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Abstract

Texts written in natural language are an unstructured data source that is hard for machines

to understand. The amount of text in the world wide web is growing every minute. To deal

with this huge number of unstructured data automated text analysis is crucial. Natural

Language Processing (NLP) is part of arti�cial intelligence that makes natural language

texts comprehensible for machines.

In this thesis, I use state-of-the-art methods in NLP to analyze user-generated product

description texts of cars with respect to their price information. Online car marketplaces

o�er a platform for their customers to sell and present vehicles with images, technical

attributes and descriptive texts. To improve the user-experience of prospective buyers

online car markets provide a neutral pricing model that predicts a car’s price on its

technical attributes that are available in a structured format. However, automobiles are

very individual and their price also depends on their condition and additional information,

which I assume is included in the descriptive texts rather than in the technical attributes. I

test whether it is possible to improve price prediction by incorporating these texts. This

thesis covers a human-based analysis of the user-generated descriptions. Furthermore,

Arti�cial Neural Networks, such as Feed-Forward Neural Networks and Recurrent Neural

Networks are used to predict price residuals. I use price residuals as the target variable

that indicate the di�erence between the predicted price calculated by the price model

based on the technical attributes and the observed selling price.

In this context, the thesis covers the theory about recent state-of-the-art techniques in

NLP and machine learning (ML). I focus on text classi�cation here. Di�erent types of word

embeddings and Neural Networks with attention mechanisms are presented. I demonstrate

that the vehicle description texts are on average very short and approximately 50% of

them explain a price residual. Nevertheless, my approach shows that price prediction can

slightly be improved by analyzing user-generated description texts.
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Zusammenfassung

In natürlicher Sprache geschriebene Texte sind eine unstrukturierte Datenquelle, die für

Computer schwer zu verstehen sind. Die Textmenge im World Wide Web wächst von

Minute zu Minute. Um mit dieser Vielzahl an unstrukturierten Daten fertig zu werden, ist

eine automatisierte Textanalyse unerlässlich. Natural Language Processing (NLP) ist ein

Forschungsgebiet im Bereich der Künstlichen Intelligenz, das sich mit der maschinellen

Verarbeitung von Natürlicher Sprache beschäftigt.

In dieser Arbeit werden aktuelle NLP -Methoden verwendet, um benutzergenerierte Pro-

duktbeschreibungstexte von Fahrzeugen im Bezug auf ihre Preisinformationen zu analy-

sieren. Online-Fahrzeug-Marktplätze bieten ihren Kunden eine Plattform, um Fahrzeuge

mit Bildern, technischen Merkmalen und beschreibenden Texten zu präsentieren und

zu verkaufen. Um die Nutzererfahrung von potenziellen Käufern zu verbessern, bieten

die Online-KFZ-Märkte ein Preismodell an, das den Preis eines Fahrzeugs anhand seiner

technischen Eigenschaften vorhersagt. Jedoch sind Automobile sehr individuell und ihr

Preis hängt von ihrem Zustand und zusätzlichen Informationen ab. Ich nehme an, dass

diese Eigenschaften in den Fahrzeug-Beschreibungstexten genauer beschrieben werden. Es

wird überprüft, ob es möglich ist, die Preisprognose durch diese Texte zu verbessern. Diese

Masterarbeit enthält eine manuelle Analyse der benutzergenerierten Beschreibungen. Dar-

über hinaus werden künstliche neuronale Netze, wie Feed-Forward Neural Networks und

Recurrent Neural Networks, zur Vorhersage von Preisresiduen eingesetzt. Als Zielvariable

verwende ich Preisresiduen, die die Di�erenz zwischen einem vorhergesagten Preis, der

durch das neutrale Preismodel basierend auf technischen Attributen berechnet wurde, und

dem Verkaufspreis angeben.

In diesem Zusammenhang behandelt die Arbeit die theoretischen Grundlagen zu neuesten

Techniken in den Bereichen NLP und Machine Learning (ML). Ich konzentriere mich dabei

vor allem auf die Klassi�zierung von Texten. Es werden verschiedene Arten von Word

Embeddings und neuronale Netze mit Aufmerksamkeitsmechanismen vorgestellt. Diese

Arbeit zeigt, dass die Fahrzeugbeschreibungstexte im Durchschnitt sehr kurz sind und nur

ca. 50% der Texte einen Preisunterschied erklären. Dennoch ist es mit meinem Ansatz mög-

lich die Preisprognose durch die Analyse von benutzergenerierten Beschreibungstexten

leicht zu verbessern.
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1. Introduction

„The reading of all good books is like
conversation with the �nest men of past
centuries.“

René Descartes

1.1. Motivation

Technology is changing the communication of contemporary society. The International

Data Corporation (IDC) estimates that by 2025 a connected person will interact with

data-driven technologies every 18 seconds on average [RGR17]. Natural language, which

is the language normally used for speaking and writing, de�nes a popular way in which

people communicate with machines and humans. Texts preserve what has been said and

have long been an important format for preserving human knowledge. Not only books or

newspapers are based on it, texts are a common information resource on the world wide

web. Especially in social media, users generate massive amounts of textual data every

single second. In 2018, 473,400 short text messages are posted on Twitter every minute

and Reddit receives approximately 2,000 new comments every 60 seconds [Dom18]. A

vast amount of data is stored in this unstructured format, which is easy for people to

understand but very di�cult for machines.

In order to make human languages comprehensible for machines, research has been

carried out in the �eld of Natural Language Processing (NLP) since the end of the 1940s.

At the beginning of NLP machine translation was in the focus of investigation [Jon94].

Meanwhile, more and more research is being done in the areas of NLP and Machine

Learning (ML), caused by the boom in Deep Learning (DL) that is driven by improvements

in the performance of computer resources, increased availability of data and advances in

research. NLP enables technologies like Virtual Assistants, such as Apple’s Siri or Google
Assistant, that are driven by innovative trends as shown in Figure 1.1. Many currently

emerging technologies are impossible to use without the application of NLP.

Almost every interaction between man and machine has something to do with the �eld of

NLP. Due to the large amount of information contained in texts and the frequent contact

with them, their automatic analysis is crucial for overcoming information overload. Some

applications that rely on the use of NLP, such as information retrieval, text summarization

and categorization, aggregate information content to make it more accessible to humans

and machines. For example, NLP is used to analyze news and social media posts in a short

1



1. Introduction

time to predict real-time stock market prices [XWC18]. Thus, the analysis of texts can

provide a strategic advantage in decision making.

Figure 1.1.: Gartner’s Hype Cycle 2018 [Gar18] shows technological trends and a forecast

for the future. NLP enables technologies like Virtual Assistants and Conversa-

tional AI Platforms. High expectations are set on Deep Learning.

Online marketplaces such as ebay.com, amazon.com or alibaba.com, also prefers to obtain

more insights into pricing strategies and customers’ willingness to pay. Products are

usually presented with images, structured attributes, such as technical product-speci�c

data, and descriptive texts. The structured data and user-interaction data can be evaluated

through complex Data Mining (DM) models to gain information about market prices

and customer behavior. For example, marketplaces analyze a product’s sales volume in

comparison to it’s price and characteristics. Meanwhile, many products do have similar

speci�cations and thus the structured attributes do not necessarily provide enough infor-

mation for price di�erentiation. Product description texts that display the products in a

more detailed way may help to provide this distinctiveness.

Online car markets o�er their customers the opportunity to buy and sell new and used

vehicles on their market platform. A couple of di�erent online car markets exist worldwide,

e.g. mobile.de, pkw.de, cars.com and autotrader.com. The vehicles are usually represented by

2



1.2. Research Questions and Objective

the same data formats as in other online marketplaces that were mentioned above. Sellers

can add some images of a car that is to be sold and they are able to set structured attributes.

This could be the selling price, the color or the horse power. Finally, a user-generated

text is added in which the seller can specify any additional information. These texts have

structural di�erences. They can be written in the form of a list, single words or paragraphs.

The vocabulary in the texts is very domain speci�c and contains many terms that are used

in the automotive industry.

Because cars are more individual than usual consumer goods, such as milk or choco-

late, it is hard for consumers and even for car experts to predict a market price solely on

technical attributes. To provide users with more price information about a car, some online

car markets predict vehicle market prices based on this structured attributes. Predictive

models specify market prices for cars on the basis of previously sold cars. However, the

structural attributes may not anticipate all information about a vehicle, caused by a high

diversity in appearance and optional equipment. This is particularly true for older vehicles,

as their individual condition is more important than that of newer vehicles. Therefore,

I assume that additional information for price determination is contained in texts that

the customers add to present their vehicles. Like humans, machines should also analyze

the provided textual information in order to achieve more accurate results in predicting

market prices.

1.2. Research Questions and Objective

This thesis will examine the possibility to improve price prediction for vehicles in online car

markets by the analysis of their description texts. The prediction of price residuals that
indicate the di�erence between a predicted price based on structured attributes
and the selling price will be in the main focus. Due to the arbitrary nature of natural

language this will be a challenging task. Therefore, current state-of-the-art methods in

the �eld of NLP will be reviewed and evaluated against this objective. The research will

speci�cally cover text preprocessing, text classi�cation and text analysis in general. Two

main objectives will be in the center of investigation that raise two research questions:

1. Which state-of-the-art NLP-approaches exist to analyze user-generated product descrip-
tion texts with respect to their in�uence on the product price?

2. How do such approaches perform on real description text data for vehicles in an online
car market?

The thesis will test if the assumption holds that descriptive texts in an online car market

contain information about the price. It will provide a detailed analysis of this texts to gain

more insights into the data, which can not be obtained from structured car attributes.

3



1. Introduction

1.3. Course of Investigation

Six main chapters build up the entire thesis. This motivational introduction (Chapter 1) will

be followed by Chapter 2 that focuses on theoretical foundations in the �eld of NLP. It gives

an overview of well-established methods in DM-projects and NLP in general. In addition,

it discusses basic text preprocessing methods, such as tokenization, stemming or stop word

removal. Moreover, the theory behind Arti�cial Neural Networks (ANNs) will be examined

in the later parts of this chapter. Afterwards, the �rst research question is answered in

Chapter 3. General state-of-the-art techniques in NLP, such as word embeddings, and

application based research are the main objectives in this chapter. In the approach (Chapter

4) the focus is shifted to the practical analysis of vehicle description texts in an online car

market. The theory is applied to real data and the second research question is answered.

Chapter 5 will critically debate the outcome and results of the approach. Finally, Chapter

6 provides a conclusion and outlook according to the thesis’ objectives and research �eld.
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2. Theoretical Foundations

„It is the theory which decides what can
be observed.“

Albert Einstein

This chapter’s scope are the theoretical foundations of Natural Language Processing

(NLP). Due to the large versatility and enormous number of di�erent applications in

NLP, the chapter will only focus on subjects, which are important to this thesis. For

a more comprehensive summary of the territory, I can recommend „The Text Mining
Handbook: Advanced Approaches in Analyzing Unstructured Data“ by Ronen Feldman and
James Sanger, [FS07], „The Handbook of Natural Language Processing“ edited by Nitin
Indurkhya and Fred Damerau [ID10], „Machine Learning: An Algorithmic Perspective“ by
Stephen Marsland [Mar15] or „Brief Survey of Text Mining: Classi�cation, Clustering and
Extraction Techniques“ by Medi Allahyari et al. [All+17]. The chapter starts with the

explanation of Knowledge Discovery and the Cross-industry Standard Process for Data

Mining (CRISP-DM). It continues with the investigation of NLP in general and discusses

technologies and methods that are crucial for this thesis’ implementation. Due to the

current trends in NLP, Neural Networks such as Feed Forward Neural Networks (FNNs)

and Recurrent Neural Networks (RNNs) are presented.

2.1. Knowledge Discovery and CRISP-DM

For understanding the thesis’ bigger picture, I will shortly introduce the terms Knowledge

Discovery (KD) in Databases and Data Mining (DM). KD concerns

„the nontrivial extraction of implicit, previously unknown and potentially useful
information from data [. . . ].“ [SSG08]

In literature, Data Mining and KD in Databases are often treated as synonyms but actually

Data Mining is a sub-task of the KD-process, which is similar to the CRISP-DM described

in the following section. DM can be considered as the modeling phase that extracts infor-

mation and patterns from prepared data with di�erent approaches [FPS97].

The Cross-industry Standard Process for Data Mining (CRISP-DM) was developed in

2000 and is applicable to many di�erent kinds of data mining problems. In this master

thesis, this process will be used to structure the whole project. Figure 2.1 gives an overview

of the whole CRISP-DM. In detail, the process consists of six main steps, which are Busi-

ness Understanding, Data Understanding, Data Preparation, Modeling, Evaluation and
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2. Theoretical Foundations

Figure 2.1.: Cross-industry Standard Process for Data Mining [Cha+00]. It illustrates the

six phases of a Data Mining project.

Deployment [Cha+00]. Furthermore, the whole process is iterative, meaning that every

step will be treated several times. For brevity’s sake, I will not cover the deployment phase

here.

Business understanding is the main task in the beginning of a data mining process.

From a business point of view the whole project should be understood and analyzed. Fur-

thermore, this phase tries to transform the whole problem into a data mining perspective,

which focuses on derived business objectives.

Data collection is the initial step in data understanding. This step serves to provide

initial insights into the data, form early hypotheses and identify problems within the data.

In this way it is also possible to rede�ne the whole problem and return to the business

understanding [Cha+00]. Afterwards, the focus is on data preparation, where di�erent

methods are applied to obtain a �nal set of data that can be used as input in the modeling

phase. Relevant tasks for data preparation in NLP are described in the next section. Besides

preprocessing, the data is usually split into smaller subsets before modelling. One is

called the training set on which the model is trained, the second is the test set and it is

used for evaluation. Sometimes a third set, called validation set, provides data to train

hyperparameters of a DM-model.

Modeling is the stage of selecting and applying various models to prepared data. There

are a number of techniques for each distinct type of data mining problem. It is often

necessary to turn back to the data preparation phase as some models require di�erent

forms of input. Before deployment, where the model is transferred into production, it is

necessary to evaluate the applied models with metrics that focus on the business objectives.

Therefore, the evaluation step measures the performance of all previous phases with

respect to the business targets.
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2.2. Natural Language Processing

2.2. Natural Language Processing

Natural language processing (NLP) is the main research area of this thesis. It is related

to other �elds such as Arti�cial Intelligence (AI) or Machine Learning (ML). The section

covers di�erent feature preprocessing methods, e.g. stop word removal and vector space

model. This section also deals with evaluation metrics and discusses a classical machine

learning model.

2.2.1. Definition and Distinction

The following subsection serves to put the topics Arti�cial Intelligence (AI), Natural

Language Processing (NLP), Machine Learning (ML) and Deep Learning (DL) in one

context. AI is a very broad term and is a way to describe systems that are able to „think“

[HKW08, p. 13]. In literature, there are many di�erent explanations, which makes it

di�cult to de�ne this topic exactly. For this thesis, the interpretation of [HKW08] will

be taken, because it includes NLP and puts it in relation to AI. AI consists of four main

parts, which are Machine Learning, Reasoning, Planning and NLP, as shown in Figure 2.2.

Reasoning enables a machine to provide suggestions based on data, whereas Planing
empowers systems to act autonomously on the interpretation of data.

Figure 2.2.: Arti�cial Intelligence contains Machine Learning and NLP [HKW08, p. 13].

NLP deals with

„the use of human languages [...] by a computer“. [GBC16, p. 461]

It does have many di�erent applications, which all refer to humans’ unstructured natural

language. For example, its application areas are machine translation, speech recognition,

dialog systems, named entity recognition, information retrieval and text classi�cation.

Thus, the domain of NLP encompasses all interactions between a computer and a human,

by the use of written or spoken natural language. It is a research and application �eld,
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2. Theoretical Foundations

which is concerned with the manipulation and understanding of natural languages [Cho03].

The processing of human language is based on understanding the intended meaning of

a message, which is di�cult even for humans, e.g. when irony is used. All components

of natural language, such as phonetics, phonology, morphology, syntax, semantics and

pragmatics, must be taken into account in order to gain complete understanding of a

message.

Phonetics is about the acoustic properties of a sound produced by the human vocal tract.

It examines how sounds are physically constructed, e.g. with the tongue or the lips.

The sound of a particular human language is studied by phonology. For example, the En-

glish language has 45 distinguishable sounds called phonemes. Phonetics and Phonology

are particularly important aspects in speech recognition when converting sounds into real

words that can be processed by a computer.

Morphology concerns about the meaning and the architecture of words. Stemming and

lemmatization, which are described below, are based on this component by transforming

words like „going“ back to their word stem „go“.

