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Abstract. Context dependency of knowledge models brings with it several
problems: the unreliability of knowledge-based systems, maintenance costs, and
limitations on sharing and reuse. Problem-solving methods are knowledge
models of the reasoning process of knowledge-based systems. In this paper we
present a method called inverse verification to deal with the context dependency
of problem-solving methods. Inverse verification investigates the context
dependency of a method by making underlying assumptions explicit. It uses
failed proof attempts as a search method for assumptions and an analysis of these
failures for constructing and refining assumptions.

1 Introduction

In the last few years, problem-solving methods have become widely used in describing the
reasoning behavior of knowledge-based systems (compare the other contributions in this
issue). Despite the strong agreement for the usefulness of problem-solving methods and the
large number which have been documented there is still a lack of clear methodological
support in developing problem-solving methods and in (re-)using them. Recent work in this
area ([Akkermans et al., 1993], [Fensel, 1995a], [Wielinga et al., 1995], [Benjamins &
Pierret-Golbreich, 1996], [Fensel et al., 1996], [O´Hara & Shadbolt, 1996], [Motta &
Zdrahal, 1996], [Benjamins & Aben, 1997], [Breuker, 1997], [Fensel & Schönegge, 1997],
[ten Teije, 1997], [Fensel & Straatman, 1998], and [Fensel & Benjamins, to appear])
provides an in-depth analysis of the essence and main rationales of some problem-solving
methods. There seems to be a common agreement that the assumptions underlying a
reasoning process are central in characterizing and developing problem-solving methods.

Problem-solving methods for knowledge-based systems need to make assumptions to
provide effective and efficient problem solving: assumptions about the scope of the
problem they should solve and assumptions about the domain knowledge they can use as a
resource for their reasoning process [Fensel & Straatman, 1998], [Fensel & Benjamins, to

to appear in: International Journal of Human-Computer Studies (IJHCS),
special issue on Problem-Solving Methods.



- 2 -

appear]. If these assumptions are made explicit they can improve the reusability of
problem-solving methods by guiding their refinement process for a given application and
defining goals for the acquisition process of domain knowledge. However, making the
underlying assumptions explicit is not an easy task. The goal of our paper is to provide
methods for solving this problem. The main idea is to construct mathematical proofs and to
analyze their failure as a systematic means for formulating assumptions. Tool support is
provided by adapting the Karlsruhe Interactive Verifier (KIV) [Reif, 1995] for our purpose.
KIV is an interactive theorem prover that returns with open goals if a proof could not be
completed. These open goals can be used to derive the assumptions we are looking for.

The paper is organized as follows. In section 2 we discuss the problems which our approach
aims to solve and sketch this solution. We will illustrate our approach by analyzing a local
search method in section 3 and discuss the kind of assumptions that can be found when
trying to perform abductive diagnosis with such a method in section 4. Section 5 sketches
how more realistic assumptions reflecting the heuristic nature of problem-solving methods
can be found. Related work is discussed in section 6 and section 7 deals with our
conclusions and future work.

2 The Problem And its Solution

“Science does not rest upon solid bedrock. The bold structure of its theories rises, as if were, above a
swamp. It is like a building erected on piles. The piles are driven down from above into the swamp, but not

down to any natural or 'given' base; and if we stop driving the piles deeper, it is not because we have
reached firm ground. We simply stop when we are satisfied that the piles are firm enough to carry the

structure, at least for the time being.“ [Popper, 1959]

2.1 Knowledge is Situated and Brittle

Knowledge is situated and its usefulness for different situations is limited [Menzies &
Clancey, to appear]. Reuse of knowledge has to come to terms with its situatedness.
Knowledge may be powerful in one context and useless or even dangerous in another. It
may enable effective and efficient problem-solving if its implicit assumptions are fulfilled.
Otherwise, it may produce incorrect results and inefficient search. This brittleness of
knowledge creates serious problems when trying to reuse it outside the context in which it
evolved. Problem-solving methods are a specific type of knowledge concerned with the
problem-solving process. Therefore, they share this general problem of knowledge reuse.
As a consequence, we will first situate our discussion in the general context of sharing and
reusing knowledge and we will then provide specific solutions which deal with reusing
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problem-solving methods. Clearly, some of them may also be applicable for reusing
different types of knowledge.

Cyc is a prominent and long-term research project aiming at a large knowledge base which
would enable common-sense reasoning [Guha & Lenat, 1990]. To achieve this goal, large
amounts of human common sense knowledge were encoded. A serious problem is
encountered, however, when formalizing human knowledge. Knowledge can be understood
as a model of reality which serves specific (probably implicit) purposes [Agnew et al.,
1994]. Trying to represent this situated knowledge recursively creates the same problem. A
representation of this knowledge, i.e. a model, reflects a point of view taken by the modeler
[Clancey, 1993]. The point of view he takes reflects implicitly or explicitly the intended use
of the model. [Guha, 1993] enumerates three aspects of a representation that reflect the
situatedness of a knowledge model: the vocabulary used to formulate the model, the
granularity and accuracy of the model, and the assumptions that underly the model.

[McCarthy, 1993] and [Guha, 1993] present context logic as a means to deal with this
problem.1 The notion of context is reified within first-order logic by introducing terms that
denote a context, i.e. that provide context names. However, providing a notation for context
dependency (i.e., a language that allows us to express situatedness) is only half of the work.
The second problem is how to become aware of the context dependency of a model. That is,
how can we provide methodological support for building a model of the context
dependency of our knowledge model. Making the context of a (knowledge) model explicit
is a tricky problem that is unsolvable in general, but (heuristically) solvable in practice. It is
unsolvable in general because its solution would require us to solve a problem of infinite
regress. Making a context explicit requires a perspective that is used as point of reference
for this activity. Clearly this creates a new context dependency of the model. “As a
consequence, there doesn’t seem to be any certain knowledge on which to stop and stand ...
that doesn’t rely on unproven assumptions“ [Agnew et al., 1994]. However, this does not
imply that there is no pragmatic solution at all. [Agnew et al., 1994] claim that a concept of
purpose realized by a social selection process comparable to the effect of the evolution
process in nature, would solve the problem in practice. The assumptions which coincide
with the desired purpose and its efficient achievement remain and others are rejected,
requiring a deeper search for a better (i.e., more suitable) foundation. 

