
Selectivity Estimation for Hybrid Queries over Text-Rich
Data Graphs

Andreas Wagner
AIFB, KIT

Karlsruhe, Germany
a.wagner@kit.edu

Veli Bicer
IBM Research, Smarter Cities

Technology Centre
Dublin, Ireland

velibice@ie.ibm.com

Thanh D. Tran
AIFB, KIT

Karlsruhe, Germany
ducthanh.tran@kit.edu

ABSTRACT
Many databases today are text-rich, comprising not only
structured, but also textual data. Querying such databases
involves predicates matching structured data combined with
string predicates featuring textual constraints. Based on se-
lectivity estimates for these predicates, query processing as
well as other tasks that can be solved through such queries
can be optimized. Existing work on selectivity estimation
focuses either on string or on structured query predicates
alone. Further, probabilistic models proposed to incorpo-
rate dependencies between predicates are focused on the re-
lational setting. In this work, we propose a template-based
probabilistic model, which enables selectivity estimation for
general graph-structured data. Our probabilistic model al-
lows dependencies between structured data and its text-
rich parts to be captured. With this general probabilis-
tic solution, BN+, selectivity estimations can be obtained
for queries over text-rich graph-structured data, which may
contain structured and string predicates (hybrid queries). In
our experiments on real-world data, we show that capturing
dependencies between structured and textual data in this
way greatly improves the accuracy of selectivity estimates
without compromising the efficiency.

1. INTRODUCTION
Databases today are increasingly text-rich comprising

structured and textual data. Examples include databases
storing documents enriched with structured data, e.g., in
the form of RDFa or Microformats1, or structured data
(like RDF) containing textual attributes. In recent years,
the amount of RDF data on the Web drastically increased,
e.g., published as Linked Data2. RDF data comprises entity
descriptions, where each is a set of triples {〈s, p, o〉}. Ev-
ery triple describes a particular entity s (subject) through
a predicate object pair p, o. RDF entity descriptions of-
tentimes contain text-rich predicates such as comment or
description. RDF, like many other kinds of data, can gen-

1http://webdatacommons.org/
2http://www.w3.org/DesignIssues/LinkedData.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

erally be conceived as a data graph, as shown in Fig. 1. In
the case of RDF, such a graph is formed by triples.

Standard languages for querying graph-structured data
include SQL and SPARQL. At the core, these languages
support conjunctive queries. With respect to data graphs,
conjunctive queries can be seen as being composed of query
predicates 〈s, p, o〉. Here, each s, p and o might be a variable
or correspond to an entity, a predicate or an object in the
data (called constant).

Processing conjunctive queries typically involves a query
optimizer, which relies on selectivity estimates for query
predicates to construct an optimal query plan. An opti-
mal query plan aims at minimizing the amount of interme-
diate results. In fact, selectivity estimates, as studied in
this paper, are not only crucial for standard query process-
ing, but all problems that be solved via conjunctive queries.
For instance, data extraction [24] and data integration pro-
grams [3] have been formulated as queries, which involve
selection and (similarity) join predicates.

Targeting a low computational overhead, estimation is
based on data synopses, which approximately capture un-
derlying data value distributions through a statistical sum-
mary. Several assumptions are commonly employed to keep
such a synopsis small respectively simple.

(1) The uniform distribution assumption implies that all
values for a predicate are equally likely. For instance,
for predicate name (Fig. 1) featuring four distinct val-
ues, denoted as |Ω(Xname)| = 4 (with Ω as sample
space), the probability for an entity x having name
“William Wyler” is P (Xname = “William Wyler”) ≈
1/|Ω(Xname)| = 1/4. In other words, the probability for
a query predicate 〈x, name,“William Wyler”〉 is 1/4.
Clearly, this assumption may lead to misestimates,
when “William Wyler” is a common name shared by
several entities.

(2) Given a second query predicate 〈x, comment,“Audrey
Hepburn was. . . ”〉, with P (Xcomment = “Audrey Hep-
burn was. . . ”) = 1, the predicate value independence
assumption dictates that our two predicate values are
independent. That is, the probability of observing
both events is P (Xname = “William Wyler”, Xcomment
= “Audrey Hepburn was. . . ”) ≈ P (Xname = “William
Wyler”) · P (Xcomment = “Audrey Hepburn was. . . ”)
= 1/4 · 1. However, as we can observe in the data,
there is actually no entity that is associated with that
name and comment. Thus, the joint probability should
actually be 0. Such a misestimate is due to correla-
tions among data values. Given the value for name, a
particular value for comment is more or less likely to
occur (instead of being equally likely).

http://webdatacommons.org/
http://www.w3.org/DesignIssues/LinkedData.html


(3) Finally, there is the join predicate independence, which
is a special case of the previous assumption. It states
that the existence of a predicate is independent of
the value respectively existence of another predicate.
Reconsidering our example, the existence of comment
and any value for name would be assumed indepen-
dent. Again, such simplification would lead to errors,
as comment only occurs with name “Audrey Hepburn”.

A large body of work has been devoted to avoid one or
more independence assumptions. Approaches wish to con-
sider data correlations, thereby allowing for more accurate
estimates. Assumption (1) is addressed by counting values
and embedding the resulting frequency statistics into syn-
opses such as histograms [19] and wavelets [17]. Dealing
with assumptions (2) respectively (3) requires a joint distri-
bution of two or more random variables, which may be ap-
proximated via join synopses [2], tuple-graph synopses [21]
or Probabilistic Relational Models [10, 23] (PRMs). A joint
distribution comprising all possible dependencies between
random variables is, however, high-dimensional. Thus, a
data synopsis may suffer from an exponential blowup of stor-
age space and computational cost. On the other hand, of-
tentimes two events are actually independent, if conditioned
on a particular third event. PRM approaches [10, 23], like
any instantiation of graphical models, exploit this condi-
tional independence between random variables to factor a
full joint distribution into multiple low-dimensional distri-
butions. This factorization allows high-dimensional distri-
butions to be captured more compactly.

Graph-Structured Data and Queries. Existing
PRM-based solutions [10, 23] are proposed for relational
data. In particular, they assume a partitioning scheme that
determines the tables in which data is stored. Further, such
approaches take queries as inputs, which explicitly specify
the tables from which data shall be retrieved. For instance,
consider the query predicate 〈x, name,“William Wyler”〉,
which selects all bindings from the entire data graph match-
ing that name. In contrast to that, previous works assume a
selection predicate to have a FROM clause that specifies the
table from which data is selected, e.g., Person. Thus, the
probability P (Xname = “William Wyler”) is estimated for
bindings in the Person table only. Applying such solutions
to a graph-structured setting is not directly possible, be-
cause queries used here do not contain table information.
Further, data graphs can be partitioned in various ways.
Different partitioning schemes, however, yield different ta-
bles, which in turn greatly affect the performance of existing
solutions.

Queries over Text-Rich Data. Another problem with
PRM-based solutions [10, 23] is that random variables are
assumed to have small sample spaces. In existing works, ran-
dom variables capture structured query predicates with con-
stants that are bounded to a fixed number of values. In addi-
tion to structured predicates, we aim to support string predi-
cates for specifying keyword constraints over textual values.
In particular, string predicates comprise keywords, which
match any value that contains such keywords. That is, re-
sults for these string predicates do not have to exactly match
a specified constant, but only have to contain a given key-
word. For instance, bindings for 〈x, name,“William Wyler”〉
would also satisfy the predicate 〈x, name,“William”〉, as they
both contain “William”. To query via string predicates on
predicate name, a sample space Ω(Xname) must comprise all
words as well as phrases (sequences of words) contained in
text values for name. Clearly, Ω(Xname) may potentially be
very large. This problem is exacerbated, when dependen-

cies between values in these sample spaces have to be con-
sidered. For dealing with string predicates, specific string
synopses summarizing the value spaces of textual attributes
have been proposed. For instance, synopses based on pruned
suffix trees, Markov tables, clusters or n-grams have received
much attention [4, 13, 24]. However, previous works esti-
mate the selectivity of single string predicates. In our set-
ting, we aim to support queries that comprise a combination
of structured and string query predicates: hybrid queries. In
particular, there is no work, which considers dependencies
between these different types of predicates.

Contributions. Towards a holistic solution for selectiv-
ity estimation of queries over text-rich data graphs, we pro-
vide the following contributions: (1) for our work we rely
on an instantiation of a general template-based represen-
tation of Bayesian networks (BN). Our probabilistic model
is able to capture value distributions and dependencies be-
tween them for general data graphs. As opposed to assum-
ing specific tables [10, 23] in which data stored, our model
is learned – independent from a partitioning scheme – di-
rectly from information captured in the data graph. (2)
For supporting hybrid queries over text-rich data graphs,
we show how existing string synopses can be integrated into
our template-based model, called BN+. (3) We implemented
this approach to perform experiments on real-world data.
Using a baseline relying on independence between structured
query predicates and string predicates, we show that our so-
lution greatly improves the accuracy of selectivity estimates.
Also in terms of efficiency our solution is promising, as BN+

performs comparable to our baseline systems. In fact, our
results suggest that BN inferencing requires only negligible
computational overhead.

Outline. The remainder is structured as follows: first,
in sect. 2 we present preliminaries. Sect. 3 discusses BN+,
our template-based model with integrated string synopsis.
In sect. 4 we present evaluation results, before we outline
related work in sect. 5. Finally, we conclude with sect. 6.

2. PRELIMINARIES
In this work, we use graphs as data and query model.

Data. Given a set of attribute labels `a and rela-
tion labels `r, we model our data as a directed labeled
graph G = (V,E, `a, `r), where V is the disjoint union
V = VE ] VA ] VC of entity nodes VE , attribute value
nodes VA, and class nodes VC . The edges (called triples)
E = ER ] EA ] type represent a disjoint union of rela-
tion and attribute edges. Relation edges ER connect entity
nodes, i.e., 〈s, r, o〉 ∈ ER iff s, o ∈ VE and r ∈ `r. At-
tribute edges EA connect an entity with an attribute value,
〈s, a, o〉 ∈ EA iff s ∈ VE , o ∈ VA and a ∈ `a. Attribute values
may stand for long textual descriptions. Each such value is
seen as a bag of n-grams. Here, we define an n-gram to be
a sequence of n words. Thus, in order to form an n-gram
representation for a given attribute value, all possible words
and phrases (up to length n) are extracted from that value.
Further, a special edge 〈s, type, o〉 ∈ E, s ∈ VE and o ∈ VC ,
captures an entity s belonging to a class o. Different kinds
of data, including relational, XML and RDF data have been
modeled as graphs. For instance, the intuitive mapping of
relational data to this graph model is: a database tuple cap-
tures an entity, its attributes, and connections to related en-
tities in the form of foreign keys. Further, our model closely
resembles the graph-structured RDF data model, omitting
special features such as RDF blank nodes. Example data is
given in Fig. 1.