The ordering of words and the building of grammatical correct sentences is investigated by

the syntax. In contrast, semantic examines the meaning of sentences that are constructed

by the use of syntax and morphological word forms.

To obtain the intended overall meaning of a message, pragmatics uses the context of the

situation. For example, let us assume, somebody asks: „Could you pass the salt?“. Given

the context of the situation, the question is actually a request to pass the salt and not a

question if someone is able to do that [Bri13]. Therefore, a computer needs to take all

parts of natural language into account to use it.

One famous de�nition of Machine Learning (ML) is based on the idea of experience and

illustrates the learning part in ML:

„A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.“ [Mit97]

The following example should help to clarify this de�nition. Suppose, we have a rain

forecasting system that predicts whether it will rain today or not (T). The system is a

binary classi�er and its performance will be measured by its accuracy (P), which will be

de�ned in Section 2.2.4.2. It learns from time and historic weather data (E) to predict the

right outcome.

In addition, ML is one central subject in AI and splits into four subcategories: Supervised

Learning, Unsupervised Learning, Reinforcement Learning and Deep Learning.

Supervised and Unsupervised Learning are the two main types of data mining problems.

The di�erence between those tasks is the structure of training data. In a supervised set of

data the target variable is known and can be used for model learning. Unsupervised prob-

lems do not have a known outcome and the solution is often based on instance similarity,

patterns and groups.

Reinforcement Learning is similar to Supervised Learning, but does not learn on a �xed

dataset. It is often used in game playing or self-driving cars. Reinforcement Learning

algorithms use trial and error to learn from a given objective. They interact with an
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environment and use a feedback to improve their experience [GBC16, p. 106].

In contrast to the three topics mentioned above, Deep Learning (DL) is a method of

solving them by enabling a computer to infer complex patterns from simpler ones [GBC16,

p. 5]. Deep neural networks (DNN) are the basic parts of DL and will be described in

Section 2.3. According to the de�nition above, it is di�cult to say whether DL is used or

not, because a complex pattern could also be a neural network with a single hidden layer

and many neurons. The network does not have to be deep in every dimension.

The terms AI, NLP, ML and DL should not be understood by itself only. The bound-

aries between the topics are not strict. Particularly, ML is extensively used in NLP to solve

various types of problems.

2.2.2. Feature Selection and Preprocessing

Feature selection and preprocessing are signi�cant tasks in Arti�cial Intelligence and

mainly represent the data preparation step in the CRISP-DM. Especially in NLP, this task

does have tremendous impact on the success of text analysis [All+17]. This is mostly

caused by the unstructured and arbitrary nature of text data. Furthermore, machines

need structure and numerical data. A couple of approaches for this transformation task,

e.g. word embeddings or the vector space model, exist. This section’s scope lies on the

theoretical foundation of di�erent preprocessing and feature selection techniques. This

section will be accompanied by the English phrase „the best fox is running“ as an example

to illustrate the application of preprocessing.

Nevertheless, every routine should be used with care. It is not always the case that a

reasonably good preprocessing method leads to better results in every application [Gre+16].

The so-called no free lunch theorem makes it necessary [Wol95] to evaluate every suggested

method separately in the practical part of this thesis.

2.2.2.1. Tokenization

For processing written natural language it is inevitable to split texts into smaller units,

which are called tokens. Computers need to distinguish single entities of a text and

tokenization is used to create them. Usually tokens represent simple words, which are

the smallest independent units of natural language [RMD96, p. 15]. Furthermore, tokens

can consist of idioms or a hyphens, e.g. „user-generated“. Tokenization breaks running

texts into short text entities and is the very �rst task in any text preprocessing cycle [ID10,

p. 4]. Besides the partition of small units, whole sentences can also be the output of a

tokenizer. A simple word tokenizer can be realized in many languages by splitting the text

at the occurrences of space symbols. This simple baseline approach does have a couple

downsides, due to the lack of identifying words that semantically belong together [WK92].

However, a simple tokenizer divides the phrase, which was introduced above, is into the

following �ve tokens:

the best fox is running
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By using tokens, so-called n-grams can be created, which indicate a token set with the

length of n. „Gramma “ is the Greek word for letter or token. When talking about a set of

n letters in words, it is about character n grams.

2.2.2.2. Stop Word Removal

A very important approach to reduce the huge raw input space in NLP is stop word removal

(swr). Most languages have speci�c words, which do appear more often than others or do

not include much information about the content of the text, e.g. auxiliary verbs or articles

[FS07]. Due to this, it often makes sense to exclude this so-called stop words in further

analysis. In English such words could be "the", "a" or "an" and for German typical stop

words are the articles "der", "die" and "das". The elimination could be done by checking

the words against a standardized stop word list. These lists are available in literature and

are often implemented in di�erent software packages [DS17]. In our example, „the“ and

„is“ are eliminated. Stop word removal should be used with care, especially in sentiment

analysis, which attempts to predict a positive or negative intention of a text. The removal

would exclude words that are able to change a whole statement, such as „not“ or „none“.

the best fox is running

2.2.2.3. Stemming

Besides stop word elimination, stemming is a useful technique to map words to their word

stems and further reduce the input dimension. This helps to extract the real meaning of a

text and makes the unstructured data better accessible for a machine. The �rst stemming

algorithm based on deleting longest su�xes and spelling exceptions was developed in 1968

[Lov68]. By now, the porter stemming algorithm is a state-of-the-art approach and strips

su�xes from words to retain the word stem [Por80]. While this method performs well in

English, there are some drawbacks for the German language, due to the fact that German

words are not usually build by adding su�xes. However, there is a German equivalent

based on Porter’s idea and the string processing language Snowball [PR01]. By using

the English Porter Stemmer the words „best“, „fox“ and „running“ are assigned to the

following words:

best→ best fox→ fox running→ run

2.2.2.4. Lemmatization

Lemmatization is the process of mapping every word in a text to their dictionary type

or intended originating structure. Verbs are transformed to their in�nite form, a noun

is reconstructed to it’s singular representation and adverbs or adjectives anticipate their

positive format [Liu+12]. The method is based on morphological analysis and often uses

a dictionary, for example WordNet [Fel98], where the lemma of every modi�ed word

form could be retrieved. This preprocessing step is similar to stemming and reduces the

input space, by mapping di�erent word forms to their common representation. Since
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lemmatization is supported by dictionary entries, it is able to map „best“ to its lemma

„good“:

best→ good fox→ fox running→ run

2.2.2.5. Vector Space Model

Besides, preprocessing the words themselves, their representations have to be changed

into a machine readable format. Meanwhile, a couple of di�erent approaches have been

developed to transform texts into di�erent kinds of numerical representations. Some of

them only represent statistics of a word, such as the one-hot-encoding, and other formats

also include the word’s context, e.g word2vec (Section: 3.1).

The Vector Space Model is an approach that transforms a text into one vector. It is

based on one-hot-encoding of words. Given a set of textual documents (corpus), it is

possible to create a vocabulary with the length of N. The one-hot-encoded word vector

represents a word by 1 at the corresponding vocabulary entry. For example, if the term

„fox“ is the i-the unique word in the corpus, the vector has the length of N and a 1 in the

i-th position, all other entries are 0:

one-hot(f ox) = (0, . . . , 1, . . . , 0)
i-th position

∈ NN
(2.1)

The vector space model extends this model to documents. The function Ψ maps any

document d to it’s vector space representation. The distinct words, which are also called

terms, in the vocabulary are represented by t1, . . . , tn.

Ψ : d 7−→ Ψ(d) = (t f (t1,d), t f (t2,d), . . . , t f (tn,d)) ∈ R
N

(2.2)

Ψ counts the occurrence of each term (tf) in the vocabulary per document [HQW06, p.203-

204]. Therefore, the document vector can have more than one entry that is not 0. The

function t f (ti,d) speci�es how often the i-th vocabulary word appears in the document d .

Besides simply using the term frequency (tf), it is also possible to give every particular

word a weighting, according to its relative appearance in the corpus. This could be done

by using term frequency divided by Inverse Document Frequency (tf-idf), which gives less

meaning to common words in a corpus. To calculate the tf-idf for a term in a document,

a normalized term frequency must �rst be determined. The relative normalized term

frequency (ntfrel) is de�ned as:

nt frel (ti,d) =
t f (ti,d)∑

tm∈d t f (tm,d)
. (2.3)

It calculates the term frequency of the i-th term tn in d and divides this by the sum of all

other term frequencies in d . The maximal normalized term frequency (ntfmax) puts the

highest term frequency in d into the denominator:

nt fmax (ti,d) =
t f (ti,d)

maxm t f (tm,d)
. (2.4)

11



2. Theoretical Foundations

Both equations can be used for retrieving an adjusted term importance throughout a

particular document d . For incorporating the word relevance with regard to the whole

corpus, it is necessary to calculate the Inverse Document Frequency (IDF):

id f (ti) = loд

(
|D |

|d : ti ∈ D |

)
(2.5)

|D | is the total number of documents in the corpus and the denominator represents the

occurrence of the term ti in all documents. For frequent terms in the corpus, |d : ti ∈ D |
gets big, which results in fraction closer to 1. By reversing the Document Frequency with

the logarithm, the common words are given a lower weighting, because they have less

distinctiveness than rarer words.

The actual weight w for every word in the document is calculated by the product of

normalized term frequency and inverse document frequency:

w(ti,d) = id f (ti) · nt f (ti,d) (2.6)

By using the Vector Space Model, the sparsity of the document vectors could be one

major problem, due to the fact that N − lenдth(d) positions are 0 [SS09, p. 12]. Another

issue is that the distance between two di�erent document vectors is very small (curse of

dimensionality). Therefore, it is not easy to distinguish between documents, especially

when it comes to grouping similar documents, e.g. in clustering.

2.2.3. Predictive Data Mining Models

As illustrated by the CRISP-DM, Data Preprocessing is followed by the modeling phase.

Hereby, a Data Mining model is trained to predict the target variable that was de�ned in

the step of Business Understanding. This subsection will illustrate details about Random

Forest that is widely used in practice. I will use this model to provide a baseline for my

approach. In addition, the section o�ers basic concepts that should be taken into account

when dealing with modeling, such as the bias variance trade-o�. The section ends with

the explanation of this trade-o� and starts with the presentation of Random Forest. Due

to the recent trends in NLP, I will focus on Arti�cial Neural Networks (ANNs) and explain

the concept of Feed-Forward Neural Networks (FNNs) and Recurrent Neural Networks

(RNNs) in the Sections 2.3 and 2.4.

2.2.3.1. Random Forest

Random Forest is a DM-model that is based on an ensemble of randomly grown decision

trees. The concept of it was introduced by Breiman in 2001 [Bre01]. It uses the decision

trees to predict a class or perform a regression on a given input. The strength hereby

is that the outcome is produced by the majority vote of all trees. Let the variable ntree
indicate the number of trees constructed by Random Forest. The training of Random

Forest starts with the extraction of ntree random bootstrap sets from the training dataset.

Each tree is then learned by one set [LW02]. To understand the concept of Random Forest,

it is necessary to give an overview of decision trees at �rst.
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A decision tree can be seen as a nested concatenation of conditional statements. Moreover,

it is a data structure that is made of decision nodes and leafs [Rug02]. The input are values

of features and the tree predicts a target variable by checking whether the features of an

instance have a speci�c value. The order of the conditional statements is like a tree in

which the root node is the starting point.

To construct a tree, I will focus on the C4.5 algorithm that is widely used in practice and

creates a decision tree by applying the divide and conquer paradigm. For the sake of

brevity I will only explain the important parts of C4.5 here. Further details on C4.5 can

be found in [Rug02] or [LW02], which form the basis of literature for this section. The

training begins with the creation of a root node, where all instances from the training set

are associated with. If there are two or more classes in this set, the algorithm selects the

most distinctive feature at the root node that divides the training set into a set of subsets.

Each subset is again associated with a node. At every node, a feature splits the tree again

until the node’s subset contains instances that are labeled with one or a few classes only.

The most important part in the C4.5 algorithm is the selection of the best discriminating

feature.

I will introduce Entropy H (Y ) and Information Gain I (Y ,X ) for a discrete feature X . They

are used to choose the feature at which the tree should be split. At �rst, H (Y ) is computed

for the set of instances Y that is associated with a node. The Entropy

H (Y ) = −

|C |∑
i=1

f req(Ci,Y )

|Y |
log

2

(
f req(Ci,Y )

|Y |

)
(2.7)

contains the number (f req(Ci,Y )) of instances in Y that are labeled with the class Ci . The

entropy of Y is than used to calculate the Information Gain

I (Y ,X ) = H (Y ) − H (Y |X ) = H (Y ) −
s∑
j=1

Yx
|Y |

H (Yx ) (2.8)

for Y given the feature X . The feature X has got s di�erent values and the set of instances

in Y , where X has the value j = 1, . . . s , is denoted with X j . I (Y ,X ) is computed for every

feature and the one that produces the highest Information Gain is selected to split the

tree. This procedure is repeatedly applied on the training data until the next split does not

improve the Information Gain. Afterwards, C4.5 calculates the classi�cation error in each

node by adding the errors of its child nodes. If this error is greater than classifying the

entire node with one class, the algorithm labels all instances in this node with the most

common class.

Aside from training a number of decision trees, Random Forest does not necessarily split

its trees by the feature that provides the best Information Gain. It randomly picks a feature

from a subset of best splitting features. This helps to improve generalization [LW02].

2.2.3.2. Generalization and the Bias-Variance Trade-O�

Two important issues in the modeling and evaluation phase are the concept of general-

ization and the trade-o� between bias and variance. As mentioned above, a model learns
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Figure 2.3.: Bias-Variance Trade-o� cf. [HTF09]. The red graph shows the error on the test

set, which is higher than the error on the train set (blue). The model complexity

is on the x-axis to show how the error develops with changing model capacity.

from a given training dataset and adapts its parameters to it. The overall aim of every DM-

model is a good prediction performance on previously unseen instances, which is known

as generalization. The problem is that a model could easily over�t on the training dataset.

Thus, it predicts training instances very accurate, but often fails to deal with unknown

data, which is simulated by the test data. Plot 2.3 shows the trade-o� between the error on

the test and training dataset. The x-axis shows the model capacity, which also illustrates

the adaption towards the training data. The train error is usually below the test error and

decreases constantly when the model’s complexity is increased. The best generalization

is achieved when the test error has a global minimum. The bias indicates whether the

model correctly analyzes the connection between input and output. In contrast, variance

measures the generalization of the model and simultaneously indicates whether the model

learns the underlying structure of the training data by heart [HTF09].

2.2.4. Evaluation Methods

The evaluation phase is one of the basic parts in any data mining project and succeeds the

modeling step. This section presents various methods for evaluation and measuring the

performance of di�erent ML approaches. It particularly presents metrics that are used to

score supervised learning tasks. It starts with the de�nition of the confusion matrix and

ends with the description of evaluation measures, such as accuracy and recall.
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2.2.4.1. Confusion Matrix

The confusion matrix is a method to represent results of a supervised learning task and is

used in classi�cation tasks, such as the rain forecasting example that was given in Section

2.2.1. The system predicts whether it rains or not, which could be realized by two classes

„rain“ and „dry“. The confusion matrix compares the true labels of instances with their

predicted classes. The sum of the matrix’s diagonal is the amount of the overall true

predictions.

Pr
ed

ic
te
d
cl
as
s

Actual class

yes no

yes TP FP

no
FN TN

Figure 2.4.: Confusion Matrix contains the values for True Positives TP, True Negatives

TN, False Positives FP and False Negatives FN. The matrix is illustrated for a

binary class with two outcomes (yes, no).

In a multi-labeling situation, the confusion matrix can easily be expanded by adding a

column and a row per class. An exemplary matrix with a binary class is illustrated in

Figure 2.4, where TP stands for the number of true positives, TN for true negatives, FP

for false positives and FN for false negatives. Applied to the rain forecast example, a TP

would be if the system predicted the class „rain“ and the weather was rainy that day. A TN

would indicate that „dry“ was predicted, which was true for that day, while a FP expresses

that the system predicted „dry“. A FN is the opposite of a FP.

2.2.4.2. Evaluation Measures

To get an overview of the performance of a speci�c algorithm, accuracy is a good choice

and can be determined for a classi�cation problem. The accuracy is calculated by the sum

of the diagonal, divided by the sum of all entries in the confusion matrix [Mar15, p. 23].

