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Abstract—Information search in the Web can become cum-
bersome if the desired information is scattered across multiple
websites. For instance, even though there exist pages listing
track chairs of the past ICWS conferences and web accessible
bibliography databases, compiling the list of recent journal
publications of the ICWS track chairs with the help of existing
search engines is still a time consuming task. It is even harder
to find information from the Deep Web as it requires user
interactions that are hard to simulate by automatic crawlers.

Semantic search based on structured data aims at efficiently
answering information needs but relies on the cooperation of
providers to be able to access their data. We aim at providing an
alternative solution by introducing web browsing recipes that are
goal-oriented end user browsing processes containing instructions
for accessing, extracting, and merging (dynamic) information
from various websites. Browsing recipes can be shared and reused
to allow users to benefit from the browsing efforts of others. In
order to achieve this goal, the development of efficient search
techniques is the main prerequisite for effectively sharing and
reusing recipes.

In this paper we propose an efficient search technique for
finding browsing recipes from large recipe repositories. Our
search technique necessitates a structured query specifying the
required information along with constraints on the structure of
the browsing processes. We augment explicit state representation
based model checking technique by indexing structures tailored
to the requirements of information search based on the recipes.
The performance evaluation of our approach reveals the impact
of the indexing structures on the overall recipe search efficiency.
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I. INTRODUCTION

For many practical purposes end users need information
that is scattered across multiple websites. The websites can be
static or dynamic. Static websites can be crawled by current
search engines, and their content can be indexed to provide
end users with efficient search over documents. However, in
many cases, end users still have to do a lot of work manually
to compile the required information together. E.g., consider
an end user who is interested in the track chair names of
previous ICWS conferences. As of today, Google does not
deliver satisfactory results for queries similar to “track chairs
of all ICWS conferences”. One reason for this lack of support
is that the set of links returned by document-centric web
search engines often contain similar information whereas the
complex information need requires fractions of complementary
information that, if combined, satisfy the information need.

Sudhir Agarwal
Stanford Computer Science Department
Stanford University
353 Serra Mall, Stanford, CA 94301, USA
Email: sudhir@cs.stanford.edu

In order to obtain the required information the end user has
to pose multiple queries to a search engine, browse through
the results, extract and aggregate the required information
fragments outside of the found web pages.

The case of dynamic websites is even more complex.
Accessing the information lying in the Deep Web [1] is already
an open challenge for search engines. It is not trivial for auto-
matic crawlers to sensibly interact with the dynamic websites
in order to access the underlying information. Furthermore,
indexing such information is not a suitable technique since
the information underlying dynamic websites can change so
rapidly that the index becomes quickly outdated.

End users need help in selecting the pages that are relevant
for obtaining the information scattered over multiple web
pages. Such a help must contain at least the set of the pages
that the end user should visit, and support for invoking the
pages in the set easily. More advanced help could comprise
the complete end user browsing process including support for
data flow between the user and the pages as well as among the
pages, and control flow if there are data dependencies among
inputs and outputs of web pages in the set.

The Semantic Web [2] as well as the Linked Data [3]
addresses the issue of semantic descriptions of web page
content but not of the path to be executed in order to reach
pages. Information retrieval has focused on analyzing such
browsing paths or click trails of millions of users mainly
for the purpose of improving web search results. Click trails
can be used as endorsements to rank search results more
effectively [4], trail destination pages can themselves be used
as search results [5], and the concept of teleportation can
be used to navigate directly to the desired page [6]. The
statistics based click analysis methods typically fail to consider
semantics of user queries and pages. Furthermore, the models
cannot differentiate whether a frequently used path actually
satisfies the information need or not.

Our Approach: We aim at providing end users with a list
of browsing processes that are relevant for a given information
need instead of a list of links to web pages. Each browsing
process in the list of hits will lead the user to the required
information. Such a list of appropriate browsing processes is
computed by searching existing end user browsing processes.

