A Declarative Framework for Matching Iterative
and Aggregative Patterns against Event Streams

Darko Anicic!, Sebastian Rudolph?, Paul Fodor?, and Nenad Stojanovic!

! FZI Research Center for Information Technology, Germany
2 AIFB, Karlsruhe Institute of Technology, Germany
3 State University of New York at Stony Brook, USA

Abstract. Complex Event Processing as well as pattern matching
against streams have become important in many areas including financial
services, mobile devices, sensor-based applications, click stream analysis,
real-time processing in Web 2.0 and 3.0 applications and so forth. How-
ever, there is a number of issues to be considered in order to enable
effective pattern matching in modern applications. A language for de-
scribing patterns needs to feature a well-defined semantics, it needs be
rich enough to express important classes of complex patterns such as
iterative and aggregative patterns, and the language execution model
needs to be efficient since event processing is a real-time processing. In
this paper, we present an event processing framework which includes an
expressive language featuring a precise semantics and a corresponding ex-
ecution model, expressive enough to represent iterative and aggregative
patterns. Our approach is based on a logic, hence we analyse deductive
capabilities of such an event processing framework. Finally, we provide
an open source implementation and present experimental results of our
running system.

1 Introduction

Pattern matching against event streams is a paradigm of processing continu-
ously arriving events with the goal of identifying meaningful patterns (com-
plex events). For instance, occurrence of multiple events form a complex event
pattern by matching certain temporal, relational or causal conditions. Com-
plex Event Processing (CEP) has recently aroused significant interest due to its
wide applicability in areas such as financial services (e.g., dynamic tracking of
stock fluctuations, surveillance for frauds and money laundering etc.), sensor-
based applications (e.g., RFID monitoring), network traffic monitoring, Web
click analysis etc.

While the pattern matching over continuously arriving events has been well
studied [IITOBI69], so far the focus was mostly on the high-performance and the
pattern language expressivity. A common approach for stream query process-
ing has been to use select-join-aggregation queries [56l0]. While such queries
can specify a wide range of patterns, they are unable to express Kleene clo-
sure. Kleene closure can be used to extract from the input stream a finite yet

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 138-[I53] 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Declarative Framework for Matching Iterative and Aggregative Patterns 139

unbounded number of events with a particular property. Recent study [I] has
presented that non-deterministic finite automate (NFA) are suitable for pattern
matching, including also the matching on unbounded events streams.

In this work, we propose a logic rule-based approach that supports the class of
patterns expressible with select-join-aggregation queries, as well as with Kleene
closure and transitive closure. In our formalism these patterns are realized as
iterative rules.

We advocate here a logic rule-based approach because a rule-based formalism
is expressive enough and convenient to represent diverse complex event patterns.
Rules can easily express complex relationships between events by matching cer-
tain temporal, relational or causal conditions. Detected patterns may further be
used to build more complex patterns (i.e., the head of one rule may be used in
the body of other rule, thereby creating more and more complex events). Also
declarative rules are free of side-effects. Moreover, with our rule-based formalism
it is possible to realize not only a set of event patterns, but rather the whole
event-driven application (realized in a single, uniform formalism). Ultimately, a
logic-based event model enables reasoning over events, their relationships, entire
state, and possible contextual knowledge. This knowledge captures the domain
of interest, or context related to business critical actions and decisions (that are
triggered in real-time by complex events). Its purpose is to be evaluated during
detection of complex events in order to enrich recorded events with background
information; to detect more complex situations; to propose certain intelligent
recommendations in real-time; or to accomplish complex event classification,
clustering, and filtering.

Our approach is based on an efficient, event-driven, model for detecting event
patterns. The model has inference capabilities and yet good run-time charac-
teristics (comparable or better than approaches with no reasoning capabilities).
It provides a flexible transformation of complex patterns into intermediate pat-
terns (i.e., goals) updated in the dynamic memory. The status of achieved goals
at the current state shows the progress toward matching of one or more event
patterns. Goals are automatically asserted as relevant events occur. They can
persist over a period of time “waiting” in order to support detection of a more
complex goal or complete pattern. Important characteristics of these goals are
that they are asserted only if they are used later on (to support a more complex
goal or an event pattern), goals are all unique, and goals persist as long as they
remain relevant (after the relevant period they are deleted). Goals are asserted
by declarative rules, which are executed in the backward chaining mode. We have
implemented the proposed language in a Prolog-based prototype called ETALIS,
and evaluated the implementation in Section [l

2 A Language for Complex Event Processing

We have defined a basic language for CEP in [4]. In this and the following sec-
tions, we extend the language to handle iterative and aggregative event patterns.
In order to keep the presentation of the overall formalism self-contained, in this
section we also recall basics of the language from [4].

140 D. Anicic et al.

The syntax and semantics of the ETALIS formalism features (i) static rules
accounting for static background information about the considered domain and
(ii) event rules that are used to capture the dynamic information by defining
patterns of complex events. Both parts may be intertwined through the use of
common variables. Based on a combined (static and dynamic) specification, we
will define the notion of entailment of complex events by a given event stream.