Accuracy =
#TP + #TN

#TP + #TN + #FP + #FN
(2.9)

Recall is a measure, which calculates the percentage of relevant instances an algorithm

has selected. Thus, it evaluates how many TPs are found from an actual class.

Recall =
#TP

#TP + #FN
(2.10)
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Precision is another measure for evaluation. It computes the percentage of TPs in a set

in which a model has classi�ed all instances as positive [Mar15, p. 23].

Precision =
#TP

#TP + #FP
(2.11)

The F-Measure represents a harmonic mean between recall and precision. The weighting

can be adjusted by the parameter β . This makes Fβ adoptable to distinct data mining tasks,

e.g. in a search engine, where recall could be more important than precision.

Fβ =
(1 + β2) ∗ precision ∗ recall

β2 ∗ precision + recall
(2.12)

With a beta = 1 both values are weighted equally, which is often described in literature as

the F1-metric [Ber04, p. 211]. Besides the evaluation measures that are based on labeled

target variables, metrics for continuous values do also exist.

RootMean Square Error (RMSE) is used to score a given prediction for a set of instances.

It calculates the squared di�erence between a true outcome y and a forecast ŷ [XWC18].

RMSE(yi, ŷi) =

√√
1

n

n∑
i=1

(|ŷi − yi)2 (2.13)

Mean Absolute Deviation (MAD) is similarly used as RMSE. It computes the absolute

di�erence from a set of instances to their mean [OW17].

MAD(y) =
1

n

n∑
i=1

|yi − ȳi | (2.14)

2.3. Feed-Forward Neural Networks

This section’s focus is on the concept of Arti�cial Neural Networks (ANNs) and Feed-

Forward Neural Networks (FNN), as this is the �rst developed network type. ANNs take

the human brain as an example and are based on the neurons of McCulloch and Pitts,

which were established in 1943 [MP43]. Figure 2.5 shows the mathematical model of

a single neuron. ANNs are able to solve various types of classi�cation and continuous

variable prediction (regression) tasks. ANNs are the generic term for neural networks,

such as a FNN, which are used in AI. FNNs are networks without cycles and are based on

the Single Layer Perceptron (2.3.1) and Mulitlayer Perceptron (2.3.3) [Sch15]. This chapter

explains the basic theory they are based on. More complex ANNs, such as Recurrent Neural

Networks (RNN), which are also important in NLP, are discussed in the next section. In

this thesis ANNs will be used to actually predict the vehicle description texts’ in�uence on

the market price of a car. Thus, their use lies in the modelling phase of the CRISP-DM.

The McCulloch and Pitts’ neuron takes vectors with lengthm as input and multiplies each

value x1, x2, . . . , xm by a corresponding weight w1,w2, . . . ,wm. The neuron has the ability
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to activate when the overall sum is higher than a given threshold θ . An activation in this

particular case means that the neuron outputs a 1, otherwise a 0 [Mar15, p. 41]. This is

useful for predicting binary class labels that are suitable for the rain forecast task, which

was discussed above.

x2 w2 Σ
Sum

θ

Activation

function Φ

y

Output

x1

Inputs

w1

Weights

...
...

xm wm

z

Figure 2.5.: McCulloch and Pitts’ Neuron Mapsm Input Values to One Output y [Mar15, p.

41].

At �rst the neuron calculates the logit z of the input vector x1, x2, . . . , xm:

z =
m∑
i=1

wixi . (2.15)

Then the result y is determined by the activation function Φ, which in this case is a

Heaviside-Function. It takes the logit z as input and checks if it is below or above a certain

threshold θ :

o = Φ(z) =

{
1 i f z > θ

0 i f z ≤ θ
. (2.16)

Therefore, the output y of a McCulloch and Pitts’ neuron is 0 or 1.

2.3.1. Single Layer Perceptron

The Single Layer Perceptron is a collection of McCulloch and Pitts’ neurons. The neurons

are combined to create more complex ANNs. The model of a Single Layer Perceptron is

shown in Figure 2.6, which is also known as a Single Layer Network. The network takes

again m values as input. In addition, the network has more than one neuron in the output

layer. Every input value is fully connected to each output neuron. Each connection is

weighted to adjust the inputs received by the neurons. Therefore, the weights are stored

in the form of a matrix and no longer in the form of a single vector.
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For a Single Layer Perceptron only one weight matrixW (1)
exists, which connects them

inputs to the n output nodes:

W (1) =

©«

w11 w12 . . . w1n

w21 w22 . . . w2n

...
...
. . .

...

wm1 wm2 . . . wmn

wb1 wb2 . . . wbn

ª®®®®®®®®®®¬
. (2.17)

x1

x2

...

xm

h1
y1

h2
y2

h3
y3

Inputs
Weights

W (1)

Output

Layer

bBias

Figure 2.6.: Single Layer Neural Network with 3 outputs andm inputs [Mar15, p. 46]. It

contains 3 Neurons in the output layer and a weight matrixW 1
that connects

the inputs to the neurons.

The last row wb1,wb2, . . . ,wbn in the matrix indicates the weights for a bias value b. The

bias is handled as a separate input and is used to shift the activation of a neuron. If a

neuron receives a zero for input (x1, x2, . . . , xm = 0), it cannot be activated. To implement

this capability, a bias b is added, which must not be 0. In practice this value is often set to

−1 or 1. Moreover, the j-th neuron in the output layer is denoted by hj . The weights and

outputs are independent and a generalization of Equations (2.15) and (2.16) can be used to

calculate the result yj for each neuron’s logit zj in the output layer:

zj =
m∑
i=1

wij
(1)xi +wbj

(1)
(2.18)

oj = Φ(zj) (2.19)

In addition, it is possible to use another activation function Φ to change the outputs of the

neurons. Depending on the application, a certain output format is required. Moreover, the

training algorithm (section 2.3.4) requires a di�erentiable activation function and the step

function does not meet this criterion [Mar15, p. 46-47]. Di�erent activation functions such

as Sigmoid, Recti�ed Linear Unit (ReLU) or softmax will be introduced in the next section.
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2.3. Feed-Forward Neural Networks

2.3.2. Activation Functions

Activation functions have an in�uence on the model capacity and complexity of an ANN.

They can be linear or non-linear. Furthermore, their use also depends on the actual data

mining problem. The usage criterion mainly applies to the last layer of an ANN that gen-

erates the overall output. If a continuous result in R is required, e.g. in a regression task, a

function that has the same value space is more useful. In contrast, the step function and

other functions that map to a value between 0 and 1 are suitable for binary classi�cation.

The softmax activation function is used for multi-class problems and uses the logits of

all neurons in the same layer. It is often applied on top of the output layer. However,

the hidden layers between input and output nodes may have other types of activation

functions [Mar15, p. 107]. The concept of hidden layers will be described in Section 2.3.3.

Figure 2.7 illustrates four distinct functions.

Figure 2.7.: The graph of four di�erent activation functions illustrates their distinct output

values.

The simplest activation function is the linear or identity function that returns the

weighted sum z (Equation (2.18)). The output is a continuous value:

Φ(z) = linear (z) = z. (2.20)

The sigmoid (σ ) function is similar to the step function that was de�ned in Equation

(2.16). Sigmoid can be derived, which is an important feature for training ANNs.

Φ(z) = σ (z) =
1

1 + e−z
(2.21)

Furthermore, sigmoid is a continuous function, tends to become 0 if z → −∞ and converges

to 1 if z → ∞. In practice, it is often used in classi�cation tasks due to its output. One
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drawback of sigmoid is its sensitivity to the vanishing gradient problem, which will be

discussed further at the end of Section 2.4 [GBC16, p. 195]. Another widespread activation

function is the hyperbolic tangent (tanh):

Φ(z) = tanh(z) =
ez − e−z

ez + e−z
(2.22)

It has a similar shape and characteristics as the sigmoid function, but converges to -1

if z → −∞ and to 1 if z → ∞. In addition, it is also di�erentiable and vulnerable to a

vanishing gradient [Sal+17].

The Recti�ed Linear Unit (ReLU) is a state-of-the-art activation function, which is now

one of the most successful activation functions. Especially in Deep Neural Networks

(DNNs), ReLUs lead to a faster learning time [LBH15]. Besides, it is not susceptible to a

vanishing gradient and therefore often used in practice. ReLU calculates the maximum

between 0 and the linear outcome of a neuron:

Φ(z) = ReLU (z) = max(0, z) (2.23)

The Exponential Linear Unit (ELU) was introduced into Neural Networks in 2015 and

outperforms ReLU [CUH15]. It can have a negative outcome, does better generalize and

even learns faster than ReLU. It is de�ned as:

Φ(z) = ELU (z) =

{
z, if z > 0

α(ez − 1) if z ≤ 0

(2.24)

softmax determines a probability value for each class. The outcome for neuron z is

dependent on the outcome of the other neurons hi in the same layer, which makes it

suitable for multi-class problems:

Φ(z) = so f tmax(z) =
ez∑N
i=1

ezi
(2.25)

The total value adds up to 1 and all class probabilities are between 0 and 1. This list of

activation functions is by far not complete and other functions, such as Sigmoid-weighted

Linear Unit (SiL) or Parametric ReLU (PReLU), exist [RZL17]. Due to the fact that covering

all activation functions would be too extensive for this thesis, only the most common ones

were presented.

2.3.3. Multilayer Perceptron

The Single Layer Perceptron, which was discussed above, is capable of solving linear

separable problems, but cannot decide nonlinear issues such as the XOR problem [MP69, p.

12-14]. To overcome this shortcoming more linear layers are added to the network to form

a Multilayer Perceptron, such as shown in Figure 2.8. The �rst layer is called the input
layer and has no neurons. It just receives them input values. The output layer is the last

layer of a Multilayer Perceptron and its neurons return the �nal result of the network. All

intermediate layers are called hidden layers, because they perform the calculation within
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Figure 2.8.: Multilayer Perceptron with 2 hidden layers and 2 output neurons [Mar15, p.

72]. Three weight matrices connect the layers to pass the values through the

network.

the network and are not visible to the network’s external environment. The k-th layer of

a network will be denoted with h(k)
. Every layer h(k)

consists of a number of neurons and

has its own bias b(k)
. Besides, it is connected to the previous layer with a weight matrix

W (k)
that is similar to the Matrix (2.17). By adding more layers or neurons to a layer, a

deep neural network (DNN) can be created. The number of neuron layers in a network

will be labeled with K .

The result of each neuron is calculated by using Equations (2.18) and (2.19). Each neuron’s

activation output from one layer is then forwarded as input to all neurons of the next layer.

By applying this scheme in a row, the network maps the input area to the output space.

Therefore, an ANN can be seen as a function f (x, θ ), which predicts the outcome ŷ of

an instance x = (x1, . . . , xm). To shorten and simplify notation the variable θ = (W ,b) is

introduced, which represents the parameters of an ANN.W indicates all weight matrices

of the network (W (1), . . . ,W (K)) and b is the vector of biases b = (b(1), . . . ,b(K)) [Mar15, p.

101].

For example, the network in Figure 2.8 could be a solution to the rain forecasting problem,

which was brie�y mentioned above (Section 2.2.1). Date and temperature data of the previ-

ous year are suitable features for input. One of the output neurons returns the probability

for a rainy day and another for a dry day.

2.3.4. Training and Regularization

The training of an ANN is the basic part in this machine learning procedure. It puts

the experience into the network. This section discusses details about the learning of a

FNN. The training is similarly used for other ANN types. The section will start with the
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explanation of a cost function, which leads us to an optimization criterion. Then, for a

more detailed overview, the algorithm is divided into smaller parts.

2.3.4.1. Cost Function

Cost functions, denoted as J , determine the derivation of an instance’s prediction ŷ and

its true value y, which is also known as error. The terms cost function, loss function and

error function are often used interchangeably. Sometimes the terms are separated [GBC16,

p. 82]. Instead of using the term error function, I will use cost function, loss function and

the concept of an error itself, because the term error function could easily be mixed up

with the Gauss Error Function. The most common cost functions are the Mean Squared

Error (MSE) and the Cross Entropy Loss. The �rst one determines the average deviation

between prediction ŷ = f (x, θ ) and true label y:

J (ŷ,y) = MSE(ŷ,y) =
1

N

N∑
i=1

(ŷi − yi)
2

(2.26)

N indicates the number of neurons in the output layer. This function could be used for

any problem in general. In an environment with multiple class labels another cost metric

has to be considered. The Cross Entropy Loss (CE) function is calculated with:

J (ŷ,y) = CE(ŷ,y) = −
N∑
i=1

yiln(ŷi), (2.27)

where each prediction ŷ represents the probability for an independent class label. CE is

often used in combination with softmax (Equation (2.25)), as it calculates the deviation in

a multi-class situation [Mar15, p. 108]. It is important that the cost function and activation

function in the output layer are compatible.

The goal of an ANN and the basic concept of the training is to reduce the cost func-

tion. Therefore, learning is an optimization problem with the following criterion:

min

θ
J (f (x, θ ),y). (2.28)

θ = (W ,b) are the parameters of the network that can be changed to reduce the error.

2.3.4.2. Initialization Phase and Forward Pass

Before training an ANN the initialization phase takes place. Di�erent approaches to

initialize an ANN exist. A common method in practise is to set the weightsW between

the input nodes, hidden layers and the output layer to a small negative or positive random

value. In addition to the weights, the bias b(k) for each layer k is set to a number, which is

not 0. After this initial step the actual training starts.

A training step encompasses the forward pass, where the values of the �rst instance

vector are passed to the input nodes. For each neuron the weighted sum is calculated with

Formula (2.18) and inserted into its activation function Φ. Finally, the output is obtained
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by performing a set of computations at each layer k using the results of the previous layer

as input. In a network with K layers the forward pass is calculated by:

h(1) = Φ(1)(W (1) + x + b(1))

h(2) = Φ(2)(W (2) + h(1) + b(2))

...

ŷ = h(K) = Φ(K)(W (K) + h(K−1) + b(K)).

(2.29)

The input x is put into h(1) and the result of h(1) is passed forward. Finally, the output layer

h(K) emits the prediction ŷ [GBC16, p. 197].

2.3.4.3. Backward Pass

In the backward pass, also known as back-propagation of error, the error is determined

by a cost function. To actually update the network, function J (f (x, θ ),y) needs to be

di�erentiated with respect to θ [GBC16, p. 204]. The idea behind this process is to

minimize the error by following the gradient of the cost function downwards (gradient

descent), as illustrated by Plot 2.9.

Figure 2.9.: Cost function going down the hill to �nd a local or global minimum [Mar15, p.

75].

The gradient of J with respect to θ is de�ned as:

Oθ J (θ ) =
∂J (θ )

∂θ
. (2.30)

This error signal obtained by the output layer is now passed backwards through the whole

network. By applying the chain rule of di�erentiation, the partial derivative of the cost

function J at the output layer h(K) is calculated as:

∂J (θ )

∂θ
=
∂J (θ )

∂h(K−1)

∂h(K−1)

∂θ
(2.31)
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h(K−1)
is the result from the previous layer, which is passed to the output layer as input.

Furthermore, J (ŷ,y) includes the prediction of ŷ = f (h(K−1), θ ). Equation (2.31) indicates

the change of error at output level when the parameters θ are varied. Now, the chain rule

can be applied backwards through the whole network. This makes it possible to compute

the gradients recursively and obtain all
∂J (θ )
∂W (k )

for the weight matrices and
∂J (θ )
∂b(k )

for the bias

vectors in θ [GBC16, p.205-209].

2.3.4.4. Gradient Descent

The gradient descent step happens after the backward pass. The parameters θ are updated

with respect to the computed gradients. The weight matrices between the layers and the

bias vectors are adjusted in the direction of the descending error. For a step wise adaption

a learning rate η is multiplied with the gradient. This rate should be set appropriately,

because a very low value would lead to slow learning and �nding a local minimum

only. A high learning rate could lead to an overshooting of the optimal minimum of

the error. Three basic Gradient Descent manifestations exist: Batch Gradient Descent,
Stochastic Gradient Descent and Mini-Batch Gradient Descent. The simplest one

is Batch Gradient Descent, which is also known as Vanilla Gradient Descent. With this

approach the weights and biases are updated by:

θ = θ − ηOθ J (θ ). (2.32)

The term has to be subtracted from the actual parameters, since the error has to be reduced.