In order to be able to search appropriate browsing pro-
cesses automatically, we first show in Section II how end
user browsing processes (consisting of link selection, form



inputs, and information extraction steps) can be formalized by
combining a process algebra with a semantic description of
process resources [7]. We also show how browsing processes
can be automatically verified with a model checking technique
against search requests. Requests declaratively describe the
required information as well as further constraints on the
process structure using a combination of a description logic
and a temporal logic. In our approach we can leverage web
page annotations, but we do not require pages to be previously
annotated. Explicit end user browsing processes provide the
end users with a place for adding the semantic annotations to
the web pages they contain in a bottom up fashion. Then, we
show how user browsing processes can be efficiently searched
so that users can save browsing time by reusing them for
their complex information gathering needs. Existing model
checking implementations often implement an explicit state
representation and fall short of efficiency, which is required
for the search over large repositories. Therefore, we develop
two offline indexes in Section III that achieve significant
gains in the search performance. In this section, we will
present evaluation results of performance tests and complexity
proofs to demonstrate the impact on search performance. In
Section IV, we provide implementation details, experimental
setup and test data. After discussing related work in Section V,
we conclude in Section VI.

II. PRELIMINARIES

We start with brief overviews of the basic techniques that we
use throughout the paper. We present how browsing processes
can be described formally, how constraints on such processes
can be specified, and how processes can be automatically
checked against constraints with a model checking approach.
In contrast to the imperative process descriptions, declarative
constraints over processes as we use them in search requests
express desired behavioral properties. Model checking tech-
niques verify whether a given behavior description satisfies a
given set of constraints and serve as a fundamental reason-
ing task for searching for complex behavior descriptions of
browsing recipes.

To illustrate the formalisms, we will use the example of
browsing processes that collect the track chairs of previous
conferences and query their articles from a bibliography
database. In the example, static conference web pages are
visited and the names of track chairs are marked as relevant
outputs. Next, a website like DBLP is visited, author names
are entered into the input form of the start page and the
corresponding articles are extracted from the result pages.

A. Semantic Process Description Language

We use the suprime Process Description Language
(suprimePDL) to describe the information flow and control
flow among the web pages. suprimePDL is based upon the
m-calculus process algebra [8]. Process algebras allow for the
description of observable behavior by providing constructs for
modeling data and control flow. Here, concrete actions with

concrete parameter values occurring in process runs are aggre-
gated to variables. The process language contains input and
output activities, local operations (computation), conditionals,
parallel compositions, alternatives, and agent invocations. We
explain the syntax in the following examples as needed.

In pure m-calculus [8], the process resources and variables
are seen as strings without any structure. As a result, it is hard
for users to understand which values he should provide for the
variables in order to get the desired result. In suprimePDL,
process resources and variables are annotated with a domain
ontology Op expressed in RDFS. E.g., input parameters x
and the communication channel c of an input activity c[x] are
process resources and further described in Op. By combin-
ing a process description language with a description logic
(DL) [9], e.g. ALC, we cannot only describe the types of
process resources and variables but also how they relate with
each other [7]. E.g., for an input activity with two parameters
of type ’Peson‘ and ’Publication®, we can describe that one
parameter denotes the author of the publication.

The semantics of suprimePDL process expressions is de-
fined on a labeled transition system (LTS) [7]. The states of
an LTS correspond to the knowledge of the process in that
stage of the execution, and the transitions correspond to the
atomic (input, output, or local) activities. The ABox of the
state knowledge is subject to change during state transitions
and the TBox is assumed to be invariant during execution.

Definition 1 (labeled transition system): For a set of
atomic propositions P and a set of actions A, an LTS
is a tuple (S,T,A,)\), where S is a finite set of states,
T C S8 x A x S a set of labeled transitions between the
states, and A : S — 247 a labeling function that maps each
set s € S to the set of atomic propositions that are true in s.

1) Modeling Browsing Processes with suprimePDL: A sin-
gle web page is a message sent by its hosting server to an
end user. In addition to the information content, a web page
may contains the description of a choice process. The choice
process, denoted by -+, consists of a set of links and a set
of forms. Formally, the output activity y(v) of the server
that produces a web page with [ values vy,...,v;, m links
li,..., 1y and n forms f1,..., f,, can be described as:

yuo).@QLi{x1} + ...+ QL {xXm}
+ QF i {yi}+...+QF,{yn},

Yo, ..

where Lq,...,L, denote the base URLs of the links
li,. .- lm, X1, . ., Xm their parameters if any, Fy, ..., F), the
action URLs of the forms fi,..., f,, and yy,...,yn their

submission parameters. In our view, a URL is equivalent to
an agent identifier, whereas the selection of a link is equivalent
to an agent invocation (denoted by a @ preceding an identifier)
with concrete values for the arguments.