Person

Audrey 

Hepburn

type

Roman 

Holiday

Movie

starring

type

Belgium
bornIn

Location

type
William 

Wyler

directedBy

type

Mel 

Ferrer

type

spouse

title name

name

name

p1

p2 p3

l1 name

Audrey Hepburn was a British 

actress and humanitarian. 

Born in Ixelles, Belgium as 

Audrey Kathleen Ruston

comment

m1

Strength 

through 

Unity

motto

Actress

type

Figure 1: A data graph about Audrey Hepburn and
her movie “Roman Holiday”.

Query. Conjunctive queries represent a large part of
SQL as well as the Basic Graph Pattern (BGP) feature
of SPARQL3. A conjunctive query is a conjunction of
query predicates. We use a particular type of conjunctive
queries that corresponds to graph patterns of the follow-
ing form: a query Q over a data graph G is a directed la-
beled graph GQ = (VQ, EQ), where VQ is a disjoint union
V = VQV ] VQC ] VQK of variable nodes (VQV ), constant
nodes (VQC ), and keyword nodes (VQK ). Each o ∈ VQK

is a word or a sequence of words. Predicates are explicitly
given in a query, i.e., p is a constant for all query predicates
〈s, p, o〉 ∈ EQ. Corresponding to edge types, `a, `r and type
in G, we distinguish three kinds of query predicates: (1)
class predicates 〈s, type, o〉, s ∈ VQV , o ∈ VQC , (2) relation
predicates 〈s, r, o〉, s ∈ VQV , o ∈ VQC ] VQV , r ∈ `r and (3)
string predicates 〈s, a, o〉, s ∈ VQV , o ∈ VQK ] VQV , a ∈ `a.
Query semantics are as defined for SPARQL BGPs. Namely,
results are subgraphs of a data graph matching the graph
pattern captured by a query. The only extension to these
semantics are due the special keyword nodes: a value node
in the data graph matches a keyword node if its bag of n-
grams contains the keyword. Note, a query may also contain
attribute predicates with non-string values such as date or
time. We do not distinguish them from string predicates,
because they can be regarded as a special case: attribute
value nodes, against which these query predicates are eval-
uated, can be seen as bags with exactly one element. This
one element would stand for the entire value. Such a value
node “contains” the constant in the query predicate, if its
value element exactly matches it. That is, evaluating such
query predicate boils down to exact matching. An example
query graph is illustrated in Fig. 2.

Problem Definition. Given a query Q, the selectiv-
ity, denoted by sel(Q), is defined as the cardinality of Q’s
result set. In this work, we address the problem of estimat-
ing sel(Q), which can be decomposed into two tasks. First,
there is R, R : Q → N, giving an upper bound cardinality of
a result set for query Q ∈ Q. Second, a probabilistic compo-
nent P defines a probability function mapping every Q ∈ Q
to a probability. More precisely, P assigns a probability to
a binary random variable, say 1Q, modeling whether or not
Q’s result set is non-empty. That is, 1Q captures whether

3http://www.w3.org/TR/rdf-sparql-query/

m p l Belgium

HepburnAudreyHoliday

Movie Person

type type

title name name

starring bornIn name

Figure 2: A query graph asking for movies having a
title“Holiday”and starring a person named“Audrey
Hepburn”, who is born in “Belgium”.

Q holds. For simplicity, we write P(1Q = T) as P(Q).
Overall, the selectivity is: sel(Q) = R(Q) · P(Q).

In previous works [10], R(Q) is estimated as size of the
cross-product of the tables, which a query is evaluated
over. In our setting, table names are not explicitly given
in a query. To obtain R(Q), we consider an upper bound
of results for every distinct query variable. That is, for
each v ∈ VQV , we upper-bound the number of its bind-
ings, R(v), as number of all entities belonging to class c:
|{s|〈s, type, c〉 ∈ E}|. However, computing R(v) like this
requires Q to contain a class predicate 〈v, type, c〉. If v
has no class assigned, we use the number of all entities,
|VE |, as an estimate for R(v). Then, R(Q) is given by
R(Q) =

∏
v∈VQV

R(v).

P(Q) captures the joint probability over a set of random
variables – one for each query predicate ∈ Q. Intuitively,
each such random variable models whether the associated
query predicate holds or not. In Section 3, we present a
template-based probabilistic model to obtain an accurate es-
timate for P(Q), while omitting any independence assump-
tion. Before going into details, we first introduce Bayesian
networks (BNs) and their template-based representation as
the foundation of our approach. Note, while we rely on BNs
for estimating P(Q), other kinds of graphical models are
also applicable and may be used in a similar fashion.

Probabilistic Framework. A Bayesian network (BN)
represents a directed graphical model that allows for a com-
pact representation of joint distributions through two com-
ponents: a network structure and model parameters. The
former is given by a directed acyclic graph, where nodes
stand for random variables and edges represent dependencies
among them. Given parent nodes Pa(Xi) = {Xj , . . . , Xk}, a
random variable Xi is dependent on PA(Xi), but condition-
ally independent of all non-descendant nodes (random vari-
ables), i.e., all nodes which are not reachable from Xi when
removing Pa(Xi). BN parameters comprise conditional
probability distributions (CPDs) for random variables in the
network. That is, each node Xi is associated with a CPD
capturing the conditional probability P (Xi|Pa(Xi)). A BN
allows for computing the joint distribution P (X1, . . . , Xn)
via the chain rule: P (X1, . . . , Xn) =

∏
i P (Xi|Pa(Xi)). An

example BN (more precisely, a template-based BN as dis-
cussed below) for our data graph is illustrated in Fig. 3-a.
From its structure one can observe that, e.g., XdirectedBy
is dependent on Xtitle respectively Xname, but independent
of all other random variables given its two parents. Two
example CPDs are shown in 3-c. Each row captures a prob-
ability, given one particular assignment to its parent random
variables (PA). For instance, the CPD for Xtitle holds prob-
abilities for n-grams of title values, conditioned on whether
or not the particular entity having that value is a Movie.

http://www.w3.org/TR/rdf-sparql-query/


We use template-based BNs [14, Ch. 6] (template mod-
els) as means to compactly represent correlations in graph-
structured data. A template model is a framework featuring
two parts: template variables (or templates in short) and
template factors. Each template can be instantiated to ob-
tain multiple random variables in a ground BN, which share
the same sample space and the same semantics. Specifically,
a template is defined as a function X (α1, . . . , αk), whose
sample space is Ω(X ), and each argument αi is a place-
holder to be instantiated to obtain random variables. Fig.
3-a shows a template model, containing templates such as
Xmovie, Xstarring, or Xname, which are derived from classes,
relations and attributes in our running example. A ground
BN can be obtained using data in the graph for template
instantiations. That is, placeholders αi are instantiated by
entities in the data, forming an entity skeleton of a tem-
plate. Given a template X (α1, . . . , αn), an entity skeleton
of X is defined as E(α1, . . . , αn) ⊆ E(α1) × . . . × E(αn),
where each E(αi) ⊆ VE specifies all possible entity assign-
ments to αi. Using entity skeletons, we can define a ground
BN by instantiating a template as a set of random variables:
X = {X(e)|e ∈ E}, where Ω(X(e)) = Ω(X ). For example,
for the template Xperson(α2) and Eperson(α2) = {p1, p2, p3},
the set of random variables obtained for the ground BN is
Xperson = {Xperson(p1), Xperson(p2), Xperson(p3)}.

Thus, different assignments to a template argument result
in different random variables in the ground BN, which share
the same probabilistic semantics. That is, they share the
structure dependencies and parameters (CPDs) as defined
for the template. The latter information is captured as tem-
plate factors, which define probability distributions shared
by all instantiated random variables of a given template.

Such a template-based representation is flexible as vari-
ous ground BNs can be obtained for different entity skele-
tons based on the same templates. In our approach, we will
exploit this flexibility to define a suitable ground BN for a
given query, while relying on a fixed template model. Con-
sider a“query”ground BN in Fig. 3-b. Random variables are
instantiated for each query predicate, while having a query
variable as placeholder for entity bindings. In the following,
we will go into more details.

3. BN+: STRING SYNOPSES + BN
In this section, we discuss why previous BN approaches

[10, 23] for selectivity estimation over relational data do not
directly fit a graph-structured setting. Instead, we propose
a different template model for our probabilistic component
P. Further, we show how string synopses can be integrated
into P to obtain a solution (BN+) for supporting both, query
predicates over structured as well as textual data.

3.1 BN+ Template Model
Given a data graph G = (V,E, `a, `r), we define a tem-

plate for each (1) attribute a ∈ `a, Xa(α1), (2) relation
r ∈ `r, Xr(α1, α2), and (3) class c ∈ VC , Xc(α1). For our
running example templates are depicted in Fig. 3-a. Each
template for a relation r respectively a class c is binary, i.e.,
Ω(Xr) = Ω(Xc) = {T,F}. On the other hand, a sample
space for Xa comprises a bag of n-grams representation de-
rived from attribute values of a. For instance, the sample
space for Xname is given by Ω(Xname) = {“Audrey”, “Hep-
burn”, “Audrey Hepburn”, “Mel”, . . .}. To obtain a ground
BN, these templates are instantiated using the following en-
tity skeletons:
• The entity skeleton for a class template Xc(α1) is

given by all entities belonging to that class: Ec(α1) =
{s|〈s, type, c〉 ∈ E}.
• For an attribute template an entity skeleton con-

sists of all entities having that attribute: Ea(α1) =
{s|〈s, a, o〉 ∈ EA}.
• Finally, the entity skeleton Er(α1, α2) contains the

pairs of source and target entities having relation r:
Er(α1, α2) = {〈s, t〉|〈s, r, t〉 ∈ ER}. Let source and tar-
get entities be denoted as Esr (α1) = {s|〈s, r, t〉 ∈ ER}
and Etr(α2) = {t|〈s, r, t〉 ∈ ER}, s.t. Er(α1, α2) ⊆
Esr (α1)× Etr(α2), respectively.

Such a template-based approach has the merit of being com-
pact. The number of templates is far less than the number of
random variables in a ground BN. Structure and parameters
(CPDs) are learned for templates only. At runtime, tem-
plates are instantiated with entities to construct a ground
BN. For inferencing, a CPD learned for a template is shared
among all random variables in the ground BN that instan-
tiate that template.

Discussion. In our work, we use a general template-
based model as probabilistic framework. Previous instan-
tiations of template-based models focus on relational data.
Most notably, Probabilistic Relational Models (PRM) [8]
and Probabilistic Entity Relation Models (PER) [9, Ch. 7]
have been proposed. In fact, PRMs have also been applied
for selectivity estimation [10, 23]. However, PRM-based so-
lutions are not well-suited for a graph-structured setting,
due to differences in the data as well as query model.