We start by defining the notational primitives of the ETALIS formalism. An
ETALIS rule base is based on:

a set 'V of variables (denoted by capitals X, Y, ...)

— a set C of constant symbols including true and false

for n € N, sets F,, of function symbols of arity n

— for n € N, sets P}, of static predicates of arity n

— for n € N, sets P¢, of event predicates of arity n, disjoint from P%,

Based on those, we define terms by:
ta=v|c|pd(tr,. ... tn) | £n(t1,. .. tn)

We define the set of (static or event) atoms as the set of all expressions
pn(t1,...,t,) where p is a (static or event) predicate and t1,...t, are terms.

An ETALIS rule base R is composed of a static R® and an event part R°.
Thereby, R?® is a set of Horn clauses using the static predicates P§,. Formally, a
static rule is defined as a : —aq,...,a, with a,aq,...,a, static atoms. Thereby,
every term that a contains must be a variable. Moreover, all variables occurring
in any of the atoms have to occur at least once in the rule body outside any
function application.

The event part R allows for the definition of patterns based on time and
events. Time instants and durations are represented as nonnegative rational
numbers ¢ € Q7. Events can be atomic or complex. An atomic event refers to
an instantaneous occurrence of interest. Atomic events are expressed as ground
event atoms (i.e., event predicates the arguments of which do not contain any
variables). Intuitively, the arguments of a ground atom representing an atomic
event denote information items (i.e. event data) that provide additional infor-
mation about that event.

Atomic events are combined to complex events by event patterns describing
temporal arrangements of events and absolute time points. The language P of
event patterns is defined by

P :=p%(t1,...,tn) | P WHERE t | ¢ | (P).q
| P BIN P | NOT(P).[P, P]
Thereby, p® is an n-ary event predicate, t; denote terms, t is a term of type

boolean, ¢ is a nonnegative rational number, and BIN is one of the binary opera-
tors SEQ, AND, PAR, OR, EQUALS, MEETS, DURING, STARTS, or FINISHES]. As a

! Hence, the defined pattern language captures all possible 13 relations on two tem-
poral intervals as defined in [2].

A Declarative Framework for Matching Iterative and Aggregative Patterns 141

side condition, in every expression p WHERE t, all variables occurring in ¢ must
also occur in the pattern p.
Finally, an event rule is defined as a formula of the shape

pe(tl,...,tn) P

where p is an event pattern containing all variables occurring in p®(¢y, ..., t,).

We define the declarative formal semantics of our formalism in a model-
theoretic way. Note that we assume a fixed interpretation of the occurring func-
tion symbols, i.e. for every function symbol f of arity n, we presume a predefined
function f* : Con™ — Con. That is, in our setting, functions are treated as built-
in utilities.

As usual, a variable assignment is a mapping u : Var — Con assigning a
value to every variable. We let u* denote the canonical extension of y to terms:

v = p(v) if v € Var,

cr—c if ¢ € Con,

wi Q. tn) = (), ., 1¥(tn)) for fE€F,,
true 1f RS lzp(:u*(tl)vhu*(tn))v

Pt tn) = {false otherwise.

Thereby, R® E p(u*(t1), ..., p*(tn)) is defined by the standard least Herbrand
model semantics.

In addition to R, we fix an event stream, which is a mapping € : Ground® —
20" from event ground predicates into sets of nonnegative rational numbers. It
indicates what elementary events occur at which time instants.

Moreover, we define an interpretation Z : Ground® — 207 xQ" a5 5 mapping
from the event ground atoms to sets of pairs of nonnegative rationals, such that
q1 < qo for every {(q1,q2) € Z(g) for all g € Ground®. Given an event stream e,
an interpretation Z is called a model for a rule set R — written as Z = R — if
the following conditions are satisfied:

C1 {q,q) € Z(g) for every q € QT and g € Ground with q € €(g)

C2 for every rule atom <« pattern and every variable assignment p we have
Z,.(atom) C Z,(pattern) where 7, is inductively defined as displayed in
Fig. M

For an interpretation Z and some ¢ € Q*, we let Z|, denote the interpretation
defined by Z|,(9) = Z(g) N {{q1,¢2) | g2 — ¢q1 < gq}. Given interpretations Z and
J, we say that 7 is preferred to J if Z|, C J|,4 for some ¢ € QT. A model 7
is called minimal if there is no other model preferred to Z. Obviously, for every
event stream e and rule base R there is a unique minimal model Z¢%.

Finally, given an atom a and two rational numbers ¢, g2, we say that the
event al9-%] is a consequence of the event stream e and the rule base R (written
6, R = alt®l) if (g1, ¢0) € Z%(a) for some variable assignment /.