We model the link arguments as classes in the ontology
associated with the process expression describing its base
URL, and the values of the arguments as instances of the
classes corresponding to the arguments. A form corresponds to
a complex ontology class. Names of the form’s input elements



correspond to the properties of the complex class. The name
of the class corresponding to the range of a property can be
often derived from the label of the input field (see e.g. [10]).
Some types of input elements provide a set of values from
which one or more values can be selected. In these cases,
the provided values are modeled as ontology instances, while
the class representing the range of an input field as an RDFS
container class instead of a normal class.

A browsing process is equivalent to an agent identifier that
is defined as a parallel composition of the invocations of
the agent identifiers P, ..., P, corresponding to the websites
visited in the process and a coordinating process C. Such a
process is defined as @QC{} || QP {} | ... || @QP,{}.

Example 1: A conference website at URL wu; links among
many other options to the call for research papers web page
denoted by the process C'F Piys13. The process provides a web
page listing all research tracks tracks denoted by the output
activity uj (tracks).

CFPicys13() = uy (tracks). Y QCFP,{}

tetracks

Selecting one of the provided links, say QCF Piescarcn{}s
returns the page about one specific track and lists topics, track
chairs, and PC members in another output activity.

CFPiesearch() = uy (topics, chairs, pcs).0

Figure 1 shows the corresponding LTS representation of the
browsing process for accessing the track information of the
conference. Different heterogeneous processes with similar
outcomes may exist.

w1 (tracks)
Conference
ex:Conference(icws13)

Track

exTrack(ty) expartOf(tz, icws13)
ex:Conference(icws13)

extitle(tz, “ResearchTrack™)
extrackChair(tp, peter)
extrackChair(tp, ephraim) ...

Tracks

exTrack(ty)

ex:partOf (t;, icws13)
ex:Conference(icws13)
exTrack(tp) ...

@CFP,, {}

u1 (chairs)

Fig. 1. Excerpt of the LTS of a recipe collecting track information.

The second website to be considered in this example is
DBLP at us in order to search for publications. Among other
information on the entry page DBLP(), the web form Search
takes the author name obtained from the input activity as single
value.

DBLP() = us(x).uz[author].QSearch{author}

The form submission generates a dynamic page listing the
publications of the specified author. Although this page
contains many further links, we restrict our example and
terminate the process at this stage with the Null process.

Search(author) = us(articles, authors, . ..).0

The whole browsing process Recipe then combines both
information sources by invoking both components and coor-
dinating the flow of the track chair names from CFPiegeqrch
to DBLP. This is achieved by means of a controlling process
C that runs parallel to both component websites, receives the
outputs of the conference website, provides the author names
to DBLP, and receives the list of publications pubs of each
track chair.

Recipe() = QC{} | @CFPiya3{} | [] @DBLP{}

c€chairs

C = uy[chairs]. H us{c).uz(pubs).0

cEchairs

2) Capturing Browsing Processes: A major advantage of
our approach is that it ensures that the capturing of browsing
processes does not require extra manual effort from the
end users. Existing browser plugins like the open source
CoScripter' and the commercial iMacros”> can record users
browsing actions and save them as executable scripts. Rather
than the top-down approach of ontologies in the Semantic
Web, we advocate a bottom-up approach beginning with
websites and the end users who browse them using standard
browsers. Website owners are not involved, and annotations
consist of exactly those necessary for a particular application.
Once a user has tediously found the right path through a
sequence of websites for a particular goal, he should be able
to find it much faster and easier the next time. Saving and
sharing the process in a reusable way is thus valuable.

B. Model Checking Browsing Processes

Model checking has been mainly used to verify hardware
and software systems. A model checker takes a formula in a
constraint specification language (u-calculus with description
logic in our case) and a system or its model (described with
m-calculus and description logic), and checks automatically
whether the system or the model satisfies the formula.

