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Abstract

Large software systems are modularized in order to improve man-
ageability. The parts of the software system communicate in order
to achieve the desired functionality. To better understand, develop,
manage, and maintain the resulting complexity, this paper presents a
framework of ontologies. The ontologies range from very general, foun-
dational ones to ontologies that elucidate the specificities of particular
modularization and communication paradigms. We support two spe-
cific paradigms. First, we define an ontology for software components
that may be used in traditional middleware architectures, e.g., applica-
tion servers. Second, we specify an ontology for Web services. Through
the reuse of existing foundational ontologies and our new Core Soft-
ware Ontology, our proposal offers several advantages. In particular,
it avoids the typical shortcomings related approaches exhibit and it al-
lows for the concise definition of commonalities and differences of the
two paradigms.

1 Introduction

The understanding and management of complex systems often require the-
ories that may cover several levels of abstraction. The reason is that even
if a complex system is completely defined at a fine-grained micro level, it is
often impractical if not impossible for some spectator or user to understand
how the very same system behaves at a more abstract, a macro level.

Large software systems are complex systems for which these observations
obviously hold. Even though the lines of code define precisely the behavior

1



of the system, such a view is impractical and often infeasible when someone
considers a large software system. There are formal theories for smaller
software systems that account for the meaning of the code and the behavior
of such systems and they have led to important fields of application, e.g.,
software verification. However, there is a lack of corresponding abstracting
formal theories of how software systems behave at large that would also take
account of the concepts that software experts use to develop large software
systems, as well as to monitor, maintain, and run them.

This paper proposes several ontologies as formal theories to describe
some crucial aspects of software systems and software systems behavior at
large. In particular, this paper focuses on aspects of modularization of and
communication within large software systems. Modularization and commu-
nication have been understood by the software engineering community as
core vehicles to organize large software systems. Correspondingly, concepts
and technology have been developed to support this organization.

Currently, we see two major strands of such concepts and technologies.
The first one is focused around various notions of software components and
middleware technologies such as collected, e.g., in application servers. This
is established practice and the fibre of many large-scale software systems
[Mah04]. The second strand accentuates the need for an even stronger de-
coupling of software and wider distribution of software processes through
service-oriented architectures, frequently realized through Web services con-
cepts and technologies [ACKM03]. The efforts in this second area are still
under heavy development.

So far, ontological descriptions of modularization of and communication
within/between large software systems have dealt almost exclusively with
the moving target of Web services: OWL-S [MBH+04], WSMO [RKL+05],
or METEOR-S [POSV04] are prominent representatives of this line of re-
search. In spite of their seminal roles that led to a lot of fruitful research into
the formulation and application of Web service ontologies, they exhibit sev-
eral characteristics that are undesirable for ontologies that aim to become
reference ontologies and, hence, wide-spread standard. For instance, (i),
they are conceptually ambiguous, leading to undesirable misunderstandings
and, (ii), they are hard to integrate into overarching frameworks, because
they are not well-founded upon an upper-level ontology. These shortcom-
ings have been analyzed in depth in [MOGS04] and, hence, led to the effort
to define a well-founded reference ontology in this domain that would be
able to deal with common use cases (such as the ones elaborated in Section
2) and meet quality criteria as briefly, though incompletely indicated by (i)
and (ii). In particular, our proposal also deals with the lopsided situation
that the ontological description of Web services has received great atten-
tion, but the ontological description of the (so far) practically more relevant
middleware concepts and technologies has been entirely neglected. In doing
so, we show that the conceptual difference between the two paradigms is in
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fact quite small.

Structure of this Paper In the following, we illustrate two use cases
(from a larger set of use cases described in [OESV04, OLES05]), which al-
low us to derive requirements for the targeted ontologies (Section 2) and
we explain the typical shortcomings of existing ontologies that we avoid.
To respond to the requirements in a flexible, extensible manner, we provide
a framework of a set of ontologies. In fact, some of them (i.e., DOLCE,
Descriptions & Situations, Ontology of Plans, and the Ontology of Informa-
tion Objects as also depicted in Figure 1) we just reuse. These ontologies
are surveyed in Section 3 to make this paper self-contained. The original
contribution of this paper follows subsequently:

• The Core Software Ontology (CSO): provides a new extensible foun-
dation for describing software, in general (Section 4).

• The Core Ontology of Software Components (COSC): provides special-
ized concepts needed for software components and application servers
(Section 5).

• The Core Ontology of Web Services (COWS) reuses all the other ones
in order to establish a well-founded ontology for Web services (Sec-
tion 6).

All ontologies can be obtained from http://cos.ontoware.org. Fi-
nally, Section 7 uses the shortcomings introduced in Section 2 in order to
validate our proposed approach. The description is illustrated by an elab-
orate example running through from the use cases to the validation of the
ontologies. Before we finally conclude, we survey related work. In order to
restrict this paper to a reasonable size, we only elaborate on why and how
to engineer the ontologies described in this paper. We demonstrate how to
use the ontologies, i.e., how to exploit them in a middleware environment
and how to provide formalized data corresponding to the ontologies, in the
complementary article [OSE06].

2 Use Cases and Requirements

Although our approach can be applied to large software systems in general,
we provide two short use cases to demonstrate the difficulties in managing
distributed applications in this section (2.1 and 2.2, respectively). We argue
that one reason for that is the missing conceptual coherence of application
server and Web service descriptors. We motivate that a careful and rigorous
modelling of the computational domain is necessary to succeed. Finally, 2.3
extracts and lists modelling requirements for the ontology to be formalized
in the remainder of this paper.
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Figure 1: Overview of the ontologies as UML package diagram. Packages represent
ontologies; dotted lines represent dependencies between ontologies. An ontology O1

depends on O2 if it specializes concepts of O2, has associations with domains and
ranges to O2 or reuses its axioms.

2.1 Access Rights of Software Components

The increasing use of the Web as a channel to access information systems
forced conventional middleware platforms to provide support for Web access.
This support is typically associated with application servers [ACKM03]. On
the upside, application servers offer a wealth of functionality to the de-
veloper. On the downside, application servers have become very complex
software systems often subsuming conventional middleware in one prod-
uct. Examples are IBM WebSphere or JBoss. Application servers foster
component-based software engineering and introduce the use of deployment
descriptors. Deployment descriptors, or short descriptors, are XML files
that describe and configure components in a declarative way.

Developing and managing software components in an application server
is a difficult task even though deployment descriptors reduce coding efforts.
The reason is that the conceptual model underlying the different descriptors
is only implicit. Thus, its bits and pieces are difficult to retrieve, check for
validity, and maintain. Rather, it would be desirable to query a system from
different perspectives, e.g., are there any user accounts with indirect permis-
sion to resources? And if yes, what are those resources? Answering such
questions requires to make the conceptual model underlying the different de-
scriptors and security realms explicit by an ontology. When confronted with
this example, however, one might wonder: What is the difference between
the user accounts in the operating system, in the database system and within
the application server’s realm (where user accounts are called principals)?
Are there any ontological differences except their placement in a different
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realm? Also, we might be interested in the relationship between a user ac-
count in an information system and the corresponding natural person. To
infer the total of access rights granted for a natural person who might have
several user accounts in and across information systems, might reveal fur-
ther security holes. Thus, modelling user accounts, roles, and access rights
demands a rigorous ontological modelling.

We here present a tricky case that commonly occurs when you must
link legacy components. It deals with indirect permissions due to context
switches in application servers (cf. Figure 2). Suppose a customer, identified
by the user account dob, logs into a Web shop via HTTP basic authenti-
cation. The script on this page — say, a servlet — might connect to the
CustomerEntityBean, an Enterprise JavaBean, which in turn accesses the
Customer table in a legacy database. The legacy database defines its own set
of user accounts, which differs from the user accounts in the J2EE (Java 2
Platform Enterprise Edition) realm. We assume that only the dbuser (typ-
ically the administrator) can access the Customer table. So, the EJB must
perform an explicit context switch (frequently called the run as paradigm).
The call succeeds because dbuser’s credentials are propagated. [OSE06]

Figure 2: Example of indirect permission. [OSE06]

To overlook the situation outlined above, the developer or administrator
would have to analyze two different deployment descriptors, as well as the
source code. First, the descriptor of the servlet engine (web.xml) states
that only authenticated users may access the WebShopServlet. Second,
the WebShopServlet itself accesses the CustomerEntityBean. The servlet’s
doGet() method serves the incoming HTTP requests. In our case it queries
user account information out of the Customer table by means of the bean in
order to display it to the user. After retrieving a handle to the bean via the
Home interface, the getCustomerName() method of the bean is invoked by
the servlet. Third, the deployment descriptor of the CustomerEntityBean,
called ejb-jar.xml, states that the bean performs a context switch via the
<run-as-specified-identity> tag. It thus accesses the database table
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with the dbuser’s credentials. We list all of the descriptors and source code
snippets in the Appendix starting on page 44.

2.2 Policy Handling of Web Services

The paradigm of service-oriented architectures (SOA) factorizes the func-
tionality of an application in loosely coupled software building blocks, viz.,
services. The Web-based middleware for SOA-based applications is called
Web services. Web services subsume a set of protocols and XML-languages
for interface description, invocation, discovery, and composition of services.
[ACKM03]

Web services are built on top of existing middleware platforms, such as
application servers, and introduce additional complexity. Similar to deploy-
ment descriptors in application servers, WS* descriptions manage orthog-
onal aspects in an application-independent way. By WS*, we mean Web
service specifications, such as WSDL (Web Service Definition Language),
WS-Security, or WS-Policy.1 WS* descriptions are XML files that declar-
atively describe how developers should deploy and configure Web services.
So, WS* descriptions are exchangeable, and developers might use different
implementations for the same Web service description. WS* descriptions’
disadvantages, however, are also visible. Although the different standards
are complementary, you might produce models composed of different WS*
descriptions that are inconsistent but don’t easily reveal their inconsisten-
cies. This happens because no coherent formal model of WS* descriptions
exists, so it’s hard to query the system for conclusions that come from inte-
grating several WS* descriptions.

We here present a use case that shows a conclusion derived from both
a WS-BPEL and WS-Policy description,2 consider the following case. Let’s
assume we realize a Web shop with internal and external Web services com-
posed and managed by a WS-BPEL engine. After the submission of an
order, we have to check the customer’s credit card for validity. We assume
that credit card providers (VISA, MasterCard, etc.) offer this functional-
ity via Web services. The corresponding WS-BPEL process, checkAccount,
thus invokes one of the provider’s Web services, depending on the customer’s
credit card.

Suppose now that the Web service of one credit card provider, say Mas-
terCard, only accepts authenticated invocations conforming to Kerberos
[NYHR05] or X509 [HFPS99]. It states such policies in a corresponding
WS-Policy document. The invocation will fail unless the developer ensures
that the policies are met. Without automatic policy matching, the devel-

1http://www.ibm.com/developerworks/views/webservices/standards.jsp
2The Business Process Execution Language (WS-BPEL) is similar to existing workflow

languages. It is used to specify how Web services can be composed. WS-Policy allows
expressing simple access policies for Web services.
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oper has to check the policies manually at development time. We list both
descriptors in the Appendix starting on page 45.

Also in this example we are confronted with fundamental ontological
questions. What is the difference between a policy of a Web service and
an access right on a software component? Are they the same? Can work-
flows of Web services be modelled such as the invocation chain of software
components?

2.3 Modelling requirements

The two use cases above, access rights of software components and policy
handling of Web services, give us indications of what concepts a suitable
ontology must contain. It is necessary to model information about user
accounts, access rights, software components, workflow information, and
policies.