The context dependency of knowledge models is more than just a “philosophical“ problem.
First, when developing a knowledge model for a single application the developer may have
a good intuition about which assumptions can be made so as to deal with his problem
adequately. In this case, hidden assumptions become apparent in cases where the system
fails. The knowledge-based system may not be able to process a given input, or it returns a
result that is not the solution as it is required. Using error situations and system breakdowns

1.  See [Akman & Surav, 1996] for a survey of formalizations of contexts and [McCarthy & Buvac,
1997] for a more recent introduction to context logic.
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is the most common (implicit) search method for assumptions. However, this “method“
may also cause significant damage. Reliable systems require the explication of their
assumptions as an explicit part of their development process. Second, contexts have the
problematic feature that they change over time. As a consequence, the knowledge-based
system must be maintained [Menzies, to appear]. The notion of context can be used as a
guideline for answering the questions as to whether it is necessary to change the system and
how this can be done without loosing other necessary properties. Third, the problem of
context-dependency is immediately present for knowledge models which are intended to be
sharable and reusable. In this case they cannot be designed to intuitively fit to a given
context because they must be applicable to a broad range of problems not known
beforehand.

Making explicit the context of a knowledge model is an infinite process. We cannot expect
to reach a solid ground upon which we can built our knowledge model. Therefore, the only
things we can provide are shovels and dredgers that can be used to deepen the foundation
and to rebuild the house if required. What can be provided and what is needed is active
support in context explication and in changing knowledge or its underlying context
assumptions in the case that we have to adapt it to a new context (i.e., we became aware of
the fact that it does not fit well to a context).

However, we do not want to investigate knowledge models in general. Instead we focus our
attention on a specific knowledge type: problem-solving methods. [Fensel, 1995a]
attempted to specify the competence of the problem-solving method propose & revise for
parametric design (cf. [Marcus et al., 1988], [Schreiber & Birmingham, 1996]) enabling its
reuse for different tasks. However two significant problems appeared:

• There is not only one propose & revise method rather a large number of slightly
different variants and there is no justification for selecting one of them as the gold
standard.

• Each of these variants uses slightly different assumptions about what the precise
problem is and about the strength of the domain knowledge that can be used for its
reasoning process. In general, the competence of a problem-solving method cannot be
described independent of these assumptions.

One could ask whether a solution would be to choose the variant of a problem-solving
method which makes as few assumptions as possible. However, this fails to grasp the
essence of problem-solving methods. “In order to think effectively, we must ´know´ a good
deal about what not to think! Otherwise, we get bad ideas—and also, take too long.“
[Minsky, 1997] Efficient reasoning is only possible by introducing assumptions. These
assumptions are necessary for reducing the complexity both of the reasoning task and of the
process for developing the reasoning system. Therefore, making assumptions for efficiency
reasons is an essential feature of problem-solving methods (cf. [Fensel & Straatman,
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1998]). The more assumptions a problem-solving method makes, the more efficient
reasoning power it can provide. There are two conclusions that have to be drawn for
problem-solving methods. There is neither a gold standard for a problem-solving method
nor can we expect to ever find a useful assumption-free method. Therefore, what needs to
be provided are generic schemes of problem-solving methods and methodological support
for adapting such schemes to problem-specific and domain-specific circumstances. Such
support has to deal with two aspects (see Figure 1): 

• A method has to be provided that can be used to make explicit context dependency.

• A method that supports the adaptation of a problem-solving method to a given context
has to be found.

Context Explication

We already argued that making strong assumptions on available domain knowledge and
problem restrictions is not a bug but a feature of problem-solving methods that should
enable efficient reasoning. In [Fensel & Benjamins, to appear], we collected a large number
of assumptions and related them to the different subtasks of diagnostic problem solving.
This assumption list can be used to check given domain knowledge, to define goals for
knowledge acquisition, to restrict the size of the problem that must be solved by the
knowledge-based system, or to select a problem-solving method that fits to the given
context as characterized by the established assumptions. However, this was a kind of post-
analysis. These were the results of a common research project which has been carried out
for ca. 20 years. Searching for hidden assumptions was a sort of implicit activity for a
research community while developing problem-solvers for diagnosis. We will present a
method called inverse verification that allows a pre-analysis for hidden assumptions. It
provides support for an active and explicit search process for these assumptions.

Problem-solving Method Adaptation

The context problem of problem-solving methods was already encountered in the early

Problem-Solving
Method

Context:
Domain and Problem

Making context explicit

Adapting to a context

Fig. 1    The two directions of the context problem.
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work on role-limiting methods [Marcus, 1988] and generic tasks [Chandrasekaran, 1986].
The implemented methods fit well for the applications they were developed for. However,
the attempt at applying them to similar problems with slightly different goals and domain
knowledge failed because of their brittleness. [Klinker et al., 1991] rephrased this as the
usability-reusability trade-off of problem-solving methods. On the one hand, the more
assumptions and commitments to a specific problem type that are made, the stronger the
support of the method in developing a solution for this problem. On the other hand, as more
commitments to the specifity of the problem are made, less reusability could be expected.
Recently [Beys et al., 1996] have proposed that problem-solving methods should be
described not only in a domain-independent but also in a completely task-independent
manner so that they can be more broadly reusable. However, this decontextualization of
problem-solving methods significantly reduces the usefulness that is usually provided with
their task-specific vocabulary, assumptions, and granularity. In their approach, only
abstract algorithmic schemas remain, without any relation to the problem. As a
consequence, the mapping between such an algorithmic schema and a problem-, domain-,
and application-specific problem-solver is very complex and little support in knowledge
acquisition is provided.