1) Specification of constraints: Constraining the temporal
behavior is done on the basis of a temporal logic. The syntax
of the behavior constraint language that we will use is:

TIL|POA, T | =0 | uX(X) | (AT | Z

Conjunction (A,) and negation (—,) allow to compose in-
clusions and exclusions of desired temporal behavior ¥. The
terminals of the expression are propositions P, variables Z,
as well as T and 1. T and | match all or no processes
respectively. The existence of an activity of type A followed
by the constraint ¥, which must hold in the state subsequent
to the activity, can be requested. The minimal fixpoint operator
uX. U (X) allows for the specification of formulas recursively.
A proposition P is described with ALC (attributive concept
language with complements [11]) axioms. Analogously, input
and output parameter types and relationships, communication
channels, effects of computational activities are described by

Uhttp://coscripter.researchlabs.ibm.com/coscripter
Zhttp://www.iopus.com/iMacros



Algorithm 1: evaluateFormula

Require: Formula ¥ and LTS (S, T, A, V)

1. if ¥ =T then

return S
else if ¥ = | then

return 0
else if ¥ = P then

S0

for all s € S do

if evaluateProposition(P, s) = true then

9: add s to S’
10:  return S’
11: else if ¥ = W, A, U5 then
12:  return evaluateFormula(¥1) N evaluate Formula(Vs)
13: else if ¥ = -, ¥, then
14:  return S\ evaluateFormula(¥)
15: else if ¥ = (a)¥; then

16: S <0

17. for all (s1,a’,s2) € T do

18: if @’ = a and s € evaluateFormula(¥+) then
19: add s; to S’

20:  return S’
21: else if U = 4 Z.W,(Z) then

22: Z+0

23: repeat

24: Z'«— Z

25: Z <+ evaluateFormula(¥+(Z2))

26 umtil Z' = Z
27: return 7

28: else if U = Z then
29:  return V(Z)

ALC axioms. Note, that commonly used temporal constructs
like ¥; until ¥,, eventually ¥, and always ¥ can be
modeled with the help of the fixpoint operator.

For details on the formal semantics of p-calculus and that
of its combination with description logic propositions we refer
to [12] and [13]. In [14], [15] it has been shown that the
satisfiability of u-calculus is an EXPTIME-complete problem.

2) Model Checking Algorithm: For a given LTS
(S,T,A,V), the semantics of a behavior constraint formula
¥ is summarized as follows:

[[T]]v = 5
[U—]]v =0
[[P]]v = V(P)
[[Z]]v = V(2)
[V AL W], = [¥i]), N[¥]y,
[-.¥], = S-[¥y

X.T(X)], =
[[<a>‘1’]]v =

ﬂ{S’ < S|S* < [[\II]]V[X::S‘]}
{s € S|A(s,a,t) e T Nt € [V],}

The naive model checking algorithm is presented in Alg. 1.
The procedure evaluateFormula computes a subset S’ of the
LTS states S such that all states in S” satisfy ¥. We obtain
the final boolean answer by checking whether the initial states
of the LTS are in S’ or not. In [16] it has been shown that
the naive p-calculus model checking for a formula of size m
with alternation depth d and an LTS of size n = |S| has time

complexity O(m - n¢) under the assumption that the cost of
evaluating a proposition (Alg. 1, Line 8) is negligible.

IITI. OFFLINE COMPUTABLE INDEXES

While model checking provides a basic technique, it is not
sufficient to perform model checking of each browsing process
for a given query specified in the constraint specification
language. Although in our scenario the complexity of queries
that are mainly composed of propositions can be expected
to be rather low, the naive model checking of large sets of
browsing process remains very time consuming.

A. Choosing the Right Type of Model Checking Approach

In the explicit state approach, the LTS is represented exten-
sionally using conventional data structures such as adjacency
matrices and linked lists so that each state and transition is
enumerated explicitly. In contrast, in the symbolic approach
boolean expressions denote large LTS implicitly [17]. Typi-
cally, the data structure involved is that of Binary Decision
Diagrams (BDDs) [18], which can often manipulate boolean
expressions denoting large sets of states efficiently. The dis-
tinction between explicit state and symbolic representations is
to a large extent an implementation issue rather than a con-
ceptual one. BDD-based model checkers have been remarkably
effective and useful for debugging and verification of hardware
circuits. For reasons not well understood, BDDs are often
able to exploit the regularity that is readily apparent even to
the human eye in many hardware designs. Because software
typically lacks this regularity, BDD-based model checking
seems much less helpful for software verification.