In a similar manner, we have introduced further use cases in [OESV04,
OLES05] where semantic descriptions of components and services can be
exploited to automate — or at least facilitate — some development and
management tasks. The use cases in [OESV04] consider reasoning with
software components: libraries and their dependencies, conflicting licenses
of libraries, capability descriptions, component classification and discovery,
semantics of parameters, support in error handling, reasoning with trans-
actional settings and reasoning with security settings. The use cases in
[OLES05] consider Web services: analyzing message contexts, selecting ser-
vice functionality, detecting loops in the interorganisational workflow, incom-
patible inputs and outputs, relating communication parameters, monitoring
of changes, aggregating service information and quality of service.

Altogether, the use cases let us derive a set of modelling requirements
for deciding which aspects our ontology should formalize. The modelling
requirements are: (i) libraries, licenses, component profiles, component tax-
onomies, API descriptions, semantic API descriptions, access rights and
workflow information of software components and (ii) service profiles, ser-
vice taxonomies, policies, workflow information, API descriptions, as well as
semantic API descriptions of Web services. We do not claim that the mod-
elling requirements are exhaustive. However, they allow us to constrain our
modelling horizon. The resulting ontology will be designed in an extensible
way such that further modelling requirements can be met easily.

With the modelling requirements available, it is possible to check whether
there exist ontologies that already meet the requirements. In fact, we did
analyze two existing ontologies, namely [SOR04] and [MBH+04]. The anal-
ysis in [MOGS04, GMSO03] yielded that both existing ontologies could be
reused for our purposes but are afflicted with the following shortcomings
which are typical for commonly built ontologies:
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Conceptual Ambiguity When it is difficult for users to understand the
intended meaning of concepts, the associations between these con-
cepts, as well as how they relate to the modelled entities, we speak of
conceptual ambiguity of an ontology.

Poor Axiomatization Unlike conceptual ambiguity, poor axiomatization
reflects the lesser problem when the definition of concepts is clear, but
axiomatization in the ontology itself needs improvement.

Loose Design Loose design of an ontology means that it contains mod-
elling artifacts. Modelling artifacts are concepts and associations which
do not bear ontological meaning.

Narrow Scope An ontology is afflicted with narrow scope when it is un-
clear how a distinction could be made between the objects and events
within an information system (regarding data and the manipulation of
data) and the real-world objects and events external to such a system.
As an example consider the distinction between a user account and its
corresponding natural person(s).

We concluded that the problems can be avoided when a carefully engi-
neered foundational ontology is used as a modelling basis. Therefore, section
3 discusses an appropriate foundational ontology.

3 Modelling Basis

In the following Sections 3, 4, 5, and 6, we design an appropriate ontology.
To be appropriate the ontology should fulfill the following criteria: (i) the
ontology should meet the modelling requirements mentioned in the previous
section. (ii) the ontology should avoid the typical shortcomings introduced
in the previous section. (iii) the ontology should capture the idiosyncracies
of software components and Web services and should be easily reusable in
different platforms.

When designing such an ontology, it is desirable to start with an exten-
sive and sound modelling basis. Hence, our methodology is geared towards
reuse of generic ontologies in order to reduce modelling efforts. Figure 1
already provided an overview of the reused ontologies and the ontologies
we contribute. We begin in this section by briefly surveying the reused
ontologies DOLCE [OGGM02], Descriptions & Situations, the Ontology of
Plans, and the Ontology of Information Objects (the latter are described in
[GBCL04]).

3.1 DOLCE

Using a foundational ontology as a modelling basis means relating core con-
cepts and associations to some proposed invariant categories (which are
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reflected in the foundational ontology itself). This prompts the ontology
engineer to sharpen his notions with respect to the distinctions made in the
foundational ontology. What is typically gained is an increased understand-
ing of one’s own ontology.

We choose the DOLCE foundational ontology3 for three reasons. First,
DOLCE provides theories for modelling contexts, plans, and information
objects. All of them are required for our ontologies and are explained below.
Second, DOLCE commits to ontological choices (perdurantism, possibilism,
being multiplicative, being descriptive) which are suitable for our domain.
Third, DOLCE comes both in a reference and in an application version,
axiomatized in quantified modal logic and implemented description logics
(OWL DL), respectively. That allows us to formalize our own ontology with
a maximum of expressiveness and to use it for run time reasoning later on.

Particular

Endurant Perdurant Quality Abstract

participantIn

Region
Physical

Endurant

NonPhysical

Endurant
Physical

Quality

Temporal

Quality

Abstract

Region

Abstract

Quality

Temporal

Region

Physical

Region
quale

inherentIn

inherentIn

inherentIn

part

part

quale
quale

Figure 3: Sketch of DOLCE as UML class diagram. [GBCL04]

DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineer-
ing) classifies entities into four categories. These are, as shown in Figure 3,
Endurants, Perdurants, Qualities and Abstracts [MBG+02]. The main relation
between Endurants (i.e., objects or substances) and Perdurants (i.e., events
or processes) is that of participation: an Endurant “lives” in time by par-
ticipating in a Perdurant. DOLCE introduces Qualities as another category
that includes the “individualized” properties of objects or events which we
can perceive, measure, or conventionally assert (e.g., color, density, legal
validity). Finally, Abstracts do not have spatial or temporal qualities, nor
are they qualities themselves. In particular, Regions are used to encode the
representation of Qualities as conventionalized in some metric or conceptual
space (e.g., a color space, a musical pitch space, a set of legal values). The

3DOLCE-related documents can be found at http://dolce.semanticweb.org.
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corresponding association is called quale in DOLCE. Every category features
a whole taxonomy of specializations.

3.2 Descriptions & Situations (DnS)

The domain we want to model, namely that of software components and
Web services, requires an ontological formalization of context. The most
prominent examples for the need of context modelling are the different views
that might exist on data. Data can play the role of both input and output,
depending on the context considered.

DOLCE can be augmented by an ontological theory of contexts called
Descriptions & Situations (DnS). DnS can be considered an ontology design
pattern for structuring core and domain ontologies that require contextual-
ization. The following paragraphs provide a brief introduction. For a more
detailed description please cf. [GBCL04, GM03a].

When Descriptions & Situations is used with DOLCE, the entities from
the DOLCE domain of quantification are called ground entities, while the
newly introduced entities from the domain of quantification of Descriptions
& Situations are called descriptive entities. We also visualize this distinc-
tion in Figure 4. Parameters, Roles, and Courses are the descriptive entities
which are special kinds of ConceptDescriptions (a DOLCE:NonAgentiveSocial-

Object).4 The descriptive entities “describe” the ground entities in the fol-
lowing way:5 Parameters are valuedBy DOLCE:Regions, Roles are playedBy

DOLCE:Endurants and Courses sequence DOLCE:Perdurants. The descriptive
entities are aggregated by a SituationDescription via the defines association.
A SituationDescription ontologically represents a context type, while a Situ-

ation can be understood as representing a context occurrence.6

Furthermore, the ontology can be used to talk about the association
between a set of (assertional) axioms holding for the ground entities, and
a set of descriptive axioms. This association is called satisfies. The first
set is reified as a Situation, which groups ground entities via the setting

association. The second set of axioms is reified as a SituationDescription.
A Situation s satisfies a SituationDescription d if the axioms for the ground
entities grouped by s are in accordance with the axioms required by d.

The Descriptions & Situations ontology only defines the most generic

4Throughout the paper, concepts and associations are written in sans serif and are
labelled in a namespace-like manner. Namespace-prefixes indicate the ontology where
concepts and associations are defined. If no namespace is given, concepts and associations
are assumed to be defined in the ontology currently discussed.

5The reader may note, that we occasionally use concept and association names (written
in sans serif and preceded by a namespace to clarify their origin) as subjects, objects, and
predicates of the sentences in the text.

6In the OWL implementation and throughout the related literature, ConceptDescription

is also known as Concept, and SituationDescription is also known as Description. We use
alternative names here for consistency with past work.
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Figure 4: The Descriptions & Situations (DnS) ontology as UML class diagram.
Grey classes represent the ground entities of DOLCE. Descriptive Entities are Pa-

rameters, Roles and Courses. [GBCL04]

satisfies association implying that at least some components of a Situation-

Description must describe entities in the Situation. This constraint is min-
imal and for specialized SituationDescriptions additional constraints should
be given in order to reason with the satisfaction of candidate Situations.
One example is the ontology discussed in the next section: the Ontology of
Plans.

Figure 4 also features the modalTarget and requisiteFor associations. The
modalTarget association holds between Roles and Courses, and can be used to
represent (reified) meta-level constraints on DOLCE’s participantIn associa-
tion (cf. Figure 3) between Endurants and Perdurants. For example, rights,
duties, obligations, liabilities, etc., are cases of the more specific attitudeTo-

wards association.
The requisiteFor association holds between Parameters and either Roles or

Courses, and can be used to represent (reified) meta-level constraints on the
DnS:locatedIn association between DOLCE:Regions and either DOLCE:Endurants

or DOLCE:Perdurants.7

In the remainder of this article, we also use other notions from the
overall DnS ontology in conjunction with DOLCE, notably the Collection

concept, the member association, and the unifies association. Collections

are DOLCE:SocialObjects that are used to represent (reified) sets of entities
sharing some common property, e.g., the set of components in a system, the
set of transactions in a time-span, or even a set of tasks to be performed
in a same scheduled activity. Collections have a member association to the

7The DnS:locatedIn(x, y) association is a composition of DOLCE:inherentIn(z, x), and
DOLCE:quale(z, y).
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members of a reified set. Notice that the members can change in cardinality
and identity, without affecting the identity of their collection, unless explic-
itly required. A Collection is identified by means of characteristic Roles or
Courses, and ultimately there is at least one SituationDescription that unifies

it by defining those Roles or Courses.

3.3 Ontology of Plans (OoP)

One of the explicit requirements derived from the reasoning with transac-
tional settings, analyzing message contexts and detecting loops in interorga-
nizational workflows use cases is the possibility to model workflow informa-
tion between software components or between Web services. The Ontology
of Plans (OoP), formalizes a theory of plans in a generic way. It can be
reused to model workflow information as well.

The Ontology of Plans applies the ontology design pattern of Descrip-
tions & Situations to characterize planning concepts. The intended use of
the ontology is to specify plans at an abstract level independent from exist-
ing calculi. It is expected that the concepts of the ontology are implemented
as a framework to define detailed or approximate plans for any use (social,
personal, computational) by appropriate tools. The resulting plans would
then be grounded in some system that implements a set of functionalities
and reasons according to the specifications given here. For a detailed de-
scription the reader is referred to [GBCL04].

DnS:SituationDescription

PlanTask
DnS:definesDnS:AgentiveRole

DnS:CourseDnS:Role

DnS:defines

DnS:Situation

precondition

postcondition

Activity

DOLCE:Perdurant

DOLCE:Endurant

DnS:sequencesDnS:playedBy

DnS:setting

DnS:setting

PlanExecution

proactively

Satisfies

Figure 5: The Ontology of Plans as UML class diagram. Grey classes represent
ground entities. Concepts from Descriptions & Situations are labelled namespace-
like with DnS. [GBCL04]

Plans are special kinds of DnS:SituationDescriptions, which DnS:define

Tasks (a special kind of DnS:Course). A typical hierarchy of Tasks (case,
branching, synchronization, concurrency, cycling, etc.) is characterized with
the help of succession relations. Furthermore, Tasks DnS:sequence Activities

— a specialization of DOLCE:Perdurant. Activities are complex actions that
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are at least partly conventionally planned.
Specializations of the satisfies association of Descriptions & Situations

are applied to express preconditions, postconditions, and several types of sat-
isfaction between a Plan and specific DnS:Situations, e.g., proactivelySatisfies.