It can be easily verified that the behavior of the event stream € beyond the time
point ¢y is irrelevant for determining whether €, R = al11+9] is the casdd. This

2 More formally, for any two event streams e; and e2 with e1(g) N {{¢,¢') | ¢ < 2} =
e2(9) N {{q,q¢") | ¢ < g2} we have that e;, R = al™%] exactly if e2, R = al?:%2],

142 D. Anicic et al.

pattern Z(pattern)
pr(ti,... . tn) |Z(pr(p"(t1),...,p1"(tn)))
p WHERE t Zp) if p*(t) = true

(0 otherwise.
q {(g, 9)} for all geQ*
(p)-q Z(p) N {{q1,92) | @2 — q1 = g}
p1 SEQ p2 {{@1, @) | (q1,92)€Z(p1) and (g3, qa) €ZL.(p2) and g2<gs}
P1 AND p2 {{min(q1, g3), max(qz,94)) | {q1,92)€Z(p1) and (g3, ga) €L(p2)}
P1 PAR P2 {{min(q1,gs), max(qz, q1)) | (a1, 92) €EZp1)

and (g3, g4)€Z,(p2) and max(q1,gs)<min(gz,q4)}

p1 OR p2 Zu(p1) UZ(p2)
p1 EQUALS p2 | Zu(p1) N Zp2)
p1 MEETS p2 |{(q1,93) | (q1,42)€Z.(p1) and (g2, q3)€Lu(p2)}
p1 DURING p2 |{(gs,q4) | (q1,q2)€Zp1) and (gs, q4) €Z(p2) and gs<q1<q2<qa}
p1 STARTS p2 |{(q1,43) | (q1,42)€Zp1) and (g1, g3)€Z(p2) and g2<qs3}
p1 FINISHES p2 ({(q1,93) | {92,93)€Zp1) and (g1, q3)€L(p2) and g1<q2}
NOT(p1).[p2; p3]|Zu(p2 SEQ p3) \ Z(p2 SEQ p1 SEQ p3)

Fig. 1. Definition of extensional interpretation of event patterns. We use p(,) for pat-
terns, q(;) for rational numbers, ¢,y for terms and pr for event predicates.

justifies to take the perspective of € being only partially known (and continuously
unveiled along a time line) while the task is to detect event-consequences as soon
as possible.

The theoretical properties of the presented formalism heavily depend on the
conditions put on the formalism’s signature. On the negative side, without fur-
ther restrictions, the formalism turns out to be ExpTime-complete as a straight-
forward consequence from according results in [7]. On the other side, the for-
malism turns not only decidable but even tractable if both C and the arity of
functions and predicates is bounded:

Theorem 1. Given natural numbers k,m, the problem of detecting complex
events in an event stream e with an ETALIS rule base R which satisfies |C| < k
and Fp, =P5 =F¢ =0 for all n > m is PTIME-complete w.r.t. |R| + |e|.

Proof. PTiME-hardness directly follows from the fact that the formalism sub-
sumes function-free Horn logic which is known to be hard for PTIME, see e.g. [7].

For containment in PTIME, recall that in our formalism, function symbols have
a fixed interpretation. Hence, given an ETALIS rule base R with finite C, we can
transform it into an equivalent function-free rule base R’: we eliminate every n-
ary function symbol £ by introducing an auxiliary n+1-ary predicate ps and “ma-
terializing” the function by adding ground atoms ps(ci, ..., cn, £5(c1,...,¢n)).
This can be done in time polynomial time, given the above mentioned arity
bound. Naturally, also the size of R’ is polynomial compared to the size of R.

A Declarative Framework for Matching Iterative and Aggregative Patterns 143

Next, observe that under the above circumstances, the least Herbrand model
of R¥ (which is then arity-bounded and function-free) can be computed in
polynomial time (as there are only polynomially many ground atoms). Finally,
note that the number of time points occurring in an event stream e is linearly
bounded by |¢|, whence there are only polynomially many relevant “interval-
endowed ground predicates” al?-%! possibly entailed by € and R®’. Finally these
entailments can be checked in polynomial time in a forward-chaining manner
against the respective (polynomial) grounding of R®’. This concludes the proof.

Example. The following pattern rules ({l) demonstrates the usage of the ETALIS
formalism by defining a common financial pattern called the “tick-shape” pat-
tern. Let’s consider a simple day trader pattern that looks for a peak followed by
a continuous fall in price of stocks, followed by a rise in price. We are interested
in a raise only if (and as soon as) it grows higher than the beginning price. The
“tick-shape” pattern is monitored for each company symbol over online stock
events, see rules (IJ).
down(l, P1, P2) <« NoT(stock(I, P)).[stock(I, P1),
stock(/, P2)] WHERE P1 < P2
down(I, P1, P3) < NoT(stock(l, P)).[down(], P1 P2),
stock(I, P3)] WHERE P2 > P3.
up(I, P1) < stock([, P1). 1
up(I, P2) — not(stock(l, P)).[up(I, P1), stock(I, P2)] @)
WHERE P1 < P2.
tickShape(I) < down(I, P1, P2) MEETS
NOT(stock(I, P)).[up(I, P3), stock(I, P4)]
WHERE P3 < P1 A P4 > P1.