In a relational context, data is stored in tables correspond-
ing to relations captured by a conceptual model. Further,
relation names are explicitly given in a query – stated in a
FROM clause. Correspondingly, previous works [10, 23] em-
ploy a PRM to model selection predicates through random
variables of the form XR.A, where R is a relational table and
A is an attribute. For instance, XPerson.name = “Audrey”
is a random variable capturing a selection on table Person
where name equals “Audrey”. Analogously, join predicates
are modeled as binary random variables that involve two
explicitly specified tables.

As opposed to that, graph-structured data, such as RDF,
can be partitioned in different ways. For instance, there may
be a table for every entity class, e.g., a Person table cap-
turing different person attributes [25]. On the other hand, a
table might be constructed for every attribute respectively
relation leading to, e.g., a table name. The latter partition-
ing is also known as vertical partitioning [1]. Thus, at query
level, there is no explicit information about the tables from
which data shall be selected. Further, schema information
may be queried via class predicates, which are not supported
in the relational setting. Due to these differences, the follow-
ing problems occur when storing graph data in tables and
applying a PRM-based solution:
• Sensitivity to Data Partitioning: A PRM assumes ta-

bles to be given. Thus, random variables are de-
fined and their parameters/dependencies are learned,
all of which w.r.t. these tables. Different partitioning
schemes for data graphs, however, yield different ta-
bles. Therefore, models learned from such tables might
largely vary – in terms of dependency structure as well
as parameters. In particular, [23] focuses on learn-
ing correlations between attributes, which are com-
prised within one table, while assumptions are made
to simplify cross-table dependencies. While resulting
in a very “lightweight” PRM, this approach assumes
that data is partitioned in tables comprising related
attributes. In the case of vertical partitioning, how-



Xtitle(α1) Xname(α2)

Xspouse(α2,α2)

XdirectedBy(α1,α2)

Xmotto(α3)

(a) (b)

Xmovie(m)

Xstarring(m,p)
Xtitle(m)

Xperson(p)

Xname(l)

Xname(p)

(c)

XbornIn(p,l)

Xactress(α2)Xmovie(α1)

Xperson(α2)

XbornIn(α2,α3)

Xcomment(α2) Xlocation(α3)

Xstarring(α1,α2)

Figure 3: (a) Template-based BN for the running example. (b) Query ground BN for query in Fig. 2.
Note, templates XdirectedBy, Xcomment, Xmotto, and Xlocation are marginalized out. (c) CPD for template Xtitle
respectively XdirectedBy.

ever, where every attribute constitutes a table, there
are no local dependencies to be learned and cross-table
dependencies are more important. Generally speak-
ing, the performance of PRM solutions is sensitive to
the partitioning strategy. Our template-based solution
does not make any assumptions about data partition-
ing. Instead, a template model is learned from entity
skeletons and values from a data graph, independent
from the way data is stored in tables.
• Cross-Table Selection: Besides vertical partitioning,

another common strategy for graph data partitioning
is to construct a table for every class [25]. However,
oftentimes common attributes, such as name, are used
to describe different types of entities, e.g., Person and
Location. Given such a class-based partitioning, the
attribute predicate 〈p, name, “Audrey” 〉 would select
data from different tables. However, these tables may
not be explicitly specified in a query. At the same
time, this explicit specification is required by PRM-
based approaches. A possible solution is to maintain
information to find out in which tables name occurs,
and to construct corresponding random variables to
refer to these different tables. Finally, one would need
to aggregate the probabilities obtained for these vari-
ables. In contrast, with our template-based solution,
only one template variable, Xname, is needed to sup-
port this predicate. A PRM-based approach, on the
other hand, requires consulting one variable respec-
tively CPD for every table.
• Multi-Table Joins: A similar problem occurs when

dealing with joins. In a PRM context, a join predi-
cate involves data from two explicitly specified tables.
Such joins correspond to relation predicates in our set-
ting. That is, a relation may be seen as referring to
two foreign keys, which connect a source with a target
entity. However, depending on the data partitioning,
processing such a join (relation predicate), might in-
volve one or more unspecified tables. For instance,
given a relation predicate 〈p, bornIn, l〉, bornIn could
join either Person or Actress entities with Location
instances. Thus, data for the entities to be joined,

might be located in different tables. As before, in
a PRM one may handle this issue via using several
random variables and aggregating their probabilities.
Using our approach, however, merely one single CPD
respectively random variable representing the given re-
lation predicate is required.

3.2 String Synopses
Inferencing costs are driven by two factors: (1) depen-

dency structure of a BN, and (2) sample space sizes. Exist-
ing works on PRMs have focused on the former, targeting
a lightweight, tree-shaped BN structure [23]. The latter as-
pect, however, is crucial as CPD sizes are a mere reflection of
sample space sizes. Essentially, for supporting string pred-
icates with all possible keywords, Ω(Xa) must capture all
words and phrases, which occur in a’s values. Oftentimes,
attribute values comprise long texts, resulting in a sample
space to quickly blow up. In order to compactly represent
Ω, being a large set of strings, we propose the use of string
synopses such as Markov tables [4], histograms [13] or n-
gram synopses [24]. We generalize from existing works to
define the following class of applicable synopses:

Definition 1 (String Synopsis). A string synopsis
for a template Xa is a tuple S(ν, count). The synopsis func-
tion ν maps elements in the bag of n-grams for attribute a
(denoted by Ba) to elements in a compact synopsis sample
space Ω(Xa). A function count: Ω(Xa) → N returns the
number of elements in the “original” space, Ba, represented
by a given synopsis element ∈ Ω(Xa).

Our definition of a synopsis is generic, however, a well-suited
synopsis function ν should adhere to the following goals.
First, ν should lead to a small sample space, Ω(Xa), as
a compact representation facilitates learning and keeps the
CPD size manageable. Second, ν should be most accurate,
i.e., each synopsis element ∈ Ω(Xa) should represent only
few n-grams from the original space, Ba. Finally, a synop-
sis function should capture all “important” n-grams – while
discarding not important ones. From a conceptual point of
view, discarded n-grams are mapped to a bottom element
⊥, capturing the probability mass for all missed n-grams.



While we do not restrict our approach to a particular type
of string synopsis, recent work has shown that w.r.t. above
goals, synopses based on n-grams are well-suited for the task
of selectivity estimation for the contains operator on dictio-
naries [24]. This operator has the same semantics as our
string predicate, matching text values that contain a given
keyword. Thus, we follow this line of work and integrate
n-gram synopses into BN+ for our evaluation systems.

An n-gram synopsis function first projects a given tex-
tual attribute value to its n-gram representation ⊆ Ba. For
example, attribute comment has one attribute value, which
would be mapped to Bcomment = {“Audrey”, “Hepburn”,
“Audrey Hepburn”, . . . }. Then, the space Ba is reduced by
using a decision criterion to dictate which n-grams ∈ Ba
to include in a synopsis sample space Ω(Xa). That is, a
synopsis space represents a subset of “important” n-grams.
Note, n-gram synopses are most accurate, as each synopsis
element represents exactly one n-gram ∈ Ba – in contrast
to, e.g., histograms. Recent work has outlined several such
decision criteria [24]. One simplistic strategy is to choose
ν as a function that randomly samples n-grams from Ba.
Another approach is to construct a top-k n-gram synopsis.
For this, n-grams are extracted together with their number
of occurrences (counts). Then, the k most frequent n-grams
are included in the synopsis space. Considering attribute
comment, the count for n-gram “Audrey” would be 2, while
“Hepburn” only occurs once. Thus, a top-k n-gram synopsis
would rank “Audrey” as more important than “Hepburn”.
Further, a stratified bloom filter synopsis has been proposed
[24], which uses bloom filters as a heuristic map that projects
n-grams to their counts.

3.3 BN+ Construction
Our template-based BN+ should compactly represent the

joint distribution over templates capturing structured data
elements as well as n-grams of textual attribute values. How-
ever, large sample spaces and complex dependencies among
templates may lead to prohibitive storage and inferencing
costs. In fact, during our experiments we observed sample
space sizes up to 2 million n-grams for some attributes. Such
sample spaces translate to large CPDs, which in turn make
fast inferencing at runtime impossible. Furthermore, depen-
dencies between templates aggravate this problem: the size
of a CPD multiplies, with each parent a particular template
is dependent on. We aim for a compact template model via
exploiting two strategies. Firstly, we utilize string synopses
in order to “compress” an attribute template sample space
into a manageable size. Secondly, instead of constructing a
complex network structure featuring all possible dependen-
cies, we solely focus on the most important ones. That is,
we aim for an approximation of the joint distribution that
shall limit the dimensions of the CPDs, while preserving key
dependencies.

Structure Learning. An efficient and well-known tech-
nique in BN literature [5, 18] is based on using a product
approximation of rich structures via trees. These tree struc-
tures guarantee that each template has at most one parent.
Recently, such approximation has been adopted to PRMs
for a relational setting. The resulting“lightweight” structure
has shown to improve efficiency, while still producing high-
quality estimates [23]. We apply product approximation to
a graph-structured setting by imposing a fixed structure of
independences among template variables:

Definition 2 (Fixed Structure). Given a data
graph, the following conditional independences hold: (a) two

Algorithm 1: Construct BN+ template model.

Input: Templates
X = {Xa}∀a∈`a ∪ {Xr}∀r∈`r ∪ {Xc}∀c∈VC ,
entity skeletons
E = {Ea}∀a∈`a ∪ {Er}∀r∈`r ∪ {Ec}∀c∈VC and
synopsis size k.

Output: Template model T
1 begin
2 Tlocal ← ∅
3 Ω(Xr) = Ω(Xc) = {T,F} for all c and r
4 Ω(Xa) = InitializeSynopsis(a, k) for all a
5 foreach Xa ∈ X do
6 foreach non-independent Xc to Xa w.r.t. Def. 2

do

7 Add (Xc
mi(Xc,Xa)−−−−−−−→ Xa) to Tlocal

8 foreach non-independent Xa′ to Xa w.r.t.
Def. 2 do

9 Add (Xa′
mi(Xa′ ,Xa)
−−−−−−−−→ Xa) to Tlocal

10 T ∗local = Max-Spanning-Forest(Tlocal)
11 T ← T ∗local // initialize T
12 foreach Xr ∈ X do
13 Xbest

as = arg maxXa∧a∈source(r) mi(Xa, Xr)

14 Xbest
at = arg maxXa∧a∈target(r) mi(Xa, Xr)

15 if Xbest
as 6= null then

16 Add (Xbest
as → Xr) to T

17 if Xbest
at 6= null then

18 Add (Xbest
at → Xr) to T

19 return T

templates X1 and X2 are conditionally independent given
their parents, if they do not share a common entity in their
skeletons E1 and E2. Note, in case either of these templates,
say Xi, captures a relation, we use Ei = Esi ∪ Eti as the
skeleton, i.e., the union of its source and target entities.
(b) Each class template Xc has no parent. (c) Each relation
template Xr is independent of any class template Xc, given
its parents.