All these discussions deal with the problem of adapting problem-solving methods to a new
or modified context. [Fensel, 1997] describes methodological support for this process by
providing a principled way of developing and adapting problem-solving methods. This is
achieved mainly by using adapters [Fensel & Groenboom, 1997] as a means to express the
adaptation of problem-solving methods. Refined versions of problem-solving methods are
achieved by combining them with adapters. [Fensel & Motta, 1998] introduce a rational
reconstruction of the Motta-library [Motta, 1997] for parametric design based on these
principles. In the following we will discuss the aspect of context adaptation only as a side
aspect and refer the reader to the quoted literature. We will devote our attention to the first
aspect, i.e. we will present a method for context explication.

2.2 Inverse Verification of Problem-Solving Methods

Here we discuss how assumptions that are necessary to close gaps between different
elements of a specification can be found using failed attempts to prove their proper
relationship.

The method consists of two main steps: (1) Establishing the notion of competence of a
method in dependence on its assumptions and (2) relating the competence of a method to a
problem definition that introduces a general notion of the context in which the problem-
solving method can be applied. Both steps are processes for searching for and constructing
assumptions and both rely on the same principle. However they play different conceptual
roles and require different techniques, as we will see later on.
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We use failed proofs as a search method for assumptions and analysis of these failures for
constructing and refining them. In other words, we attempt to prove that a problem-solving
method achieves a goal and the assumptions appear during the proof as missing pieces in
proving the correctness of the specification. A mathematical proof written down in a text
book explains why a lemma is true under some preconditions (i.e., assumptions and other
sublemmas). The proof establishes the lemma by using the preconditions and some
deductive reasoning. Taking a look at the proof process we get a different picture. Usually,
initial proof attempts fail when they run into improvable subgoals. These failed proof
attempts point to necessary features that are not present from the beginning. Actually they
make aware of further assumptions that have to be made in order to obtain a successful
proof. Taking this perspective, a proof process can be viewed as a search and construction
process for assumptions. Gaps that can be found in a failed proof provide initial
characterizations of missing assumptions. They appear as sublemmas that were necessary
to proceed with the proof. An assumption that implies such a sublemma which would close
the gap in the proof is a possible candidate for which we are looking. That is, formulating
this sublemma as an assumption is an initial step in finding and/or constructing assumptions
that are necessary to ensure that a problem-solving method behaves well in a given context.
Using an open goal of a proof directly as an assumption normally leads to very strong
assumptions. That is, these assumptions are sufficient to guarantee the correctness of the
proof, but they are often neither necessary for the proof nor realistic in the sense that
application problems will fulfill them. Therefore, further work is necessary to find
improved characterizations for these assumptions. This is achieved by a precise analysis of
their role in the completed proof to retrace unnecessary properties.

Such proofs can be done semiformally in a textbook style as proposed by the Abstract State
Machines community [Börger, 1995]. However, providing specification formalisms with a
formal syntax and formal semantics allows (semi-)automated proof support. The great
amount of details that arise when proving properties of software (and each problem-solving
method eventually has to be implemented) indicates the necessity of such mechanization.
Therefore, we provide a formal notion for problem-solving methods and semi-automatic
proof support by using KIV [Reif, 1995]. KIV provides an interactive tactical theorem
prover that makes it suitable for hunting hidden assumptions. We expect many proofs to
fail. Using a theorem prover that returns with such a failed attempt adds nothing. Instead of
returning with a failure KIV returns with open goals that could not be solved during its
proof process. In addition, KIV provides support for the generation of counter examples.
This is precisely the kind of support we are looking for when finding and constructing
assumptions. As opposed to verification, here we do not start a proof with the goal of
proving correctness. Instead, we start an impossible proof and view the proof process as a
search and construction process for assumptions. Therefore we will call our method inverse
verification.

A complete introduction to KIV is beyond the scope of the paper. However, we will
mention some of its main features and the main rationales for choosing it for our purpose.
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KIV supports the software development process starting from formal specifications
(algebraic full first-order logic with loose semantics) and ending with verified code (Pascal-
like procedures grouped into modules). It has been successfully applied in case-studies up
to a size of several thousand lines of code and specification (see e.g. [Fuchß et al., 1995]).
Its specification language is based on abstract data types for the functional specification of
components and dynamic logic for the algorithmic specification. It provides an interactive
theorem prover integrated into a sophisticated tool environment supporting aspects like the
automatic generation of proof obligations, generation of counter examples, proof
management, proof reuse etc. Such a support is essential for making feasible the
verification of complex specifications. 

The use of the KIV system for the verification of KBSs is quite attractive. KIV supports
dynamic logic (cf. [Goldblatt, 1982], [Harel, 1984]) which has been proved useful in the
specification of KBSs (cf. KARL [Fensel, 1995b], (ML)2 [van Harmelen & Balder, 1992],
MLPM and MCL [Fensel et al., 1998]). Dynamic logic has two main advantages
(especially if compared to first-order predicate logic). First, dynamic logic is quite
expressive, e.g. we can formalize and prove the termination or equivalence of programs or
the generatedness of data types. Second, in dynamic logic, programs are explicitly
represented as part of the formulas. Thus (especially if compared to the verification
condition generator approach) formulas and proofs are more readable and provide more
structural information which can be employed by proof heuristics.