In this example, we first start detecting a short increase (in order to detect the
peak) and subsequent fall in price using down(I, P1, P2) iterative rules. Thereby,
I takes the identifier of the monitored company, P1 the price at the peak directly
preceding the decrease and P2 the price at the end of the interval. The usage of
the NOT pattern ensures that no stock events in between are left out and hence,
the decrease in price is monotone. Similarly we can detect a rise in price, defined
by up(Z, P1) (where P1 assumes the price at the end of the interval). Finally,
tickShape(I) will be triggered when a down event meets an up event which ends
at a prize value below the preceding peak, and the next incoming stock event
for I reports a prize above that peak value.

2.1 Iterations and Aggregate Functions

In this section, we show how unbound iterations of events, possibly in combina-
tion with aggregate functions can be expressed within our defined formalism.

Many of the formalisms concerned with Complex Event Processing feature
operators indicating that an event may be iterated arbitrarily often. Mostly, the
notation of these operators is borrowed from regular expressions in automata
theory: the Kleene star (-*) matches zero or more occurrences whereas the Kleene
plus (-1) indicates one or more occurrences.

For example, the pattern expression a SEQ b* SEQ cwould match any of the event
sequences abe, abbe, abbbe etc. It is easy to see that — given our semantics — this

144 D. Anicic et al.

pattern expression is equivalent to the pattern a SEQ b SEQ ¢ (as essentially, it
allows for “skipping” occurring events)ﬁ. Likewise, all patterns in which this kind
of Kleene iteration occurs can be transformed into non-iterative ones.

However, frequently iterative patterns are used in combination with aggregate
functions, i.e. a value is accumulated over a sequence of events. Mostly, CEP for-
malisms define new language primitives to accommodate this feature. However,
within the ETALIS formalism, this situation can be handled via recursive event
rules.

As an example, assume an event should be triggered by a sequence of repeated
selling events if the total income generated by them is above 100000$. For this,
we have to sum over the single incomes indicated by the atomic selling events.
This can be realized by the below set of rules.

income(Price) « sell(ltem, Price).
income(P1 + P2) « income(P1) SEQ sell([tem, P2). (2)
bigincome < income(Price) WHERE Price > 100000.

In the same vein, every aggregative pattern can be expressed by sets of re-
cursive rules, where we introduce auxiliary events that carry the intermediate
results of the aggregation as arguments.

As a further remark, note that for a given natural number n, the n-fold sequen-
tial execution of an event a (a pattern usually written as a™) can be recognized
by iteration(a,n) defined as follows:

iteration(a,1l) < a. (3)
iteration(a,k + 1) < a SEQ iteration(a, k).

This allows us to express patterns where events are repeated many times in
a compact way.

A common scenario in event processing is to detect patterns on moving length-
based windows. Such a pattern is detected when certain events are repeated as
many times as the window length is. A sliding window moves on each new event
to detect a new complex event (defined by the length of a window). Rules (4))
implement such a pattern in ETALIS for the length equal to n (n is typically
predefined). For instance, for n=5, e will be triggered every time when the system
encounters five occurrences of a.

iteration(a,1) < a.
iteration(a,k + 1) « NOT(a).[a, iteration(a, k)]. 4)
e «— iteration(a,n).

3 Execution Model

Complex event patterns that a user can create with the language proposed in
Section 2 are not convenient to be used for event-driven computation. These are

3 Note that due to the chosen semantics, this encoding would also match sequences
like acbbe or abbacbe. However, if wanted, these can be excluded by using the slightly
more complex pattern (a SEQ b SEQ ¢) EQUALS NOT(a OR c).[a, c].

A Declarative Framework for Matching Iterative and Aggregative Patterns 145

rather Prolog-style rules suitable for backward chaining evaluation. Such rules
are understood as goals which, at certain time, either can or cannot be proved
by an inference engine. The difficulty is that such an inference process cannot
be done in an event-driven fashion.

Our execution model is based on a goal-directed event-driven rules. The ap-
proach is established on decomposition of complex event patterns into two-input
intermediate events (i.e., goals). The status of achieved goals at the current state
shows the progress toward completeness of an event pattern. Goals are automat-
ically asserted by rules as relevant events occur. They can persist over a period
of time “waiting” in order to support detection of a more complex goal or pat-
tern. In the remaining part of this subsection we explain the transformation of
user-defined patterns into goal-directed event-driven rules (i.e., executable rules
capable to detect events as soon as they really occur).

Algorithm 1. Sequence

Input: event binary goal e +— a SEQ b WHERE t.
Output: event-driven backward chaining rules for SEQ operator and a static rule t.
Each event binary goal ie < a SEQ b is converted into: {

a(Th,T2) : — for_each(a, 1, [T1,T2)).
a(l,T1,T3) : — assert(goal(b(-,-),a(T1,T2),ie(,,-))).
b(T3,T4) : — for_each(b, 1, [T3,T4]).
b(1,T5,Ts) : — goal(b(Ts,Ts),a(T1,T2),ie), To < T3,

retract(goal(b(T3,T4),a(T1,T2), ie(-,))), ie(T1, Ty).