Forward Pass, Backward Pass and Gradient Descent are repeated several times to improve

the performance of the network [Mar15, p. 77-78]. Learning is stopped as soon as a

criterion is met, e.g. if a certain number of training epochs has been completed or the

training error has been reduced to a threshold value. An epoch is completed when all

instances of the training dataset have been processed. Batch Gradient Descent updates

the weights after processing all training instances. When learning on large data sets, it

requires a lot of memory. In contrast, Stochastic Gradient Descent (SGD) updates the

weights after each sample, which results in a high learning time. Therefore, the parameters

are updated after each instance x (i) with its true label y(i) has been processed:

θ = θ − ηOθ J (θ , x
(i),y(i)). (2.33)

Due to the fact that both methods do have some drawbacks, mini-batching is often used

in practice to get the best out of both [Rud16].

2.3.4.5. Mini-Batch Gradient Descent

Mini-batching aka Mini-Batch Gradient Descent improves the learning speed and saves

memory. Without mini-batching, the weights of a neural network are not updated until all

instances of the training data have been processed (Batch Gradient Descent) or the weights

are updated after each instance (Stochastic Gradient Descent). To enable mini-batching

the training data has to be split into groups of a batch size n, which is smaller than the

size of the training set. In practice, batch sizes between 32 and 512 are commonly used
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[Kes+16]. The weights are updated after a batch has been processed [Rud16]. The batch

instances are passed into the network simultaneously:

θ = θ − ηOθ J (θ , x
(i:+n),y(i:+n)). (2.34)

Shu�ing the data and picking these batches randomly also improves the whole learning

process. Furthermore, it is necessary to use an averaged version of the cost function. This

method updates the weights into the direction in which the most instances of a batch are

about to be optimized. Local minima are found faster and the estimation of the gradient

error is better [Mar15, p. 82].

2.3.4.6. Regularization and Early Stopping

Neural networks, in particular DNNs, have many parameters and can be applied to various

tasks of machine learning. In training, ANNs easily over�t and learn the training data by

heart, as discussed in Section 2.2.3.2. Regularization is an important method to prevent this

problem. Mainly two methods are applied for their regularization: Dropout and weight
decay
Dropout can be used at the input and output layer of a neural network. During training,

it randomly drops neurons with a prede�ned dropout rate and their connections within

the neural network. By doing this, dropout reduces the network’s inner complexity and

prevents over�tting on the training data. Furthermore, it improves the results in supervised

learning tasks, such as document classi�cation and speech recognition [Sri+14].

Weight decay limits the growth of the network’s parameters and improves the general-

ization of the network. The growth of the parameters is limited by a weight decay value.

The weights are chosen so that the network continues to classify the instance correctly,

but does not adopt it by heart. Thus, in each step of updating the weights, all parameters

are penalized with a term in the cost function:

Jwd(θ ) = J (θ ) +
1

2

λ

|θ |∑
i

w2

i . (2.35)

Thereby, J (θ ) represents a cost function like the the cross entropy loss or mean squared

error. The actual weight decay factor is represented by λ and |θ | stands for the number of

parameters in the neural network. In equation (2.35) one example for a simple penalty

term is given. It is possible to take other forms of penalty terms [Kro92].

Early stopping is another important technique to prevent over�tting of ANNs. It stops

the training phase of the network after a certain number of epochs and stops further

adoption on the training data [Pre97]. It is not a regularization technique, but has the

same purpose.

2.4. Recurrent Neural Networks

Recurrent neural networks (RNN) are a further development in the �eld of ANNs. In

practice, RNNs are often used for sequential inputs. Especially in language, words have to
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be processed step by step in order to retrieve their context. In the meantime, RNNs have

proven to be very good at translation tasks since they are able to predict the next word

by earlier words. To control the process of analyzing an instance after another, RNNs

have hidden units to store state vectors. These vectors contain information about the

sequence’s history [LBH15]. Thus, the output ŷ of an RNN is dependable on the actual

input xt and preceding inputs (x1, . . . , xt−1). Besides, the hidden states are represented by

a hidden vector sequence h = (h1, . . . ,ht ). The outputs of a RNN constitute a sequence

y = (y1, . . . ,yt ), but do not necessarily represent the output for the overall task. RNNs

can also be used to predict a single target for an input sequence. The hidden state ht is

calculated by:

ht = H (Wxhxt +Whhht−1 + bh) (2.36)

H stands for a hidden layer function, which is often the hyperbolic tangent (tanh). Fur-

thermore, W is again the weight matrix between the layers and b represents the bias

vector. The output is calculated similarly to the outcome of a Multilayer Perceptron by

multiplying the weights with the result of the hidden state and adding a bias.

x

h

y

Wxh

Why

Whh
Unfold

xt−1

ht−1

yt−1

Wxh

Why

Whh

xt

ht

yt

Wxh

Why

Whh

xt+1

ht+1

yt+1

Wxh

Why

Whh

Figure 2.10.: Recurrent Neural Network predicts the outcome y of a sequence x1, . . . , xt−1

[DH18]. It can be seen as a folded FNN.

Therefore, the hidden state is alike to a hidden layer [GMH13]. The outcome is calculated

in a similar manner:

yt =Whyht + by (2.37)

The output yt and the hidden state ht are connected with the weight matrix Why . This

layer structure is comparable to a Single Layer Perceptron (Section 2.3.1). A RNN can be

seen as a folded Multilayer Perceptron with cycles, due to the fact that the outcome of

the previous input is also an input to the current instance. The model of a RNN is shown

in Figure 2.10. Here, the weight matricesW are presented in general format to improve

the readability of the presentation. Normally they should be adapted to the underlying

scheme: Wht−2ht−1
,Wht−1ht ,Whtht+1

, . . .
The training procedure is also similar to those of the Multilayer Perceptron. At �rst the

network is initialized and the initial hidden state h0 is usually set to 0. Then, the prediction

ŷ for the input xt is calculated in the forward pass. Afterwards an evaluation of the true

outcome y takes place. In the backward pass the error’s derivative with respect to weights
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is calculated using back-propagation through time (BPTT) [Sal+17].

One shortcoming of standard RNNs is the problem of vanishing and exploding gradi-
ents. The �rst problem makes it di�cult for RNNs to keep track of the dependencies in

longer input sequences. This is due to two reasons. Firstly, the hyperbolic tangent and the

sigmoid function, which are often used in RNNs for activation, saturate very quickly and

so their gradient gets closer to 0. Secondly, by applying BPTT the gradient is exponentially

reduced by multiplying it with the recurring weight matrices. This also causes the gradient

to converge to zero very fast [Sal+17]. The phenomena of the exploding gradient leads to

high oscillation of the network’s weights and increases learning time, which could lead to

network failure [Hoc+01].

2.4.1. Long Short-TermMemory Network

Long short term memory networks (LSTMs) were proposed in 1997 and were developed

to avoid the drawbacks of plain RNNs [HS97]. One basic improvement in a LSTM is the

introduction of a forget mechanism. Besides saving information about the last input,

they are able to forget earlier processed instances stored in their internal state. Moreover,

LSTMs also have another input ct−1 and output ct which is called cell state. The LSTM

consists of several gates: the input gate, forget gate and output gate. The gate mechanism

works similar to a water faucet since the gates regulate the values passed through the

LSTM. All gates are based on sigmoidal activation functions.

σ f σi

tanh

σo

× +

× ×

tanh

ct−1

ht−1

xtInput

ct

cell state

ht

Output for next

htOutput

ft

it

c̃t

yt

Figure 2.11.: Architecture of a recurrent cell in a Long Short-Term Memory Network

(LSTM) with three di�erent gating mechanisms σ f , σi and σo [Bia+17, p. 12].
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2.4.1.1. Forget Gate

The forget gate enables the LSTM to drop information from cell state ct . By looking at the

input xt and the previous hidden state ht−1, it calculates a value between 0 and 1 for every

entry in the cell state ct−1. This number indicates whether the corresponding entry should

be kept (1) or deleted (0) [Ola15].

ft = σ f (Wf [ht−1, xt ] + b f ) (2.38)

Thereby ft is the result of the forget gate,Wf and b f represent the corresponding weights

and biases. The output is then multiplied with the previous cell state ct−1, as shown in

Figure 2.11.

2.4.1.2. Input Gate

Like the forget gate, the input or update gate σi combines the previous internal state ht−1

and the current input xt to it . A layer with sigmoid activation decides on the factor they

should be included in the new internal state ct :

it = σi(Wi[ht−1, xt ] + bi) (2.39)

The actual new value c̃t is generated by a tanh layer with the same two input nodes:

c̃t = tanh(Wc[ht−1, xt ] + bc) (2.40)

Both results are multiplied and added to the internal state ct−1 from time step t − 1, which

is already �ltered by the forget gate:

ct = ft ∗ ct−1 + it ∗ c̃t (2.41)

Therefore, the input gate works as a regulator over the input sequence. For further

calculations ct is passed on to the next time step and serves as input for it.

2.4.1.3. Output Gate

The overall output ht of a LSTM-cell is �nally modi�ed by the output layer gate σo . The

cell state from equation (2.41) is taken and passed through another tanh-layer. Similar

to the gates explained above, the output gate �lters candidates according to ht−1 and xt .
Moreover, it weights the instances to be removed from the possible results:

ot = σo(Wo[ht−1, xt ] + bo) (2.42)

The calculation of the next state ht is done by:

ht = ot ∗ tanh(ct ) (2.43)

A LSTM can be applied to any sequence with the length of n. The �nal result is then

represented by the last hidden state of the sequence hn. In practice it could be necessary

to append a linear layer of a FNN to transforms the hidden state into a desired outcome.
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2.4.1.4. Bidirectional Long Short-TermMemory Network

Bidirectional RNNs were introduced in 1997 by Schuster and Paliwal [SP97]. Bidirectional

LSTMs are based on them and extend the standard LSTM model. The basic idea is to

process the sequence x = x1, . . . , xt forwards and backwards. Therefore, a bidirectional

LSTM has a forward and backward part. Their hidden states

−→
h and

←−
h are connected to

the output layer by a FNN. The forward part of the network processes x1, . . . , xt and the

backward part xt , . . . , x1 [GMH13]. Using the last hidden states the outcome yt at the

output gate is computed similarly to Equation (2.37):

yt =W−→h y
−→
h t +W←−h y

←−
h t + by (2.44)

2.4.2. Gated Recurrent Unit

The Gated Recurrent Unit GRU is another type of RNN and was introduced in 2014 by Cho

et al. [Cho+14]. Similarly to the LSTM, it uses gate mechanisms to regulate the information

�ow within the recurrent cell [Chu+14]. Figure 2.12 illustrates the architecture of a GRU

in detail.

×

tanh
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×

−1

σu

+

×

ht−1
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ht

Output for next
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Figure 2.12.: Model of Gated Recurrent Unit (GRU) that uses two gates σr and σu to regulate

the information �ow within the network [Bia+17].

A GRU has an update σu and a reset gate σu . The update gate is comparable to a LSTM’s

input gate. It controls the in�uence of the current input of the new cell state by applying a

sigmoid layer to it. The output ut of the update gate is computed with Equation (2.39). For

managing the internal memory of a GRU, the reset gate is used. It determines the extent

to which the history of sequential input is maintained or deleted, such as the forget gate

in a LSTM:

rt = σr (Wr [ht−1, xt ] + br ). (2.45)
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The current state h′t is a product of the previous state ht−1 and the reset gate rt , which is

passed to the tanh node to create a new candidate state:

zt = tanh(Wz[h
′
t , xt ] + bz). (2.46)

This candidate zt is then used to create the new state for the current GRU cell. In addition,

it uses the computations of the update gate ut and the previous hidden state ht−1 [Bia+17]:

ht = (1 − ut )ht−1 + ut + zt ). (2.47)

As in a LSTM, the hidden state works also as an input for the next recurrent cell. In

addition, this state can also be used to predict the result of an input, e.g. by adding a fully

connected layer.

2.5. Technologies

Besides describing the crucial theory, I will shortly describe the technologies that are

applied in my thesis’ implementation. Di�erent Python packages supports the coding part,

especially PyTorch and spaCy.

2.5.1. spaCy

spaCy is a Python open-source library for NLP tasks
1
. Its architecture is perfect for usage in

production. In addition, it supplies implementations for text preprocessing, deep learning

and other tasks in the domain of NLP. In this thesis it is mainly used for text preprocessing,

such as tokenization, lemmatization and stop word removal. The methods are based on

the german language model which was trained on Wikipedia and the TIGER Corpus
2
.

Besides, spaCy supports more than 31 languages and does have pre-trained word vectors

using the word2vec approach.

Prodigy
3

and Thinc4
are two platforms that are extending spaCy. Prodigy is a web based

tool to create fast and various amounts of training data. It starts to train a model on a

small set of data and makes suggestions for new instances. The user is able to tag whether

the model was correct or not. Thinc is spaCy’s deep learning library and supports fast

state-of-the-art models in NLP based on the „embed, encode, attend, predict“ architecture
4
.

I do not use Prodigy or Thinc in my implementation, but I came across them while working

with spaCy and found it necessary to mention them here.

2.5.2. PyTorch

PyTorch is a platform that supports deep learning and provides libraries to easily create

ANNs
5
. It is used to build a linear Multilayer Perceptron and a Long-Short-Term-Memory

1https://spacy.io/usage/spacy-101
2https://spacy.io/models/de#de_core_news_sm
3https://prodi.gy/
4https://github.com/explosion/thinc
5https://pytorch.org/features
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network. One of the main bene�ts of PyTorch are implemented models, functions and

learning algorithms. PyTorch is based on so-called tensors that represent multidimensional

matrices. All calculations are done by tensor operations. Besides, it has implemented

support for Graphics Processing Units (GPUs), which makes it easier to train and analyze

neural network models on GPUs. Due to many tensor operations that will be done during

training it makes sense to use them, as they are designed to do matrix calculations.

2.5.3. Additional Python Libraries

Besides spaCy and PyTorch, other libraries are used to assist the programming part of this

thesis. They are listed and brie�y described in this sub-section.

2.5.3.1. SciPy

The SciPy ecosystem is needed when scienti�c computing is done in Python. It refers to

many di�erent packages such as NumPy, pandas and matplotlib6
. The SciPy library itself

o�ers many di�erent routines for numerical calculation
7
. matplotlib will be applied in this

thesis to create diagrams.

2.5.3.2. NumPy

NumPy’s most used functionality is the creation of N-dimensional arrays. Plain Python

does not support this fundamental data structure. It also provides implementations for

linear algebra and random number generation
8
. In addition, it is used by many other

Python packages such as PyTorch to realize the tensor data structure.

2.5.3.3. pandas

pandas is an open source library that supports data analysis for Python by providing custom

data structures such as DataFrames and Series
9
. The structures support the handling when

working with a large amount of data.

2.5.3.4. scikit-learn

scikit-learn is a collection of data mining and data analysis tools. For example, Random

Forest, SVM and various regression models can be found in the catalogue
10

. scikit-learn pro-

vides in the programming part di�erent implementations for evaluation metrics, Random

Forest and tf-idf.

6https://matplotlib.org
7https://www.scipy.org/about.html
8http://www.numpy.org/
9https://pandas.pydata.org/about.html

10http://scikit-learn.org/stable/
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2.5.3.5. NLTK

The Natural Language Toolkit (NLTK) is a platform that supports the development of

programs that deal with human language data. It is similar to spaCy and also o�ers

various preprocessing methods such as stemming, tokenization or classi�cation
11

. For the

implementation of this thesis, the Snowball-Stemmer is taken over from NLTK.

2.5.3.6. gensim

gensim is another language processing toolkit for Python. It is designed for working with

large corpora and provides various scripts for Topic Modeling
12

, such as Latent Dirichlet

Allocation [ŘS10]. gensim’s implementation of word2vec is used in the practical part. The

theory of word2vec will be described in the next chapter.

11https://www.nltk.org/
12https://radimrehurek.com/gensim/about.html
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„You shall know a word by the company
it keeps.“

John R. Firth

This chapter gives an overview of state-of-the-art technologies and approaches in NLP.

The scope is de�ned by the �rst research question: Which state-of-the-art NLP-approaches
exist to analyze user-generated product description texts with respect to their in�uence on the
product price? Research indicated that the analysis of product description texts alone to

predict a business outcome, such as a price, is sparsely covered in literature. The work

of Pryzant et al. can be compared to my approach. They are predicting sales volumes

based on product description texts [PCJ17]. In addition, they also stated that „the e�ect

of [product] descriptions alone is not studied“. Many publications that aim to predict a

price in�uence from texts are part of Natural Language based Financial Forecasting (NLFF).

This research area focuses on predicting stock market prices using NLP [XWC18]. Here,

researchers analyze texts, such as social media texts [BMZ11], �nancial reports [Lee+14]

or news texts [SC09]. Another similar research �eld is the analysis of user-generated

product reviews that sets the focus focusing on what in�uences users’ buying decisions

[AGI11]. Both research areas di�er from my approach in terms of text structure or target

objectives. Thus, I will focus on more general methods that are used to predict a target for

a text.