As an example we might consider the CustomerEntityBean which mod-
ifies the Customer table (cf. our motivating example in 2.1). In order to
formalize this setting, we introduce the CustomerEntityBeanPlan which
DnS:defines the ModifyTable task. An actual execution of this task is repre-
sented via the 23:58:00 instance to reflect its timestamp, i.e., DnS:sequences

(ModifyTable, 23:58:00). We keep this as a running example, refine and
extend it as we move along.

(Ex1) OoP:Plan(CustomerEntityBeanPlan)

(Ex2) DnS:defines(CustomerEntityBeanPlan,ModifyTable)

(Ex3) OoP:Task(ModifyTable)

(Ex4) DnS:sequences(ModifyTable, 23:58:00)

(Ex5) OoP:Activity(23:58:00)

(Ex6) OoP:PlanExecution(ModifyTableExecution)

(Ex7) DnS:setting(23:58:00,ModifyTableExecution)

3.4 Ontology of Information Objects (OIO)

In our motivating examples we have encountered fundamental ontological
questions, e.g., how to model the relationship between a user in an infor-
mation system and its corresponding natural person. Hence, another re-
quirement for our ontology is a concise distinction between entities in an
information system and the real world.

The DOLCE library provides another ontology that allows us to formal-
ize such relationships: the Ontology of Information Objects (OIO). Informa-
tion objects are the core notion of a semiotic ontology design pattern which
we briefly discuss here. For a more detailed discussion please cf. [GBCL04].

A content (information) transferred in any modality is assumed to be
equivalent to a kind of social object called InformationObject. Information-

Objects are spatio-temporal entities of abstract information as described in
Shannon’s communication theory, hence they are assumed to be in time and
realized by some entity.

Figure 6, which depicts the concepts and associations of the ontology,
is best explained by a concrete example. The encoding of the Customer-

EntityBean in Java could be considered an InformationObject. In this case,
the InformationObject would be orderedBy the Java language (the Information-

EncodingSystem) and realizedBy a specific appearance of the algorithm in
main memory (e.g., the contents between memory addresses 0x2112-0x5150 ).
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Figure 6: The Ontology of Information Objects as UML class diagram. Con-
cepts defined in DOLCE and Descriptions & Situations (DnS) are labelled with
corresponding namespaces. [GBCL04]

The CustomerEntityBean expresses a specific OoP:Plan of computational
tasks (such as ModifyTable) and is interpretedBy a CPU.8

(Ex8) OIO:InformationObject(CustomerEntityBean)

(Ex9) OIO:orderedBy(CustomerEntityBean, Java)

(Ex10) OIO:InformationEncodingSystem(Java)

(Ex11) OIO:realizedBy(CustomerEntityBean, 0x2112-0x5150)

(Ex12) OIO:InformationRealization(0x2112-0x5150)

(Ex13) OIO:expresses(CustomerEntityBean,CustomerEntityBeanPlan)

(Ex14) OIO:interpretedBy(CustomerEntityBean,CPU)

(Ex15) DOLCE:PhysicalObject(CPU)

4 Core Software Ontology (CSO)

In order to model the required aspects of components and services, it is
necessary to identify fundamental concepts, such as software or data, and to
formalize them by reusing our modelling basis. In this section, we design a
Core Software Ontology, which formalizes such fundamental concepts. The
Core Software Ontology is later reused to formalize the required aspects
of components and services. Thus, the Core Software Ontology acts as a
common basis for the Core Ontologies of Software Components and Web
Services which are built in the subsequent sections.

8We assume without further mention that for any association there exists an inverse.
The naming of associations and their inverses follows an intuitive scheme, e.g., the inverse
of realizedBy is called realizes.
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Having a common basis is beneficial because it requires modelling the
fundamental concepts only once. In essence, the Core Software Ontology
meets all modelling requirements which are common to software components
and Web services (as derived by the use cases). These are: API descrip-
tions, semantic API descriptions, workflow information, access rights and
policies. The modelling requirements constrain our modelling horizon and
give us indications which concepts and associations we have to model. When
formalizing concepts and associations, we usually specialize the ontology de-
sign patterns provided by the DOLCE library. If such design patterns are
not applicable the modelling is left to our discretion. Note that we consider
our contributed ontologies as being formalized in DOLCE’s representation
formalism, viz., modal logic S5. Although we do not explicitly use modal
quantifiers, their usage is rooted in DOLCE’s concepts and associations, cf.
[MBG+03], which we reuse for our modelling.

4.1 Software vs. Data

As mentioned above, the Core Software Ontology formalizes the most fun-
damental concepts required to model both components and services. We
start in this section with a detailed discussion of software and data. In
order to clarify both concepts, which are heavily inflicted by polysemy, it
is necessary to identify and formalize the entities of the computational do-
main. The computational domain has a reality of its own, consisting of
data manipulated by programs that implement algorithms. The programs
that manipulate the data are usually referred to as software. Upon close
inspection, it seems that the term software is overloaded and refers to at
least three different concepts [GMSO03]:

1. The encoding of an algorithm specification in some kind of represen-
tation (i.e., OIO:InformationEncodingSystem). Encoding can be either
in mind, on paper, or any other form. The CustomerEntityBean

can be represented as Java or pseudo code, for instance. This is
SoftwareAsCode (which we abbreviate to Software) and is a kind of
OIO:InformationObject.

2. The realization of the code in a concrete hardware. These realiza-
tions are the DOLCE:PhysicalEndurants that are stored on hard disc or
residing in memory. Henceforth, we call them ComputationalObjects

(a special kind of OIO:InformationRealization). This could be the ap-
pearance of the CustomerEntityBean in main memory that can be
interpreted and executed by the CPU. Hence, the difference between
1 and 2 is that 2 is physically present in some hardware.

3. The running system, which is the result of an execution of a Comput-

ationalObject. This is the form of software which manifests itself in a
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sequence of activities in the computational domain, e.g., the increment
of a variable, the comparison of data, the storage of data on the hard
disc, etc. This form of software is a DOLCE:Perdurant which we call
ComputationalActivity.

ComputationalObjects (item 2) are a specialization of OIO:Information-

Realization (any entity that realizes an OIO:InformationObject) as introduced
in the Ontology of Information Objects. ComputationalActivities (item 3)
are a specialization of OoP:Activity as introduced in the Ontology of Plans.
ComputationalObjects and ComputationalActivities are the entities that live
in the computational domain.

ComputationalObjects are characterized by the fact that they are neces-
sarily dependent on Hardware which is a DOLCE:PhysicalObject. A suitable
dependence association is axiomatized in DOLCE and is called specifically-

ConstantlyDependsOn.9 A ComputationalObject is considered here as a spatio-
temporally bounded entity, therefore it exists for the time a memory cell is
realizing a certain Software, for instance. Copies of ComputationalObjects in
the same or another Hardware are different, although related by some kind of
“copy” association. For example, in the case of mobile agents, where people
refer to a mobile agent as a piece of software that can move from machine to
machine executing the “same” process, it is useful to make agents distinct
because the “same” agent can perform differently from machine to machine.
The similarity has to be caught via a specialized association, such as copy,
which we do not define here, rather than via logical identity.

The execution of a ComputationalObject leads to ComputationalActivities.
ComputationalActivities require at least one ComputationalObject as a partic-
ipant. The definitions below formalize the described properties.10

(D1) ComputationalObject(x) =def OIO:InformationRealization(x) ∧
∀y(DOLCE:participantIn(x, y)→ ComputationalActivity(y)) ∧
∃d(DOLCE:specificallyConstantlyDependsOn(x, d) ∧ Hardware(d))

(D2) ComputationalActivity(x) =def OoP:Activity(x) ∧
∀y(DOLCE:participantIn(y, x)→ ComputationalObject(y)) ∧
∃c(DOLCE:participantIn(c, x) ∧ ComputationalObject(c))

(D3) DOLCE:specificallyConstantlyDependsOn(x, y) =def

�(∃t(DOLCE:presentAt(x, t)) ∧ ∀t(DOLCE:presentAt(x, t)→
DOLCE:presentAt(y, t)))

9An entity that specificallyConstantlyDependsOn another entity is similar to weak enti-
ties in Entity Relationship Models. An entity x specificallyConstantlyDependsOn another
entity y iff, at any time t, x cannot be present at t unless y is also present at t. DOLCE
formalizes this association by using the DOLCE:presentAt(x, t) association that stands for
“x is present (exists) during the time interval or instant t.” Note that qlT (t′, x) is the
temporal location of x in t′. [MBG+03]

10We consider unbound variables in definitions, axioms, and theorems as universally
quantified.
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(D4) DOLCE:presentAt(x, t) =def ∃t
′(DOLCE:qlT (t′, x) ∧ DOLCE:part(t, t′))

As an example, consider the ComputationalObject residing in memory
between addresses 0x2112 and 0x5150 whose (partial) execution leads to
the ComputationalActivity carried out at and identified by the timestamp
23:58:00. The ComputationalObject could be a concrete appearance of the
CustomerEntityBean (cf. the motivating example in 2.1) and the Computational-

Activity could be the execution of one of its methods.

(Ex16) ComputationalObject(0x2112-0x5150)

(Ex17) ComputationalActivity(23:58:00)

(Ex18) DOLCE:participantIn(0x2112-0x5150, 23:58:00)

Regarding item 1, we characterize Software as an OIO:InformationObject.
Accordingly, we specialize the design pattern represented by the Ontology
of Information Objects (cf. Figure 6 on page 12). First, we constrain the
OIO:realizedBy association to ComputationalObjects. Second, we say that
Software OIO:expresses an OoP:Plan (cf. Figure 7 for an overview). The
OoP:Plan consists of an arbitrary number of ComputationalTasks that DnS:-

sequence ComputationalActivities (cf. Definition (D6) below). As explained in
the Ontology of Plans (Section 3.3), Tasks are the descriptive counterparts of
OoP:Activities which are actually carried out. Definition (D5) below captures
this intuition of software.

(D5) Software(x) =def OIO:InformationObject(x)∧∀y(OIO:realizedBy(x, y)→
ComputationalObject(y)) ∧ ∃p, t(OoP:Plan(p) ∧ OIO:expresses(x, p) ∧
ComputationalTask(t) ∧DnS:defines(p, t))

(D6) ComputationalTask(x) =def OoP:Task(x) ∧ ∀y(DnS:sequences(x, y)→
ComputationalActivity(y))

The ComputationalObject introduced in (Ex16) can be regarded as a con-
crete realization of Software (in our case as the CustomerEntityBean). We
have learned in our motivating example that the bean modifies the Customer
table. Hence, its corresponding OoP:Plan DnS:defines a ComputationalTask

that represents the modification.11 The ComputationalActivity introduced in
(Ex17) could be one specific execution of this task.

(Ex19) Software(CustomerEntityBean)

(Ex20) OIO:realizes(0x2112-0x5150,CustomerEntityBean)

(Ex21) OIO:expresses(CustomerEntityBean,CustomerEntityBeanPlan)

(Ex22) OoP:Plan(CustomerEntityBeanPlan)

(Ex23) DnS:defines(CustomerEntityBeanPlan,ModifyTable)

(Ex24) ComputationalTask(ModifyTable)

(Ex25) DnS:sequences(ModifyTable, 23:58:00)
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Figure 7: The classification of software and data. Concepts and associations taken
from DOLCE, Descriptions & Situations (DnS), the Ontology of Plans (OoP), the
Ontology of Information Objects (OIO) are labelled with a namespace.

We consider the data which are manipulated by the programs as Comput-

ationalObjects as well. This reflects the fact that the appearances in the main
memory or on the hard disc can be interpreted as instructions for the CPU
(i.e., as software) or can be treated as data from the viewpoint of another
program. For example, the operating system manipulates application soft-
ware (loading and unloading it into memory, etc.) much like application
software manipulates application data.