}

ie(T17T4) e t,e(Tl,T4).

Let us first consider a sequence of events e < p; SEQ p2 SEQ p3... SEQ pp,
where e is detected when an event p; is followed by pa,.., followed by p,. We
can always represent the above pattern as e < (((p1 SEQ p2) SEQ p3)... SEQ pn).
We refer to this coupling of events as binarization of events. Effectively, in
binarization we introduce intermediate events (goals), e.g., ie; «— p1 SEQ pa,
iegs «— ie1 SEQ ps, etc. Every monitored event (either atomic or complex), in-
cluding intermediate events, will be assigned with one or more logic rules which
are fired whenever that event occurs. Using the binarization, it is more conve-
nient to construct event-driven rules. First, it is easy to implement an event
operator when events are considered on a “two by two” basis. Second, the bi-
narization increases the sharing among events and intermediate events (when
detecting complex patterns). Third, the binarization eases the management of
rules. For example, each new use of an event (in a pattern) amounts to appending
only one rule to the existing rule set.

Algorithm 1 accepts as input a binary sequence e < a SEQ b WHERE t, and
produces event-driven backward chaining rules (i.e., executable rules). Addi-
tionally a user needs to define a static rule for a predicate t and add it into
a rule base. As discussed, t is application specific, and can be used for event
enrichment, filtering, querying historical data, as well as for reasoning about the
context.

146 D. Anicic et al.

Event-driven backward chaining rules produced by Algorithm 1 belong to two
different classes of rules. We refer to the first class as to rules used to generate
goals. The second class corresponds to checking rules.

When an a event occurs at some (T3, T5) it will trigger the first rule, which
in turn will trigger each a(n,Tl,Tg)é. In this case n = 1, since the a event is
used only once in the pattern. In general there can be more than one rule of this
type, e.g., a(l,T1,T5)...a(3,T1,T3), if the a event appears three times in user’s
complex event patterns.

a(l,[T1,T»]) is a rule that generates goal(b([-,), a([T1,T2]), ie([,])). Its in-
terpretation is that “an event a has occurred at [T7, T»], and we are waiting for b
to happen in order to detect ie”. Obviously, the goal does not carry information
about times for b and ie, as we don’t know when they will occur. In general,
the second event in a goal always denotes an event that has just occurred. The
role of the first event is to specify what we are waiting for to detect an event
that is on the third position. b(1, [T5,T4]) belongs to the checking rules. They
check whether certain goals already exist in the database, in which case they
trigger more complex events. For example, rule b(1, [T5, T4]) will fire whenever
b occurs. The rule checks whether goal(b([T3,Ty]), a([T1,Ts]), ie([,])) already
exists (i.e., an a has previously happened), in which case it triggers ie (by call-
ing ie([T1,T4]). The time occurrence of ie (i.e. [Th,T4]) is defined based on the
occurrence of constituting events (i.e. a[T1, T, and b[T5, Ty)).

The ie([T1,T4]) event will trigger the last rule. If the static predicate, t,
evaluates to true, then the rule will call the e event. Calling e[T}, Ty], this event
is effectively propagated either upward (if it is an intermediate event) or triggered
as a complex event.

More detailed description of event-driven computation in ETALIS (including
other operators from the language too) can be found in [3]. Other issues regard-
ing the execution model, such as the various consumption policies and memory
management were also studied in [§].

3.1 Kleene Plus Closure

The main principle behind the execution model of Kleene closure is similar as for
the sequence operator. To explain how this closure can be computed in ETALIS
let us go back to example rules (2], Section 211 Algorithm 1 can be used to
transform these rules into event-driven backward chaining rules, which can be
directly executed by ETALIS prototype.

Essentially these rules handle an unbounded stream of sell (Item, Price)
events, compute the sum of their prices and detect bigincome if the sum is
greater than 100000 $. The first rule sets a condition which defines when the
pattern detection should starfd. In our example it is just an occurrence of start

4 By using a predicate, for.ach. Implementation details for this predicate can be found
in [3].

5 Apart from the time stamp, an event may carry other data parameters that are
omitted here in order to make the presentation more readable.

5 It also sets the starting Price value to 0.

A Declarative Framework for Matching Iterative and Aggregative Patterns 147

event (e.g. it can be at the beginning of a day, a month or just an event oc-
currence denoting that something significant to our business happened). An
occurrence of start([Th,Tz]) eventl] will unconditionally cause an occurrence of
income event with Price = 0, and the same timestamp [T7,7T5]. As income is
used to build a sequence of events in the second rule, goal(sell (Item, P2, [,]),
income(P1, [Ty, T3]), income(P1 + P2, [,])) will be inserted. The goal states
that an instance of income event occurred at [T7, T»], and the CEP engine waits
for sell to happen to detect another income (iteratively). If sell occurs at some
[T5,T4], To < T3, a corresponding checking rule will check whether goal(sell
(Item, P2,[_,]), income(P1, [Ty, Ts]), income(P1 4+ P2,[_,])) is already in the
database, in which case it will trigger income(P1 + P2, [T1,T,]) (adding price
P2 to the current aggregated value, P1). Events of type income are intermediate
events in our overall complex pattern. The third rule monitors these events in
order to detect bigincome. The rule sets a condition which defines when the pat-
tern detection should stop (taking into account that we deal with an unbounded
stream of events).