My analysis of texts to predict price residuals is similar to text classi�cation that aims to

assign a speci�c class to a text. In my approach, a text will be mapped to a target price

residual. Therefore, advanced modeling approaches that are used in text classi�cation

will be presented later in chapter. The Attention Mechanism (Section 3.3), Hierarchical

Attention Networks (Section 3.4) and Convolutional Neural Networks (Section 3.5) are

state-of-the-art in predicting classes for texts.

In addition to modeling methods, features that represent the input data are also very

important for any Data Mining task. Especially when dealing with unstructured data,

such as natural language texts, the generation and transformation of features is crucial

for achieving good results. Thus, the chapter begins with the explanation of methods like

word embeddings and continues with deep contextualized word representations.

3.1. Word Embeddings

Word embeddings are a general approach to map high-dimensional word vectors, such as

one-hot encoded vectors, into a low-dimensional representation. The basic idea was �rst
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mentioned in 2001 by Bengio et al. and was motivated to overcome the curse of dimen-

sionality [Ben+01]. Word embeddings are computed for a set of texts with a vocabulary of

size N . For the purpose of illustration, let us assume, we want to create embeddings for a

single document: „the best fox is running“. The sentence has �ve distinct words, which

leads to N = 5. A word wi in this vocabulary with i = 1, . . . ,N is presented by a vector

with a prede�ned dimension. If an embedding dimension (ED) of 4 is used,

E =

©«

0.78 0.14 0.31 0.20

0.12 0.93 0.45 0.32

0.21 0.18 0.67 0.89

0.38 0.19 0.24 0.30

0.15 0.48 0.29 0.25

ª®®®®®®®®®®¬
. (3.1)

saves the word embeddings for all N = 5 words in the document. E is a N ×ED embedding

matrix, which resembles a dictionary. Here, every word in the vocabulary is represented

by one row entry. Moreover, E is the desired output of every task that aims to create word

representations. The embedding

v3 = (0, 0, 1, 0, 0) × E = (0.21, 0.18, 0.67, 0.89) (3.2)

for the third word, which is w3=„fox“ in the illustration, is stored in the third row of E. It

can be retrieved by multiplying the word’s one-hot-encoding with E. For later use of the

embeddings, one problem might be to handle words that are not contained in E. These are

called out of vocabulary (OOV) words. Meanwhile, there are many di�erent methods to

create word embeddings. Word2Vec, GloVe and fastText are the most popular approaches

and will be discussed in the below sections.

3.1.1. Word2Vec

The word2vec model was introduced by Mikolov et al. in 2013 [Mik+13]. The idea is to

transform a word into a continuous vector, which also represents the word’s local context.

This approach is based on John R. Firth’s famous quote: „You shall know a word by the
company it keeps“ [Chu07]. Embeddings of word2vec do not have the shortcoming of

one-hot encoded word vectors, which can only recognize whether a word is exactly the

same or not. Word2Vec makes these di�erentiations more distinctive by including a word’s

antecedents and successors.

The word representations include semantic and syntactic information, which is retrieved

from the context words. Figure 3.1 illustrates the position of word vectors with two dimen-

sions. The arrows indicate a mathematical distance between two words. For example, the

cosine distance is a suitable function for calculating the di�erence between word vectors

[MYZ13]. In an embedding space, it is possible that same relations between words can be

represented by a similar distance and direction. For example, the English words „Man“ and

„Woman“ do have a similar distance to „King“ and „Queen“. This means that the contextual
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Figure 3.1.: The arrows show the distances between two word embeddings in a 2-

dimensional space. Left: Distances between genders. Right: Distances between

plural words [MYZ13]

di�erence between „Man“ and „Woman“ is comparable to „King“ and „Queen“. Words that

correspond to the male gender are used in the context of „Man“ and „King“ , whereas

„Woman“ and „Queen“ are surrounded by more female word forms. Thus, the syntax and

semantic of a word is incorporated into a word representation. This is the real strength of

word embeddings or word2vec. It makes it easier to �nd synonyms and extract a speaker’s

intended meaning more easily.

The initial paper of word2vec proposes two di�erent approaches to learn word vectors

out of text corpora with the vocabulary of N . The �rst approach is the Continuous Bag-

of-Words (CBOW), which predicts a word based on its context. The second approach is

called Skip-gram and forecasts a word’s context. Both attempts minimize computational

complexity and are based on FNNs, which were described in Section 2.3. Figure 3.2 depicts

both architectures in more detail.

To calculate a word’s vector representation, the neural network of CBOW takes the context

terms to the leftwt−2,wt−1 and rightwt+1,wt+2 of the wordwt as input. This word window

can be adjusted to increase or decrease the size of the local context associated with the

word embedding vt . In practice, a context window of 5 for CBOW and 10 for Skip-gram is

favored
1
. CBOW takes the one-hot encoding of every input word and passes them to the

network to predict the one-hot-encoding of the target word wt . The FNN models the place

of 1 in the output vector, which can be seen as a classi�cation task.

The network that is used in Skip-gram, swaps the in- and output. The target word

is now the input and the FNN predicts the word’s context. Skip-gram leads to better results

for small corpora, while CBOW is more e�cient and recommendable for larger text sets

[MLS13]. For training the word vectors; both approaches use a Multilayer Perceptron with

1https://code.google.com/archive/p/word2vec/
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Figure 3.2.: FNN architecture of the Continuous Bag-of-Words (CBOW) and Skip-gram

model [Mik+13]. CBOW uses context words to predict the target word. Skip-

gram takes a word to model its context.

36



3.1. Word Embeddings

one hidden layer. Therefore, the network has two weight matrices. The �rst one W (1)

is between the input layer and hidden layer. W (2) is the second matrix, which connects

hidden and output layer. The number of neurons in the hidden layer is set to 300 and

softmax activation in the output layer is used in both approaches [Mik+13].

To retrieve the word vector vt for word wt in the Skip-gram architecture, the t-th row vec-

tor from matrixW (1) = E is taken. CBOW takes the row vectors inW (1) for its input words

and averages them.
2

The number of hidden neurons equals the embedding dimension,

which is determined by the row length ofW (1). CBOW models the probability p(wt |C) for

the context C = {wt−2,wt−1,wt+1,wt+2}. In contrast, Skip-gram computes

p(wc |wt ) =
ev

T
t uc∑N

i=1
ev

T
t uc

(3.3)

for every context word wc ∈ C to create a word embedding vt . The term vTt uc indicates

how the network transforms a one-hot-encoded input word to a one-hot-encoded output

word in the context. vt is multiplied with an underlying context representation uc for

wc that is obtained in the c-th column of matrix W (2). Due to the fact that N indicates

the length of the total vocabulary, calculating softmax could be expensive for large N .

Hierarchical softmax is used to overcome this. For further details on CBOW and Skip-gram,

I recommend reading [MLS13] or [Mik+13].

3.1.2. Global Vectors for Word Representation

Global Vectors for Word Representation (GloVe) do have another approach for building

word vectors. They were initially proposed in 2014 by Pennington et al. and put their

focus not solely on the word’s local context [PSM14]. The training of the GloVe vectors

is done based on a global word-to-word co-occurrence matrix Xij . This matrix stores the

frequency with which two words wi and wj occur in the same context within a corpus.
3

Therefore, not only the local context, which is determined by the co-occurrence matrix, is

taken into account, but also statistical aspects from the corpus.

First, the matrix is built up in a initialization phase in which each text is viewed once.

Since the co-occurrence matrix requires lot of memory when analyzing large quantities of

documents, only word combinations with at least one co-occurrence are stored.

Next, the co-occurence probabilities are calculated with Pij = P(j |i) =
Xi j
Xi

, as shown

in Table 3.1. The table illustrates probabilities for the words „ice“ and „steam“ computed

on a real corpus.

For example, the words ice and solid occur with a probability of 1.9 × 10
−4

, while „steam“

and „solid“ occur less frequently. In contrast, „steam“ and „gas“ are more likely to occur

than „ice“ and „gas“, which is indicated by the ratio between P(k |ice)/P(k |steam). A divi-

sion by zero is not possible, because matrix Xij only saves co-occurence frequencies that

are at least one. If both words or none of the words are related to the word k , the ratio is

2https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html
3https://nlp.stanford.edu/projects/glove/
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Probability and Ratio k = solid k = дas k = water k = f ashion

P(k |ice) 1.9 × 10
−4

6.6 × 10
−5

3.0 × 10
−3

1.7 × 10
−5

P(k |steam) 2.2 × 10
−5

7.8 × 10
−4

2.2 × 10
−3

1.8 × 10
−5

P(k |ice)/P(k |steam) 8.9 8.5 × 10
−2

1.36 0.96

Table 3.1.: Example of word-word co-occurrence probabilities, which where calculated

on a 6 Billion word corpus. The conditional probabilities of 4 context words k
given the terms „ice“ and „steam“ [PSM14].

close to one, because both probabilities do have a similar value. This situation is shown by

„water“ and „fashion“. „Ice“ and „steam“ are frequently used in the context of „water“, but

are less frequent nearby „fashion“.

After computing the co-occurrence probabilities, the training step begins. The GloVe-

approach learns word vectors according to the co-occurence ratio of a context word k .

The word vectors for the words wi and wj are optimized with respect to the following

equation:

F (vi,vj, ṽk) =
Pik
Pjk
. (3.4)

The authors use a log-bilinear model to train the word vectors vi and vj . They use the

dot product between the di�erence vi −vj and the context vector ṽk to actually predict

the co-occurence ratio. Further transformation of Equation (3.4), such as rewriting the

fraction
Pik
Pjk

to a di�erence of logarithms, leads to a regression task that tries to minimize

a cost function J . For the sake of brevity, this reshaping and the theory of a log-bilinear

model will not be part of this thesis. They are described in more detail in [PSM14].

J =
N∑

i,k=1

f (Xik) × (v
T
i ṽk + bi +

˜bk − loд(Xik))
2

(3.5)

depends on the vector vi , the context vector ṽk , their biases bi , bk , the number of the

total vocabulary N and a weighting function f (Xik). Function f (Xik) is used to avoid the

overweighting of rare and frequent co-occurences. After training it is possible to retrieve

the word vector vi for every word in the corpus.

The authors state that GloVe outperforms word2vec in di�erent NLP exercises, such as

word analogy, named entity recognition or word similarity tasks. This is due to the fact

that GloVe also includes statistical information about the words in the corpus [PSM14].

3.1.3. fastText

fastText is a library for creating word embeddings and was developed by the Facebook AI

research group.
4

fastText learns word representations based on subword information. It is

4https://fasttext.cc/
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comparable to word2vec, but uses character n-grams as inputs and not only the word itself.

This improves the ability to produce vectors even for made up or rare words. Furthermore,

this method is suitable for languages that have a lot of in�ections and are built upon the

same small word parts, such as Finnish or Turkish [Boj+16]. The authors use CBOW

or Skip-gram that were discussed in Section 3.1.1. For the sake of brevity, the subword

modeling of fastText is explained using the Skip-gram approach only.

In word2vec, Skip-gram predicts the vector of context words (output) given the actual

word w (input) by using one-hot-encoded word vectors. These representations do not

share any common features between words, because they can only indicate if a word is

the same or not. In contrast, fastText splits its input words into sets of character n-grams

and passes them into the network. Character n-grams can be shared between di�erent

words. For example, the word „research“ is divided into <re, res, ese, sea, ear ,arc, rch, ch>
if n equals 3. Thereby, <se and de> contain the special characters „<“ and „>“ to indicate

the start and end of a word. It is done to illustrate a di�erence between words that are

contained as a character n-gram in another word, such as „sea“ in „research“.

For obtaining the word vector for a word wt in a given set of documents, a scoring

function s(wt ,wc) is introduced. It calculates the sum of the characters n-grams multi-

plied by a surrounding word wc ∈ {. . . ,wt−2,wt−1,wt+1,wt+2, . . . } of wt . The number of

the context words of wt is set by the length of Skip-gram’s output window. fastText’s

Skip-gram version calculates the conditional probability

p(wc |wt ) =
es(wt ,wc )∑N
i=1

es(wt ,wc )
(3.6)

by replacing the scalar product between vTt uc with s(wt ,wc). Let G be a dictionary of

n-grams and Gt ⊂ {1, . . . ,G} the set of character n-grams for the word wt . Then the score

s(wt ,wc) =
∑
д∈Gt

zTд cc (3.7)

is determined for every context word wc . Instead of a one-hot-encoded word vector, a

set of character n-grams predicts a context word in fastText. All vectors zд with д ∈ Gt

are character n-gram embeddings of the word wt . Their set builds the word embedding

vt . Due to the fact that the overall set of n-grams for a large corpus is very big, a hashed

version of the character n-grams is used as input [Boj+16]. An advantage of fastText is the

performance. The training time of fastText’s word representations is short and it is even

possible to train the vectors on a standard multi-core CPU in a reasonable time. Moreover,

the accuracy of fastText in NLP tasks, such as sentiment analysis or tag prediction for

captions, is comparable to other state-of-the-art methods [Boj+15].

3.2. Deep Contextualized Word Representations

Word embeddings, as shown above, are a state-of-the-art representation of words in a

numeric format. However, due to their shallow network structures, they are only able to
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include the nearby local context, semantic and syntax of a word. For example, CBOW or

skip-gram incorporate 5 to 10 context words in practice that in�uence a word embedding.

Therefore, they lack to project all global connections of words [Pet+18]. The same words

are often used across many documents in di�erent linguistic contexts, e.g Polysemy. In

2018, Peter et al. developed a „deep contextualized word representation“, which overcomes

this drawback [Pet+18]. These word representations are created with a deep bidirectional

Language Model (biLM). Furthermore, the model is pretrained on a large text corpus.

First of all, I will shortly introduce the idea of Language Models (LMs). For a set of

N words (w1,w2, . . . ,wN ), a LM calculates the probability of the whole sequence. It

uses the conditional probability of the next word wi given the history of previous words

(w1, . . . ,wi−1):

p(w1,w2, . . . ,wN ) =

N∏
i=1

p(wi |w1,w2, . . . ,wi−1) (3.8)

Peters et al. use this underlying structure to build word representations. At �rst a word

embedding vi , such as shown in Section 3.1, is passed into a LSTM with K layers, that

processes the sequence in forward direction. Every Layer k = 1, . . . ,K outputs a context-

dependent word representation

−→
h i,k for the word wi . The top layer in the LSTM is trained

to predict the next word wi+1 and uses a FNN with a softmax layer on top to compute the

output. Another LSTM processes the sequence in reverse direction, as in a bidirectional

LSTM. It predicts the previous word wi−1. To combine both directions into a biLM, they

maximize their joint log-likelihood as optimization criterion:

N∑
i=1

(loдp(wi |w1,w2, . . . ,wi−1;θx ,
−→
θ LSTM, θs)

+ loдp(wi |wi+1,wi+2, . . . ,wN ;θx ,
←−
θ LSTM, θs))

(3.9)

θx represents the parameters for the input word embeddings E and θs mark the parameters

for the softmax-FNN. The LSTMs have separate parameters for forward and backward

direction. The softmax layer takes the LSTM states to predict the word wi given the input

sequence.

Peters et al. call their approach Embeddings from Language Models (ELMo). It combines

the input word representation vi and the hidden states

−→
h i,k ,

←−
h i,k from the bidirectional

LSTM.

−→
h i,k ,

←−
h i,k are concatenated to hi,k = [

−→
h i,k ;

←−
h i,k]. Thus, their K-layered biLM

calculates a set Vi of 2K + 1 representations for every word wi :

Vi = {vi,
−→
h i,k
←−
h i,k |k = 1, . . . ,K}

= {hi,k |k = 0, . . . ,K}.
(3.10)

The bidirectional structure of ELMo is shown in Figure 3.3. Here, the underlying word

representations inVi are denoted withh1,2,h2,2, . . . ,hN ,2 for the second bidirectional LSTM-

layer.
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Figure 3.3.: ELMo uses a 2-layered Bidirectional Language Model as architecture [Dev+18].

A sequence of embeddings v1,v2, . . . ,vN is passed into the bidirectional LSTM

to retrieve their concatenated word representations h1,2,h2,2, . . . ,hN ,2 that are

computed by the second LSTM-layer.