We argue that the independences induced via our fixed
structure are meaningful due to two reasons. (1) We impose
that strong correlations among templates only occur, if they
share some common entities – they need to “talk about the
same things” (Def. 2-a). (2) We argue that there is a causal
dependence (independence) between a class and an attribute
(relation) template (Def. 2-b, -c). In other words, assigning
an entity to a given class causally affects the probability of
its attribute values, which in turn, influences the probability
of observing a particular relation.

Exploiting the fixed structure, we can decompose struc-
ture learning: we construct a disconnected graph, coined
local part (Tlocal), of the template model by learning depen-
dencies between class/attribute respectively attribute/at-
tribute template pairs. Then, we simplify Tlocal via an ap-
proximation T ∗local. Finally, we add relation templates to the
structure T ∗local and obtain a final template model T .

For learning the local part, we add weighted edges be-
tween each class/attribute (attribute/attribute) template
pair, which is not independent w.r.t. the fixed structure.
That is, each pair has an “overlap” in their skeletons – they
share one or more entities. In our example, Tlocal comprises,



e.g., a tree Xmovie → Xtitle, as both skeletons are equal to
{m1} (Fig. 3-a). In order to calculate the dependency weight
between two templates we use the mutual information (mi)
quantity, which essentially represents the amount of infor-
mation shared between the given templates:

mi(X1,X2) =
∑

x1∈Ω1

∑
x2∈Ω2

P (x1, x2) log

(
P (x1, x2)

P (x1)P (x2)

)
with Ωi = Ω(Xi) being the sample space of template Xi.
The maximum likelihood estimation of P (Xi = xi) is:

P (Xi = xi) =
M̆i[xi]

N

with N as normalization factor. M̆ is a sufficient statistic4

counting entities in the skeleton of Xi having xi as value:

M̆i[xi] =
∑
e∈Ei

1{Xi(e) = xi}

Note, 1 is an indicator function, i.e., it returns 1 if its ex-
pression is true, 0 otherwise. Similarly, the joint distribution
of X1 and X2 is:

P (X1 = x1,X2 = x2) =
M̆1,2[x1, x2]

N

with N as normalization factor and M̆1,2[x1, x2] as count of
entities having both values:

M̆1,2[x1, x2] =
∑

e∈E1∩E2

1{X1(e) = x1, X2(e) = x2}

Once the weighted edges are added to Tlocal, the model com-
prises all possible dependencies between class/attribute tem-
plates according to our fixed structure. Then, we capture
only the most important correlations in Tlocal by reducing
it to its maximum-spanning forest5. This yields a simpler
structure, T ∗local. For our example, T ∗local is depicted in Fig.
3-a: four spanning trees are highlighted. Note, due to our
fixed structure restriction, the maximum-spanning forest al-
gorithm may find no solution. In such cases, we iteratively
remove the weakest attribute/attribute weighted edges pair
until a spanning tree can be obtained. For instance, while
the pink and blue tree have been comprised in one com-
ponent in Tlocal, we needed to remove the weighted edges
between Xname and Xcomment, leading to two trees in T ∗local
(Fig. 3-a). Overall, the construction of T ∗local results in a dy-
namic partitioning of the dependencies based on information
contained in entity skeletons.

We now incorporate relations. Mutual information is used
to quantify dependencies between relation and attribute
templates comprised in trees in T ∗local. For every relation
template, its mutual information w.r.t. all possible (non-
independent, Def. 2) source respectively target attribute
templates is computed. The two attribute templates that
exhibit the highest mutual information are used as parents
of that relation template. In Fig. 3-a XdirectedBy connects
two trees (red and blue) via Xtitle and Xname as parents.

Algorithm 1 captures the entire procedure for structure
learning. The algorithm takes the set of all templates, the
entity skeletons and the string synopsis size parameter k as
inputs. Then, it initializes the sample spaces of all tem-
plates (lines 3-4). Note, initializing the sample space for

4Sufficient statistic is a term from the statistical learning
literature, which refers to frequencies or counts.
5A maximum-spanning forest is defined in our work as a col-
lection of spanning trees, one for each component in Tlocal.

an attribute template requires string synopsis construction
as discussed before. Local template model learning is per-
formed in lines 5-9 by adding weighted edges. The approxi-
mation of Tlocal is done in line 10 by solving the maximum-
spanning forest problem and adding its result, T ∗local, to an
intermediate model. The connections between trees in T ∗local
are constructed in lines 12-18, resulting in a final model.

Theorem 1. The template model constructed according
to Algorithm 1 is acyclic.

Proof Sketch: A local model is reduced to a forest of
trees, T ∗local, via a maximal spanning tree algorithm. Thus,
every tree in T ∗local represents a valid acyclic fragment of
our network. Then, we connect these tree structures by in-
crementally adding (lines 12-18) edges representing relation
templates. However, each relation template must not have
children. Thus, no cycles can be introduced at this step �

Parameter Learning. Having build a network struc-
ture, we now learn model parameters, i.e., conditional prob-
ability distributions. As done in recent works [10, 23], learn-
ing CPDs can be achieved based on our sufficient statistic,

M̆ . More precisely, according to Bayes rule it holds that:

P (Xi|Xj) =
P (Xi,Xj)

P (Xj)
. Thus, we may compute P (Xi,Xj) re-

spectively P (Xj), as we did for obtaining the mutual infor-
mation. Note, in case of a relation template, say Xi, we need
to estimate a distribution conditioned on two other tem-
plates: P (Xi|Xj ,Xk). This can be achieved by extending our

M̆ function to capture three templates: M̆1,2,3[x1, x2, x3].
For an efficient parameter learning, we employ two sorts

of optimizations. First, we use caching strategies for keeping

frequently needed M̆ statistics in memory. In fact, caching
may be applied to store results already produced during
mutual information computation. For example, sufficient
statistics for the template Xtitle are needed at least twice,
as it is a parent of XdirectedBy as well as Xstarring. Sec-

ond, we can formulate M̆ expressions as queries to be is-

sued at a database. For instance, M̆p1,p2 [x1, x2] can be cal-
culated based on the cardinality of a result set for query
{〈s, p1, x1〉, 〈s, p2, x2〉}, with Xpi being the template for pi.

Maintenance. With evolving data, triples might be
added or removed from a graph. On the one hand, such
changes may result in minor modifications of entity skeletons
or sample spaces. As a consequence, some model parameters
may no longer be accurate enough for effective selectivity es-
timation. Such affected CPDs should be recomputed given
an updated data graph. For minor changes such a reestima-
tion, however, does not influence other parameters and/or
the structure and thus, can be performed incrementally. In
fact, while frequent changes to model parameters might have
to be calculated, a network structure is more “stable”. On
the other hand, given drastic changes to a data graph, its
structure as well as parameters have to be recomputed. Our
experiments show that even in this case, learning is feasible
within a short amount of time. We observed that compu-
tation of the entire BN+ model, including string synopses,
took at most 3 hours.

3.4 Selectivity Estimation
In order to employ BN+ for selectivity estimation, its tem-

plates are instantiated by given query predicates to form
a ground BN. To be precise, we do not model a standard
ground BN, since this would solely capture entities as ran-
dom variable assignments. Instead, in a “query” ground BN,
random variables have sets of entities as assignments, which



are result bindings to query variables. For each relation
predicate 〈s, r, o〉 and class predicate 〈s, type, c〉 in Q, we in-
stantiate a random variableXr(s, o) = T andXc(s) = T, re-
spectively. For every string predicate 〈s, a, w〉, its keyword w
is mapped to a corresponding element in our synopsis, ν(w),
such that a resulting instantiated variable is Xa(s) = ν(w).
As for the running example, we instantiate one random vari-
able for each query predicate as shown in Fig. 3-b. Notice
that we need two instantiations of Xname. Templates which
are not relevant to the query, e.g., XdirectedBy, are marginal-
ized out. For selectivity estimation, the joint probability of
these random variables is computed as an inference problem:

P (Q) ≈ γ ·P
(∧

Xa(s) = ν(w)
∧
Xc(s) = T∧

Xr(s, o) = T
)

where γ = 1/
∏

w count(ν(w)) is a correction factor. γ is nec-
essary as ν(w) may not only capture the probability mass
for w, but could also include other words (phrases). Con-
sider a histogram synopsis. Here, “Wiliam” and “Wyler”
could be represented by a single bucket [Wi−Wy]. Then, a
query predicate 〈p, name, “Wiliam” 〉 would be translated to
Xname(p) = [Wi−Wy]. However, the bucket [Wi−Wy] not
only comprises “Wiliam”, but also “Wyler”. Thus, its prob-
ability must by “corrected”. Note, such a correction implies
a uniform distribution among all words (phrases), which are
captured by a single synopsis element.

For the above inferencing problem, each instantiated ran-
dom variable reuses the CPD from its template. In the
simplest case, inferencing for P (Q) could be performed via
“brute-force” marginalization. However, as marginalization
is expensive, we employ belief propagation allowing an ap-
proximation, which operates on a junction tree representa-
tion of the ground BN [23]. We adopt the inferencing to deal
with the following problems that arise in our setting:

Multiple Value Assignments. Commonly, a string
synopsis restricts the length of its phrases, due to a limited
amount of space. If a query predicate contains a phrase as
keyword, which is longer than this threshold, a simple strat-
egy is to break that phrase into multiple smaller phrases. For
instance, if a synopsis only allows 1-grams, a keyword phrase
with k words must be split into k 1-grams. In such cases,
instantiated random variables (referring to the same query
variable) have multiple values. For instance, Xname(p) has
“Audrey” and “Hepburn” as values (Fig. 2 and 3-b). This
problem can be addressed through an aggregation function.
We use a stochastic mode aggregation, which uses all values
as evidence, but weights each one with its frequency within
the query [22]. In our example, P (XbornIn = T|Xname(p))
is given by 1

2
· P (XbornIn = T|Xname(p) = “Audrey”) + 1

2
·

P (XbornIn = T|Xname(p) = “Hepburn”). Note, the proba-
bility for each Xname(p) assignment is weighted with 1

2
, as

both values occur once in the query.
Missing Synopsis Values. There are synopses, such as

the top-k n-gram, for which some query keywords do not
have a corresponding synopsis element. That is, the synop-
sis discarded that particular word (phrase) during construc-
tion for space reasons. The probability for these “missing”
keywords cannot be estimated within BN+, as they are not
included in any sample space. To deal with this case, a
string predicate featuring a missing keywords is assumed
to be independent from the remainder of the query. Then,
its probability can be estimated based on a string synop-
sis heuristic [24]. We employ the leftbackoff strategy, which
finds the longest known n-gram that is a prefix (postfix) of

the missing keyword and estimates its probability based on
statistics for that prefix (postfix) [24].