3.2 Implementation of Iterative Rules and Common Aggregate
Functions

The aggregate functions are computed incrementally, by starting with an ini-
tial value for the increment, and iterating the aggregate function over events.
However, window size and the sliding window require us to use efficient data
structures and algorithms in Logic Programming (e.g., in Prolog) to obtain fast
implementations.

For any aggregate function we implement the following two rules.

iteration(StartCntr = 0, StartVal) « start_event(StartVal).
iteration(OldCntr + 1, NewVal) «—
iteration(OldCnitr, OldVal) SEQ a(AggArg) (5)
WHERE {assert(AggArg),
window(WndwSize, OldCnitr, OldVal, AggArg, NewVal)}.

The first rule starts the iteration process (when start_event) occurs with
its initial value and possible condition on that value (see the first rule). The
second rule defines the iteration itself, i.e., whenever an event participating in the
iteration occurs (event a), it will trigger the rule and generate a new iteration
event.

In each iteration it is possible to calculate certain operations (an aggregate
function). To achieve this, the iterative rule contains the static part (the WHERE
clause) for two reasons: to save data from the seen events as history relevant
w.r.t the aggregation function (see assert(AggArg)), and to compute the sliding
window incrementally (i.e., to delete events that expired from the sliding window
and calculate the aggregate function on the rest, see the window expression).

7 As start is an atomic event, T1 = Ts.

148 D. Anicic et al.

The functionality of assert predicate is simply to add data on which aggre-
gation is applied (i.e., an aggregation argument AggArg) to database. Sliding
window functionality is also simple, and it is realized by rule (@l).

window(WndwSize, OldCntr, OldVal, AggArg, NewVal) : —
OldCntr + 1 >= WindowSize — >
retract(LastItem), (6)
spec_aggregate(OldValue, AggArg, NewValue);
spec_aggregate(OldValue, AggArg, NewValue).

We check whether the current counter value (i.e., the incremented old counter,
OldCnitr 4+ 1) exceeds the window size (line 2) in which case we retract the last
item from the window (line 3) and compute a specific aggregate function (line 4).
Recall that new data element (AggArg) was previously added by the iteration
rule (assert(AggArg)). If the counter does not exceed the window’s value, we
simply compute a specific aggregate function (line 5).

Based on these iterative pattern and sliding window rules we can implement
other various aggregation functions. The iterative rules (@) (SUM aggregate func-
tion) implement the sum of certain values from selected events (see SUM aggre-
gate function).

As we already explained, the iteration begins when start_event occurs and
sets the StartVal. The iteration is further continued whenever event a occurs.
Note that events start_event and a can be of the same type. We can additionally
have WHERE clause to set filter conditions for both StartVal and AggArg. We
omit filters here to keep the pattern rules simple, however it is clear that neither
every start_event must start the iteration nor that every a must be accepted
in an ongoing iteration. The assert predicate adds new data (AggArg) to the
current sum, and the window rule deducts the expired (last) value from the
window in order to produce NewSum.

Note that the same rules can be used to compute the moving average (AVG)
(hence we omit to repeat them to save space). As we have the current sum and
the counter value, we can simply add AvgVal = NewSum/(OldCntr+1) in the

WHERE clause of the second rule.

sum(StartCntr = 0, StartVal) <« start_event(StartVal).
sum(OldCntr + 1, NewSum) «—
sum(OldCntr + 1,0ldSum) SEQ a(AggArg)
WHERE {assert(AggAryg),
window(WndwSize, OldCnitr,
OldSum + AggArg, AggArg, NewSum)}. 7)
window(WndwSize, OldCntr, CurrSum, NewSum) : —
OoldCntr + 1 >= WindowSize— >
retract(Lastltem),
NewSum = CurrSum — LastItem;
NewSum = CurrSum — LastItem.

A Declarative Framework for Matching Iterative and Aggregative Patterns 149

In general, the iterative rules give us possibility to realize essentially any ag-
gregate functions on event streams, no matter whether events are atomic or
complex (note that there is no assumption whether event a is atomic or com-
plex). We can also have multiple aggregations, computed on a single iterative
pattern (when they are supposed to be calculated on the same event stream). For
instance, the same iterative rules can be used to compute the average and the
standard deviation. This feature can potentially save computation resources and
increase the overall performance. Finally, it is worth noting that we are not con-
strained to compute the Kleene plus closure only on sequences of events (as it is
common in other approaches [II10]). With no restriction, instead of SEQ we can
also put (in line 3) other event operators such as AND or PAR . The following
iterative pattern computes the mazimum over a sliding window of events.

max(StartCntr = 0, StartVal) «— start_event(StartVal).
max(OldCntr + 1, NewMax) «—
max(OldCntr + 1,0ldMax) SEQ a(AggArg)
WHERE {assert(AggArg),
window(WndwSize, OldCntr, NewMax)}. ®)
window(WndwSize, OldCntr, NewMaz) : —
OldCntr + 1 >= WindowSize— >
retract(Lastltem),, get(NewMazx);
get(NewMazx).