ELMo uses these representations and optimizes them with respect to a given task, e.g.

document classi�cation. The word vector

vtaski = γ task
K∑
k=0

staskk hi,k . (3.11)

is a linear combination of all word representations for word wi that is optimized with

parameters stask and γ task . The di�erent representations in Vi are weighted by softmax-

normalized weights stask . Besides, all ELMo vectors are scaled byγ task . Peters et al. pretrain

the representations inVi on a large corpus. Afterwards, they learn stask and γ task for every

particular task. When classifying documents with a RNN, for example, the previously

trained representations vtaski are passed on as input to the RNN. During the RNNs learning

phase, the task-speci�c weights (γ task , stask ) are adjusted. The simplest representation of a

task-speci�c word vector, which ELMo can create, is the input embedding itself vi or the

the representation hi,K from the last bidirectional LSTM-layer.

Their approach outperforms current state-of-the-art methods in di�erent NLP tasks, such

as question answering, named entity recognition and sentiment analysis. Using ELMo the

task-speci�c error reduces by 0.7% − 4.7% [Pet+18].

Recent research in developing word representations is mainly based on deep learning

architectures. Radford et al. [Rad+18] and Devlin et al. [Dev+18] successfully trained a

transformer-encoder system to create representations of words. Both approaches do also

achieve state-of-the-art results in tasks, such as question answering or sentiment analysis.

Devlin et al. call their approach BERT which is an acronym for Bidirectional Encoder

Representations from Transformers. BERT pretrains meaningful word representations on

large corpora and combines the approaches of Radford et al. and ELMo.
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3.3. Attention

Another state-of-the-art approach in NLP is the use of attention and was �rst applied

in machine translation in 2014 by Bahdanau et al. [BCB14]. They use a bidirectional

sequence to sequence LSTM to translate texts from one language into another. The

attention mechanism is close to human’s attention. Attention helps to shift the focus to the

important parts of an information sequence. The intensity and position at which attention

should be directed depends on the experience and the task at hand. Besides Bahdanau

et al., other attention mechanisms have been introduced by Luong et al. [LPM15]. The

authors propose a global and a local attention system. The global approach is similar to

Bahdanau’s model and includes all instances from a sequence. The local attention focuses

only on the nearby context. In addition, attention is also used in image caption generation

and helps to name objects seen in an image [Xu+15]. In [PCJ17] the authors propose

an approach for sales volume prediction based on product description texts. Their best

solution is a LSTM with Bahdanau-Attention, which outperforms other methods like Lasso

Regression or Mutual Information. Thus, their approach using Bahdanau-Attention will

be discussed further.

Figure 3.4.: Bahdanau Self-Attention applied to a RNN [RE15]. A FNN a(ht ) computes the

attention weights a1, . . . ,aT to retrieve an averaged context state c .

The general attention mechanism is shown in Figure 3.4. A RNN, such as a LSTM or a

GRU, is emitting its hidden states ht for every time step t ∈ T and passes them to a fully

connected Feed-Forward Neural Network (FNN). The network itself calculates an attention

weight at for every hidden state ht , as shown in equation (3.12). The authors of [PCJ17]

use tanh as activation.

ât = a(ht ) = tanh(Waht ) (3.12)
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In order to obtain a distribution for the attention weights a that add up to one, a so f tmax
function is applied to the results of the FNN.

a = so f tmax(â) (3.13)

Afterwards, the weights are multiplied with their corresponding hidden states. These

products are summed up to get an adjusted hidden state called context state c .

c =
T∑
t

atht (3.14)

State c serves for further calculations and has the same dimensions as any hidden state

from the RNN. It is an averaged transformation of the whole RNN output, which includes

the weighted in�uence of each hidden state in the sequence. Usually attention is applied

for machine translation tasks that have an underlying sequence-to-sequence structure in

which a sequential input is mapped to a sequential output. As shown in [RE15] or [PCJ17],

attention is also applied to sequence-to-one or many-to-one tasks, which predict a single-

valued output for a sequence or a set of instances. Therefore, the attention mechanism is

implemented and analyzed in the practical part of this thesis.

3.4. Hierarchical Attention Networks

Hierarchical Attention Networks (HANs) were developed by Yang et al. [Yan+16] and

use the attention principle. They are applied on text classi�cation and have two attention

mechanisms. One puts the attention to the sentence-level and the other one focuses on the

word-level. The concentration is only set to important sentences with meaningful words.

This draws the attention to the way in which documents are usually created. Words build

up sentences and sentences construct documents.

A document consists of L sentences si and each sentence si contains a list of words Ti . The

t-th word in sentence si is denoted with wti . The architecture of a HAN is illustrated in

Figure 3.5. It has two bidirectional GRU layers with separate attention. The �rst layer

operates on the word-level and receives word embeddings for every wordwti in sentence si .
One GRU processes the words in forward direction and the other in reverse direction. The

hidden states from the forward

−→
h it and backward

←−
h it GRU are concatenated to encode

the wordwti with hit . Afterwards, an attention layer calculates the attention weights uw in

the sentence si for every word wti . Formulas (3.12), (3.13) and (3.14) are used to compute

an overall representation for sentence si .
The second bidirectional GRU-layer performs similar calculations, but uses the previously

generated sentence representations as input. A separate attention-layer determines the

sentence-speci�c weights us that set the importance for each sentence in the document.

Lastly, a softmax-layer is used to predict the document’s class. Yang et al. show that the

Hierarchical Attention Network outperforms other widely used approaches, such as LSTMs

and Convolutional Neural Networks (CNNs), in six di�erent document classi�cation tasks.

For instance, they have improved the accuracy of classifying Internet Movie Database

(IMDb) reviews, which give a movie a rating between 1 and 10, by 4.1% compared to

previous state-of-the-art results.
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Figure 3.5.: Architecture of a Hierarchical Attention Network [Yan+16]. One bidirectional

RNN calculates the attention for words and another computes the attention

for a sentence representation on top. A FNN with a sofmtax layer on top is

used to classify the weighted sentence vector.
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3.5. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were originally developed for computer vision,

e.g. for image analysis. Since 2011 they have become more and more popular in NLP

[Col+11]. In 2014 Kim [Kim14] and Kalchbrenner et al. [KGB14] successfully used CNNs

in NLP tasks such as sentence classi�cation and sentence modeling. The work of Kim’s

sentence classi�cation will be discussed further in this section, because it is a suitable

approach to analyze texts with respect to price prediction. At �rst, a short explanation of

the basic idea behind a CNN will be given.

A CNN consists of convolutional and pooling layers. The input data is passed into a

stringing of one or more convolutional layers, which are followed by a pooling layer. This

convolutional-pooling layer structure can be repeated to create deeper con�gurations that

form a deep CNNs. A convolutional layer applies a �lter pattern to the input data. This

helps to map the input data to an underlying feature map and to �nd local connections

between them. The �lter pattern reduces the number of weights in the network by mapping

parts of the input to one feature. Furthermore, the pooling layer shrinks the feature map

and merges semantically similar features together [LBH15]. A convolutional layer can

consist of more than one �lter pattern, which is shown by the stacked structure in Figure

3.6.

Figure 3.6.: Model of a Convolutional Neural Network that is used in sentence classi�-

cation [Kim14]. The sentences are passed into the network and get �ltered

by convolutional layers. After pooling, a FNN with a softmax layer on top

predicts the class for the sentence.

The authors of [Kim14] apply di�erent types of CNNs to various sentence classi�cation

and question classi�cation tasks, such as detecting positive or negative movie reviews.

Their approach outperforms the state-of-the-art procedure in four tasks. They take a

pretrained word2vec word embedding for every word in the sentence and construct a

matrix with the dimension of n × k . Hereby, k = ED represents the dimension of the word

embedding and n denotes the sentence’s length. This matrix serves as input for their CNN.

They use the hyperbolic tangent as �lter in the convolutional layer. A max pooling layer

is then applied to the �ltered feature map. Their model incorporates a FNN with dropout
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used as last layer to classify the input sentence. Modi�cations of Kim’s approach were

successfully applied to predict classes in biological [RK15] or medical [Hug+17] science.

3.6. Conclusion on State-of-the-Art

This chapter provided an answer to the �rst research question: Which state-of-the-art
NLP-approaches exist to analyze user-generated product description texts with respect to their
in�uence on the product price? by focusing on word representations and text classi�cation

methods. I showed that state-of-the-art approaches in NLP are based on meaningful word

vectors that are passed into a neural network architecture to predict the target variable.

The variability of the output layer in a neural network makes it possible to change the

prediction of a class into a prediction of a price or price residual (regression).

Four di�erent approaches were presented in Section 3.1 and 3.2 to show the state-of-the-art

in building word representations. They are build upon FNNs or deep bidirectional archi-

tectures that provide promising results in current NLP research. Section 3.1.1 illustrated

the advantage of word embeddings over the vector space model or tf-idf, which were

presented in the previous chapter. Contextual word representations make it possible to

display mathematical relations between words based on their semantic and syntax.

Advanced Arti�cial Neural Networks for improving the performance in text classi�cation

were presented in the second half of the chapter. The attention mechanism enables RNNs

to put their focus on essential parts of sequential inputs, such as a set of words or sentences.

Besides the recurrent architectures, CNNs were also presented shortly to extend the review

of state-of-the-art methods in text classi�cation tasks.
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„Prediction is very di�cult, especially if
it’s about the future.“

Niels Bohr

The following chapter presents my approach for the analysis of vehicle description texts

from an online car market in which sellers o�er new and used cars. I improve an existing

pricing model by incorporating the user-generated description texts and applying NLP-

based approaches explained in the previous chapters. This and the next chapter focus on

the second research question: How do such approaches perform on real description text data
for vehicles in an online car market?
My approach splits into the steps Business Understanding, Data Understanding, Data

Preparation and Modeling, which refer to the CRISP-DM that was explained in Section

2.1. In the phase of Business Understanding, I will de�ne the objective variable, which

will be predicted to see whether it is possible to improve the price forecast for cars by

using descriptive texts. Then, an analysis of the dataset, which is used in my research, is

performed in Section 4.2. The next step is Data Preparation that includes techniques, such

as tokenization, lemmatization and stop word removal. Finally, I will give an overview of

the predictive models used to forecast the target variable. The evaluation of the whole

approach will be discussed in Chapter 5.

4.1. Business Understanding

As mentioned in the introduction, online car markets, such as mobile.de [Mob17], pkw.de
[PKW], cars.com [Car] and autotrader.com [Aut], predict market prices based on vehicles’

structured attributes. For example, the price forecast is based on the vehicle’s year of

�rst registration, mileage, color, make of car, model or performance. This helps every

prospective buyer to retrieve a neutral information about the value of a car. In addition to

the technical facts a car has an individual condition, which does also have an in�uence on

its value. I generally assume that more details about a vehicle’s individual condition and

therefore also about a car’s price are contained in the description texts of the automobiles

provided. This provides the opportunity to analyze the texts with respect to their monetary

value.

The following examples support this expectation: The price models from online car markets

are based on structured attributes, but the additional information that the sellers provide in

their user generated description texts is not analyzed with respect to their in�uence on the

car prices. In these texts sellers can tell more detailed information about bumps, scratches
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or rust. Moreover, facts about the replacement of car parts such as engine, clutch or axles

can also be covered in the text format. Thus, analyzing the vehicle description texts should

improve price prediction. Since this hypothesis is very important for further analysis, I

will make a human-based evaluation of the vehicle description texts in Section 4.2.1. This

analysis provides a baseline for my approach and checks whether price information is

contained in the texts.

However, if the assumption above is correct, it is possible to improve the price forecast for

cars through their descriptive texts. Figure 4.1 illustrates a schematic example of my idea

to predict a price deviation by a user-generated description text. My approach improves

the price prediction by forecasting a price di�erence between a predicted market price

and a selling price.

Figure 4.1.: A car has structured attributes, which are used to predict a market price. The

seller of the car sets a price at which the car should be sold. The basic idea of

my approach is the prediction of the price deviation between the predicted

market price and the selling price by using the individual description text

written by the seller. In this example, the price residual to be explained by a

text is 500 e. (Car icon was retrieved from [Fla].)

Therefore, to test whether an improvement of the existing model can be achieved, the

target variable is set to the price residual between the predicted price pricepred according to

the structured attributes and the actual sales price pricesold . Moreover, the whole di�erence

is relativized by pricesold in order to get a better comparison between high and low priced

vehicles. Formula (4.1) shows the calculation of the objective criterion called the relative
price residual (PRrel):

PRrel =
pricepred − pricesold

pricesold
. (4.1)

For example, a negative PRrel indicates an undeprediction of pricepred . The price model

trained on the structured attributes therefore suggests a lower price, compared to the price

at which the car was sold. I assume that the text justi�es this higher price by presenting

the automobile in a positive way than its structured attributes do. The opposite holds for
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a positive PRrel . I set the business objective to the prediction of relative price residuals

for vehicles by using their textual product descriptions as input. The whole pipeline for

my approach is illustrated in Figure 4.2.

Figure 4.2.: The �gure shows my processing pipeline for predicting price residuals, which is

adapted to the CRISP-DM. It splits into Data Understanding, Data Preparation,

Modeling and Evaluation. The cyclic structure indicates that the whole process

has been executed iteratively in this thesis.

My approach starts with the extraction and preparation of the vehicle description texts

from an online car market. The extraction of these texts is constrained by a couple of

factors. Only cars with a vehicle description text are taken from the marketplace. Fur-

thermore, it is important that the o�ers were already removed from the website, as it

is assumed that the car was sold at the price speci�ed by the seller. I do not know the

accurate selling price, but the last price o�ered on the website is the closest approximation.

In addition, I focus on listings from private car sales only, presuming that private sellers

write texts that are more natural and personalized. Texts from professional dealers mostly

repeat the structured attributes in the texts, which does not lead to a real improvement in

price prediction.

After extracting the texts, they are put into a preprocessing phase that �nally creates word

representations, which are further passed into a prediction model. This model forecasts

the corresponding PRrel for the texts. In this thesis, di�erent approaches and models are

evaluated against each other, leading to multiple iterations of the processing pipeline.

Chapter 5 focuses on the evaluation step that discusses results and performance of my

proposed predictive models.

To facilitate the task and get a better judgment on whether the objective criterion PRrel
can be predicted, I turn the task into a classi�cation problem. The result of a classi�cation

task can easily be evaluated by prediction accuracy, which allows simple interpretation.

It would be di�cult to judge a regression task for which there are no reference results.

Therefore, the entire input text set is divided into three classes according to the relative

price residual PRrel , resulting in an underpredicted, neutral and overpredicted class. In

order to achieve a balanced outcome, the number of vehicles in the classes are evenly

distributed, i.e. each class holds 33.3% of the data, as illustrated by Figure 4.3. The business

objective hereby is the prediction of the correct class for a vehicle description text. With

this transformation it is possible to calculate the prediction accuracy, which makes the
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whole results more comparable. As baseline for later comparison, we notice that a random

classi�er would achieve an accuracy of 33.3%.

Figure 4.3.: Every class underpredicted, neutral and overpredicted includes one third of

the cars texts. The plot shows a density distribution of the cars over PRrel . The

red vertical lines illustrate the class boundaries.

4.2. Data Understanding

The following section provides information about the data that is used in my research.

This data stems from an online vehicle market that provides product description texts

in German. Two di�erent datasets are extracted to generalize the results obtained. The

datasets will allow a comparison between newer and older vehicles, as I assume that the

prices for older cars depend more on their individual condition that is covered by the

vehicle description texts. Thus, my approach should especially improve price prediction for

older automobiles. I extract three features for every car: predicted price (pricepred ), the
selling (pricesold ) and the vehicle description text. For further processing and analysis,

I transform all gathered car instances into a pandas DataFrame, which is a data structure

that was explained in Subsection 2.5.3.3. Table 4.1 shows more details about the datasets

„new cars“ and „old cars“. Using Formula (4.1), I calculate the relative price residual for

each vehicle based on pricepred and pricesold . Every PRrel has got a value between -1 and

∞. The di�erence between pricepred and pricesold has got a minimum value of -pricesold ,

because pricepred is at least zero. pricesold can be set to a very low value, which would lead

to low denominator and to a high PRrel . After computing PRrel , I assign all instances of a

dataset to one of the classes: underpredicted, neutral and overpredicted.
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Metadata: 1: New Cars 2: Old Cars

Age of Cars:

Oldest Car registered in: 07-2009 01-2000

Youngest Car registered in: 09-2018 06-2009

Number of Cars: 61,943 112,348

Vocabulary (words): 38,965 56,347

Average Text Length (words): 18.2 20.3

Median of Text Length (words): 10 11

pricepred predicted on:

Full Feature Model: 3 3

RMSE(pricepred,pricesold): 3,516.03 4,792.91

MAD(PRrel ): 0.182 0.355

Reduced Feature Model: 3 7

RMSE(pricepred,pricesold): 4,233.39 -

MAD(PRrel ): 0.243 -

Table 4.1.: This table provides details about two datasets that were used for my research.