4. EVALUATION
In the following, we present results of experiments we per-

formed to analyze the accuracy (effectiveness) and the time
performance (efficiency) of BN+. As baseline, we used an
approach that assumes independence among string predi-
cates as well as between them and structured query predi-
cates. Overall, our results suggest this baseline yields very
low accuracy, when dependencies between query predicates
exist. For IMDB we observed such strong correlations in
the data. Here, given we employ the most accurate string
synopsis (stratified bloom filters), BN+ improved the base-
line’s accuracy by 93% in terms of multiplicative error. In
other words, BN+ achieved a decrease of error by a fac-
tor of 13.6. With respect to efficiency, we found that the
BN inferencing overhead was actually negligible. The main
factor driving computation time was the string synopsis we
employed. When both approaches, BN+ respectively the
baseline, used the same type of string synopsis, their perfor-
mance was comparable.

4.1 Setup
Data. We used two real-world datasets: DBLP compris-

ing computer science bibliographies and IMDB holding in-
formation from the movie domain. Tab. 1 provides basic
statistics for both datasets. DBLP as well as IMDB hold
text-rich attributes like name, label or info. We employed
n-gram string synopses as presented in [24]. However, we
only used 1-grams in our experiments, as a larger values for
n resulted in synopses that exceed our memory space limit.
Overall, we extracted 25, 540, 172 and 7, 841, 347 1-grams
from DBLP and IMDB, respectively. We chose these two
datasets, as in one of them (IMDB) textual attribute val-
ues strongly correlate among each other respectively with
structured data. In particular, we noticed strong dependen-
cies during structure learning between values of attributes
such as label and info. Hence, IMDB is appropriate to
test our hypothesis that assuming independence hurts the
quality of selectivity estimates, given datasets that exhibit
correlations. We also used DBLP, which on the other hand,
shows almost no such correlations. Using DBLP data, we
expect accuracy differences to be less significant. Compar-
ing the accuracy performances across such two datasets shall
illustrate the relative benefits of our solution.

Listing 1: Example queries for IMDB and DBLP.
Variables are red, keywords blue and classes respec-
tively predicates black.

// imdb query // dblp query
<x , type , T i t l e> <x , l abe l , ” c l u s t e r i n g ”>
<x , t i t l e , ” s t a r ”> <x , l abe l , ”mining ”>
<x , t i t l e , ” t r ek ”> <x , year , ”2005 ”>
<x , c a s t i n f o , c> <x , type , Ar t i c l e>
<c , type , Cast in fo> <x , author , y>
<c , ro l e , r> <y , type , Person>
<r , name , rn> <y , name , ”n ikos ”>
<r , type , Char name>
<c , person , p>
<p , type , Person>
<p , name , ”brent ”>
<p , name , ” sp in e r ”>

Queries. We employed queries that have been used for
keyword search evaluation. These queries capture informa-
tion needs expressed as keywords. Based on query keywords
and their structured results, we constructed corresponding



IMDB DBLP
# Triples 7, 310, 190 11, 014, 618
# Resources 1, 673, 097 2, 395, 467
# 1-grams 7, 841, 347 25, 540, 172
# Attributes 11 21
# Relations 8 18
# Classes 6 18

Table 1: Dataset statistics.

Predicates: #Relation #String
0 1 [2, 4] [1, 2] 3 [4, 7]

# Queries 33 44 23 28 35 26
Predicates: #Class #Total

1 2 [3, 4] [2, 3] [4, 6] [7, 11]
# Queries 49 30 21 28 31 41

Table 2: Query statistics providing the number of
relation, string and class predicates contained in our
query load.

graph patterns, comprising string, class, and relation pred-
icates. In particular, we generated 54 DBLP queries based
on [16]. Additionally, 46 queries were constructed for IMDB,
based on a recent keyword search benchmark [6]. We omit-
ted 4 queries from [6], as they could not be translated to
our query model. Our workload includes queries containing
[2, 11] predicates in total: [0, 4] relation, [1, 7] string, and
[1, 4] class predicates (cf. Tab. 2). Note, since we extracted
1-grams only, every string predicate with a phrase of length
n is decomposed into n string predicates, each capturing
exactly one word. In our subsequent analysis, we rely on
the number of predicates as an indicator for query complex-
ity. We expect queries with a larger number of predicates
to be more “difficult” in terms of both accuracy and effi-
ciency. That is, accurate estimates may be harder to obtain
and require additional computation. However, most crucial
are actually dependencies between query predicates: we ob-
served that there are more correlated predicates in IMDB,
e.g., info (class Movie) and title (class Movie). Queries
in DBLP, on the other hand, often include, e.g., name (class
Author) and label (class Title) predicates, for which we
could not measure any significant correlations. Tab. 2 gives
an overview of our query load, while example queries are
given in Listing 1. All queries can be found in our appendix.

Systems. As string synopses we employed strategies pro-
posed in [24]. That is, we obtained a random sample of
1-grams, top-k 1-grams and stratified bloom filters (sbf) on
1-grams. For selectivity estimating of the entire query, string
predicates were integrated via (1) independence (ind) or (2)
conditional independence (bn) assumption. In the former
case, selectivity of string and relation/class query predicates
was estimated using string synopses and histograms, respec-
tively. More precisely, structured query parts were estimated
similar to [11]. In the latter case, selectivity estimation was
performed using BN+. Combining string synopses with the
(conditional) independence assumption resulted in seven dif-
ferent systems: indsample, indtop-k and indsbf rely on the
independence assumption, and bnsample, bntop-k as well as
bnsbf represent BN+ approaches.

Synopsis Size. We experimented with synopses of var-
ious sizes. The key factor driving the overall synopsis size
was the employed string synopsis. The string synopsis deter-

mined the size of the (conditional) probability distribution
for ind∗ (bn∗), which was the most costly type of statistic
– other statistics, e.g., the BN network structure, were neg-
ligible in terms of space. We varied the number of 1-grams
comprised by the top-k and sample synopsis, i.e., #1-grams
per attribute ∈ {0.5K, 1K, 5K, 10K}. Regarding our sbf ap-
proach, we captured up to {2.5K, 5K, 25K, 50K} of the most
frequent 1-grams for each attribute and varied the bloom fil-
ter sizes, resulting in similar memory requirements. All sys-
tems loaded their synopsis into main memory. Overall, dif-
ferent string synopses (sizes) yielded different systems with
{2, 4, 20, 40}MByte of memory consumption, while no addi-
tional hard disk space was required. We observed that while
selectivity estimations become more accurate with greater
size, no further improvements could be achieved, using syn-
opses ≥ 20 MByte. In order to allow for the best accuracy
and to illustrate this convergence, we report results from
synopses with up to 40 MByte.

Implementation and Offline Learning. For bn∗ we
used the BN construction procedure as discussed in sect. 3.
That is, we learned a model structure, capturing the most
important correlations only. Then, we calculated model pa-
rameters (CPDs) based on sufficient statistics. String syn-
opsis construction could be done efficiently: each synopsis,
including sbf-based synopses, could be computed in less than
one hour. Structure and parameter learning for bn∗ com-
bined took in the worst case up to three hours. Inferencing
needed by our systems was done using a Junction tree algo-
rithm [23].

As bn∗ and ind∗ systems rely on the same probability
distributions for string predicates, parameters were shared.
That is, ind∗ approaches did not need a BN model struc-
ture, but merely kept its marginalized parameters. Further,
histograms for ind∗ comprising relation respectively class
statistics were constructed similar to [11].

Model structure (histograms) as well as parameters for bn∗
(ind∗) were stored in a key-value store outside the database
system – both were loaded into memory at start-up. De-
pending on the synopsis size loading took up to 3s.

We implemented all systems and algorithms using Java
6. Experiments were run on a Linux server with two Intel
Xeon 5140 CPUs (each with 2 cores at 2.33GHz), 48GB
RAM (with 16GB assigned to the JVM), and a RAID10
with IBM SAS 148GB 10k rpm disks. Before each query
execution, all operating system caches were cleared. The
presented values are averages collected over five runs.

4.2 Selectivity Estimation Effectiveness
As measurement for selectivity estimation accuracy, we

employed the multiplicative error metric (me) used in pre-
vious work [7]. The multiplicative error is defined as

me(Q) =
max(sel(Q), s̃el(Q))

min(sel(Q), s̃el(Q))

with sel(Q) and s̃el(Q) as exact and estimated selectivity
for Q, respectively. Intuitively, me represents the factor at

which s̃el(Q) under-/overestimates sel(Q).
Overall Results. Fig. 4-a, -b (-e, -f) depict the mul-

tiplicative error for DBLP (IMDB). Best accuracy results
were achieved by ind∗ and bn∗ having a size ≥ 20 MByte,
as such synopses had sufficient space to capture most query
keywords. Further, the results confirmed our conjecture that
the degree of data correlations has a significant impact on



1E+1 

1E+2 

1E+3 

1E+4 

1E+5 

2 4 20 40 

M
u

lt
ip

lic
at

iv
e

 E
rr

o
r 

Synopsis Size (in MByte) 1E+1 

1E+2 

1E+3 

1E+4 

1E+5 

[2,3] [4,5] [6,7]  

M
u

lt
ip

lic
at

iv
e 

Er
ro

r 

Number of Predicates 

1E+2 

1E+3 

2 4 20 40 

Es
ti

m
at

io
n

 T
im

e 
(m

s)
 

Synopsis Size (in MByte) 1E+2 

1E+3 

[2,3] [4,5] [6,7] 

Es
ti

m
a

ti
o

n
 T

im
e

 (m
s)

 

Number of Predicates 

(a) (b) 

1E+2 

1E+3 

1E+4 

1E+5 

1E+6 

2 4 20 40 

M
u

lt
ip

lic
at

iv
e

 E
rr

o
r 

 

Synopsis Size  (in MByte) 1E+1 

1E+2 

1E+3 

1E+4 

1E+5 

1E+6 

[2,4] [5,6] [7,11] 

M
u

lt
ip

lic
at

iv
e 

Er
ro

r 

Number of Predicates 

1E+1 

1E+2 

1E+3 

2 4 20 40 

Es
ti

m
at

io
n

 T
im

e 
(m

s)
 

Synopsis Size (in MByte) 1E+1 

1E+2 

1E+3 

[2,4] [5,6] [7,11] 

Es
ti

m
a

ti
o

n
 T

im
e

 (m
s)

 

Number of Predicates 

(c) (d) 

(e) (f) 

(h) (g) 

Figure 4: Evaluation results for DBLP and IMDB. All y-axes are in logarithmic scale.

the overall accuracy performance differences between ind∗
and bn∗ approaches. That is, a high degree of correlation
in the IMDB dataset translated to large accuracy differ-
ences, while the improvement bn∗ could achieve over the
baseline was small for DBLP. Last, comparing ind∗ (bn∗)
systems in terms of their string synopsis, we found that
sampling-based approaches were outperformed by systems
using top-k 1-gram synopses. Such systems, in turn, per-
formed worse than sbf-based approaches. In fact, when us-
ing samples, the bnsample system achieved results similar to
the one from indsample. This behavior is due to the fact
that many keywords in query predicates were “missed” in
the sample synopses. In these cases, both approaches rely
on similar heuristics (leftbackoff strategy) to calculate the
probability for such keywords, which translated to large mis-
estimates.