In the monolithic approach, the entire structure of a recipe is
built and represented at any time in computer memory. While
conceptually simple and consistent with standard conventions
for judging the complexity of graph algorithms, in practice
this may be highly undesirable because the entire structure
may not fit in computer memory at once. In contrast, the
incremental approach (also referred to as the “on-the-fly” or
“online” approach) entails building and storing only small
portions of the whole structure at any time [19].

Figure 2 shows our evaluation results for performance
of naive model checking implementation. In our evaluation
settings, the browsing processes contained 3 + 1 activities
each, each activity had 3 & 2 parameters, and each parameter
had 3 £+ 2 ontology axioms as semantic annotations (more
details in Section IV). In the first case the states are loaded
or modified on-the-fly. As a result, ALC reasoning is done
during the model checking time and total query answering
time increases quickly with increasing number of processes.
The satisfiability problem and thus the subsumption problem
in ALC has been shown to be EXPTIME-complete in [20].
In the second case we load all the state ontologies offline
which means the expensive ALC inferencing done by the ALC
reasoner at loading time before model checking. In this case,
we achieve linear time complexity that verifies the theoretical
time complexity of model checking (see Section II-B2). Even
though browsing processes are independent of each other it is
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Fig. 2. Naive model checking performance.

hard to parallelize the problem because there may be mappings
between the domain ontologies of the browsing processes.
Even though we achieve linear time complexity, it requires
Ims per browsing process. Considering that end users nowa-
days are used to extremely fast search engines, and that in a
production environment we might have millions of processes,
the achieved performance in the second case is still not fast
enough. Developing a new model checking algorithm that has
theoretically better linear time complexity in the size of LTS
is out of scope of this paper. Rather, our aim is to develop
indexing techniques that reduce the constant factor in the
absolute time required to find matching browsing processes.

B. Proposition-States Indexes

One of the main problems of naive model checking is that it
requires a lot of time for evaluating the DL propositions. This
is mainly due to the following problems: (i) DL reasoning
is not efficient, (i) the naive approach checks the same
proposition for the same state multiple times, and (iii) the
states are checked sequentially. While optimizing DL reasoning
is out of the scope of this paper, we present in the following
how we address the latter two problems.

It is easy to see from Alg. 1 that it takes a lot of time for
iterating over the states and checking whether they satisfy a
given proposition (Lines 7-9). This takes O(n) time with n
the number of states in the entire LTS. In order to reduce this
time, we build the proposition-states (PS) indexes. An atomic
proposition is a triple (s,p, o) with subject s, object o, and
predicate p. A PS index is a list of (P, S) pairs, where P is a
proposition and S the set of states that satisfy P. The index is
sorted by an ordered combination of s, p, and o. This index
contains only the propositions explicitly contained in the state
descriptions. Therefore, it can be built offline by extracting the
propositions from the states and transitions.

Alg. 2 describes how the PS indexes can be built. Whenever
during the model checking of a browsing process we need
to retrieve the set of states that satisfy a given proposition,

Algorithm 2: Build Proposition-State Indexes

Require: an LTS L = (S,T,A,)\)
for all states s € S do
Let ns denote the namespace of s
for all propositions p € A(s) do
add a new row to [ and let r denote this row
insert ns:p into first column of r
add ns:s to the entries in the second column of r
PSO < table I sorted by p, s, 0 of the first column
POS « table I sorted by p, o, s of the first column
SPO < table I sorted by s, p, o of the first column
OPS <« table I sorted by o, p, s of the first column