KIV allows the structuring of specifications and the modularization of software systems.
Therefore, the conceptual model of our specifications (see [Fensel & Groenboom, 1997] for
more details) can be realized by the modular structure of a specification in KIV. Finally, the
KIV system offers well-developed proof engineering facilities: Proof obligations are
generated automatically. proof trees are visualized and can be manipulated with the help of
a graphical user interface. Even complicated proofs can be constructed with the interactive
theorem prover. A high degree of automation can be achieved by a number of implemented
heuristics. An elaborated correctness management keeps track of lemma dependencies (and
their modifications) and the automatic reuse of proofs allows an incremental verification of
corrected versions of programs and lemmas (see [Reif & Stenzel, 1993]). Both aspects are
essential to make verification feasible given the fact that system development is a process
of steady modification and revision.

The main aspect in choosing KIV as the tool environment for our approach however stems
from the fact that KIV applies an interactive theorem prover. We already expect our proofs
to fail and such a return from an automatic theorem prover would not add much. However
an open goal, as it results from an impossible proof, provides an assumption or at least a
departure point for constructing an assumption via refining the open goal.

We will illustrate inverse verification by discussing small examples that present our ideas
clearly and in a form which is easy to understand. First, we present the search method hill-
climbing and connect the competence of this local search method with a problem of finding
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a global optimum. Second, we discuss a version of abductive diagnosis and the kind of
assumptions that can be found when trying to solve this problem with a local search
method. The reader may argue that we do not discuss problem-solving methods for
knowledge-based system but rather simple search methods. However, we would like to
mention four arguments:

• The algorithmic core of problem-solving methods consists of simple search methods.
Take propose & revise ([Marcus et al., 1988], [Schreiber & Birmingham, 1996]) as an
example. It is a simple local search method with two different modes: proposing
extensions of a state and revising a state if constraint violations occur. Therefore, our
results can be immediately applied to this type of method.

• Problem-solving methods do not achieve their “intelligence“ through the use of
complex algorithmic strategies. Instead, they use strong domain heuristics for the
search process, restrict the size of the problem they can deal with properly, and make
ontological commitments so as to be immediately applicable to a specific problem type. 

• We will explain in section 4 how the search methods that we discuss can be adapted to
richer contexts constituting task-specific (or problem-type specific) problem-solving
methods.

• In section 5 we will show how more realistic assumptions reflecting the heuristic nature
of problem-solving methods can be found.

3 First Example: A Local Search Method

We will illustrate the two main activities: (1) Establishing a notion of the competence of a
method in dependence on assumptions and (2) relating the competence of a method with a
problem definition by introducing further assumptions. Establishing the competence of an
operational algorithm specification requires proof techniques of dynamic logic. We have to
relate a procedural specification with a first-order specification of its assumptions and
competence. For the second step two declarative specifications must be related. The gap
between a competence specification and a problem definition has to be closed via
assumptions. The specifications and proofs remain within first-order logic by proving
implication between first-order formulas.

3.1 Establishing the Competence of a Problem-Solving Method in 
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Dependence on Assumptions

Hill-climbing is a local search algorithm that stops when it has found a local optimum. The
control flow is defined in Figure 2. The method works as follows: First, we select a start
object. Then we recursively generate the successors of the current object and select a
successor if we find a better one. Otherwise we terminate and return the current object that
does not have better successors. The main requirements on domain knowledge that are
introduced by hill-climbing (and by other local search methods) are the existence of a

operational specification hill-climbing

output := hill-climbing(input)

hill-climbing(X)
begin

current := select-start(X);
output := recursion(current)

end

recursion(X)
begin

successors := generate(X);
new := select-a-best(X,successors)
if X = new

then output := X 
else recursion(new)

endif
end

/* select-start must select an element of input and uses a selection criterion. */
select-start(x) ∈ x ∧ select-start(x) ∈ select-criterion(x)

/* generate selects input elements that are in a successor relation with the current
object.*/

x ∈ generate(y) ↔ x ∈ input ∧ successor(y,x)

/* select-a-best selects the current object if no better successors exist or a successor if a
better successor exists. In the latter case the selected successor must be better than the
current object and there must not be another successor that is better than the selected
successor. */

¬∃z . (z ∈ {y} ∪ y´ ∧ select-a-best(y,y´) < z)
¬∃z . (z ∈ y´ ∧ y < z) → select-a-best(y,y´) = y
∃z . (z ∈ y´ ∧ y < z) → select-a-best(y,y´) ∈ y´ ∧ y < select-a-best(y,y´))

endoperational spec

Fig. 2    The operational specification of hill-climbing.
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preference relationship and a successor relationship between the objects. The former is
used for selection and the latter is used to enable the local search process. A third
requirement is a selection criterion for the start object of the search process. The
performance and competence of the method depend on the properties of these three
relations (cf. [Graham & Bailor, 1996]). 

We tried to prove that hill-climbing always terminates and that it has the competence to find
a local optimum (see Figure 3). KIV automatically generates all proof obligations in
dynamic logic that are necessary to ensure termination and competence of an algorithmic
specification. In our case it generates the following proof obligations:

| <hill-climbing(input)> true, i.e. termination

| <hill-climbing(input)> output ∈ input

| <hill-climbing(input)> ¬∃x . (successor(output,x) ∧ x ∈ input ∧ output < x).

Tool support is provided in unfolding these proof obligations and in applying tactics. In
general the user has to select proof tactics and heuristics from a menu. In our case, user
interaction is needed to select axioms of a specification as supporting lemmas for the proof
and to select the kind of induction. We run into a number of open goals during the proofs:

• We had to ensure that select-criterion retrieves an object for each possible input.
Otherwise it cannot be guaranteed that hill-climbing will provide an output.