Synopsis Size. Fig. 4-a and -e depict estimation errors
w.r.t. different synopsis sizes for DBLP and IMDB, respec-
tively. Given a small synopsis (≤ 4 MByte), we observed
that top-k and especially sample-based systems performed
poorly, while results for sbf-based approaches were fairly sta-
ble. With increasing synopsis size (∈ [4, 20] MByte), the
performance of top-k 1-gram approaches converged to the
most accurate selectivity estimations achieved by sbf-based
systems. Differences in estimation quality can be explained
by missed query keywords. More precisely, when missing a
keyword, approaches have to rely on inaccurate heuristics
for probability computation. The relatively good and stable
performance of sbf-based systems suggest that using strat-
ified bloom filters is an effective strategy providing enough
space for most relevant 1-grams.

Data Correlations. Results obtained for IMDB and
DBLP largely varied. For the IMDB dataset, bnsbf could
reduce errors of the indsbf approach by 93 %, while im-
provements were much smaller given DBLP. For instance,
for DBLP queries with string predicates name and label,
there are no significant correlations in our BN. Thus, the
probabilities obtained by bn∗ were almost identical to the
ones from ind∗. However, while ind∗ led to fairly good esti-

mates for the overall query load on DBLP, we could achieve
more accurate selectivity computations via bn∗ for specific
“correlated” queries. For instance, for DBLP query Q1 we
could approximate an 10% better selectivity estimation.

Query Size. Fig. 4-b and -f show the multiplicative error
for a varying number of query predicates. We noticed the
error to increase in the number of predicates. This effect
is expected, as more query predicates (hence more “diffi-
cult” queries) lead to an increasingly error-prone probability
estimation. An interesting observation is that ind∗ outper-
formed bn∗ for some queries – see IMDB queries with 5 pred-
icates and DBLP queries with 4 predicates (Fig. 4-b and
-f). For instance, given IMDB query Q28, indtop-k achieved
13% better results than bntop-k. In such cases, string query
predicates were translated to multiple values (1-grams) that
are assigned to one single random variable. For process-
ing these multiple assignments, bn∗ employed value aggre-
gation. However, the stochastic mode aggregation led to
over-/underestimations for these queries due to inaccurate
evidence weights. On the other hand, ind∗ systems could ap-
proximate the probability simply via independence assump-
tion. Overall, we observed that while stochastic mode ag-
gregation resulted in worse estimates for some queries, it led
to better results on average.

4.3 Selectivity Estimation Efficiency
During the second part of our experiments, we studied

efficiency aspects of selectivity estimation for varying syn-
opsis sizes (Fig. 4-c and -g) and query complexities (Fig.
4-d and -h). For all systems, our reported times represent
solely the inference task, while times for model construction
and loading were omitted.

Overall Results. An important observation is that BN
inferencing did not have a decisive impact on the overall per-
formance. Instead, the employed string synopsis was a key
factor driving the efficiency: systems with sample-based syn-
opses, bnsample and indsample, were faster than approaches
relying on top-k 1-gram synopses, which in turn outper-
formed sbf-based systems bnsbf and indsbf. In fact, when



employing the same string synopsis, bn∗ approaches led to
computation times comparable to those from ind∗. This can
be explained with the lightweight model structure used by
bn∗, which only captures the most important correlations.
Further, our structure contained many tree-shaped parts,
which could be processed efficiently through Junction tree
inferencing.

Interestingly, we noticed ind∗ systems to be even slower
than bn∗ in some cases. We explain this with (1) a com-
putational overhead of histogram-based estimation of struc-
tured query constraints for ind∗, and (2) with runtime ad-
vantages of bn∗ due to stochastic aggregation. That is, fewer
probability computations were performed by bn∗, because
through value aggregation, the system could process sev-
eral string predicates via one single inference task. On the
other hand, ind∗ approaches needed to compute the prob-
ability for each string predicate individually. For instance,
bn∗ needed 30% less computation time compared to ind∗
for Q33 in the IMDB query load. This is because Q33 con-
tains 7 info string predicates that were aggregated by bn∗,
leading to one single random variable assignment.

String Synopses. Compared to other synopses, the time
savings achieved with sample-based systems were possible
due to missing 1-grams. However, such savings came at
the expense of accuracy. If a particular query keyword is
not included in a synopsis, heuristics are employed. In this
case, the probability computation is done without the use
of (conditional) probability distributions. Thus, no time-
consuming marginalization was needed. Further, the miss-
ing 1-gram could not be added to the model “as evidence”
for further inferencing. Sbf-based systems performed worst.
We explain this behavior with the computational overhead
introduced by bloom filters. Further, as sbf synopses com-
prised a larger number of 1-grams, marginalization was more
expensive. Note, however, with an increasing number of 1-
grams to be managed, the performance of sample-based re-
spectively top-k systems converged to the one exhibited by
sbf-based approaches.

Synopsis Size. Fig. 4-c and -g show selectivity esti-
mation time vs. synopsis size. As expected, larger string
synopses translated to bigger (conditional) probability dis-
tributions and hence, resulted in longer inference times. Sbf-
based approaches are an exception, as they provided a stable
performance for different synopsis sizes. This constant es-
timation time was due to the fact that computational costs
for sbf systems are largely determined by their bloom filters.
In fact, we observed that costs only marginally depended on
the overall number 1-grams.

Query Size. Fig. 4-d and -h show that selectivity esti-
mation times increase with query size. This is because each
additional query predicate translated to more inferencing
iterations and probability lookups that were needed by bn∗
and ind∗ systems, respectively.

5. RELATED WORK
For better accuracy, selectivity estimation approaches aim

to avoid uniform distribution, predicate value independence
and join predicate independence assumptions.

One line of research employs table-level data synopses,
i.e., data reduction techniques capturing joint distributions
of attribute values within a table. Previous approaches uti-
lize, e.g., histograms [7, 19] or wavelets [17]. Such table-level
approaches are suitable for addressing the uniform distribu-
tion and predicate value independence assumption. How-
ever, join independence assumptions can not be omitted, as

these synopses are restricted to a single table and do not
incorporate foreign-key relations.

Another line of research is concerned with schema-level
synopses. Here, a synopsis does not only capture a single
table, but also related tables connected via foreign keys. Ap-
proaches based on graphical models [10, 23], graph synopses
[21], and join samples [2] have been proposed. Such solu-
tions can avoid all three assumptions and thereby allow for
accurate selectivity estimates. Our approach falls into this
category. In fact, closest to our work are solutions based on
PRMs [10, 23]. However, PRM-based approaches focus on
relational data. We discussed in detail why PRMs are not
directly applicable to graph-structured data. A key prob-
lem is that such approaches assume queries with selection
and join predicates, which are evaluated against explicitly
specified tables. Queries in our setting, however, may not
specify tables from which data shall be selected. In gen-
eral, the effectiveness of PRM systems is greatly determined
by the chosen data partitioning scheme. Addressing these
shortcomings, we rely on a different template-based repre-
sentation of BNs, which is more suited for modeling proba-
bilistic dependencies in graph-structured data. Further, no
previous approach supports predicates having large domains
of textual values. In fact, some authors pointed out that the
the number of nominal values can be limited via cluster-
ing or, if possible, using feature hierarchies [10]. However,
there is no work studying how clustering techniques may be
integrated into a selectivity estimation framework, or how
it may affect estimation effectiveness respectively efficiency.
In this paper, we build upon string synopses, and show how
they can be used in a template-based BN.

Another direction of related work is concerned with esti-
mating the selectivity of string predicates [4, 12, 13, 15, 24].
Some approaches aim at substring respectively fuzzy string
matching [4, 12, 15], while other systems target “extrac-
tion” operators, e.g., regular expression or dictionary-based
operators [20, 24]. However, these works do not consider de-
pendencies among multiple string predicates and/or query
predicates evaluated against structured data. In this pa-
per, we show that string synopses can be integrated into a
template-based BN to deal with a combination of string and
structured query predicates (hybrid queries). Overall, our
approach represents a general schema-level synopsis capable
of handling hybrid queries.

6. CONCLUSION
We tackled the problem of selectivity estimation for con-

junctive queries, which may comprise structured query pred-
icates as well as string predicates. In the graph-structured
setting, where queries in the form of graph patterns are eval-
uated against data graphs, we showed that existing prob-
abilistic approaches introduced for relational databases do
not fit well. We propose a template-based model (BN+),
which is better suited for a graph setting. BN+ allows de-
pendencies between query predicates to be considered in-
dependent of the data partitioning design. Our model has
the merit of being compact, capturing dependencies only at
the level of templates, which are then instantiated to com-
pute selectivity estimates for specific queries. In order to
incorporate string predicates, we further propose the inte-
gration of string synopses into this model to compactly sum-
marize textual values. We conducted experiments on real-
world datasets, showing that, given there are dependencies
between predicates and values, the accuracy of selectivity es-
timation can be greatly improved, when compared to a base-



line relying on the independence assumption. Our higher
accuracy does not come at the expense of performance, as
the inferencing needed to consider the dependencies required
only negligible overhead. Room for further improvements
lies in the string synopses, which have the biggest impact on
the computational efficiency. Thus, we will study optimized
string synopses for this problem as future work.

7. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Scalable semantic web data
management using vertical partitioning. In VLDB,
pages 411–422, 2007.

[2] S. Acharya, P. Gibbons, V. Poosala, and
S. Ramaswamy. Join synopses for approximate query
answering. In SIGMOD, pages 275–286, 1999.

[3] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik.
Example-driven design of efficient record matching
queries. In VLDB, pages 327–338, 2007.

[4] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity
estimation for string predicates: Overcoming the
underestimation problem. In ICDE, pages 227–238,
2004.

[5] C. Chow and C. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
Transactions on Information Theory, 14(3):462–467,
1968.

[6] J. Coffman and A. C. Weaver. A framework for
evaluating database keyword search strategies. In
CIKM, pages 729–738, 2010.

