledge Engineering 59,

Frankfurt, 2006, pp. 348-377.

[Nort05]

North, K: Wissensorientierte Unternehmensführung: Wertschöpfung durch Wissen, 4.

Auflage, Gabler, Wiesbaden, 2005.

[NiNi10]

Niemi, T.; Niinimäki, M.: Ontologies and summarizability in OLAP. In: Proceedings of

the 2010 ACM Symposium on Applied Computing SAC 10, ACM Press, New York,

2010, p.1349.

[NiNT01]

Niemi, T.; Nummenmaa, J.; Thanisch, P.: Constructing OLAP cubes based on

queries. In: Proceedings of the 4th ACM international workshop on Data warehousing

and OLAP DOLAP 01, ACM Press, New York, 2001, pp. 9-15.

[OrDD06]

Oren,E.; Delbru, R.; Decker, S.: Extending Faceted Navigation for RDF Data. In:

Lecture Notes in Computer Science, Volume 4273/2006, Springer, Berlin, 2006, pp.

559-572.

[PBAP08]

Perez Marti, J.; Berlanga, R.; Aramburu, M.; Pedersen, T.: Integrating Data

Warehouses with Web Data: A Survey. IEEE Transactions on Knowledge and Data

Engineering, 2008, pp. 940-955.

[PaMa11]

Pardillo, J.; Mazón, J.-N.: Using Ontologies for the Design of Data Warehouses,

2011, Retrieved 2011-10-15 from http://arxiv.org/ftp/arxiv/papers/1106/1106.0304.pdf

[PoRa99]

Pourabbas, E.; Rafanelli, M.: Characterization of hierarchies and some operators in

OLAP environment. In: DOLAP99 Proceedings of the 2nd ACM International

Workshop on Data Warehousing and OLAP (ACM), 1999, pp. 54-59.

[Sack10]

Sack, H.: Semantische Suche – Theorie und Praxis am Beispiel der

Videosuchmaschine yovisto.com. In: Hengartner, U.; Meier, A. (Hrsg.): Web 3.0 &

Semantic Web, dpunkt.verlag, Heidelberg, 2010, pp. 13-25.

[Vass98]

0 References

152

Vassiliadis, P: Modeling Multidimensional Databases, Cubes and Cube Operations.

In: Proceedings of the 10th SSDBM Conference, IEEE Computer Society,

Washington, 1998, pp. 53-62.

[Wagn10]

Wagner, G.: Zensus 2010/11 – eine längst überfällige Erhebung. In: Wochenbericht

des DIW Berlin, 2010, Nr. 4/2010, pp. 11-14.

[ZaHM11]

Zapilko, B.; Harth, A.; Mathiak, B.: Enriching and Analysing Statistics with Linked

Open Data. In: Eurostat (Hrsg.): NTTS - Conference on New Techniques and

Technologies for Statistics, Brüssel, 2011.

0 Appendix: Namespaces

153

Appendix: Namespaces

Appendix: Namespaces
Prefix Namespace

dbpedia http://dbpedia.org/resource/

dbpedia-class http://dbpedia.org/class/

dbpedia-owl http://dbpedia.org/ontology/

dbprop http://dbpedia.org/property/

dcterms http://purl.org/dc/terms/

eus http://ontologycentral.com/2009/01/eurostat/ns#

ex http://example.org/

hrc http://hierarchie.org/

hrcca http://hierarchie.org/ca/

hrccl http://hierarchie.org/cl/

hrcco http://hierarchie.org/co/

hrccs http://hierarchie.org/cs/

interval http://reference.data.gov.uk/def/intervals/

nuts http://nuts.psi.enakting.org/id/

nutsdef http://nuts.psi.enakting.org/def/

owl http://www.w3.org/2002/07/owl#

qb http://purl.org/linked-data/cube#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

refgovukday http://reference.data.gov.uk/id/gregorian-day/

refgovukmonth http://reference.data.gov.uk/id/gregorian-month/

refgovukweek http://reference.data.gov.uk/id/gregorian-week/

refgovukyear http://reference.data.gov.uk/id/gregorian-year/

skos http://www.w3.org/2004/02/skos/core#

skosclass http://ddialliance.org/ontologies/skosclass#

spatial http://data.ordnancesurvey.co.uk/ontology/spatialrelations/

time http://www.w3.org/2006/time#

xsd http://www.w3.org/2001/XMLSchema#