• We have to ensure that the preference we use (<) is a partial order. We have to be sure
of irreflexivity and transitivity to ensure that hill-climbing cannot be caught up in
circles (imagine a < b and b < a and a ∈ successor(b) and b ∈ successor(a)). In

competence hill-climbing 
axioms

output ∈ input
¬∃x . (successor(output,x) ∧ x ∈ input ∧ output < x)

endcompetence 

requirements
axioms

∃x. (x ∈ input ∧ x ∈ select-criterion(input))
¬(x < x)
 x < y ∧ y < z →x < z

endrequirements

Fig. 3    Competence and requirements of hill-climbing.
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addition, the finiteness of the input set has to be ensured.

Based on these assumptions (shown as requirements in Figure 3) we could establish that
hill-climbing finds a local optimum of the input.

3.2 Connecting the Competence of a Problem-Solving Method to a 
Task

A task definition specifies the goals that should be achieved by the knowledge-based
system. It establishes an explicit notion of the context in which the problem-solving method
is applied. A general context where hill-climbing can be applied is in searching for a
(global) optimum. Figure 4 provides the definition for our running example. The goal
describes what an optimum must fulfill. However, the problem-solving method hill-
climbing only has the competence to find a local optimum in a graph. We start the
interactive proof process again knowing that it will lead us to further assumptions because
hill-climbing in general does not have the competence to find a global optimum. Two main
problems arise during the proof:

1) We would have to prove that the selected start object is always connected with a global
optimum (several global optima may exist because we do not require a total order).
Otherwise, the global optimum is not attainable by the recursive search of hill-
climbing.

2) Even if we could prove (1) we may get stuck at the case distinction
if X = new

where hill-climbing stops due to a local optimum.

A trivial assumption that closes both gaps in the proof is to require that each object be
directly connected with each other object.

totally-connected assumption: successor(x,y)

task global optimum
goal

global-optimum ∈ input
¬∃x . (x ∈ input ∧ global-optimum < x)

endtask

Fig. 4    The task definition global optimum.
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However this is a very useless assumption. In this case, hill-climbing collapses to a
complete search in one step because all objects are successors of each possible start object.
A less drastic assumption is to require that each object (except a global optimum) has a
successor with a higher preference.

better-successor assumption: 
x ∈ input → (∃y . (y ∈ input ∧ successor(x,y) ∧ x < y) ∨ ¬ ∃z . (z ∈ input ∧ x < z))

This assumption is derived to close the gap in the case distinction of the recursion. If the
recursion stops we have found a global optimum. We already know from the termination
proof of hill-climbing that the problem-solving method always terminates.

The question remains as to whether the assumptions are minimal. Here, minimality means
that the assumptions are not only sufficient but also necessary to guarantee that the
competence of the problem-solving method implies the problem definition, formally:

(Problem-solving methodcompetence → Task Definition) → Assumption.

An assumption that is minimal in the logical sense (i.e., necessary) has the clear advantage
that it maximizes the circumstances under which it holds true. It does not require anything
more than what is precisely necessary to close the gap between the competence and the
problem. In fact, we have proven with KIV that the better-successor assumption is a
minimal assumption in the logical sense. Actually this proof process leads to several
refinements of the original assumption as we encountered several holes during the proof
process. In general, minimizing (i.e., weakening) assumptions can be achieved by
analyzing their sufficiency proof with KIV and eliminating aspects that are not necessary
for continuing the proof. However, besides logical minimality other aspects like cognitive
minimality (effort in understanding an assumption) or computational minimality (effort in
proving an assumption) may also influence the choice of assumptions. We will illustrate
this in the following section.

The two assumptions that we have introduced are rather trivial. This is a consequence of the
simplistic example. In the following section we will define a more complex task and
problem-solving method which will lead to more interesting assumptions. 

4 Second Example: Finding an Abductive Explanation

In the following, we use a richer task definition as example. The task abductive diagnosis
receives a set of observations as input and delivers a complete and parsimonious
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explanation (see e.g. [Bylander et al., 1991]). An explanation is a set of hypotheses. A
complete explanation must explain all input data (i.e., observations) and a parsimonious
explanation must be minimal (that is, no subset of hypotheses explains all observations).
Figure 5 provides the task definition for our example. Any explanation that fulfills the goal
must be complete and parsimonious. The task introduces requirements on domain
knowledge: It must provide sets to interpret the sorts datum and hypothesis and an
explanation function to interpret explain. The (axiomatic) input requirement ensures that
there are observations.

Finding a complete and parsimonious explanation is intractable in the number of
hypotheses [Bylander et al., 1991]. Therefore, we have to apply heuristic search strategies.
In the following, we characterize a local search method which we call set-minimizer. The
competence theory in Figure 6 defines the competence of set-minimizer: it is able to find a
correct and locally minimal set. Local minimality means that there is no correct subset of
the output that only has one less element. The method has one requirement: it must receive
a correct initial set (cf. Figure 6). The competence and the requirement illustrate the
additional aspects that are introduced by the problem-solving method:

task complete and parsimonious explanation
sorts 

datum, data : set of datum, 
hypothesis, hypotheses : set of hypothesis

functions
explain: hypotheses → data
observables: data
goal : hypotheses

predicates 
complete: hypotheses
parsimonious: hypotheses

variables 
x : datum
H,H’ : hypotheses

axioms
goal

complete(goal) ∧ parsimonious(goal)
complete(H) ↔ explain(H) = observables
parsimonious(H) ↔ ¬∃H’ (H’ ⊂ H ∧ explain(H) ⊆ explain(H’))

requirement
∃x (x ∈ observables)

endtask

Fig. 5    The task definition for abduction.
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• The task of finding a parsimonious set is reduced to local parsimonious sets.

• Constructing an initial correct set is beyond the scope of the method. It is assumed as
being provided by the domain knowledge, by a human expert, or by another problem-
solving method. The method only minimizes this correct set.