Hence, Data can also be considered as a special kind of OIO:Information-

Object. The difference to Software is that Data does not OIO:express an
OoP:Plan. Furthermore, we introduce AbstractData as a special kind of Data

that identifies something different from itself. An example for AbstractData

might be a user account in a Unix operating system which has a physi-
cal counterpart in the real world. Thus, we say that AbstractData identi-

fies a DOLCE:Particular (a natural person, a company, a physical object)
[GBCL04]. The identifies association is a specialization of OIO:about. Defi-
nitions (D7), (D8), and (D9) capture these intuitions.

(D7) Data(x) =def OIO:InformationObject(x) ∧ ∀y(OIO:realizedBy(x, y)→
ComputationalObject(y))

11Note that the detail of modelling ComputationalTasks is a matter of choice. In prin-
ciple, ModifyTable can be considered a complex task and can be broken down to CPU
operations.
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(D8) AbstractData(x) =def

Data(x) ∧ ∃y(DOLCE:Particular(y) ∧ identifies(x, y))

(D9) identifies(x, y) =def

OIO:about(x, y) ∧ AbstractData(x) ∧DOLCE:Particular(y) ∧ x 6= y

As an example, we might introduce another two ComputationalObjects

that represent the dbuser and the Customer table in main memory. The
dbuser is AbstractData because it identifies a DOLCE:NaturalPerson outside
the computational domain, in this case one of the authors.12

(Ex26) ComputationalObject(0x22-0x23)

(Ex27) ComputationalObject(0x316-0x812)

(Ex28) AbstractData(dbuser)

(Ex29) AbstractData(CustomerTable)

(Ex30) OIO:realizedBy(dbuser, 0x22-0x23)

(Ex31) OIO:realizedBy(CustomerTable, 0x316-0x812)

(Ex32) identifies(dbuser,DanielOberle)

(Ex33) DOLCE:NaturalPerson(DanielOberle)

The theorem (T1) below is an entailment of our axiomatization. (T1)
states that Software must also be considered as Data. As discussed before,
this is intuitively clear because an algorithm can be considered as Data from
the viewpoint of a compiler, for example. Comparing (D5) and (D7), we
find that Software additionally OIO:expresses an OoP:Plan with at least one
ComputationalTask. Thus, Software is more specific than Data.

(T1) Software(x)→ Data(x)

4.2 API Description

The formalization of fundamental concepts such as Software and Data is a
prerequisite for defining API descriptions which is explicitly required by the
support in error handling and monitoring of changes use cases. Assuming
the object oriented paradigm (to which we limit ourselves in the remainder
of this article), we need to model classes, methods, their inputs, outputs, and
datatypes, as well as exceptions. Note that we do not strive to formalize
all constructs of object orientation. We limit ourselves to the particular
subset that is necessary to formalize simple API descriptions (e.g., we do
not formalize specific objects, polymorphism, or inheritance). Below, we
give our understanding of those concepts.

(D10) Class(x) =def Software(x) ∧ ∀y(DOLCE:properPart(y, x)→
(Data(y) ∨Method(y)))

12Note that CustomerTable is also classified as AbstractData because it identifies a mere-
ological sum of customers.
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(D11) Method(x) =def Software(x) ∧ ∀y(DOLCE:properPart(x, y)→ Class(y))

(D12) Exception(x) =def Class(x) ∧ ∀y(methodThrows(y, x)→ Method(y))

(D13) DOLCE:properPart(x, y) =def DOLCE:part(x, y) ∧ ¬DOLCE:part(y, x)

(A1) methodRequires(x, y)→ Method(x) ∧ Data(y)

(A2) methodYields(x, y)→ Method(x) ∧ Data(y)

(A3) methodThrows(x, y)→ methodYields(x, y) ∧ Exception(y)

(A4) dataType(x, y)→ Data(x) ∧ (Region(y) ∨Data(y))

Definition (D10) considers a Class as a special kind of Software that en-
capsulates an arbitrary number of Data and an arbitrary number of Meth-

ods. Vice versa, a Method is defined as being a part of a Class, having
input and output parameters and throwing exceptions.13 The associations
between Methods and their parameters and exceptions are established via
methodRequires, methodYields and methodThrows (cf. (D11), (A1), (A2), and
(A3)). Exceptions are special kinds of Classes as defined in (D12). dataType

relates Data with specific kinds of DOLCE:Regions in the case of simple
datatypes, such as strings or integers, or with other Data in the case of
complex datatypes, e.g., other classes (cf. Axiom (A4)).

As an example, both the CustomerEntityBean and the WebShopServlet
would be Classes. For the bean, we just specialize the instance introduced in
(Ex19) on page 16. The set of instances below also formalizes the servlet’s
doGet() method:

(Ex34) Class(WebShopServlet)

(Ex35) Class(CustomerEntityBean)

(Ex36) DOLCE:properPart(doGet,WebShopServlet)

(Ex37) Method(doGet)

(Ex38) methodRequires(doGet, req)

(Ex39) methodRequires(doGet, resp)

(Ex40) Data(req)

(Ex41) Data(resp)

(Ex42) dataType(req,HttpServletRequest)

(Ex43) dataType(resp,HttpServletResponse)

(Ex44) Class(HttpServletRequest)

(Ex45) Class(HttpServletResponse)

13The OoP:Plan of the Class contains all Plans of its Methods as alternatives.
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4.3 Semantic API Description

Another explicit requirement of the component classification and discovery,
semantics of parameters, selecting service functionality, and incompatible
inputs and outputs use cases is to model semantic API descriptions. The
use cases propose to model the meaning of methods and parameters in order
to allow for a more powerful search over a large and unfamiliar API, for
instance.

Our modelling so far already allows to achieve this goal. As depicted
in Figure 8, the meaning or behavior of a Method can be modelled via
OIO:expresses and a corresponding OoP:Plan. We already gave an example,
namely the CustomerEntityBeanPlan, in (Ex22) on page 16. The semantics
of parameters, as opposed to their datatypes, can be modelled via OIO:about

which can point to any concept in the ontology. Thus, it is possible to model
that the getPrice() method returns a specific Currency (a specialization of
DOLCE:AbstractRegion), for example.

(Ex46) Method(getPrice)

(Ex47) methodYields(getPrice, result)

(Ex48) Data(result)

(Ex49) dataType(result, xsd:float)

(Ex50) OIO:about(result,Euro)

(Ex51) Currency(Euro)

Interface Method

Class

OoP:Plan

implements

interfaceRequires

methodYields

methodRequires

Data DOLCE:Particular

OIO:expresses

OIO:about

Figure 8: Semantic API description.

We here introduce the notion of an Interface in order to group methods
and parameters independently of the Classes they belong to (cf. (D14) and
(A5) below). The Interface extends the notion of Java interfaces because it
allows to grasp additional information as explained above. In our ontology,
the Interface has to be classified as Data as it cannot be executed, i.e., it
does not OIO:express an OoP:Plan. Different Classes may implement the
same Interface as stated in (A6). In doing so, we are able to model that
different Classes provide names for Methods with comparable functionality
(e.g., getPrice() vs. getCost()).
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(D14) Interface(x) =def Data(x) ∧ ∀m(inferfaceRequires(x,m)→
(∃p(OIO:expresses(m, p) ∧ OoP:Plan(p)) ∧ ∀d(methodRequires(m,d)→
∃e(DOLCE:Particular(e) ∧ OIO:about(d, e)))))

(A5) interfaceRequires(x, y)→
DOLCE:properPart(y, x) ∧ Interface(x) ∧Method(y)

(A6) implements(x, y)→ Class(x) ∧ Interface(y) ∧
∀m1∃m2(interfaceRequires(y,m1)→ DOLCE:properPart(x,m2))

4.4 Workflow Information

The possibility of modelling workflow information, such as information about
the WebShopServlet invoking the CustomerEntityBean, is explicitly re-
quired by the use cases reasoning with transactional settings, reasoning with
security settings, analyzing message contexts and detecting loops in interor-
ganizational workflows.

For modelling workflow information, we use and specialize the ontology
design pattern of the Ontology of Plans (cf. Figure 5 on page 11) which
in turn builds on Descriptions & Situations. We do so because the design
pattern allows abstracting from concrete, i.e., actually executed, workflows.
That means, we use ComputationalTasks, which are OoP:Tasks, to represent
invocations, the addition of two integers, etc., rather than the actual execu-
tions of such tasks (which would be ComputationalActivities). Computational-

Tasks are grouped and linked via the OoP:successor and OoP:predecessor

associations in an OoP:Plan (a DnS:SituationDescription).14

The workflow information we need to model is twofold. First, we have
to model invocations between software. Second, we also need to model the
inputs and outputs of tasks because the Ontology of Plans does not provide
such capabilities.

4.4.1 Invocations Between Software

We start with two associations, viz., executes and accesses, to formalize in-
vocations between Software. Below, (D15) introduces executes as “shortcut”
between Software, such as Class or Method, and a ComputationalTask. For ex-
ample, the doGet() method of our WebShopServlet executes an invocation
task.

(D16) introduces accesses as “shortcut” between the ComputationalTask

and the Software or Data that is being called or modified by the task. For
example, the invocation task of the WebShopServlet accesses the Customer-
EntityBean. The sequence of executes and accesses can be further abbrevi-
ated by invokes which is declared as being transitive (cf. (D17) and (A7)).

14The OoP:predecessor and OoP:successor associations hold between OoP:Tasks, and are
different from OoP:precondition and OoP:postcondition associations, which hold between
OoP:Plans and DnS:SituationDescriptions.
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Axioms (A8) and (A9) are introduced for convenience. Regarding (A8), we
say that also a Class executes a ComputationalTask when one of its Methods

executes this task. Regarding (A9), we state that invokes also holds when
we have succeeding tasks.

(D15) executes(x, y) =def Software(x) ∧ ComputationalTask(y) ∧
∃co, ca, p(ComputationalObject(co) ∧ ComputationalActivity(ca) ∧
OoP:Plan(p) ∧ OIO:realizedBy(x, co) ∧OIO:expresses(x, p) ∧
DnS:defines(p, y)∧DnS:sequences(y, ca)∧DOLCE:participantIn(co, ca))

(D16) accesses(x, y) =def

ComputationalTask(x) ∧Data(y) ∧ ∃ca, co(DnS:sequences(x, ca) ∧
ComputationalActivity(ca) ∧ DOLCE:participantIn(co, ca) ∧
ComputationalObject(co) ∧OIO:realizes(co, y))

(D17) invokes(x, y) =def ∃z(executes(x, z) ∧ accesses(z, y))

(A7) invokes(x, z)← invokes(x, y) ∧ invokes(y, z)

(A8) executes(x, y)←
(executes(z, y) ∧Method(z) ∧ DOLCE:properPart(z, x) ∧ Class(x)

(A9) invokes(x, z)← executes(x, y) ∧ OoP:successor(y, t) ∧ accesses(t, z)

In some environments, calls are executed on behalf of a user account
whose identity can vary at run time or the authentication can be changed
explicitly (called the run-as paradigm). Our running example requires us
to express the context switch of the CustomerEntityBean, for instance. In
order to model this kind of information we introduce the association context-

User as shown below.

(D18) contextUser(x, y) =def

DnS:attitudeTowards(x, y) ∧ User(x) ∧ ComputationalTask(y)

Revisiting our example, we have a ComputationalTask that models the
WebShopServlet’s call of the CustomerEntityBean. We also have a task
that models the modification of the Customer table on behalf of the bean.
Note that this task is executed with dbuser’s credentials. In the examples
below, (Ex55) can be inferred from (Ex34), (Ex36), (Ex37), (Ex52), (Ex53),
(Ex54), (A7) and (A8).