The �rst dataset contains newer cars and the second focuses on older cars.

For the newer vehicles, there is a Full Feature Model that predicts the price

of pricepred on all structured attributes and a Reduced Feature Model that was

trained on a smaller number of structured attributes. The Mean Absolute

Deviation (MAD) and the RMSE indicate that price prediction based on a all

structured attributes is less accurate for older cars.
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The �rst dataset contains newer cars that were �rst registered in 2009 or later. His-

togram A.1 can be found in the appendix and gives an insight into the number of vehicles

per year of �rst registration. Most of the cars in this dataset were licensed between 2010

and 2012.

In addition, two predicted prices for the �rst dataset are computed by two di�erent price

prediction models. A Full Feature Model is trained on all structured attributes, while a

Reduced Feature Model contains only a few structured attributes for price prediction. This

makes it possible to compute a relative price residual on the Reduced and on the Full

Feature Model for the new cars dataset. The RMSE between the pricepred and pricesold for

both models is shown in Table 4.1. As expected, the Full Feature Model has a lower RMSE

as the Reduced Feature Model. Besides, the Mean Absolute Deviation (MAD) computed on

the relative price residual PRrel is lower for the Full Feature Model. This makes it possible

to apply my approach on a less and a more accurate target variable. I assume that the

prediction accuracy on the price residuals calculated with the Reduced Feature Model is

higher, because the vehicle texts also contain technical information that is usually covered

in the structured attributes. A pricing model trained on fewer features can therefore be

more easily improved by information from the texts. In this way it can be tested whether

my approach to predict price residual classes works and whether the vehicle description

texts can explain a price di�erence between prediction and sales price.

Figure 4.4.: The plot incorporates instances from the older cars dataset. The density over

cars per Relative Price Residual PRrel that had their �rst registration in 2001

(n = 7,572; µ = 0.033; σ = 0.322) is displayed by the red curve. The blue

curve shows the density for cars that were �rst registered in 2009 (n = 7,566;

µ = −0.006; σ = 0.241). Newer cars tend to have a smaller PRrel , so the

Full Featured Model based on structured attributes predicts the price more

accurately for newer cars than for older cars.
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The second dataset contains older vehicles that were licensed before June 2009. Fig-

ure A.2 illustrated in the appendix shows all cars per year of �rst registration. The oldest

cars were registered in 2000. As the RMSE and the MAD of the Full Feature Model for

the second dataset indicate, the price prediction model for older cars has even a higher

error than the Reduced Model for the �rst dataset. This leads to the assumption that

structured attributes have less in�uence on the price for older cars. I therefore conclude

that individual conditions are more decisive for price prognosis and are presented in the

description texts of the automobiles. Older cars in particular do have a longer text length

on average, which is indicated by Histogram A.3 shown in the appendix.

Moreover, Figure 4.4 displays the density of cars per PRrel for vehicles that had their �rst

registration in 2001 (red) and 2009 (blue). The standard deviation σ = 0.241 for newer cars

is lower than σ = 0.322 for older ones. Thus, I will especially test if it is possible to explain

the relative price residual PRrel with the descriptive texts for older vehicles. I expect to

achieve the greatest impact by analyzing their texts.

Another important insight that can be obtained from the data is that the text length varies

over PRrel . Underpredicted cars have longer text lengths than overpredicted cars, as shown

in Figure A.4 that can be found in the appendix. For example, a car that has a PRrel of -0.9

has an average text length of 24 words, while a car with PRrel = 0.7 is described by a text

of 17 words on average. This makes sense because people want to improve the price of a

car by writing longer description texts and outlining its individual features.

4.2.1. Human-Based Evaluation of Vehicle Description Texts

In this subsection, I will test the assumption whether vehicle description texts in online car

markets contain information about the price of a car. Besides, I will provide a human-based

evaluation for labeling vehicle description texts according to the three classes: underpre-

dicted, neutral and overpredicted. This analysis is based on 360 description texts that are

taken from the older cars dataset. At �rst, the whole dataset is split into three parts of

equal size according to their predicted market price pricepred , leading to a low, a mid and a

high price segment. The price intervals can be obtained from Table A.1 that is illustrated

in the appendix. This is done to test whether higher or lower prices also have an impact

on the prediction performance of relative price residuals in general.

For example, a minimal change on the absolute price may greatly increase or decrease the

relative price residual for a low price, while the relative price residual for a high price is

more stable. The exchange of a low priced car component, which could be described in

the description text, leads to a di�erent impact on the relative residual.

For the manual analysis, 360 texts are extracted from the three price segments, lead-

ing to 120 instances per price set. I only extracted texts that are longer than the median of

x̄0.5 = 11 words, presuming that longer texts contain more meaningful information than

shorter ones. Moreover, every set of 120 texts contains 40 texts of each price residual class

in order to obtain an equal class distribution of 33.3% . After the construction of these

sets, the texts are read and tagged according to the classes: underpredicted, neutral and

overpredicted. I will present the accuracy values of this human-based analysis now. The

low priced cars were predicted with an accuracy of 45,00%. The mid price range was most
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accurately tagged with an accuracy of 51.67%, while the high priced car set was classi�ed

by a human with an accuracy of 40.00% only. This suggests that the vehicle description

texts of mid priced cars can be most precisely predicted to explain a price deviation.

Figure 4.5.: The columns illustrates how many classes a human found in the three price

sets. Low, mid and high priced cars were evaluated separately. Every price

set contained 120 car texts that were classi�ed according to three classes:

underpredicted, neutral and overpredicted. The gray line at 33.3% indicates

the real distribution in every set.

Besides evaluating the accuracy of the low, mid and high price set, it is also crucial to

assess which residual price class has been classi�ed the most. Figure 4.5 illustrates the dis-

tribution of the price residual classes in the three price sets generated by the human-based

evaluation. It illustrates that texts often do not indicate an underpridction. The human

tagged approximately 23% of the texts with the underpredicted class (red). Therefore,

user-generated vehicle description texts do net present the cars in a better way to justify a

higher selling price. In addition, the neutral price residual class is tagged the most in all

three price segments (blue). This indicates that the vehicle description texts often have no

in�uence on the price. To test this hypothesis I will read the texts a second time, but the

outcome is known this time. I will discuss this evaluation in the next paragraph.

In the second human-based analysis, the texts are classi�ed with regard to the ques-

tion whether the text explains the di�erence between the selling price pricesold and the

predicted price pricepred . For this evaluation, it was necessary to re-read the texts while

knowing the actual price residual class for the texts. The results of the task are illustrated

in Figure 4.6. In the lower price segment, 50.83% of the vehicle description texts explain

the price di�erence, and in the upper price segment only 40% are explained by the texts.

Both tasks indicate an upper value for prediction accuracy at approximately 50%.

The �rst analysis provided the result that a human predictor achieves an accuracy of
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Figure 4.6.: The texts were read a second time, but this time the outcome was known. The

blue columns show how many texts explained a di�erence between the selling

price pricesold and the predicted price pricepred .

51.67% to predict the three classes: underpredicted, neutral and overpredicted. The second

task indicates that only 40%-50% of the texts explain a price di�erence. This shows that the

human predictor did some good guesses for the mid priced car segment in the classi�cation

task, because only 47.5% of the texts explained the price di�erence here.

4.2.2. Results Obtained from Data Understanding

The phase of Data Understanding provided a detailed analysis of vehicle description

texts from an online car marketplace. In general, price prediction for older cars on

structured attributes is less accurate than for newer cars. I showed that the texts have an

average text length of 20 words and a median of 11. Thus, the description texts are short,

which is an indicator that the they do not contain very much information. Furthermore,

manually labeling longer texts illustrate that the descriptions often do not explain the

price di�erence between the predicted price and the selling price. Many texts repeat the

structured attributes and frequently state an opposite interpretation, such as indicating

an overprediction when an underprediction happened. For example, it was written in

some texts that a car’s body got scratches and bumps, but the selling price was higher

than the predicted market price. The human-based analysis showed that even a human

was not able to surpass an prediction accuracy of 51.67% for classifying the texts into

underpredicted, neutral or overpredicted.
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4.3. Data Preparation

Preparation of texts is crucial for the success of their analysis. The thesis’ theoretical part

discussed various text preprocessing techniques. The phase of preparing data is focused

on text transformation and splitting the data into a train and test set for modeling and

evaluation. I will outline shortly, which con�gurations of data preprocessing are used to

answer my second research question: How do such approaches perform on real description
text data for vehicles? I start with the description of my word preprocessing approach, in

which the individual words in the vehicle description texts are prepared.

4.3.1. Word Preprocessing

The �rst step in my implementation is the transformation of texts into tokens. The theory

of tokenization was explained in Paragraph 2.2.2.1. I apply a modi�ed version of the spaCy
Tokenizer for the German language to all texts of the datasets. The spaCy-Tokenizer splits

a whole text based on the occurrence of space symbols „ “. It then checks whether an

exception rule can be applied from the speci�ed language, such as splitting the English

word „who’s“ into „who“ and „’s“. The two characters „’s“ abbreviate the word „is“. After-

wards, the Tokenizer looks at pre�xes, su�xes and in�xes of words and checks if they

could divide a word into two parts. Thereby, punctuations, hyphens and quotes serve as

additional split criteria. Because the provided German vehicle description texts contain

many symbols, such as parentheses and bullet points, I adjust the Tokenizer by adding

regular expressions that catch more pre�xes, su�xes and in�xes. All rules of the spaCy-

Tokenizer are hard-coded for every language. Furthermore, the Tokenizer is working in a

loop. If a word has been split by an exception, pre�x, su�x or in�x, the Tokenizer runs

through the newly generated words again. This makes it possible to detect nested tokens

that were build up by many words [Exp17]. The average word length for the data that

was split by the spaCy-Tokenizer is shown in Table 4.1.

The second phase is lemmatization or stemming. Both approaches are tested to check

which one works better. It makes sense to apply lemmatization before stop word re-

moval, due to the fact that lemmas are contained in stop word lists. In contrast, stemming

should be applied afterwards, unless a stemmed stop word list is available. Lemmatiza-

tion is done by spaCy’s Lemmatizer and NLTK provides the Snowball-Stemmer for German.

The next step is stop word removal, which is applied to reduce the overall vocabulary in

the corpus. I will test whether my approach performs better with or without stop word

removal, because stop words could be essential for receiving correct information about a

car’s condition. For example, if somebody writes that the car has „no“ scratches or „no“

rust, the stop word „no“ changes the whole statement of a vehicle description text and is

therefore important. The stop word list is provided by spaCy’s German language model

and is implemented by simply checking whether a word from the text is included in the

stop word list. For better word recognition and a second reduction in vocabulary, I have

converted all words to lowercase before stop word removal.
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4.3.2. Document andWord Representations

Transforming words and documents to machine readable representations is the last part

in my preprocessing pipeline, as they work as input for the modeling phase. Five di�erent

approaches are tested separately: Vector Space Model with term frequency, Vector Space

Model with tf-idf, word2vec, GloVe and fastText. They represent words and documents in

di�erent forms. This subsection describes how the word representations are constructed

and in what kind of format I will use them.

4.3.2.1. Vector Space Model

The Vector Space Model represents documents as vectors. I construct these document

vectors on the new and old car dataset. Therefore, all features (words) from a vehicle

description text are included in a single document vector. The vocabulary of the newer

car dataset contains 38,965 unique words, while the old car set has a vocabulary of 56,347

words. The vector size for representing a document in the Vector Space Model equals the

number of words in a dataset. The theory for this was presented in Subsection 2.2.2.5.

The �rst representation build by the Vector Space Model is based on term frequency only. I

count the occurrences of all words in a vehicle description text and set their corresponding

entries in the document vector to their quantity. For example, a vehicle description text

from the newer cars dataset will be represented by a vector with the length of 38,965. The

vector for the document d is created by

Ψt f (d) = (t f (w1,d), t f (w2,d), . . . , t f (wn,d)) ∈ R
n, (4.2)

where n = 38965. t f (wi,d) indicates the term frequency in the document for every word

in the vocabulary.

The second representation that is build by the Vector Space Model is based on tf-idf. I

use the Python library scikit-learn and the relative normalized term frequency (ntfrel) to

calculate the tf-idf for every word in a document. tf-idf weights the words according to

their inverse occurrence in the whole corpus. Frequent words do have a lower weight

than rare words.

4.3.2.2. Word Embeddings

In Chapter 3 three state-of-the-art approaches for the creation of word embeddings were

presented. I will use word2vec, GloVe and fastText to represent a vehicle description text

by a sequence of word vectors. For example, a document d = w1,w2, . . . ,w |d | will be

presented by

Ψembed(w1,w2, . . . ,w |d |) = v1,v2, . . . ,v |d | =

©«
0.41

...

0.78

ª®®®®¬
,

©«
0.20

...

0.97

ª®®®®¬
, . . . ,

©«
0.32

...

0.30

ª®®®®¬︸                            ︷︷                            ︸
|d | word vectors

, (4.3)
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wherebyvi has the length of the embedding dimension (ED). The word vectorsv1,v2, . . . ,v |d |
and their size depend on the word embedding method used. I will continue to explain how

the word vectors are created with the word2vec approach.

The word2vec representations are trained with the CBOW approach and a context window

of 5 words. 3,728,006 vehicle description texts that include 9,787,091 sentences are used as

input for training. This set of vehicle description texts was extracted separately from the

online car market. Furthermore, ED is set to 300. The word embeddings are trained with

the implementation from the Python package gensim. word2vec enables words used in a

similar local context to have similar word vectors. For example, the most similar words

for the word „beule“, which is German for „bump“, is „delle“, „kratzer“ and „schramme“.

They all indicate a small damage in a car’s bodywork and are used in the same contexts.

Figure 4.7.: The graph shows a t-Distributed Stochastic Neighbor Embedding (t-SNE) of

word2vec embeddings trained on 3,728,006 vehicle description texts. t-SNE

maps the embeddings with a space of 300 into a two-dimensional representa-

tion. The red dots are the 10 most similar word embeddings for „beule“ and

the green points show the 10 most similar word embeddings for „neu“. This

graph illustrates that both clusters are used in di�erent context and can clearly

be separated.

Figure 4.7 shows the positions of the most similar words of „beule“ in a two-dimensional

space, which was created by transforming the high-dimensional embeddings with t-Dis-

tributed Stochastic Neighbor Embedding (t-SNE).

The green word embeddings show the most related words for „neu“, which translates to

the English word „new“. Both word clusters are used in di�erent context and can clearly

be separated. In addition, the �gure provides an insight into the orthography of the vehicle

description texts. Three out of 20 words that are illustrated here are misspelled. However,

since word embeddings generate word vectors based on context, the spelling should be a

minor problem when the embeddings are trained locally on the vehicle description texts.
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Besides word2vec, I will also test the performance GloVe as input representation. GloVe

will be trained on the same dataset as word2vec and the embedding size is also set to 300.

The word vectors are trained with the implementation provided by the authors of [PSM14]
1
.

fastText is also tested as word embedding, but the embeddings are pretrained on a large cor-

pus containing German News and Wikipedia articles. I want to check whether pretrained

embeddings can outperform embeddings trained on task speci�c texts. I use fastText for

this task, due to the fact that fastText trains on subword information, which makes it

suitable to build up word vectors for made up and out of vocabulary words.

4.3.3. Train- and Testsplit

This subsection will shortly illustrate the train- and testsplit for my implementation. Table

4.2 indicates that 20% of the data are used to test my models, while 80% are used to train

them. I pick the test and train instances at random. With this split approximately 50,000

instances can be used for training a model for the newer cars dataset, which is enough to

train complex ANN-models.

Train- and Testsplit: 1: New Cars 2: Old Cars

Number of Train Instances: 49,554 89,831

Number of Test Instances: 12,389 22,458

Total Vocabulary: 38,965 56,347

Vocabulary of Train Set: 34,455 49,805

Vocabulary of Test Set: 15,897 22,616

Shared Vocabulary: 11,387 16,074

Table 4.2.: Both datasets are split using a 80/20 split. 80% of data are used to train the model

and 20% provide a hold out set for evaluation. In addition, the instances are

selected at random. The train- and test set share in both datasets approximately

30% of the vocabulary.