The rules are very similar to rules for other aggregation functions (e.g., see
rules (). However there is one difference in implementation of the window rule.
The history of events necessary for computing aggregations on sliding windows
can be kept in the memory using different data structures. Essentially we need a
queue where the latest event (or its aggregation value) is inserted into the queue
and the oldest event from the window is removed. For example, we implemented
efficiently the sum and the average using two data structures: stacks and differ-
ence lists. Stacks can be easy implemented in Prolog using assert and retract
commands, and difference list are convenient as the cost for deleting the oldest
element that expired from the window is O(1).

Queues with difference lists are however not good enough for computing aggre-
gations such as the mazimum and the minimum. For these functions, searching
the maximum (or the minimum) in a sliding window when the current maximum
(minimum) is deleted requires a price of O(Window) (to find the new maximum
or the minimum). Still to provide an efficient implementation we use balanced
binary search trees. We know what is the event that will be deleted from the
history queue. We keep a red-black (RB) balanced tree to be indexed on the
aggregate argument, so that we can do cleanup of overdue events efficiently. In
each node, we keep a counter with how many times that an event with the afore-
mentioned key came. At each time the maximum (minimum) is the rightmost
(leftmost) leaf. Additionally we can also keep the timestamp of events. This al-
lows us also to prune events (data) based on the time w.r.t the sliding window.

150 D. Anicic et al.

With the balanced tree this search is reduced to O(logN). For instance, for a
window of 1000 events, the price of 1000 operations is reduced to at most 10 at
each step (219 = 1024).

Pruning events based on their timestamps is the basis for time-based sliding
windows. So far we have discussed count-based sliding windows (i.e., the pruning
is based on the number of events in the window). For event patterns with time-
based sliding windows, we do not need the window rule (e.g., rule (@l)). Instead,
we use only iterative patterns with a garbage collector (set to prune events out
of the specified sliding window). Events are stored internally in order as they
come (we index them on the timestamp information [T, T3]). This eases the
process of pruning expired events, using either of our two memory management
techniques.

iteration(StartCntr = 0, StartVal) « start_event(StartVal).
iteration(NewCntr) «—

iteration(OldCnitr) SEQ a(AggArg)

WHERE { NewCntr = getCount([Tz,T1]), window(3min)}.

9)

The count aggregation is typically used on time-based sliding windows, see
the pattern (@). Whenever a relevant event occurs (e.g., event a), its timestamp
will be asserted by the getCount predicate and the current counter number will
be returned. Additionally we set a garbage collector to incrementally remove
outdated timestamps, so that getCount always returns the correct result. In
the same vein, we have realized other aggregate functions with the time-based
sliding windows (i.e., SUM, AVG, MAX, MIN).

4 Performance Evaluation

We have implemented the proposed framework for iterative and aggregative
patterns. In this section we present experimental results we have obtained with
our open-source implementation, called ETALISS. Experimental results compare
our logic programming-based implementation with Esper 3.3.08. Esper is a state-
of-the-art engine primarily relying on NFA. We choose Esper as it is available
as open source, and also it is a commercially proven system.

We have evaluated the sum aggregation function, defined by iterative pattern
@) (we omit rewriting the pattern here to save space). The moving sum is
computed over the stream of complex events. Complex events are defined as
a conjunction of two events, joined on their ID (see pattern rule (I0)). The
sum is aggregated on the attribute X of complex events a(ID, X,Y). Figure
2(a) shows the performance results. In particular, the figure shows how the
throughput depends on different sizes of the sliding window. Our system ETALIS
was run in two modes: using the window implementation based on the stack and

8 ETALIS, can be found on: http://code.google.com/p/etalis/
9 Esper: http://esper.codehaus . org

http://code.google.com/p/etalis/
http://esper.codehaus.org

A Declarative Framework for Matching Iterative and Aggregative Patterns 151

mEsper3.3.0 mP-Stack % P-Dlists @Esper31.0 mP-Stack P-RB trees

w

N\

Throughput (1000 x Events/Sec
Throughput (1000 x Events/Sec

1000

100 500 1000 50000
Window size

window size

Fig.2. (a) SUM-AND: throughput vs. window size (b) AVG-SEQ: throughput vs.
window size

difference lists, denoted as P-Stack and P-Dlists, respectively. In both modes our
implementation has outperformed Esper 3.3.0 (see Figure 2l(a)).

a(ID,X,Y) < b(ID,X) AND c¢(ID,Y). (10)

In the next test we computed the moving average (avg) over the stream
of complex events. Complex events were defined by rule (I0) where operator
AND was replaces with the sequence SEQ . Again ETALIS was run with win-
dows implemented with the stack and different lists. Results are presented in
Figure 2(b), showing again the dominance of our system.