(Ex52) ComputationalTask(CallBean)

(Ex53) executes(doGet,CallBean)

(Ex54) accesses(CallBean,CustomerEntityBean)

(Ex55) (Ex34), ..., (A8) |= invokes(WebShopServlet,CustomerEntityBean)

(Ex56) ComputationalTask(ModifyTable)

(Ex57) executes(CustomerEntityBean,ModifyTable)

(Ex58) contextUser(dbuser,ModifyTable)

(Ex59) accesses(ModifyTable,CustomerTable)
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4.4.2 Inputs and Outputs

Besides invocations, we also need to model the Inputs and Outputs of tasks.
The Ontology of Plans does not provide such capabilities. Inputs and Outputs

are required when we want to represent the information of a WS-BPEL
workflow, for instance. Inputs and Outputs are DnS:Roles which are both
DnS:playedBy Data and DnS:definedBy an OoP:Plan (cf. (D19), (D20) and
(A12)). The relationships between Inputs (Outputs) and ComputationalTasks

are modelled by inputFor (outputFor) as specified in (A10), and (A11).15 The
difference between Inputs and Outputs is that the former must be present
before the latter (cf. (A13)).

(D19) Input(x) =def DnS:Role(x) ∧ ∀y(DnS:playedBy(x, y)→ Data(y))

(D20) Output(x) =def DnS:Role(x) ∧ ∀y(DnS:playedBy(x, y)→ Data(y))

(A10) inputFor(x, y)→
DnS:modalTarget(x, y) ∧ Input(x) ∧ ComputationalTask(y)

(A11) outputFor(x, y)→
DnS:modalTarget(x, y) ∧ Output(x) ∧ ComputationalTask(y)

(A12) Input(x) ∨Output(x)→ ∃p(OoP:Plan(p) ∧ DnS:defines(p, x))

(A13) ComputationalTask(ct)→ ∀d1, d2(∀i, o(inputFor(i, ct) ∧
DnS:playedBy(i, d1) ∧ outputFor(o, ct) ∧ DnS:playedBy(o, d2))→
∃t1, t2(presentAt(d1, t1) ∧ presentAt(d2, t2) ∧ t1 < t2))

As a concrete example, consider the Input for ModifyTable which would
be the Customer table (cf. (Ex60), (Ex61), and (Ex62) below).

(Ex60) Input(ModifyTableInput)

(Ex61) DnS:playedBy(ModifyTableInput,CustomerTable)

(Ex62) inputFor(ModifyTableInput,ModifyTable)

4.5 Access Rights and Policies

The requirement to model access rights and policies stems from the access
rights of software components, analyzing message contexts, and policy han-
dling of Web services use cases. In general, access rights are required to
state that access is granted for a specific user on a specific resource. Policies
can be regarded as a generalization of access rights. They define high-level
guidelines that constrain the behavior of an information system.

We use and specialize Descriptions & Situations for modelling access
rights and policies. The design pattern represented by Descriptions & Sit-
uations (cf. Figure 4 on page 10) provides us with the basic primitives of

15Both are specializations of DnS:modalTarget, viz., the generic association holding be-
tween DnS:Roles and DnS:Courses.
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context modelling, such as the notion of roles, which allows us to talk about
subjects and objects of a policy on the abstract level, i.e., independent of
the entities that play such roles. As we have learned in Section 3.2, Descrip-
tions & Situations therefore distinguishes between descriptive and ground
entities.

In a first step, it is necessary to introduce further ground entities which
are required later on. (D21) below specifies a User as a special kind of
AbstractData which identifies a DnS:Agent. The intuition behind User is a
user account in an operating system. Hence, Users identify DnS:Agents which
are either DOLCE:AgentivePhysicalObjects or DOLCE:AgentiveSocialObjects.
Most frequently, but not always, a natural person is associated with such an
account. We aggregate Users to a UserGroup by exploiting DnS:Collection in
(D22).

(D21) User(x) =def AbstractData(x) ∧ ∀y(identifies(x, y)→ DnS:Agent(y))

(D22) UserGroup(x) =def DnS:Collection(x) ∧ ∀y(DnS:member(x, y)→
User(y))

In a second step, we specialize the descriptive entities of Descriptions &
Situations, viz., DnS:Roles, DnS:Courses, DnS:Parameters, and DnS:Situation-

Descriptions as follows. First, we introduce two DnS:Roles to represent the
subject and the object of a policy in (D23) and (D24). PolicySubjects are
DnS:AgentiveRoles and can be DnS:playedBy Users or UserGroups. Policy-

Objects are DnS:NonAgentiveRoles and can be DnS:playedBy Data. Sec-
ond, we need to represent the predicate of a policy by a special kind of
DnS:Course. (D6) on page 15 already introduced ComputationalTask which
meets this requirement. We further aggregate such tasks to TaskCollections

in (D25). The intuition behind TaskCollections are the security “roles”
in operating or database systems. That means a TaskCollection groups
ComputationalTasks, such as read, write, or execute. Third, we introduce
Constraints as special kinds of DnS:Parameter. The ComputationalTask or
TaskCollections can be constrained in some way, e.g., a Web service pol-
icy might state that an invocation is only possible with Kerberos or X509
authentication (cf. (D26)). Finally, we construct a PolicyDescription, viz.,
a special kind of DnS:SituationDescription, from the aforementioned con-
cepts.16 Axiom (A14) requires each PolicyDescription to have a PolicySubject,
ComputationalTask, and a PolicyObject. Figure 9 provides an overview.

(D23) PolicySubject(x) =def DnS:AgentiveRole(x) ∧ ∀y(DnS:playedBy(x, y)→
(User(y) ∨ UserGroup(y))) ∧ ∀z(DnS:attitudeTowards(x, z)→
(ComputationalTask(z) ∨ TaskCollection(z)))

16Note that DnS:unifies is the generic association between DnS:SituationDescriptions and
DnS:Collections.
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(D24) PolicyObject(x) =def DnS:NonAgentiveRole(x) ∧
∀y(DnS:playedBy(x, y)→ Data(y)) ∧ ∀z(DnS:attitudeTowards(x, z)→
(ComputationalTask(z) ∨ TaskCollection(z)))

(D25) TaskCollection(x) =def DnS:Collection(x) ∧ ∀y(DnS:member(x, y)→
ComputationalTask(y))

(D26) Constraint(x) =def DnS:Parameter(x) ∧ ∀y(DnS:requisiteFor(x, y)→
(ComputationalTask(y) ∨ TaskCollection(y))) ∧ ∀z(DnS:defines(z, x)→
PolicyDescription(z))

(D27) PolicyDescription(x) =def

DnS:SituationDescription(x) ∧ ∀y(DnS:unifies(x, y)→
TaskCollection(y)) ∧ ∀z(DnS:defines(x, z)→ Constraint(z) ∨
ComputationalTask(z) ∨ PolicySubject(z) ∨ PolicyObject(z))

(A14) PolicyDescription(x)→
∃s, t, o(DnS:defines(x, s) ∧ PolicySubject(s) ∧ DnS:defines(x, t) ∧
ComputationalTask(t) ∧ DnS:defines(x, o) ∧ PolicyObject(o))

It is worthwhile to spend some words on the DnS:attitudeTowards asso-
ciation between DnS:Roles and DnS:Courses. The DnS:attitudeTowards as-
sociation is a special kind of DnS:modalTarget and can be considered the
descriptive counterpart of the DOLCE:participantIn association. It is used to
state attitudes, attention, or even subjection that an object can have with
respect to an action or process. In our case, DnS:attitudeTowards is used
to state the relationship between PolicySubjects, as well as PolicyObjects,
and the ComputationalTask or TaskCollection. Descriptions & Situations
provides us with three initial specializations of DnS:attitudeTowards, viz.,
DnS:rightTowards, DnS:empoweredTo, and DnS:obligedTo. We further refine
DnS:rightTowards in (A15) below.

(A15) computationalRightTowards(x, y)→ DnS:rightTowards(x, y) ∧
PolicySubject(x) ∧ (ComputationalTask(y) ∨ TaskCollection(y))

(A16) computationalRightTowards(x, z)← computationalRightTowards(x, y) ∧
TaskCollection(y) ∧ DnS:member(y, z) ∧ ComputationalTask(z)

(A17) (DnS:playedBy(x, z) ∧ PolicySubject(x) ∧ UserGroup(z))→
∃y(DnS:member(z, y) ∧ User(y) ∧ DnS:playedBy(x, y))

(A16) and (A17) infer the closure of all resulting rights considering User-

Groups and TaskCollections. A PolicySubject is granted rights on all tasks
which are members of the TaskCollection. Similarly, a User is granted all
access rights which are granted for his UserGroup.

An analysis of the descriptor of our WebShopServlet (web.xml, cf. Ap-
pendix on page 44) lets us derive the following PolicyDescription. The HTTP
basic authentication allows anybody to perform an HTTP GET on the
servlet. We consider anybody as a UserGroup that has every User of the
system as DnS:member.
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Figure 9: The Policy Description as UML class diagram. Grey classes represent
ground entities, white classes the descriptive entities of Descriptions & Situations
or specializations thereof.

(Ex63) PolicyDescription(WebShopServletPolicy)

(Ex64) DnS:defines(WebShopServletPolicy,ServletCaller)

(Ex65) PolicySubject(ServletCaller)

(Ex66) UserGroup(anybody)

(Ex67) DnS:playedBy(ServletCaller, anybody)

(Ex68) DnS:defines(WebShopServletPolicy,GET)

(Ex69) ComputationalTask(GET)

(Ex70) computationalRightTowards(ServletCaller,GET)

(Ex71) DnS:defines(WebShopServletPolicy,ServletCallee)

(Ex72) PolicyObject(ServletCallee)

(Ex73) Class(WebShopServlet)

(Ex74) DnS:playedBy(ServletCallee,WebShopServlet)

(Ex75) DnS:obligedTo(ServletCallee,GET)

5 Core Ontology of Software Components (COSC)

In the last section we have presented a Core Software Ontology consisting of
fundamental concepts and associations such as software, data, users, policies
and so on. We separated the fundamental concepts in a core ontology to
facilitate reuse.

Although some of the modelling requirements are already met by the
Core Software Ontology, there remain further use cases that explicitly re-
quire the formalization of software component and Web service idiosyn-
cracies. In this section, we present a possible Core Ontology of Software
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Components based on the Core Software Ontology that meets the remain-
ing modelling requirements relevant for software components, viz., libraries
and licenses, component profiles, and component taxonomies.

We start by formalizing our understanding of the term “software com-
ponent.” It requires special attention as there is a variety of interpretations
that leads to ambiguity. We also put libraries and licenses in this core on-
tology because the libraries and their dependencies and conflicting licenses
of libraries use cases propose to detect inconsistent configurations of com-
ponents and their required libraries. Finally, we define a component profile
that aggregates all relevant aspects of a component. We expect that this ag-
gregation makes browsing and querying for developers more convenient. The
component profile is envisioned to act as the central information source for
software components rather than having bits and pieces all over the place.
We finish by revisiting the motivating example from Section 2.1, and show
how it can be formalized.

5.1 Formalization of the Term “Software Component”

Software componentry is a loosely defined term for a software technology
proposing that software should be developed by glueing prefabricated com-
ponents together as in the field of electronics or mechanics. Software com-
ponentry also proposes encapsulating software functionality for multiple use
in a context-independent way, composable with other components, and as a
unit of independent deployment and versioning.17

Software components often assume the form of object-oriented classes
conforming to a framework specification. However, software components
differ from classes. The basic idea in object-oriented programming is that
software should be written according to a mental model of the actual or
imagined objects it represents. Software componentry, by contrast, makes
no such assumptions.

The framework specifications prescribe (i) interfaces that must be im-
plemented by components and (ii) protocols that define how components
interact with each other. Examples of framework specifications are En-
terprise JavaBeans (EJB) and the Component Object Model (COM) from
Microsoft.