The applied search strategy is one-step look ahead. The competence states that set-
minimizer is able to find a local minimal subset of the given set of objects. The axioms of
its competence definition in Figure 6 state that it finds a subset that is correct, and that each
set containing one element less is not a correct set. We skip all proofs that were necessary
to establish this competence. Actually we could reuse the proofs that were done for hill-
climbing based on our adaptation method (see [Fensel, 1997], [Fensel et al., 1997]) and the
proof reuse facilities of KIV. Set-minimizer is a task-specific adaptation of hill-climbing.
By providing a library of reusable problem-solving methods and support in adaptation,
their proofs can be reused, too. Therefore, this type of proof that an operational
specification of a problem-solving method has some competence only has to be done once
when introducing the problem-solving method into the library.

The task and problem-solving method are connected by providing the set of all hypotheses
as input and identifying correct sets with complete explanations, i.e. 

• input := {x | x is a hypothesis} and 

• correct(x) ↔ complete(x).

competence set-minimizer
import requirements set-minimizer
variables x : object
constants Output : objects
axioms

correct(Output)
x ∈ Output → ¬correct(Output \ {x})

endcompetence

requirements set-minimizer
sorts object, objects set of object
predicates correct : objects
constants Input : objects
axioms

 correct(Input)
endrequirements

Fig. 6    The competence and requirements of the problem-solving method set-minimizer.
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The circumstances that ensure that the problem-solving method achieves the goal as
introduced by the problem definition have to be investigated again. The same procedure
can be used again. We try to prove:

• complete(output)

• parsimonious(output)

Completeness. The completeness of output follows directly from the competence of the
problem-solving method. However, it is based on the input requirement of the method. The
problem definition of abduction has to be strengthened. The set of all hypothesis (i.e., the
input) must be a complete explanation. This puts a strong restriction on the abductive
problem: The function explain has to be defined in a way that adding hypotheses to a set of
hypotheses does not destroy the explanatory power of the set (cf. [Bylander et al., 1991]).2

Parsimony. The competence of our method ensures local parsimony. Our method set-
minimizer finds a local-minimal set that is parsimonious in the sense that each subset that
contains one element less is not a complete explanation. However, it cannot be guaranteed
that it is parsimonious in general. Smaller subsets may exist that are complete explanations.
The reader may already have realized the similarity with the problem of hill-climbing that
only finds local optimal elements. However, with the better-successor assumption, global
optima can be found. A natural way to close our gap is therefore to reformulate the better-
successor assumption and global optimum in terms of the new problem. Instantiating the
better-successor assumption requires the definition of a preference and a successor relation:

x < y :↔ explain(x) ⊆ explain(y)

successor(x,y) :↔ ∃z . (z ∈ x ∧ y = x \ {z})

The better-successor assumption can now be reformulated based on these two definitions
and the definition of the input above:

x ⊆ hypotheses → 
(∃y . (y ∈ x ∧ explain(x) ⊆ explain(x \ {y})) 
∨ ¬ ∃z . (z ⊆ hypotheses ∧ explain(x) ⊆ explain(z))

However, this is a minimal but not very intuitive assumption. Again we apply our failed-
proof technique. We use it now to generalize an assumption. The idea is to prove that the
better-successor assumption holds based on the problem definition, the input requirements
and the competence of the set-minimizer method, as well as the way the preference was
defined. KIV returns with open goals that would be necessary to complete the proof. These

2.   In fact, this property will be established as a consequence during the proof of parsimony.
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open goals are generalizations of the better-successor assumption because they imply its
truth. This proof attempt with KIV is straightforward and gets stuck in the following
subgoal:

y ⊂ x ∧ explain(x) ⊆ explain(y) → ∃z . (z ∈ x ∧ explain(x) ⊆ explain(x \ {z})

This assumptions requires that if there are smaller subsets of x with greater explanatory
power then there must be another subset that differs only in one element from x and also has
greater explanatory power. A simple generalization of this implication is to negate its
premise. That is, we select the strengthening tactic:

¬a | a → b

This tactics leads to

¬(y ⊂ x ∧ explain(x) ⊆ explain(y)), 

i.e.,

y ⊂ x → ¬ explain(x) ⊆ explain(y)

This assumption requires that for any set of hypotheses no subset exists that has a greater
explanatory power. Deleting a hypothesis from the set of hypotheses may never lead to a
superset of explained observations. Actually, this assumption plays a prominent role in the
literature on abductive reasoning and model-based diagnosis. A strengthened version of this
assumption is used by [Bylander et al., 1991] to define polynomial subclasses of abduction.
In general, abduction is NP-hard in the number of hypotheses. However, with the following
monotonic abduction assumption

y ⊂ x → explain(y) ⊆ explain(x)

[Bylander et al., 1991] prove that it is possible to find a complete and parsimonious
explanation in polynomial time. The assumption they use requires that a superset of
hypotheses also explains a superset of observations. The assumption is used to restrict the
worst-case effort of a method. [de Kleer et al., 1992] examine its role in model-based
diagnosis. The assumption holds for applications where no knowledge that constrains the
fault behavior of devices is provided or where this knowledge respects the limited-
knowledge-of-abnormal behavior assumption. This is used by [de Kleer & Williams, 1987]
as the minimal diagnosis hypothesis to reduce the average-case effort of finding all
parsimonious and complete explanations with GDE. A syntactical way to ensure this
assumption (i.e., to formulate it as a requirement on the domain knowledge) is to restrict the
domain theory to Horn clauses constraining only the correct behavior of devices, cf. [de
Kleer et al., 1992]. It is interesting to see how the very generic better-successor assumption
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transforms into such intuitive and broadly used task-specific assumptions.

5 Heuristic Assumptions

The assumptions introduced so far ensure that a local method solves a global problem.
They ensure that a local search method has the same competence as a global search method.
However, that is not what we are usually looking for. Often these assumptions are too
strong. In addition, we mentioned that GDE uses the monotonic-abduction problem to
reduce the average-case behavior of the problem-solver. However, we have not yet
provided measurements nor proof of these aspects. This section discusses how both can be
integrated.