we perform a lookup in the PS index instead of iterating
over all the states of the entire model containing the LTS
representations of each browsing process. This means, we
replace in Alg. 1 Lines 6- 10 by the statement “return
lookupPS(P)”. As the PS index is sorted by proposition, such
a lookup in possible in O(logn) time where n denotes the
number of distinct propositions derived from the states.
Propositions A(s) of a state s are derived from the axioms
in the state knowledge base. E.g., the second state in Figure 1
contains the axioms ex:Track(t;) and ex:partOf(ty, conf) with
named instances t; and conf. Both axioms are directly added
as propositions to A(s). If the domain knowledge of the search
system provides super properties sp of the one used in an
axiom, then an additional proposition sp(ty, conf) is added to
A(s). The same applies for ontology classes and their super
classes. The indexes with different orderings (PSO, POS, SPO,
OPS) of predicates p, subjects s, objects o of propositions
allow for queries with propositions that contain variables, e.g.
ex:partOf(?x, conf) with a variable ?x in the subject position.
Here, the POS or OPS index may be used to match predicate
and object positions and retrieve matching states efficiently.
Orderings SOP and OSP are not indexed mainly due to the
fact that propositions with unspecified predicates (hence the
trailing p) are only relevant for rare cases in search queries.

C. Action-States Indexes

Iterating over all transitions and checking whether they
satisfy the constraints of a requested action (Alg. 1, Lines 17-
19) similarly consumes a lot of time. It takes O(n) time with
n the number of transition in the entire LTS. In order to save
time for verifying actions, we build the action-states (AS)
indexes. This index is a list of (A, S?) pairs, where A is an
action, and S? the set of states pairs that are connected via
the action A. The index contains only the actions that are
explicitly mentioned in the transitions of the LTS and can be
built offline.

Alg. 3 describes how the AS indexes are built. Actions
are characterized by the action type t (input, output, or
computational), communication channel c, and parameters p.
An action further describes constraints (propositions) over the
parameters, which are verified by means of the PS indexes. An
activity matches if the state so satisfies the propositions of an
input or a computational action. Since output actions do not
change the state knowledge, s; and s, can be used likewise to



Algorithm 3: Build Action-States Indexes

Require: an LTS L = (S, T, A, \)
for all transition ¢t = (s1,a,s2) € T do
Let ns denote the namespace of s1
add a new row to AT and let r denote this row
insert ns:a into first column or r
add (ns:si1, ns:s2) to the entries in the 2. column of r
TCP < table I sorted by t, c,p of the first column
CTP < table I sorted by c, t,p of the first column

T 10f .
9]
3
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o —=— with offline indexes
£
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Fig. 3. Performance with and without offline computable indexes

verify the propositions. The action parameters are necessary
to ensure that the requested propositions hold for the action
parameters and not for other process resources. Hence p trails
the entries of the first column.

We replace in Alg. 1 Lines 16-20 by the statement “return
lookupAS(a)”. Since the indexes are sorted by action types and
channels, such a lookup is possible in O(logn) time where n
is the number of transitions in the LTS.

Figure 3 shows the performance of the so obtained search
approach. The query answering time is tremendously reduced.
E.g., the query answering time is reduced by the factor 63
for 5000 browsing process descriptions (from 12.8 seconds to
0.205 seconds). Even for 20000 processes, the indexes based
approach returns matching processes in less than 1.2 seconds.

IV. IMPLEMENTATION

We developed APIs for recipe descriptions and requests.
Processes and their LTS representations are serialized in form
of RDFS statements based on appropriate RDFS vocabularies
we developed. LTS representations and domain ontologies
used by processes are stored in the OWLIM-SE semantic
repository that provides a SPARQL query interface. SPARQL
is the language used to query the repository of LTS. OWLIM
supports RDFS reasoning and allows to reason over heteroge-
neous LTS descriptions based on the domain ontologies.

Search queries are decomposed by our p-calculus reasoner
developed as a Java component that is flexible enough to
provide the incremental, monolithic, and indexes based model

checking capabilities. The p-calculus reasoner is placed on
top of the locally installed OWLIM-based LTS repository.
During the experiments we allocated 1GB of main memory
for OWLIM including its internal index structures. The index
structures introduced in the present work are implemented as
Java data structures (TreeMap) within the p-calculus reasoner.

In the evaluation experiments shown above, we examined
the search performance by means of measuring the query
answering time with different model checking approaches. We
did not experience any shortage of main memory while we
conducted the experiments on commodity hardware with an
Intel Core2Duo 2.6GHz CPU and 4GB main memory.