The definitions below formalize this intuition of software component as
closely as possible. Assuming the object-oriented paradigm, (D30) below
states that a SoftwareComponent is a special kind of CSO:Class that con-

forms to a FrameworkSpecification. According to the definition above, a
FrameworkSpecification is (i) a DOLCE:Collection of CSO:Interfaces and (ii)
a special kind of OoP:Plan which specifies the interaction of components (cf.
(D28)). Conformance means that at least one CSO:Interface prescribed by

17Wikipedia, http://en.wikipedia.org/wiki/Software_component, August 2005.
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the FrameworkSpecification has to be implemented by the SoftwareComponent

(cf. (D29)).

(D28) FrameworkSpecification(x) =def

OoP:Plan(x) ∧ ∃y(DOLCE:Collection(y) ∧ DnS:unifies(x, y) ∧
∀z(DOLCE:member(y, z)→ CSO:Interface(z)))

(D29) conforms(x, y) =def CSO:Class(x) ∧ FrameworkSpecification(y) ∧
∃i, c(CSO:Interface(i) ∧DOLCE:member(c, i) ∧ DOLCE:Collection(c) ∧
DnS:unifies(y, c)→ CSO:implements(x, i))

(D30) SoftwareComponent(x) =def

CSO:Class(x) ∧ ∃y(conforms(x, y) ∧ FrameworkSpecification(y))

Coming back to our running example, we would define the Customer-

EntityBean as a SoftwareComponent that conforms to the EnterpriseJava-
Beans FrameworkSpecification. In essence, the EnterpriseJavaBeans specifi-
cation can be conceived as a set of Jave interfaces (javax.ejb.*).

(Ex76) SoftwareComponent(CustomerEntityBean)

(Ex77) FrameworkSpecification(EnterpriseJavaBeans)

(Ex78) conforms(CustomerEntityBean,EnterpriseJavaBeans)

5.2 Libraries and Licenses

The libraries and their dependencies and conflicting licenses of libraries use
cases require the modelling of libraries and licenses. Both use cases discuss
the problem of conflicting libraries and incompatible licenses in the current
configuration of an integrated software development environment (IDE). In
the case of libraries, a lib1.jar might conflict with a lib2.jar in a spe-
cific version. For example, such information can be obtained from expert
knowledge or from public sources, such as the RPM package manager.18

However, the check for conflicts still remains a manual task. In the case of
licenses, we find similar problems. Typically, software libraries are released
under specific licenses such as GPL, LGPL, Apache, BSD, Public Domain,
XFree86, or commercially closed source licenses.19 The proliferation of dif-
ferent software licenses means increased work for software developers. They
have to check whether used libraries have conflicting licenses.

Therefore, the use cases propose an automatic check for conflicting li-
braries and incompatible licenses in an integrated software development en-
vironment (IDE) at development time. In order to realize either use case,
we introduce the concepts of SoftwareLibrary and License in (D31) and (D32)
below. A SoftwareLibrary consists of a number of CSO:Classes and is clas-
sified as CSO:Data because it cannot be executed as a whole. The concept

18http://www.rpm.org
19http://www.gnu.org/philosophy/license-list.html
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License is a special kind of LegalContract as introduced in the Core Legal
Ontology [GST04].

(D31) SoftwareLibrary(x) =def CSO:Data(x) ∧ ∀c(DOLCE:properPart(x, c)→
CSO:Class(c))

(D32) License(x) =def

LegalContract(x) ∧ ∃y(CSO:Software(y) ∧ DnS:involves(x, y))

Very often there are functional dependencies between libraries that are
revealed only during run time (e.g., by ClassNotFoundExceptions in Java).
For example, a library lib1.jar might depend on lib2.jar which in turn
depends on lib3.jar and so forth. It is a very tedious task to keep track
of such dependencies and, additionally, to check whether there are conflicts
between libraries in this dependency graph. In order to reason with such
information, we introduce the following associations and axioms: First, the
transitive libraryDependsOn in (A18) and (A19) below. Second, the sym-
metric libraryConflictsWith in (A20) and (A21). Finally, (A22) formalizes
indirect conflicts.

The existence of incompatible licenses further complicates the situation.
Even though libraries in the dependency graph do not conflict, they might
have incompatible licenses. In order to reason with such information, we
further introduce the association releasedUnder between SoftwareLibraries and
Licenses in (A23), as well as the symmetric licenseIncompatibleWith in (A24)
and (A25).

(A18) libraryDependsOn(x, y)→
DOLCE:specificallyConstantlyDependsOn(x, y) ∧ SoftwareLibrary(x) ∧
SoftwareLibrary(y)

(A19) libraryDependsOn(x, z)←
libraryDependsOn(x, y) ∧ libraryDependsOn(y, z)

(A20) libraryConflictsWith(x, y)→ SoftwareLibrary(x) ∧ SoftwareLibrary(y)

(A21) libraryConflictsWith(x, y)↔ libraryConflictsWith(y, x)

(A22) libraryConflictsWith(x, z)←
libraryDependsOn(x, y) ∧ libraryConflictsWith(y, z)

(A23) releasedUnder(x, y)→
OIO:expresses(x, y) ∧ SoftwareLibrary(x) ∧ License(y)

(A24) licenseIncompatibleWith(x, y)→ License(x) ∧ License(y)

(A25) licenseIncompatibleWith(x, y)↔ licenseIncompatibleWith(y, x)

As an example, let us assume the CustomerEntityBean requires lib1.

jar. Adding lib1.jar to the classpath in turn requires lib2.jar and
lib4.jar. Adding lib2.jar to the classpath additionally requires lib3.jar.
Furthermore, let us assume that lib4.jar conflicts with lib3.jar. Despite
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the small number of libraries, the situation becomes quite complex. Compil-
ing and running the application will yield a run time exception. Given the
modelling below we can infer libraryConflictsWith(lib1.jar, lib4.jar) because
of (A19), (A21), and (A22).

(Ex79) SoftwareLibrary(lib1.jar)
(Ex80) SoftwareLibrary(lib2.jar)
(Ex81) SoftwareLibrary(lib3.jar)
(Ex82) SoftwareLibrary(lib4.jar)
(Ex83) libraryDependsOn(lib1.jar, lib2.jar)
(Ex84) libraryDependsOn(lib1.jar, lib4.jar)
(Ex85) libraryDependsOn(lib2.jar, lib3.jar)
(Ex86) libraryConflictsWith(lib4.jar, lib3.jar)
(Ex87) (Ex79), ..., (A22) |= libraryConflictsWith(lib1.jar, lib4.jar)

5.3 Component Profiles and Taxonomies

So far, we have formalized several different aspects relevant for a software
component such as interface and policy descriptions or plans. In this sec-
tion we further aggregate the knowledge in component profiles. We expect
that such an aggregation makes browsing and querying for developers more
convenient. The component profile is envisioned to act as the central in-
formation source for a specific software component rather than having bits
and pieces all over the place. Furthermore, the component profiles can be
specialized and aligned in a taxonomy as required by the use cases capa-
bility descriptions, component classification and discovery, reasoning with
transactional settings, and reasoning with security settings.

(D33) and (A26) define a Profile as follows: First, it aggregates CSO:Policy-

Descriptions, an OoP:Plan, the required SoftwareLibraries, the implemented
Interfaces and additional Characteristics of a specific Software entity. Second,
the link to the described Software is specified via the describes association.
(D34) specializes this definition to ComponentProfile.

Often, we need to express certain capabilities or features of compo-
nents, such as the version, transactional or security settings. For this pur-
pose, we introduce Characteristics on a Profile in (D35). It is expected that
ComponentProfiles are specialized and put into a taxonomy. For example,
we might define a DatabaseConnectorProfile as a ComponentProfile that pro-
vides for specific Characteristics describing whether the underlying database
supports transactions or SQL-99. A taxonomic structure further accommo-
dates the developer in browsing and querying for ComponentProfiles in his
system.

Finally, (A27) specifies the profiles association as a “catch-all” for DnS:-

defines, DnS:unifies, OIO:about, as well as OIO:expressedBy. This is done for
convenience in order to relieve the developer, who will certainly have to deal
with such information, from such modelling details.
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(D33) Profile(x) =def OIO:InformationObject(x) ∧ ∀y(profiles(x, y)→
(CSO:PolicyDescription(y) ∨ SoftwareLibrary(y) ∨ CSO:Interface(y) ∨
OoP:Plan(y) ∨ Characteristic(y))) ∧ ∀z(describes(x, z)→ Software(z))

(D34) ComponentProfile(x) =def Profile(x) ∧ ∀y(describes(x, y)→
SoftwareComponent(y))

(D35) Characteristic(x) =def DnS:Parameter(x) ∧ ∀y(DnS:defines(y, x)→
Profile(y)) ∧ ∀z(DnS:valuedBy(x, z) ∧DOLCE:AbstractRegion(z))

(A26) describes(x, y)→ OIO:about(x, y) ∧ Profile(x) ∧ CSO:Software(y)

(A27) profiles(x, y)→ DnS:defines(x, y) ∨DnS:unifies(x, y) ∨
OIO:about(x, y) ∨OIO:expressedBy(x, y)

The information grouped by a ComponentProfile might have different
origins. For example, a specific PolicyDescription might be automatically
obtained from ejb-jar.xml, while manual modelling or source code anal-
ysis would result in an OoP:Plan. Hence, it is important to model also
informationTimestamp and informationSource for parts of the Component-

Profile. We omit their definition because both are simple attributes with
xsd:string.

As an example, we construct a profile for our CustomerEntityBean be-
low. We assume the bean requires lib1.jar, implements the javax.ejb.-
EntityBean interface and has a policy description.

(Ex88) ComponentProfile(CustomerBeanProfile)

(Ex89) describes(CustomerBeanProfile,CustomerEntityBean)

(Ex90) profiles(CustomerBeanProfile, lib1.jar)

(Ex91) informationTimestamp(lib1.jar, 050805-9:45:21)

(Ex92) profiles(CustomerBeanProfile, javax.ejb.EntityBean)

(Ex93) CSO:Interface(javax.ejb.EntityBean)

(Ex94) profiles(CustomerBeanProfile,CustomerEntityBeanPolicy)

(Ex95) CSO:PolicyDescription(CustomerEntityBeanPolicy)

(Ex96) informationSource(CustomerEntityBeanPolicy,file://ejb-jar.xml)

5.4 Example

In this section, we revisit our running example from Section 2.1 and show
how it can be formalized with our ontology. We already introduced some of
the instances in a piecemeal manner throughout the paper. We collect the
relevant instances to construct PolicyDescriptions and Plans so that a simple
query can be used to detect if there are indirect permissions. An overview
is given in Figure 12 on page 46 in the Appendix.

The descriptor files of the WebShopServlet (web.xml) and the Customer-
EntityBean (ejb-jar.xml) result in two CSO:PolicyDescriptions. The third
CSO:PolicyDescription below can be extracted from database metadata.
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We can now define additional axioms to deduce all indirectly accessible
resources for a user. First, Axiom (A28) infers the directly accessible re-
sources r of a user u. The reader may note that axioms (A16) and (A17)
on page 24 also infer the accessible resources which are a result of group
memberships. Second, Axiom (A29) infers indirectly accessible resources,
i.e., ones that are a result of a call with a context switch. With (A28) and
(A29) we can infer indirectlyAccessibleResource(CustomerTable, anybody) —
a result which otherwise would require tedious manual efforts.