Example application: supply chain. CEP can be combined with evaluation
of the background knowledge to detect (near) real-time situations of interest. To
demonstrate this functionality, let us consider the following example. Suppose
we monitor a shipment delivery process in a supply chain system. The following
rules represent a complex pattern (delivery event), triggered by every shipment
event. This iterative pattern may be used to aggregate certain values carried by
shipment events.

delivery(start, start) « shipment(start).
delivery(From,To) < delivery(From, PrevTo) (11)
SEQ shipment(70)
WHERE inSupChain(F'rom,To).

Additionally there is a constraint that every shipment on its way needs to
pass a number of sites, defined with a delivery path. Valid paths are represented
as sets of explicit links between sites, e.g., with 1inked(sites, sites) we represent
two connected sites. If for that shipment there exists also another connection
linked(sitey, sites), the system can infer that the path sites, sitey, sites is a
valid path (performing the reasoning over the following transitive closure and
available background knowledge).

152 D. Anicic et al.

—8— Complex pattern 1
—&— Complex pattern 2

o —&— Memory change
A 50 @
2z s
€ — . - 110
g 40 ‘-\\. 'E
= (] —
x =]
30 8 g0
o
g ~ =
2 20 2
E S 70
< 10 z
3 £
2 o g s
- 100 500 1000 5000 100 500 1000 5000
Recursion depth Recursion depth

Fig. 3. (a) Throughput comparison (b) Memory consumption

inSupChain(X,Y) : — linked(X,Y).
inSupChain(X, Z) : — linked(X,Y) AND inSupChain(Y, 7).

We have evaluated the iterative delivery pattern for different sizes of supply
chain paths (between 100 and 5000 links), see FigureBl (a). In “Complex pattern
1”7 we enforce that for each new shipment event, the valid path must be proved
from its beginning (see inSupChain(From,To) in rule ([[l)). For longer paths
(e.g., 5000 links) this is a significant overhead, and we see that the through-
put declines. But if we relax the check so that for every new event the path
must be checked with respect only to the last delivery event, i.e., we replace
inSupChain(From,To) with inSupChain(PrevTo,T0o) in rule ([[I)) we obtain
the throughput which is almost constant (see “Complex pattern 2” in Figure [3]
(a)). Figure 3] (b) shows the total memory consumption for the presented test.
There is no difference in memory consumption for complex patterns 1 and 2,
hence we present only one curve.

5 Conclusions

We have presented an extended formalism for logic-based event processing. The
formalism is rather general, however in this paper we put emphasis on handling
iterative and aggregative patterns matched against unbounded event streams.
The paper presents syntax and declarative semantics of ETALIS Language for
Events, demonstrates its use for more knowledge-oriented and intelligent event
processing, provides an execution model, and finally shows performance evalua-
tion of our prototype implementation.

Acknowledgments

This work was partially supported by the European Commission funded project
PLAY (FP7-20495) and by the ExpresST project funded by the German
Research Foundation (DFG). We thank Jia Ding and Ahmed Khalil Hafsi for
their help in implementation and testing ETALIS.

A Declarative Framework for Matching Iterative and Aggregative Patterns 153

References

10.

Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching
over event streams. In: SIGMOD, pp. 147-160 (2008)

Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26, 832-843 (1983)

Anicic, D., Fodor, P., Rudolph, S., Sthmer, R., Stojanovic, N., Studer, R.: Rea-
soning in Event-based Distributed Systems. In: Etalis: Rule-Based Reasoning in
Event Processing. Series in Studies in Computational Intelligence, Sven Helmer,
Alex Poulovassilis and Fatos Xhafa (2010)

Anicic, D., Fodor, P., Rudolph, S., Stithmer, R., Stojanovic, N., Studer, R.: A
rule-based language for complex event processing and reasoning. In: Hitzler, P.,
Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 42-57. Springer, Heidelberg
(2010)

Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic
foundations and query execution. VLDB Journal 15, 121-142 (2006)
Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: Tele-
graphcq: Continuous dataflow processing for an uncertain world. In: Proceedings
of the 1st Biennial Conference on Innovative Data Systems Research, CIDR 2003
(2003)

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Computing Surveys 33, 374-425 (2001)

Fodor, P., Anicic, D., Rudolph, S.: Results on out-of-order event processing. In:
Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 220-234.
Springer, Heidelberg (2011)

Kréamer, J., Seeger, B.: Semantics and implementation of continuous sliding window
queries over data streams. ACM Transactions on Database Systems 34 (2009)
Mei, Y., Madden, S.: Zstream: a cost-based query processor for adaptively detecting
composite events. In: SIGMOD, pp. 193-206 (2009)

	A Declarative Framework for Matching Iterative and Aggregative Patterns against Event Streams
	Introduction
	A Language for Complex Event Processing
	Iterations and Aggregate Functions

	Execution Model
	Kleene Plus Closure
	Implementation of Iterative Rules and Common Aggregate Functions

	Performance Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