Test Data: Existing web browsing processes from the
IBM CoScripter repository are the basis of the large test
collection used in our experiments. The CoScripter reposi-
tory currently hosts over 6000 web automation scripts. In
our analysis of CoScripts we observed that many end user
browsing processes are rather short comprising a small number
of activities performed sequentially [21]. The reason is that
many existing CoScripts automate interactions with only one
website. More precisely, the processes in our experiments can
be characterized by 3 £ 1 input/output activities in average
with about 3 &+ 2 parameters per activity and 3 4 2 ontology
axioms describing each parameter.

Based on the analysis of the CoScripts, we generated
semantic browsing process descriptions. Details are provided
at http://people.aifb.kit.edu/mju/recipe. The correctness wrt. to
content of existing CoScripts cannot be guaranteed, as we do
not focus on automatic learning of browsing processes. Still,
we can argue that the test data complexity corresponds to
the browsing process complexity of the scripts. In average,
the search queries of the experiments are conjunctive and
disjunctive compositions of 4 proposition and one action
existential queries that eventually occur in desired recipes.
Each p-calculus proposition describes 2 instances and further
3 DL axioms in average. E.g., the following proposition P of
a search request contains two class membership axioms and
an object property specifying the relation between the two
instances (here, 7x denotes a variable).

P = ex:Chair(?x), ex:chairs(?x, icws), ex:Conference(icws)

An evaluated request is W, where P, ..., P, denote proposi-
tions with complexity similar to the complexity of P.

U = (P, V, P) A, (eventually P; VvV, eventually Py)

Domain ontologies used to describe the resources in requests
belong to the same set of RDFS ontologies used for the de-
scription of browsing processes. We used 4 public ontologies
such as the Semantic Web Research Community ontology. The
largest ontology contains 70 classes, and 48 object properties.

V. RELATED WORK

The Semantic Web has proposed the annotation of web
pages in order to describe the information content. Apart from
the fact that still most of the web pages are not annotated, it
is hard to build a server-sided semantic information search



engines since a crawler will be unable to reach and index
the semantic annotations within deep web pages. Linked Data
separates the structured data from the traditional Web (and as
a result also from the end users) completely. The Linked Data
approach is primarily useful for application developers since
end users cannot be expected to consume RDF directly. That
is, end users still require human understandable applications
to interact with, and furthermore the providers would keep on
protecting their valuable data by controlling access, e.g. with
the help of user interaction elements such as web forms.

Semantic search over RDF and Linked Data as in [22]
enables querying Linked Data by traversing the web of Linked
Data. The completeness of query answering over Linked
Data has been studied in [23]. Even if Linked Data query
approaches were extended to support dynamic data, e.g. by
integrating so-called Linked Data Services [24], the suitability
of the approaches will remain limited for the publicly available
free data only. That is, Semantic Search approaches (i) heavily
rely on the availability of structured data, and (ii) providers
are expected to provide access to their data through APIs. But,
many providers do not follow this, and (iii) even if access to
data is provided, the data is usually allowed to be used for
advertisement purposes only. Also, the data of one provider is
often not semantically aligned with data from other providers.

The work “Navigational Plans For Data Integration” by
Friedman et al. [25] is related to our approach wrt. information
need driven search for web scripts. As the navigational paths
are stored and returned as search results, this approach can
deal with dynamic information published within web pages.
It presents a sound and complete algorithm for computing
navigational paths for a given information query and set of
source descriptions. Computed navigational paths are however
subsets of the web graph only. The algorithm cannot compute
paths that consist of data flow between web pages, which are
not connected in the web graph. Consider our running example
with a web page A listing the track chairs, and another page
B listing publications of a given author. Assume that A is
not linking to B. For a query for publications of track chairs,
the algorithm presented in [25] is not able to compute the
composition of outputs of A and inputs of B. Further, the
proposed use of a mediated schema is hardly applicable to the
Web. It is also not possible to define temporal constraints over
navigational plans that answer the information need.