(A28) directlyAccessibleResource(r, u)← CSO:Data(r) ∧ CSO:User(u) ∧
DnS:playedBy(s, u, t) ∧ CSO:PolicySubject(s) ∧
CSO:computationalRightTowards(s, ct) ∧ CSO:ComputationalTask(ct) ∧
DnS:obligedTo(o, ct) ∧ CSO:PolicyObject(o) ∧ DnS:playedBy(u, r, t)

(A29) indirectlyAccessibleResource(r3, u)← directlyAccessibleResource(r1, u)∧
CSO:invokes(r1, r2) ∧ CSO:Software(r2) ∧ CSO:executes(r2, t) ∧
CSO:ComputationalTask(t)∧CSO:accesses(t, r3)∧CSO:contextUser(u, t)

6 Core Ontology of Web Services (COWS)

In this section we present a possible Core Ontology of Web Services to
meet the remaining modelling requirements of service profiles and service
taxonomies. The Core Ontology of Web Services is based on the Core Ontol-
ogy of Software Components presented in Section 5. We start by formalizing
our understanding of the term “Web service,” introduce the notion of service
profiles, revisit the motivating example (cf. Section 2.2), and show how it
can be formalized.

6.1 Formalization of the term “Web service”

On the one hand, Web services often reveal functionality residing in a class
or component. Application servers typically provide support to automati-
cally access the functionality via the standardized SOAP protocol and the
automatic generation of standardized WSDL interface descriptions. How-
ever, the same can be done with the Java Remote Method Invocation (RMI)
or CORBA although with different protocols and interface descriptions. On
the other hand, a Web service can be defined as a composition of other Web
services, e.g., by the Business Process Execution Language (WS-BPEL).20

Again, this can be done with software components in common workflow
engines as well.

So what is the difference between a software component and a Web
service? We argue that standardization in terms of Web protocols and de-
scriptions seems to be the major distinction. In any case, Web services are

20http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
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mandatorily accessible via the SOAP protocol and expose an interface de-
scription according to WSDL. This is in line with one of the many existing
definitions:

“A Web service is a software system identified by a URI, whose public
interfaces and bindings are defined and described using XML. Its definition
can be discovered by other software systems. These systems may then in-
teract with the Web service in a manner prescribed by its definition, using
XML based messages conveyed by internet protocols” [BCF+03]

However, there are dozens of other, partly contrary, definitions of the
term Web service. In [GMSO03] we list several definitions and conclude
that a concise axiomatization of such an overloaded term is necessary to
avoid confusion among developers and ontology users.

(D36) follows the definition above and specifies WebService as a spe-
cial kind of CSO:Software which is OIO:orderedBy a WSDLEncoding. The
WSDLEncoding is an OIO:InformationEncodingSystem as defined in the On-
tology of Information Objects. For our middleware domain, (A30) further
constrains the intended meaning of WebService by axiomatizing that it either
reveals functionality residing in a COSC:SoftwareComponent or a combined
service specified by an OoP:Plan.21

(D36) WebService(x) =def CSO:Software(x) ∧ ∀y(OIO:orderedBy(x, y) ∧ y =
WSDLEncoding)

(A30) WebService(x)→
(∃sc(CSO:invokes(x, sc) ∧ COSC:SoftwareComponent(sc))⊕
∃p, t(CSO:executes(x, t) ∧ CSO:ComputationalTask(t) ∧
DnS:defines(p, t) ∧ OoP:Plan(p) ∧ OIO:expresses(x, p)))

6.2 Service Profiles and Taxonomies

The analyzing message contexts, selecting service functionality, relating com-
munication parameters, aggregating service information and quality of ser-
vice use cases require the modelling of service profiles and taxonomies. Sim-
ilar to COSC:ComponentProfiles, we group the different descriptions relevant
for a Web service in a ServiceProfile in (D37) below. We expect that such
a grouping makes browsing and querying for developers more convenient.
The information grouped by a ServiceProfile might have different origins.
Hence, we also add informationTimestamp and informationSource as simple
attributes to parts of the profile. We omit their definition because both
are simple attributes with xsd:string. Furthermore, ServiceProfiles can be
specialized and put into a taxonomy.

21Note that the symbol ⊕ represents the logical xor (exclusive or) connective.
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ServiceProfiles differ from COSC:ComponentProfiles in two ways: First,
they can have QualityOfService parameters.22 QualityOfService parameters
are specializations of COSC:Characteristics and defined on ServiceProfiles as
shown in (D38). Second, the ServiceProfile necessarily OIO:describes a Web-

Service as opposed to COSC:ComponentProfiles which COSC:describe COSC:-

SoftwareComponents (cf. (A30)).

(D37) ServiceProfile(x) =def COSC:Profile(x) ∧ ∀y(COSC:describes(x, y)→
WebService(y))

(D38) QualityOfService(x) =def

COSC:Characteristic(x) ∧ ∀y(COSC:profiles(y, x)→ ServiceProfile(y))

6.3 Example

In this section we revisit the example of Section 2.2, and show how it can
be formalized with our ontology. The WS-BPEL process description can
be parsed and relevant information can be extracted leading to an OoP:-

Plan consisting of several ComputationalTasks. Figure 13 on page 47 in the
Appendix provides an overview.

We can now introduce axiom (A31) below to infer all WebServices which
CSO:invoke other WebServices with attached CSO:PolicyDescription. With
(A9) on page 21 and executes(WebShopWS, checkAccount), OoP:successor

(checkAccount, CallMastercardWS) and CSO:accesses (CallMastercardWS,

MastercardWS) we can entail invokesWebServiceWithPolicy(WebShopWS,

MasterCardWS). Without our approach, obtaining this result would require
tedious manual analyses of the WS-BPEL and WS-Policy descriptors.

(A31) invokesWebServiceWithPolicy(x, y)← CSO:invokes(x, y) ∧
WebService(x) ∧WebService(y) ∧ COSC:describes(sp, y) ∧
ServiceProfile(sp) ∧ COSC:profiles(sp, pd) ∧ CSO:PolicyDescription(pd)

7 Proof of Concept

We have proposed the design of an appropriate ontology. We have defined
appropriateness at the beginning of Section 3 as follows: (i) the ontology
should meet all the modelling requirements derived from our use cases, (ii) it
should avoid the typical shortcomings of commonly built ontologies and (iii)
it should enable reuse in specific platforms and reduce modelling efforts to
a minimum. In this section, we detail where and how our ontology responds
to (i), (ii) and (iii), in 7.1, 7.2, and 7.3, respectively.

22One may also specify quality parameters for software components such as done by
[vH03], for instance. However, our use cases only require to express quality of service
parameters for Web services.

35



7.1 Meeting the Modelling Requirements

Tables 1 and 2 summarize which parts of the ontology meet the requirements.
The requirements comprise modelling (i) libraries, licenses, component pro-
files, component taxonomies, API descriptions, semantic API descriptions,
access rights and workflow information of software components and (ii)
service profiles, service taxonomies, policies, workflow information, API de-
scriptions, as well as semantic API descriptions of Web services.

Table 1: Modelling requirements for software components and the parts of the
ontology that meet the requirements.
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OoP:Plan × ×

CSO:Class,CSO:Method ×

CSO:Interface ×

CSO:PolicyDescription ×

COSC:SoftwareLibrary ×

COSC:License ×

COSC:ComponentProfile × ×

Table 2: Modelling requirements for Web services and the parts of the ontology
that meet the requirements.
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OoP:Plan × ×

CSO:Class,CSO:Method ×

CSO:Interface ×

CSO:PolicyDescription ×

COWS:ServiceProfile × ×

7.2 Avoiding the Typical Shortcomings

Besides meeting the requirements, another goal was to avoid the typical
shortcomings of common ontologies as outlined in Section 2.3, viz., concep-
tual ambiguity, poor axiomatization, loose design, and narrow scope. In the
following we give some examples how the shortcomings are eliminated.
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7.2.1 Conceptual Disambiguation

Common ontologies, such as OWL-S [MBH+04], suffer from conceptual am-
biguity [MOGS04]. An example is the notion of OWL-S:Service which is
defined twice and differently in the specification. In turn, both definitions
stand in conflict with the axiomatization of the concept in the ontology. In
[SOR04], we have found a similar dilemma regarding the plethora of mean-
ings and definitions of terms, such as component, software component, or
software module. Both ontologies fail to convey their intended meanings of
such terms and leave the interpretation to the ontology user.

In contrast to such commonly built ontologies we have captured the in-
tended meanings of concepts and associations as precisely as possible. Our
definition of terms such as Web service (Definition (D36) on page 31) or soft-
ware component (Definition (D30) on page 26) are in line with the natural
language definitions prevailing in the middleware community. Comparing
both definitions makes evident that very few concepts actually differ when
“upgrading” from software components to Web services. Only minor exten-
sions to the Core Software Ontology are required to capture the differences
between software components and Web services.

While our definitions of the terms Web service and software component
may not be the only ones, the fact that they are highly axiomatized allows
comparing them to alternative definitions and allows fostering discussions
on alternative conceptualizations. We argue that this will enable mutual
understanding which is crucial for information integration of any kind.

7.2.2 Increased Axiomatization

Common ontologies are often reduced to a simple taxonomy with domain
and range restrictions on associations. An example taken from [MBH+04]
are the OWL-S:ControlConstructs which define how composite processes are
combined.

In our ontology we have made use of the Ontology of Plans which pro-
vides extensive axiomatization of OoP:Tasks and subconcepts thereof. OoP:-

Tasks are directly comparable to the OWL-S:ControlConstructs, but provide
a heavyweight axiomatization. An example is SynchroTask (an instance of
OoP:ControlTask) which matches the concept of OWL-S:Join in the OWL-

S:SplitJoin control construct. A SynchroTask joins a set of tasks after a
branching and waits for the execution of all (except the optional ones) tasks
that are direct successors to a ConcurrencyTask or AnyOrderTask. Below
we give the axiomatization of the SynchroTask as introduced in [GBCL04].

ControlTask(SynchroTask)→ ∃t1, t2, t3(t1 = ConcurrencyTask ∨ t1 =
AnyOrderTask) ∧ successor(t1, x) ∧ (ComplexTask(t2) ∨ ActionTask(t2)) ∧
(ComplexTask(t3) ∨ ActionTask(t3)) ∧ directSuccessor(t2,SynchroTask) ∧
directSuccessor(t3,SynchroTask)
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Another example from [MBH+04] is the OWL-S:components association,
which is used to relate OWL-S:ControlConstructs to their components. In
OWL-S this association is described merely as a special kind of owl:Property

with a domain of OWL-S:ControlConstruct. Therefore, the intended mean-
ing of OWL-S:components remains unclear. Is it a parthood association?
And if yes, is it temporary, transitive, etc.? Our ontologies are superior
because they make use of the Ontology of Plans. The latter exploits the
DOLCE:temporaryComponent association which has a firm foundation as
a special kind of the more basic DOLCE:component mereological associa-
tion and DOLCE:partlyCompresent temporally indexing association. Both
are characterized by formal restrictions on their application to other basic
concepts.

7.2.3 Improved Design

In our ontology we propose to use contextualization as a design pattern.
Contextualization allows us to move from monolithic component or service
descriptions to the representation of different, possibly conflicting views with
various granularity. The Descriptions & Situations ontology provides us
with the basic primitives of context modelling such as the notion of roles,
which allows us to talk about inputs and outputs on the abstract level, i.e.,
independent of the objects that play such roles.