[7] A. Deshpande, M. N. Garofalakis, and R. Rastogi.
Independence is good: Dependency-based histogram
synopses for high-dimensional data. In SIGMOD,
pages 199–210, 2001.

[8] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In IJCAI,
pages 1300–1309, 1999.

[9] L. Getoor and B. Taskar. Introduction to Statistical
Relational Learning. MIT Press, 2007.

[10] L. Getoor, B. Taskar, and D. Koller. Selectivity
estimation using probabilistic models. In SIGMOD,
pages 461–472, 2001.

[11] H. Huang and C. Liu. Estimating selectivity for joined
rdf triple patterns. In CIKM, pages 1435–1444, 2011.

[12] H. V. Jagadish, O. Kapitskaia, R. T. Ng, and
D. Srivastava. One-dimensional and multi-dimensional
substring selectivity estimation. VLDB Journal,
9(3):214–230, 2000.

[13] L. Jin and C. Li. Selectivity estimation for fuzzy
string predicates in large data sets. In VLDB, pages
397–408, 2005.

[14] D. Koller and N. Friedman. Probabilistic graphical
models. MIT press, 2009.

[15] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to
estimate selectivity of string matching with low edit
distance. In VLDB, pages 195–206, 2007.

[16] Y. Luo, W. Wang, X. Lin, X. Zhou, J. Wang, and
K. Li. Spark2: Top-k keyword query in relational
databases. IEEE Transactions on Knowledge and
Data Engineering, 23(12):1763–1780, 2011.

[17] Y. Matias, J. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. SIGMOD, pages
448–459, 1998.

[18] M. Meila and M. Jordan. Learning with mixtures of
trees. The Journal of Machine Learning Research,
1:1–48, 2001.

[19] V. Poosala, P. Haas, Y. Ioannidis, and E. Shekita.
Improved histograms for selectivity estimation of
range predicates. SIGMOD, 25(2):294–305, 1996.

[20] W. Shen, A. Doan, J. F. Naughton, and
R. Ramakrishnan. Declarative information extraction
using datalog with embedded extraction predicates. In
VLDB, pages 1033–1044, 2007.

[21] J. Spiegel and N. Polyzotis. Graph-based synopses for
relational selectivity estimation. In SIGMOD, pages
205–216, 2006.

[22] B. Taskar, E. Segal, and D. Koller. Probabilistic
classification and clustering in relational data. In
IJCAI, pages 870–876, 2001.

[23] K. Tzoumas, A. Deshpande, and C. S. Jensen.
Lightweight graphical models for selectivity estimation
without independence assumptions. PVLDB,
4(11):852–863, 2011.

[24] D. Z. Wang, L. Wei, Y. Li, F. Reiss, and
S. Vaithyanathan. Selectivity estimation for extraction
operators over text data. In ICDE, pages 685–696,
2011.

[25] K. Wilkinson, C. Sayers, H. A. Kuno, and
D. Reynolds. Efficient rdf storage and retrieval in
jena2. In SWDB, pages 131–150, 2003.

8. APPENDIX
We present the query load used during our experiments.

Note, queries for the DBLP dataset are based on [16], while
IMDB queries are taken from [6]. All queries are given in
RDF N36 notation.

Listing 2: Queries for DBLP [16]

# @pr e f i x dc :
# http :// pur l . org /dc/ e lements /1.1/> .
# @p r e f i x f o a f :
# <http :// xmlns . com/ f o a f /0.1/> .
# @p r e f i x rd f :
# <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
# @p r e f i x r d f s :
# <http ://www.w3 . org /2000/01/ rdf−schema#> .
# @p r e f i x dblp :
# <http :// l s d i s . c s . uga . edu/ p r o j e c t s / semdis /opus#> .

# q1
?x r d f s : l a b e l ” c l i q u e ” .
?x dblp : l a s t mod i f i e d da t e ”2002−12−09” .
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”n ikos ” .

# q2
?y rd f : type f o a f : Person .
?y f o a f : name ”n ikos ” .
?y f o a f : name ”zotos ” .

# q3
?x r d f s : l a b e l ” c on s t r a i n t ” .
?x dblp : l a s t mod i f i e d da t e ”2005−02−25” .
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x dblp : author ?y .

6http://www.w3.org/TeamSubmission/n3/

http://www.w3.org/TeamSubmission/n3/


?y rd f : type f o a f : Person .
?y f o a f : name ”chuang ” .

# q4
?x r d f s : l a b e l ”mining ” .
?x r d f s : l a b e l ” c l u s t e r i n g ” .
?x dblp : year ”2005 ” .
?x rd f : type dblp : A r t i c l e .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”n ikos ” .

# q5
?x r d f s : l a b e l ” s p a t i a l ” .
?x dblp : l a s t mod i f i e d da t e ”2006−03−31” .
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”pa t e l ” .

# q6
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”middleware ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”zhang ” .

# q7
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”middleware ” .
?x r d f s : l a b e l ”optimal ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”ronald ” .

# q8
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”p a r t i t i o n ” .
?x r d f s : l a b e l ” r e l a t i o n a l ” .
?x r d f s : l a b e l ”query ” .

# q9
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”p a r t i t i o n ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”pa t e l ” .

# q10
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ” r e c o gn i t i o n ” .
?x r d f s : l a b e l ”speech ” .
?x r d f s : l a b e l ”so f tware ” .
?x dc : pub l i s h e r ?p .

# q11
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ”data ” .
?x r d f s : l a b e l ”mining ” .
?x dc : pub l i s h e r <http ://www. sp r i ng e r . de/> .

# q12
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ” a u s t r a l i a ” .
?x r d f s : l a b e l ”stream ” .
?x dc : pub l i s h e r <http ://www. sp r i ng e r . de/> .

# q13
?x dblp : year ”2002 ” .
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ” i n d u s t r i a l ” .
?x r d f s : l a b e l ”database ” .
?x dc : pub l i s h e r ?p .

# q14
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .

?x dblp : l a s t mod i f i e d da t e ”2006−03−09” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” j i gn e sh ” .

# q15
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”a lgor i thm ” .
?x r d f s : l a b e l ”incomplete ” .
?x r d f s : l a b e l ”search ” .

# q16
?x dblp : journal name ”SIGMOD” .
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”web” .
?x r d f s : l a b e l ”search ” .

# q17
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”s emi s t ruc tured ” .
?x r d f s : l a b e l ”search ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”goldman ” .

# q18
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”query ” .
?x r d f s : l a b e l ”co s t ” .
?x r d f s : l a b e l ”opt imiza t i on ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”arvind ” .

# q19
?x dblp : year ”2007 ” .
?x r d f s : l a b e l ”so f tware ” .
?x r d f s : l a b e l ”time ” .
?x rd f : type dblp : A r t i c l e .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”zhu ” .

# q20
?y rd f : type f o a f : Person .
?y f o a f : name ”zhu ” .
?y f o a f : name ”yuntao ” .

# q21
?x dblp : year ”2003 ” .
?x r d f s : l a b e l ”data ” .
?x r d f s : l a b e l ”content ” .
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”n ikos ” .

# q22
?x r d f s : l a b e l ” s p a t i a l ” .
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” j i gn e sh ” .

# q23
?x r d f s : l a b e l ”a lgor i thms ” .
?x r d f s : l a b e l ” p a r a l l e l ” .
?x r d f s : l a b e l ” s p a t i a l ” .
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x dblp : author ?y .
?x dc : r e l a t i o n ”conf ” .
?y rd f : type f o a f : Person .
?y f o a f : name ”pa t e l ” .

# q24
?x r d f s : l a b e l ”implementation ” .



?x r d f s : l a b e l ”eva lua t i on ” .
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x dblp : l a s t mod i f i e d da t e ”2006−03−31” .
?x dblp : c i t e s ? c .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”pa t e l ” .

# q25
?x r d f s : l a b e l ”opt imiza t i on ” .
?x r d f s : l a b e l ”query ” .
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x dblp : author ?y .
?x dblp : year ”2003 ” .
?y rd f : type f o a f : Person .
?y f o a f : name ?n .

# q26
?x r d f s : l a b e l ”xml ” .
?x r d f s : l a b e l ” t o o l ” .
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x dblp : year ”2004 ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”pa t e l ” .

# q27
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ” a r c h i t e c t u r e ” .
?x r d f s : l a b e l ”web” .
?x dblp : l a s t mod i f i e d da t e ”2005−09−05” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”wu” .

# q28
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”language ” .
?x r d f s : l a b e l ”so f tware ” .
?x r d f s : l a b e l ”system ” .
?x dblp : year ”2001 ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”ro land ” .

# q29
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”middleware ” .
?x dblp : l a s t mod i f i e d da t e ”2006−01−17” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”sihvonen ” .

# q30
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”middleware ” .
?x r d f s : l a b e l ” v i r t u a l ” .
?x dblp : year ”2001 ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”kwang” .

# q31
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”java ” .
?x r d f s : l a b e l ”code ” .
?x r d f s : l a b e l ”program ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”ro land ” .

# q32
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ” s i g n a l ” .
?x r d f s : l a b e l ”space ” .
?x dblp : author ?y .

?y rd f : type f o a f : Person .
?y f o a f : name ”zheng ” .

# q33
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” f ag i n ” .
?y f o a f : name ”ro land ” .

# q34
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”zheng ” .
?y f o a f : name ”qui ” .

# q35
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”p ro c e s s i ng ” .
?x r d f s : l a b e l ”query ” .

# q36
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ”xml ” .
?x r d f s : l a b e l ”p ro c e s s i ng ” .

# q37
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ” b i o l o g i c a l ” .
?x r d f s : l a b e l ”sequence ” .
?x dblp : l a s t mod i f i e d da t e ”2007−08−21” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” j i gn e sh ” .

# q38
?x rd f : type dblp : Book .
?x r d f s : l a b e l ”d e c i s i o n ” .
?x r d f s : l a b e l ” i n t e l l i g e n t ” .
?x r d f s : l a b e l ”making ” .
?x dc : pub l i s h e r <http ://www. sp r i ng e r . de/> .

# q39
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ”databases ” .
?x r d f s : l a b e l ” b i o l o g i c a l ” .
?x dc : pub l i s h e r <http ://www. sp r i ng e r . de/> .

# q40
?x rd f : type dblp : Book .
?x r d f s : l a b e l ”mining ” .
?x r d f s : l a b e l ”data ” .

# q41
?x rd f : type dblp : Book .
?x r d f s : l a b e l ”mining ” .
?x r d f s : l a b e l ”data ” .
?x dc : pub l i s h e r <http ://www. sp r i ng e r . de/> .
?x dc : r e l a t i o n ” t r i e r . de ” .
?x dc : r e l a t i o n ”books ” .