5.1 Domain-specific Reformulation and Weakening of Assumptions

[Marcus et al., 1988] introduced the problem-solving method propose & revise, which was
also recently used by several research groups in a comparable case study (cf. [Schreiber &
Birmingham, 1996]). It is a local search method consisting of two substeps: Propose
extends a current state and revise modifies the state if constraint violations occur. Both
activities are iterated until a complete and correct state is reached. In general, this cannot be
guaranteed because propose & revise does not include a backtracking mechanism that
would allow us to escape a dead-end in the solution process. Completeness of the search
method can only be guaranteed if we introduce strong assumptions about the domain
knowledge that is used by the propose and revise steps (see Figure 7). 

[Zdrahal & Motta, 1995] provide an interesting and in-depth analysis of the problem-
solving method propose & revise and its application to the vertical transportation (VT)
domain ([Marcus et al., 1988], [Schreiber & Birmingham, 1996]). The goal is to design an
elevator that meets several requirements and constraints. [Zdrahal & Motta, 1995] identify
two key parameters in this domain that influence the difficulty of the problem: the capacity
and the required speed of the elevator. The larger the values of these two parameters the
more difficult it is to find a solution. They investigate how propose & revise behaves based
on the available domain knowledge for different combinations of these two parameter
values. The instantiated method failed for some of the simple cases and, not surprisingly,
for many of the difficult ones. Some of the difficult ones could be solved by a complete
search method, however it required large amount of storage size and computation time.
Failures of propose & revise in these cases can be accepted because we are looking for a
heuristic problem-solver that gains efficiency by restriction to the simple cases. Aiming for
a complete and efficient problem-solver for the general case would be an unsolvable
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problem. However, propose & revise  also fails for some of the simple cases and this must
be viewed as being due to gaps in the domain knowledge provided. The domain knowledge
should be strong enough to enable propose & revise to find a solution for these cases.

Based on this domain analysis we could weaken our assumptions of Figure 7. Instead of
requiring that we always have a propose and a revise step available that find an optimal
successor state we could restrict these requirements to the more simple cases. We could
define boundaries for the values of the key parameters in the assumptions. Completeness or
optimality may only be guaranteed for domain cases having small values for these key
parameters. For difficult cases we either have to use a more complex search method with
higher demands on storage and time or we have to ask the human expert to solve them.
Such an approach for classification methods is described in [van Harmelen & ten Teije,
1998].

5.2 Specification and Verification including Thresholds for the 

competence propose & revise
axioms

/* The output is a complete, correct and optimal state. */
Complete(output) ∧ Correct(output) ∧ 
¬∃ s . (Complete(s) ∧ Correct(s) ∧ output < s)

endcompetence

requirements propose & revise
axioms

/* The propose knowledge never fails and monotonically extends the state. */
¬ Complete(s) → Partial completeness(s) < Partial completeness(propose(s))

/* The application of a propose leads to an optimal state. */
¬ Complete(s) → 

¬∃ s´ (Correct(s´) ∧ propose(s) < s´ ∧ 
Partial completeness(s´) = Partial completeness(propose(s))

/* The revise knowledge never fails. */
¬ Correct(s) → Correct(revise(s))

/* The application of revise does not change the completeness of a state. */
Partial completeness(revise(s)) = Partial completeness(s)

/* The application of revise leads to an optimal state. */
¬ Correct(s) → 

¬ ∃ s´ (Correct(s´) ∧ revise(s) < s´ ∧
Partial completeness(revise(s)) = Partial completeness(s´))

endrequirements

Fig. 7    The competence of propose & revise (see [Fensel et al., 1997]).
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Computational Effort

The assumptions of problem-solving methods are motivated by the goal of improving the
efficiency of the assumption-based reasoning process compared to a reasoning process
using less assumptions. However, we have not yet provided at the means to specify and
verify the efficiency of problem-solving methods. [Shaw, 1989] and [Straatman & Beys,
1995] described elements that can be integrated into our framework. [Shaw, 1989] includes
counters and boundaries for the values of these counters in the specification of real-time
software. Precisely the same can be done for problem-solving methods. In the case of hill-
climbing we can add a counter for the number of successors that are derived and compared
in one step and a second counter for the number of steps. Then, we can formulate
boundaries for their combined value and formulate this in terms of assumptions that either
introduce requirements on the domain knowledge or restrict the set of problems that are
solved by hill-climbing (i.e., hill-climbing terminates after it has consumed its
computational time). Using this direction, work on anytime algorithms (cf. [Zilberstein,
1996]) could be integrated into the work on problem-solving methods.

In general, such refinements of specifications by using measurements allow more refined
assumptions on the graph that is used by the search methods. [Stefik, 1995] provides
informal examples of such refined assumptions for different variants of different problem-
solving methods in what he calls the symbol-level analysis of problem-solving methods.
For example, he discusses the circumstances under which data-directed searches, solution-
directed searches, and opportunistic searches are preferable for classification methods.
Each search type requires some knowledge types with specific properties in order to
perform well (i.e., effectively and efficiently).

6 Related Work

“The problem of performing deduction of new facts from a set of axioms is well-studied and understood.
An equally important but far less explored problem is the derivation of hypotheses to explain observed
events. In formal terms this involves finding an assumption that, together with some axioms, implies a

given formula.“ [Cox & Pietrzykowski, 1986]

[de Kleer, 1986] describes a truth-maintenance system (ATMS) that could in principle be
applied to our problem. Actually most of the approaches to model-based diagnosis we
discussed use adaptations of this technique. However, applying this technique introduces
two strong (meta-)assumptions:
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• All the assumptions required to solve the gap between the goals of the task and the
competence of the problem-solving method must already be known and provided to the
system.