DnS:Role

DnS:defines

CSO:Data

DnS:playedBy

CSO:Input CSO:Output

OoP:Plan

CSO:ComputationalTask

CSO:outputFor

DnS:playedBy

CSO:inputFor

DnS:defines

DnS:Situation

Description

Figure 10: Solution to the attribute binding problem. Data can play both the
role of an Input and an Output at the same time. Inputs and Outputs can be linked
to ComputationalTasks in a Plan. White classes represent descriptive entities, grey
classes represent ground entities.
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Using this pattern results in a much more intuitive representation of at-
tribute binding than in OWL-S. This patterns applies clearly defined seman-
tics and scoping provided by Descriptions & Situations. Attribute binding in
OWL-S is necessary to express, e.g., that the output of a process is the input
to another process. In our ontology, inputs and outputs can be modelled as
DnS:Roles which serve as variables. Thus, CSO:Data can play multiple roles
within the same or different descriptions. It is natural to express that the
given CSO:Data is output with respect to one process, but input to another
(cf. Figure 10).

7.2.4 Wider Scope

Components and services exist on the boundary of the world inside an in-
formation system and the external world. Web services, in particular, may
carry out operations to support a real-world service. Functionality, which
is an essential property of a service, then arises from the entire process that
comprises computational, as well as real-world activities.

The distinction between information objects, events and physical objects
is not explicitly made in most ontologies. In our ontology this separation
naturally follows from the use of DOLCE and the Ontology of Information
Objects, where the distinction is an important part of the characterization
of concepts. In particular, it becomes possible to be more precise about the
kinds of relationships that can occur among objects or between objects and
events.

OIO:InformationObject

CSO:ComputationalObject

CSO:identifies
CSO:User

CSO:AbstractData

DnS:Agent

OIO:realizedBy

Figure 11: Using the Ontology of Information Objects allows us to model the
relationship between a user in an information system and its corresponding agent
(e.g., a natural person).

For example, we can distinguish among a physical object (such as a nat-
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ural person), an information object (such as user account in an information
system), and represent the link between them. The capabilities provided by
our ontology are shown in Figure 11. It is worthwhile to make such differ-
ences explicit, e.g., when we want to infer the total of access rights granted
for a natural person who might have several user accounts in and across
information systems.

7.3 Enabling Reuse

Finally, we have designed the ontology in a way to be easily reusable in dif-
ferent platforms and as specific as possible at the same time. The following
three steps have to be taken in order to allow for reuse in a specific platform:
(i) specialization of the core concepts and associations to reflect the idiosyn-
cracies of the platform. For example, we have to introduce EnterpriseBean as
a special kind of COSC:SoftwareComponent in a J2EE-based platform. Step
(ii) removes concepts and associations that have been introduced merely for
reference purposes. As an example, it is unlikely and not required to model
particular ComputationalObjects or ComputationalActivities for the reasoning
at run time. Both were introduced to better explain concepts such as Soft-

ware or Data. Finally, step (iii) requires a decision for an ontology language
that can be reasoned with at run time. Accordingly, the axiomatization has
to be adapted to this language. This might be a description logic, such as
OWL DL, which is less expressive than the modal logic S5.

In fact, we took the three steps and reused the ontology in our ontology-
based application server. The details are given in [Obe06].

8 Related Work

Related work can be split in two categories: Established schema speci-
fications for application management and existing ontologies. The most
prominent example in the first category is the Common Information Model
(CIM),23 an object-oriented specification developed by the Desktop Man-
agement Task Force (DMTF). CIM provides a common definition of man-
agement information for systems, networks, applications and services, and
allows for vendor extensions. For example, there is also a specification for
J2EE application servers defining Enterprise JavaBeans and the like. CIM’s
purpose it to define the details for integration with other management mod-
els. Other management models include the Management Information Base
(MIB), stemming from network management and modelling information of
network devices, or the schema of the Web Service Distributed Manage-
ment (WSDM) by OASIS.24 Finally, there are the XML-DTDs of applica-

23http://www.dmtf.org/standards/cim/
24http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
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tion servers and Web service descriptors that formally define characteristics
and relationships relevant for our purposes. However, all of those efforts
lack formal semantics and are not suitable for reference purposes.

The second category of related work are existing ontologies. There have
been several efforts which deal almost exclusively with the moving target of
Web services: OWL-S, WSMO, SWSF, and METEOR-S. In spite of their
seminal roles that led to a lot of fruitful research into the formulation and
application of Web service ontologies, they exhibit the typical shortcomings
which we discussed in Section 2.3. OWL-S [MBH+04] is one of the first core
ontologies explicitly aiming at automatic discovery, automatic invocation,
automatic composition and interoperation as well as automatic execution of
Web services. OWL-S enriches an existing WSDL description by an onto-
logical capability description and workflow information. It is split into three
modules, viz., “Profile” for describing what the service does, “Process” for
describing how the service works and “Grounding” for describing how the
service is implemented. The Web Service Modelling Ontology (WSMO)
[FB02] has goals similar to OWL-S. However, it additionally defines an Ex-
ecution Environment (WSMX) for the dynamic discovery, selection, medi-
ation, invocation, and inter-operation of Semantic Web Services. Aspects
considering the ontology representation language are separately defined in
the Web Services Modelling Language (WSML). The recent Semantic Web
Services Framework (SWSF) [BBB+05] also provides an ontology for Seman-
tic Web Services, namely the Semantic Web Services Ontology (SWSO). By
its axiomatization of Web service related notions, it addresses deficiencies of
OWL-S in a way similar to our work. This framework also defines its own
language (called SWSL) for ontological representation, providing a first-
order logic style as well as a rule-based variant. Finally, the METEOR-S
project at the LSDIS Lab, University of Georgia, aims to extend WS* de-
scriptors with Semantic Web technologies to achieve greater dynamics and
scalability.25 More specifically, METEOR-S focuses on adding semantics
to WSDL and UDDI, on adding semantics to WS-BPEL and on a semi-
automatic approach for annotating Web services described in WSDL. The
endeavor is to define and support the complete lifecycle of Semantic Web
Services processes [POSV04].

Furthermore, there has been some work that overlaps with the ideas
presented here. For example, the COHSE Java ontology26 offers a formal
schema for expressing a Java software project by an ontology. The open
source project Introspector27 is a back-end to the popular GNU compiler
collection gcc,28 which generates an RDF defined ontology out of gcc com-
piled source code, and thus works with all languages supported by gcc, for

25http://lsdis.cs.uga.edu/Projects/METEOR-S/
26http://cohse.semanticweb.org/software.html
27http://introspector.sourceforge.net
28http://gcc.gnu.org
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example C, C++, Java, Fortran and others. [Wel95] offers a more profound
and sound ontology-based foundation to these level of detail, analyzing the
constructs available when programming. All these works provide support
for using ontologies in the area of software development, but on a much finer
grained level than the work presented here. Thus, such ontologies could be
used complementary to ours.

In addition, there are theories of distributed interaction. Examples for
such theories include CCS [Mil80], CSP [Hoa85], and Z [Dil94]. These lan-
guages focus mainly on the exact meaning of distributed interaction and
little on the relevant concepts, such as software components, user roles etc.,
involved in such a theory. In contrast, our approach proposes several ontolo-
gies as formal theories to describe some crucial aspects of software systems
and software systems behavior at large. In particular, this paper focuses
on aspects of modularization of and communication within large software
systems. In the future it might be useful to expand our ontology toward
such process algebras. The languages mentioned, however, often have an
implicit underlying conceptualization that may be hard to align with our
ontology. There is also work evolving these well-known languages avoiding
such strong commitment and thus may be more interesting with regards to
a fruitful integration [Pir94, Qua98].

An example of a higher level software component ontology in use is
provided by [AHS03]. Instead of the technological management of software
components as provided by the middleware layer and described herein, her
work focusses on the social and project-level management of Open Source
software projects.

Finally, there are some ontologies which focus on specific aspects, whereas
our ontology tries to relate the different aspects in a larger focus. Examples
are the Core Plan Representation (CPR) [Pea98] and the Process Speci-
fication Language (PSL) [GM03b] which are comparable to the Ontology
of Plans. UPML, the Unified Problem-solving Method Development Lan-
guage [FBMW99], has been developed to describe and implement intelligent
broker architectures and components to facilitate semi-automatic reuse and
adaptation.

9 Conclusion

We have presented a set of ontologies, CSO, COSC, and COWS, that for-
malize modularization and communication in large software systems. In
doing so, the ontologies cover the most important paradigms in this arena,
i.e., software components and Web services. The ontologies are grounded in
foundational ontologies, as well as in application use cases. Thus, they fulfil
a number of competing purposes.

First, they allow for an accurate discussion of what is meant by terms
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such as “Web service,” “Profile” and the like. In related, seminal approaches,
such as OWL-S, the meaning of these terms were only weakly formalized
leaving their disambiguation to the intuition of the reader, a situation that
we here improve upon considerably.

Second, the overall set of ontologies surveyed or defined here untangle
the different aspects one must consider when formalizing software compo-
nents and Web services. There are foundational notions, such as “Objects”
or “Plans,” there are generic notions, such as “Software” (with its different
shades of meaning) and there are notions that are specific to modularization
and communication, such as “software component,” or “invokes.” Our orga-
nization lays out corresponding concepts into several ontologies of increasing
specificity. Thus, we provide a modular basis that lends itself more easily
for extension than a monolithic approach.

Finally, the ontologies provide support for developing and managing soft-
ware systems at large scale, such as has been demonstrated by systems for
managing application servers and Web services.

The reader may note that what is presented here are the reference on-
tologies in this domain. They use a powerful logic, viz., modal logic S5. For
actual work, these reference ontologies need to be reduced to knowledge rep-
resentation schemes that are more amenable to operation. Though we have
such initial application ontologies, what we have is quite poor and we still
need to explore the trade-off between representational power and run-time
efficiency in order to come up with more powerful application ontologies.

For the future, we foresee that the set of use cases might have to be
extended leading to further specifications in CSO, COSC, and COWS. Based
on some core assumptions about the top levels, we have done our best in
order to allow for monotonic extensions. In case a change of paradigm is
necessary, e.g., in the Ontology of Plans in order to accommodate some
particular way of reasoning (e.g., a different knowledge representation for a
planner with specific properties), we expect that changes of representation
will be rather small in the other ontologies.
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Appendix

Descriptors of Example in Section 2.1

web.xml

...

<security-constraint>

<web-resource-collection>

<web-resource-name>WebShopServlet</web-resource-name>

<url-pattern>/servlet/WebShopServlet</url-pattern>

<http-method>GET</http-method>

</web-resource-collection>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

</login-config>

...

doGet() Method of the WebShopServlet

public class WebShopServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

{

...

//get customer info via CustomerEntityBean

CustomerObject cObject = cHome.create()

out.println(cObject.getCustomerName())

...

}

ejb-jar.xml of the CustomerEntityBean

...

<ejb-jar>

<enterprise-beans>

<entity>

<ejb-name>CustomerEntityBean</ejb-name>

<ejb-class>edu.unika.aifb.CustomerEntityBean</ejb-class>

...

<security-identity>

<run-as-specified-identity>

<role-name>dbuser</role-name>

48



</run-as-specified-identity>

</security-identity>

</entity>

</enterprise-beans>

</ejb-jar>

...

Descriptors of Example in Section 2.2

WS-BPEL document

...

<process name="checkAccount">

<switch ...>

<case condition="getVariableData(’creditcard’)=’VISA’">

<invoke partnerLink="toVISA"

portType="visa:CCPortType"

operation="checkCard"...>

</invoke>

</case>

<case condition="getVariableData(’creditcard’)=’MasterCard’">

<invoke partnerLink="toMastercard"

portType="mastercard:CCPortType"

operation="validateCardData"...>

</invoke>

</case>

...

</switch>

</process>

...

WS-Policy document

...

<wsp:Policy>

<wsp:ExactlyOne>

<wsse:SecurityToken>

<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

</wsse:SecurityToken>

<wsse:SecurityToken>

<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>

</wsp:ExactlyOne>

</wsp:Policy>

...
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Figure 12: UML diagram of the software component example on page 30.
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Figure 13: UML diagram of the Web services example on page 32.
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