# q42
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” i n t e l l i g e n c e ” .
?x r d f s : l a b e l ”computat ional ” .
?x dc : pub l i s h e r <http ://www. sp r i ng e r . de/> .
?x dc : r e l a t i o n ” t r i e r . de ” .
?x dblp : year ”2007 ” .

# q43
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” b i o l o g i c a l l y ” .
?x r d f s : l a b e l ” i n s p i r e d ” .
?x r d f s : l a b e l ”methods ” .

# q44
?x rd f : type dblp : Book .



?x r d f s : l a b e l ”networks ” .
?x r d f s : l a b e l ”neura l ” .

# q45
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” l e a rn i ng ” .
?x r d f s : l a b e l ”machine ” .
?x dc : pub l i s h e r <http ://www. sp r i ng e r . de/> .

# q46
?x rd f : type dblp : Book .
?x r d f s : l a b e l ”so f tware ” .
?x r d f s : l a b e l ”system ” .
?x dc : pub l i s h e r <http ://www. sp r i ng e r . de/> .

# q47
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” a r c h i t e c t u r e ” .
?x r d f s : l a b e l ”computer ” .

# q48
?x rd f : type dblp : Book .
?x r d f s : l a b e l ”web” .
?x dblp : year ”2006 ” .
?x dc : pub l i s h e r ?p .
?x dblp : e d i t o r ? e .
? e f o a f : name ”kandel ” .
? e f o a f : name ”abraham” .

# q49
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” t h e o r e t i c a l ” .
?x r d f s : l a b e l ” s c i e n c e ” .
?x dc : pub l i s h e r <http ://www. e l s e v i e r . n l/> .

# q50
?x rd f : type dblp : Book Chapter .
?x r d f s : l a b e l ”search ” .
?x r d f s : l a b e l ”semantic ” .

# q51
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”search ” .
?x r d f s : l a b e l ”concept ” .
?x r d f s : l a b e l ”based ” .

# q52
?x dblp : journal name ”sigmod ” .
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”model ” .
?x r d f s : l a b e l ” in fo rmat ion ” .

# q53
?x dblp : journal name ”sigmod ” .
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”dynamic ” .
?x r d f s : l a b e l ”networks ” .

# q54
?x rd f : type dblp : A r t i c l e i n P r o c e ed i n g s .
?x r d f s : l a b e l ” s t o rage ” .
?x r d f s : l a b e l ”adapt ive ” .
?x dblp : author ?y .
?x dblp : year ”2003 ” .
?y rd f : type f o a f : Person .
?y f o a f : name ” j i gn e sh ” .

Listing 3: Queries for IMDB [6]

# @pr e f i x imdb :
# <http :// imdb/ p r ed i c a t e/> .
# @p r e f i x imdb c la s s :
# <http :// imdb/ c l a s s /> .
# @p r e f i x rd f :

# <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .

# q1
?x rd f : type imdb c la s s : name .
?x imdb : name ”washington ” .
?x imdb : name ”denze l ” .

# q2
?x rd f : type imdb c la s s : name .
?x imdb : name ”eastwood ” .
?x imdb : name ” c l i n t ” .

# q3
?x rd f : type imdb c la s s : name .
?x imdb : name ”john ” .
?x imdb : name ”wayne ” .

# q4
?x rd f : type imdb c la s s : name .
?x imdb : name ”smith ” .
?x imdb : name ”w i l l ” .

# q5
?x rd f : type imdb c la s s : name .
?x imdb : name ”fo rd ” .
?x imdb : name ”ha r r i s on ” .

# q6
?x rd f : type imdb c la s s : name .
?x imdb : name ” j u l i a ” .
?x imdb : name ”robe r t s ” .

# q7
?x rd f : type imdb c la s s : name .
?x imdb : name ”tom” .
?x imdb : name ”hanks ” .

# q8
?x rd f : type imdb c la s s : name .
?x imdb : name ”johnny ” .
?x imdb : name ”depp ” .

# q9
?x rd f : type imdb c la s s : name .
?x imdb : name ”ange l ina ” .
?x imdb : name ” j o l i e ” .

# q10
?x rd f : type imdb c la s s : name .
?x imdb : name ”freeman ” .
?x imdb : name ”morgan ” .

# q11
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”gone ” .
?x imdb : t i t l e ”with ” .
?x imdb : t i t l e ”the ” .
?x imdb : t i t l e ”wind ” .

# q12
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”wars ” .
?x imdb : t i t l e ” s t a r ” .

# q13
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”casab lanca ” .

# q14
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”the ” .
?x imdb : t i t l e ” l o rd ” .
?x imdb : t i t l e ” r i n g s ” .

# q15
?x rd f : type imdb c la s s : t i t l e .



?x imdb : t i t l e ”the ” .
?x imdb : t i t l e ”sound ” .
?x imdb : t i t l e ”music ” .

# q16
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”wizard ” .
?x imdb : t i t l e ”oz ” .

# q17
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”the ” .
?x imdb : t i t l e ”notebook ” .

# q18
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” f o r r e s t ” .
?x imdb : t i t l e ”gump” .

# q19
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”the ” .
?x imdb : t i t l e ”p r i n c e s s ” .
?x imdb : t i t l e ”br ide ” .

# q20
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”the ” .
?x imdb : t i t l e ”god father ” .

# q21
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” f i n ch ” .
? r imdb : name ”a t t i c u s ” .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .

# q22
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? r imdb : name ”ind iana ” .
? r imdb : name ”jone s ” .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .

# q23
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”james ” .
? r imdb : name ”bond” .

# q24
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” r i c k ” .
? r imdb : name ”b l a i n e ” .

# q25
?x imdb : t i t l e ? t .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .

? r imdb : name ”kaine ” .
? r imdb : name ”w i l l ” .

# q26
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”dr . ” .
? r imdb : name ”hannibal ” .
? r imdb : name ” l e c t e r ” .

# q27
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”norman” .
? r imdb : name ”bates ” .

# q28
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”darth ” .
? r imdb : name ”vader ” .

# q29
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”the ” .
? r imdb : name ”wicked ” .
? r imdb : name ”witch ” .
? r imdb : name ”the ” .
? r imdb : name ”west ” .

# q30
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”nurse ” .
? r imdb : name ”ratched ” .

# q31
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov ie in fo ? i .
? i rd f : type imdb c la s s : mov ie in fo .
? i imdb : i n f o ” f r ank l y ” .
? i imdb : i n f o ”dear ” .
? i imdb : i n f o ”don ’ t ” .
? i imdb : i n f o ”g ive ” .
? i imdb : i n f o ”damn” .

# q32
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov ie in fo ? i .
? i rd f : type imdb c la s s : mov ie in fo .
? i imdb : i n f o ”going ” .
? i imdb : i n f o ”make” .
? i imdb : i n f o ” o f f e r ” .



? i imdb : i n f o ”can ’ t ” .
? i imdb : i n f o ” r e f u s e ” .

# q33
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov ie in fo ? i .
? i rd f : type imdb c la s s : mov ie in fo .
? i imdb : i n f o ”understand ” .
? i imdb : i n f o ” c l a s s ” .
? i imdb : i n f o ”contender ” .
? i imdb : i n f o ”coulda ” .
? i imdb : i n f o ”somebody ” .
? i imdb : i n f o ” in s t ead ” .
? i imdb : i n f o ”bum” .

# q34
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov ie in fo ? i .
? i rd f : type imdb c la s s : mov ie in fo .
? i imdb : i n f o ”toto ” .
? i imdb : i n f o ” f e e l i n g ” .
? i imdb : i n f o ”not ” .
? i imdb : i n f o ”kansas ” .
? i imdb : i n f o ”anymore ” .

# q35
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov ie in fo ? i .
? i rd f : type imdb c la s s : mov ie in fo .
? i imdb : i n f o ”here ’ s ” .
? i imdb : i n f o ” l ook ing ” .
? i imdb : i n f o ”kid ” .

# q36
?x rd f : type imdb c la s s : t i t l e .
? c rd f : type imdb c la s s : c a s t i n f o .
?x imdb : c a s t i n f o ? c .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”skywalker ” .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ”hami l l ” .

# q37
?x imdb : year ”2004 ” .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ? t .
?x imdb : c a s t i n f o ? c .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ”hanks ” .

# q38 #
? r imdb : name ? rn .
? r rd f : type imdb c la s s : char name .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”yours ” .
?x imdb : t i t l e ”mine ” .
?x imdb : t i t l e ”ours ” .
?x imdb : c a s t i n f o ? c .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ”henry ” .
?p imdb : name ”fonda ” .

# q39
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” g l a d i a t o r ” .
?x imdb : c a s t i n f o ? c .

? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r imdb : name ? rn .
? r rd f : type imdb c la s s : char name .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ” r u s s e l l ” .
?p imdb : name ”crowe ” .

# q40
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” s t a r ” .
?x imdb : t i t l e ”t r ek ” .
?x imdb : c a s t i n f o ? c .
? r rd f : type imdb c la s s : char name .
? r imdb : name ? rn .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ”sp in e r ” .
?p imdb : name ”brent ” .

# q41
?x imdb : year ”1951 ” .
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? c .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ”audrey ” .
?p imdb : name ”hepburn ” .

# q42
?p rd f : type imdb c la s s : name .
?p imdb : name ?n .
? c imdb : person ?p .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”jacques ” .
? r imdb : name ”c louseau ” .

# q43
?p rd f : type imdb c la s s : name .
?p imdb : name ?n .
? c imdb : person ?p .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”jack ” .
? r imdb : name ”ryan ” .

# q44
?p rd f : type imdb c la s s : name .
?p imdb : name ” s t a l l o n e ” .
? c imdb : person ?p .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”rocky ” .

# q45
?p rd f : type imdb c la s s : name .
?p imdb : name ?n .
? c imdb : person ?p .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”terminator ” .

# omitted q46 to q49

# q50
?a rd f : type imdb c la s s : t i t l e .



?a imdb : t i t l e ” l o s t ” .
?a imdb : t i t l e ”ark ” .
?a imdb : c a s t i n f o ? ca .
? ca rd f : type imdb c la s s : c a s t i n f o .
? ca imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ?n .
? c i rd f : type imdb c la s s : c a s t i n f o .
? c i imdb : person ?p .
? i rd f : type imdb c la s s : t i t l e .
? i imdb : c a s t i n f o ? c i .
? i imdb : t i t l e ” ind iana ” .
? i imdb : t i t l e ” j one s ” .
? i imdb : t i t l e ” l a s t ” .
? i imdb : t i t l e ”crusade ” .


	Introduction
	Preliminaries
	BN+: String Synopses + BN
	BN+ Template Model
	String Synopses
	BN+ Construction
	Selectivity Estimation

	Evaluation
	Setup
	Selectivity Estimation Effectiveness
	Selectivity Estimation Efficiency

	Related Work
	Conclusion
	References
	Appendix