• The system needs to know the impacts of the assumptions, i.e. their influence on the
truth of the formulas describing the competence of the problem-solving method and the
goals of the task.

If this complete knowledge is available, establishing the proper set of assumptions boils
down to selecting a minimal set of assumptions, and a bookkeeping mechanism like ATMS
can process this task (cf. [de Kleer & Williams, 1987]). When such a complete set of
assumptions does not exist, finding assumptions is rather a constructive activity.

Constructive approaches to derive such assumptions can be found in approaches to
abduction ([Cox & Pietrzykowski, 1986]), in program debugging with inductive techniques
(cf. [Shapiro, 1982], [Lloyd, 1987]), in explanation-based learning (cf. [Minton et al.,
1989], [Minton, 1995]) or more generally in inductive logic programming ([Muggleton &
Buntine, 1988], [Muggleton & De Raedt, 1994]). However, these approaches achieve
automation by making strong (meta-)assumptions about the syntactical structure of the
representation formalisms of the components, the representations of the “error“, and the
way an error can be fixed. Usually, Prolog or Horn logic is the assumed representation
formalism, and errors or counter-examples are represented by a set of input-output tuples or
a finite set of ground literals. Modification is done by changing the internal specification of
a component. In this scenario, error detection boils down to backtracking a resolution-based
derivation tree for a “wrong“ literal. However, we have to aim for new formulas (i.e., an
assumption may be represented by a complex first-order formula) and our “counter-
examples“ are not represented by a finite set of ground literals but by a complex first-order
specification. Also most of the approaches mentioned do not regard architectural
descriptions of the entire reasoning system.3

We distinguished two roles of assumptions. First, they are necessary to ensure that a
problem-solving method has a specific competence. For example, without the assumption
that the preference relation is a partial order, the termination proof of hill-climbing would
not be possible. Second, they are necessary to ensure that the competence of a problem-
solving method is able to achieve a goal as introduced by a problem definition. For
example, with the better-successor assumption we can prove that the competence of hill-
climbing is strong enough to find a global optimum. Both roles differ conceptually and
technically. 

The first aspect has to be examined when establishing a problem-solving method in a
library of reusable elements. Such elements must be reliable in the sense that they

3.  An exception are the approaches to explanation-based learning that use explicit architecture
axioms [Minton, 1995].
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guarantee some competence and the conditions necessary to provide this competence.
Technically, it is a proof that concerns the algorithmic structure of the method. Therefore,
dynamic logic is used to specify the algorithm and the proof obligations are formulas in
dynamic logic. 

(1) Assumptions → [Operational Specification] Competence

Finding the weakest preconditions for an algorithm has a long tradition in software
engineering (cf. the wp calculus [Dijkstra, 1975] and predicate transformers [Chandy &
Sanders, 1995]). Since the dynamic logic we use can be regarded as a generalization of
Hoare-triples we can employ methods and techniques developed in this area (e.g. the B-
Toolkit [Wordsworth, 1996] or Z/EVES [Meisels & Saaltink, 1996]). A very interesting
approach in this area is KIDS/SPECWARE [Smith, 1996] that supports the semiautomatic
derivation of efficient programs. [Smith, 1985] provides a generalized notion of deduction
that includes the derivation of weakest pre-conditions for input to ensure the correctness of
a synthesized program. The main distinction between this work in software engineering and
our method for knowledge-based systems stems from the specifity of the class of systems
we are referring to. In software engineering the derived pre-conditions are rather simple
safe guards that exclude some input values, for example that prevent division by zero or
require a non-empty list for sorting. In our case, the entire task is decomposed into
assumptions on domain knowledge, into assumptions that reduce the complexity of the
task, and into the competence of a problem-solving method. The algorithmic part of the
problem-solving method is only a minor part in problem-solving. Most of the problem is
assumed to be solved by the domain knowledge4 and the problem-solving method basically
defines the right order in which this knowledge is to be applied. 

In consequence these assumptions have a different purpose and require different
techniques. We are also looking for assumptions that ensure that the competence of the
method implies the problem definition, for example

(2) Assumptions → (Competence → Problem Definition)

That is, we relate two declarative specifications, the functionality of the system and the
specification of the required functionality. Assumptions are used to split the required
functionality into two parts. One part that is solved by the competence of the problem-
solving method (in the case that the assumptions hold) and one part that is only assumed to
be solved. That is, this part is either solved by the domain knowledge, by a possible
external human agent, or it must be viewed as a restriction on the class of solvable
problems. We argued that our problem-solving methods can only provide a limited
fragment of the entire functionality because of the intractability of typical problems they
are applied to. In software engineering, a different point of view is usually taken. One

4.   nomen es omen
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assumes that the specification functionality must be completely provided by the system. In
this setting, our assumption hunting method makes no sense because the distinction
between the two different specifications and their relationship does not exist at all.

7 Conclusions

Like every other knowledge model problem-solving methods are connected with a context.
This situatedness may appear in three types of problems: (1) The context which a problem-
solving method is developed for may cause an error because the developers were not aware
of an implicit assumption that does not hold in this context. (2) The initial context of a
problem-solving method may change over time and this causes the typical maintenance
problems. (3) A problem-solving method is to be shared and reused in a new context and it
is hard to decide whether it fits into the new context and whether and how it has to be
adapted.

In [Fensel & Straatman, 1998] we proposed the idea of characterizing and developing
problem-solving methods by using their underlying assumptions. These assumptions make
the context dependency of a problem-solving method explicit. However, the problem of
how to find such assumptions arises. We presented the inverse verification method that
uses failed proof attempts and an interactive theorem prover for this purpose. KIV has been
shown to be an excellent tool for our purpose. Its concepts of proof modularity and proof
reuse made the highly iterative and reversive development and adaptation process of
problem-solving methods tractable. The interactive theorem prover could be used to
identify assumptions as open goals in partial proofs. 
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