Search engine provider collect user’s click trails as well as
the data they fill in the forms, e.g. with toolbar-like browser
plugins. There exists a plethora of work, e.g. [4], [26] on
predicting next step or the target web page by analyzing click
trails. Click trails can be seen as simple browsing processes
as they are sequences without variables and without data flow.
The major difference is that click trail analysis aims at helping
users to find the relevant pages faster mostly based on syntactic
analysis of pages that the user has visited in the current
session. But users still have to know which pages are relevant
and have to figure out what to do with which pages once they
have been found. In contrast, in our approach each browsing
process has a purpose, and we aim at finding the appropriate

browsing processes for the current need. Another difference
is in the acceptance of the underlying technology. End users
often do not see any direct added value of a toolbar plugin,
which is a reason why toolbars are often delivered as part of
some other software. In our approach end users have direct
incentives for sharing their browsing processes as well as full
control on whether and with whom they share these.

Existing p-calculus model checkers such as nuSMV (http:
//nusmv.fbk.eu) typically support symbolic model checking
based on BDD and/or SAT. To the best of our knowledge there
is no ready to use p-calculus reasoner based on explicit state
representation. The pu ALCQ logic introduced in [27] extends
ALC by fixpoint constructs and qualified number restrictions.
It has been shown in [27] that uALC is equivalent to u-
calculus. However, there does not exist any implementation
of a pALC reasoner that we could have used. Our imple-
mentation of a p-calculus model checker was also necessary
in order to have a common platform for comparing different
model checking approaches.

An index over partially ordered complex behavioral con-
straints for the classification of complex services was intro-
duced in [21]. Constraints are mapped to entire services as
opposed to a mapping to states used in the present approach.
Both approaches are complementary as (i) behavior classes
from [21] provide another offline index for complex con-
straints and (ii) our indexing structures allow to compute class
memberships more efficiently and are still required for the
verification of any constraints that were not covered by the
service classification.

A metric to quantify process similarity based on behavioral
profiles [28], which is grounded in the Jaccard coefficient,
leverages behavioral relations between process model activi-
ties. The metric is successfully evaluated towards its approx-
imation of human similarity assessment. So far, we did not
consider similarity of browsing processes. In general, if a
process p simulates another process ¢ and it is known that
p is a match for a formula ¢, then ¢ can be directly added
to the set of matches for ¢. Incorporating such an index may
bring further search performance gains.

VI. CONCLUSION AND OUTLOOK

Sophisticated use cases have complex information needs.
Information needs that require information from various web-
sites are not served satisfactorily by the state of the art search
engines. This leaves end users spending a lot a time for
searching and compiling together required information from
various web pages. In this paper, we targeted this problem
from a completely new perspective. We build on a bottom-
up approach that proposes capturing and sharing of end user
browsing processes [29], as opposed to the top-down approach
that requires annotated websites in the first place.

When the number of such web browsing processes in-
creases, efficient techniques for finding browsing processes
suitable for an information need will be required. In this
paper, we have presented an efficient logic-based technique
for searching end user browsing processes. Our main focus



was to develop an efficient search technique based on known
model checking techniques. We presented offline indexes for
propositions and activities on top of the underlying model
checking algorithm to achieve a scalable and efficient search
for browsing processes. Regarding offline computable indexes,
we have shown that indexing proposition and the states in
which they hold as well as indexing which actions are possible
in which states brings significant performance gains.

Currently, we are developing an online index for com-
plex constraint formulas as an additional indexing structure
enhancing the presented work. In comparison to the behav-
ior constraints of service classes that are supposed to be
given [21], our online index will automatically collect complex
constraints from end user posed queries during runtime. Since
the number of such complex queries is potentially infinite
we plan to incorporate a well-known randomized algorithm
for deciding which answers should be kept in the index. The
randomized algorithm is 2Hj-competitive for k pages in the
online cache, which means that for any sequence of queries it
requires at most 2H}, (Hy, denotes the k-th harmonic number)
more time than an optimal algorithm for serving the sequence
of queries [30]. We are developing a lookup procedure for
efficiently searching subformulas in the online index, which
promises to bring further performance gains.

In future, we wish to continue this work to support (i) com-
position of browsing processes, and (ii) ranking of browsing
processes also including the social dimension as in [31]. The
ranking can be employed for a top-k search technique for
browsing processes and composition that delivers results more
promptly while compromising on the completeness of the
search results.
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