The vocabulary in the train- and test set are not evenly distributed. Figure 4.8 displays

a Venn diagram for the new cars dataset, which illustrates the distribution over the

vocabulary in its train and test set. 29.22% of the vocabulary appear in both sets. Therefore,

approximately 30% of the words in the vocabulary are features that a predictive model

already has seen during training and come up in test set again. However, the vehicle

description texts of the new car dataset contain 1,127,233 words and 1,086,279 of this words

are in the train and test set. Therefore, 96.37% of the overall words are covered by 29.22%

1https://github.com/stanfordnlp/GloVe
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of the vocabulary. The Venn diagram for the older car dataset is shown in the appendix

(Figure A.5).

Figure 4.8.: This Venn diagram shows the vocabulary in the train- and test set of the new

cars dataset. 88.43% of the words in the vocabulary are contained in the training

set, while the test dataset incorporates 40.80%. 29.22% of the vocabulary in the

newer car dataset occur in the train- and test set, which is indicated by the red

area.

4.4. Modeling

The last section in my approach focuses on details of the predictive models. As illustrated

by Figure 4.2, I will use Arti�cial Neural Networks to predict price residual classes, because

they are recently used in NLP, as shown in Chapter 3. A FNN, a LSTM and a LSTM with an

attention mechanism will serve as prediction algorithms. Nevertheless, I will also compare

them to a classical machine learning approach. Random Forest will serve as a baseline

here. Table 4.3 shows my di�erent input-model combinations. The objective of all models

is the classi�cation of a vehicle description text. They are all trained on the train set and

evaluated on the test set. The results are discussed in the next chapter. Random Forest

and the FNN process document vectors. Because Random Forest serves only as baseline, I

will test term frequency and tf-idf only. The RNNs take sequential word vectors as inputs

that will be provided by the word embedding approaches. In addition, it is possible to use

averaged word embeddings for a document as input for the FNN. The word vector for

each word in a document is used. All these vectors are then summed up to compute their

average. I will examine this input for the FNN by using word2vec. In the training phase, I

set the split criterion to the information gain and construct ten trees. Furthermore, I used

scikit-learn to implement the classi�er.
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Model: Random Forest FNN RNNs

Vector Space Model tf: 3 3 -

Vector Space Model tf-idf: 3 3 -

word2vec - 3 3

GloVe - - 3

fastText - - 3

Table 4.3.: This table shows di�erent input-model con�gurations, which are tested to

predict the PRrel -classes. Random Forest and FNN take a single document

vector as input, while the recurrent algorithms deal with a sequence of word

vectors. For incorporating word embeddings into the FNN, I use averaged word

vectors to create one document vector.

4.4.1. Random Forest

Besides the human-based labeling of the texts, which was discussed in the Section 4.2.1, I

will test Random Forest to provide another baseline. The decision trees of the Random

Forest are trained to forecast a price residual class for every description text. In Subsection

2.2.3.1 I have explained the theory of Random Forest. The input is a entire document

vector that has been converted into a machine readable representation by the Vector Space

Model. I will use term frequency and tf-idf as input and test which one performs better.

Figure 4.9 illustrates the implementation for the term frequency input.

Figure 4.9.: The Figure illustrates the schema for the Random Forest classi�er. An ensemble

of decision trees predicts the class for the vehicle description text. The input is

a document vector that was created by the Vector Space Model and the term

frequency.

4.4.2. Feed Forward Neural Network

After the implementation of Random Forest that will provide a baseline, I integrate a FNN

into my approach. PyTorch is used as supporting framework to implement the FNN. The
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input of the network are document vectors with the length of the vocabulary generated

by the Vector Space Model and averaged word2vec. When testing the averaged word

embeddings, the FNN processes vectors with the length of the embedding dimension of

word2vec. The FNNs output is determined by a softmax function on top of the output

layer that computes a probability for each class. Figure 4.10 shows the schema for my

implementation of the FNN model.

Figure 4.10.: The Figure illustrates the architecture for the FNN used in my approach. It

calculates the probability for each class with a softmax function on top of the

output layer. The size of the input layer equals the size of the vocabulary in a

dataset. The input vector is created by the Vector Space Model based on term

frequency.

In addition, I train the network with mini-batching and the Adaptive Moment Estimation

(Adam), which is a stochastic optimization algorithm that calculates „adaptive learning

rates for di�erent parameters from estimates of �rst and second moments of the gradients“

[KB15]. Therefore, Adam adapts its learning rate η during training and optimizes the

learning rate for every parameter. Due to the fact that Adam works well in practice and

outperforms SGD [KB15], I will choose it as the optimization algorithm to train the FNN.

By using this approach, I need to specify two hyperparameters. The �rst one is the batch

size that is used in the training step and the second hyperparameter is the initial learning

rate for updating the network’s weights. I will do a grid search on these parameters, which

will be discussed in the next chapter. Moreover, I also add a hidden layer to the FNN to

improve the model complexity and test whether this could improve the prediction accuracy

on the test set. I use ReLU as activation function between the hidden and output layer,

because it usually outperform other functions like tanh, as discussed in Section 2.3.2.

4.4.3. Recurrent Neural Networks

The recurrent neural networks that I implement in this thesis are inspired by the work

of [PCJ17] and [RE15]. A LSTM and a LSTM with an attention mechanism are used to

predict the price residual classes for vehicle description texts. Just like implementing the

FNN, I also use PyTorch for the RNNs. I test them with di�erent kinds of word embeddings,

such as word2vec, GloVe or fastText. Because, RNNs support sequential inputs, every

word is converted to its corresponding word vector. These vectors are then passed into the

network in the order in which they appear in the vehicle description text. By using this
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sequential input, it is possible to get the meaning of statements built with more than one

word. Especially, negative statements that are introduced by negating word, such as „no“

or „none“ are found. This should increase the prediction accuracy for the price residual

classes. The training of both networks is also done by Adam and mini-batching. PyTorch
processes batches with the same length only. Therefore, I take the length of the longest

document in a dataset and �ll the di�erence in shorter texts with vectors of zeros. Both

RNNs use this sequential inputs. Furthermore, I need to specify three hyperparameters:

learning rate, hidden size and batch size, which will be optimized in a grid search.

4.4.3.1. LSTM

The LSTM analyzes the sequence step by step and generates a hidden state hi after pro-

cessing each input vector. The last hidden state h |d | is forwarded to an FNN, which �nally

predicts the class for the vehicle description text. A softmax function on top of the output

layer calculates the class probabilities. Figure 4.11 illustrates the schema of this procedure.

Figure 4.11.: The word embeddings of a vehicle description text are passed into the LSTM

network. The last hidden state of the sequence is put into a FNN that predicts

the class for the text. Thus, the FNN takes vectors with the length of a hidden

LSTM state h. To predict the price residual class, a softmax function is used

on the output layer.

4.4.3.2. Attention-LSTM

The second LSTM, which is tested in my research has got an attention mechanism that

is similar to the ones proposed in [PCJ17] and [RE15]. The whole structure, which is

illustrated in Figure 4.12, is more complex than the one for the LSTM introduced above. A

LSTM processes the word vectors step by step, but forwards them to an attention network.

This network computes attention weights for every hidden state hi . Since a softmax

function on top of the attention network’s output layer is used, the weights add up to 1.

Every hidden state is then multiplied with its corresponding attention weight. Afterwards,

all weighted states are summed up to create a context state c , which is forwarded to a FNN

that calculates the probability for each price residual class. This approach shifts the focus
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Figure 4.12.: The word embeddings of a document are forwarded to a LSTM. An attention

net calculates the attention weights for every hidden state hi . The hidden

states are multiplied with their attention weight and summed up to generate

a context state c . This state is passed into an FNN, which predicts the price

residual class.

to the words in the input sequence that are important for predicting the target variable.

The result of both recurrent networks are presented in the next chapter. I will examine

whether adding an attention mechanism to the LSTM can improve its performance.
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„Torture the data, and it will confess to
anything.“

Ronald Coase

The �fth chapter of this thesis is devoted to the evaluation of my approach. Chapter 4

provided details about the applied research part of this thesis and includes preliminary

work to answer the second research question: How do such approaches perform on real
description text data for vehicles in an online car market? The following chapter will

outline the performance of my proposed approaches on the new and old cars dataset

that were presented in Section 4.2. This is done to investigate whether the prediction of

price residuals works better when using the vehicle description texts of newer or older

automobiles. I will provide the results of Random Forest as baseline, the FNN, the LSTM and

the Attention-LSTM for both datasets. Training and evaluation of the ANNs is done on a

NVIDIA Tesla K80 GPU that provides 24 GB of memory. I will compare the models in terms

of their test accuracy. A random classi�er would classify 33.3% of the vehicle description

texts correctly, because all three classes (undepredicted, neutral and overpredicted) are

equally distributed.

I will start with the results on the new cars dataset. In this section, I will evaluate my

approach on PRrel -classes computed by the Full Feature and Reduced Feature Model that

were introduced in Table 4.1. At the end of this chapter, the performance of my approach

is evaluated on the old cars dataset. This also includes a separate assessment whether my

approach predicts low, mid or high priced cars more precisely. I will compare these results

to the human-based evaluation in Section 4.2.1.

5.1. Evaluation of the Approach on New Cars

In the following section, I present the results for the new cars dataset. I will focus on the

relative price residual as target variable that is computed by Full Feature Model at �rst. To

give an overview of the results, Table 5.1 presents the best performance of every model. It

displays the test accuracy for each algorithm. I compute the accuracy on all 12,389 test

instances from the new cars dataset.

Random Forest is only applied to provide a baseline for comparing the ANNs with a classical

machine learning approach. Therefore, I present its results shortly here. As mentioned in

Section 4.4.1, 10 decision trees are used and the entropy is set as split criterion. With this

setting, Random Forest predicts the price residual classes with a maximum accuracy of

43.22%, which is 9.89 percentage points better than randomly classifying the texts. The

best input representation for Random Forest is tf-idf.
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Model: Accuracy:

Random Forest: 43.22%

FNN: 45.78%

LSTM: 44.98%

Attention-LSTM: 45.47%

Table 5.1.: The table shows the best accuracy values for all predictive models. The best

results with the FNN are achieved with a lemmatized word input and no hidden

layers.

The results of the ANNs will be presented in the next sections in more detail. Nevertheless,

I will brie�y summarize the outcomes here. The FNN predicts the vehicle description texts

with an accuracy of 45.78%. The optimal hyperparameters for the FNN are no hidden

layers, a training batch size of 512 and a learning rate of 0.003.

With word vectors created by word2vec, the LSTM accomplishes an accuracy of 44.98%

with a batch size of 512, a hidden state size of 64 and a learning rate of 0.0003. The

Attention-LSTM classi�es 45.47% correctly with the same hidden size and batch size as the

LSTM, but a higher η of 0.003. Overall, the FNN is the most accurate model on the new

cars dataset.

5.1.1. Feed Forward Neural Network

This section provides a detailed evaluation of the FNN whose architecture was illustrated

in Section 4.4.2. I will start with a grid search on the hyperparameters batch size and

Hyperparameters: Values:

Learning Rate (η): {0.0003, 0.001, 0.003, 0.01}

Batch Size: {128, 256, 512}

Number of Hidden Layers: {0, 1}

Hidden Size: {16, 32, 128, 256, 512}

Word Preprocessing: stop word removal, stemming, lemmatization

Input Representation: term frequency, tf-idf, averaged word2vec

Table 5.2.: The tested hyperparameters for the FNN are shown in this table. Four di�erent

learning rates and three batch size are tested. The performance of a FNN with

one hidden layer and four distinct hidden sizes is evaluated separately. In

addition, I compare three word preprocessing techniques and three document

transformation methods.
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learning rate. Afterwards, I continue to test whether adding a hidden layer will improve

the performance of the FNN. At the end of this subsection an evaluation of lemmatization,

stemming and stop word removal will take place. Moreover, I will compare the performance

of averaged word embeddings, the Vector Space Model with term frequency and tf-idf. I

vary six di�erent hyperparameters for the FNN, as shown in Table 5.2. These represent

the initial parameters of the grid search only. If a parameter on the edge of the grid will

perform best, I will extend the grid.

5.1.1.1. Grid Search on Batch Size and Learning Rate

For the realization of the hyperparameter grid search on batch size and learning rate, I use

the Vector Space Model with term frequency as input for every vehicle description text

and passes it into the network. This provides a simple setting to test which batch size and

learning rate work best. I will test the performance of averaged word2vec and tf-idf in

Subsection 5.1.1.4.

The initial learning rate for Adam is chosen from 0.0003, 0.001, 0.003 and 0.01. PyTorch’s

default learning rate for Adam is 0.001, which conforms to the information given in

literature [LH17]. Thus, I set the learning rate to values below and above this default

parameter to see whether a higher or lower learning rate performs better. Moreover, I will

start with a batch size of 128, 256 and 512, since a batch size between 32 and 512 training

instances performs good in practice [Kes+16]. The training is done with early stopping

and an evaluation on the whole test set in each training epoch. If the accuracy on the test

set does not increase after 5 training iterations, the FNN stops training. I will compare

the outcomes of the grid search with the test accuracy. Table 5.3 shows the results for

Maximum Accuracy on the Test Set - Early Stopping

Batch Size Learning Rate η

0.0003 0.001 0.003 0.01

128 45.42% 45.42% 45.32% 44.87%

256 45.18% 45.44% 45.37% 45.11%

512 45.31% 45.43% 45.52% 45.38%

1024 43.60% 45.41% 45.47% 45.24%

Table 5.3.: The results are generated by a grid search for optimizing batch size and learning

rate of the FNN. The highest value is achieved with a training batch size of 512

and η = 0.003. This setting reaches the highest accuracy after 12 iterations.

all hyperparameters. The FNN performs best with a batch size of 512. Since this value

is on the edge of the grid, I also test a batch size of 1024. However, increasing the batch

size does not improve performance. The best result that the grid search found is gained

after 12 training iterations. Hereby, an accuracy of 45.52% is achieved with η = 0.003 and
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a training batch size of 512. Therefore, I will set the hyperparameters to these values for

further improving the FNN.

5.1.1.2. Adding a Hidden Layer

To see whether increasing the complexity of the FNN can improve test accuracy, I add a

hidden layer. This is the �rst step to crate a Deep FNN. For �nding the best dimension

of the hidden layer, another grid search is done. Learning rate is kept at 0.003 and the

training batch size stay at 512. I set the hidden size to 16, 32, 128, 256 and 512 to see if a

lower or higher dimension can increase the performance. Furthermore, ReLU is used as

activation function between the hidden and output layer, as discussed in Section 4.4.2.

Hidden Size Maximum Accuracy on the Test
Set - Early Stopping

16 45.33%

32 45.48%

128 45.12%

256 45.09%

512 44.78%

Table 5.4.: This table shows the results of the grid search for a FNN with one hidden layer.

Five di�erent dimensions of the hidden layer are tested: 16, 32, 128, 256 and 512.

For training, I use a batch size of 512 and a learning rate of 0.003. The highest

accuracy on the test set of 45.48% is achieved after 3 training iterations with a

hidden size of 32.

Table 5.4 illustrates that the best accuracy of 45.48% is reached with a hidden size of 32.

The results indicate that adding a hidden layer to the network does not improve the test

accuracy. The network with no hidden layers achieves a higher accuracy. Besides, the

network with a hidden layer su�ers from over�tting, which is shown by Figure 5.1.

The �gure demonstrates the accuracy per training iteration for the network with one

hidden layer and a hidden size of 32. The accuracy of the train set is shown by the red

curve, whereas the blue curve indicates the accuracy on the test set. After 3 training

iterations the test accuracy drops slowly, while the network learns the training data by

heart. The hidden layer improves the networks capacity, which leads to low bias but high

variance. To address this problem, I add L2-regularization to prevent the network from

over�tting. As explained in Subsection 2.3.4.6, L2-regularization adds a penalty term when

the weights of the network are updated. This restricts over�tting on the training data

and usually increases generalization. Di�erent penalty weights (λ) are tested to check

whether L2-regularization can improve the accuracy on the test set. The results of this

parameter optimization for λ are presented in Table A.2 in the appendix. λ = 0.0001

performs best with an accuracy of 45.25%. Thus, even L2-regularization does not prevent
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Figure 5.1.: Figure 5.1 shows the accuracy of the train- (red) and test set (blue) per training

epoch for a FNN with one hidden layer and a hidden size of 32. To illustrate

the over�tting, the FNN is trained with 40 training epochs. The red curve is

growing very fast, while the blue curve is slightly decreasing after 3 epochs.
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the FNN with one hidden layer from over�tting. On the contrary, the network trained

with L2-regularization is worse than without it. In conclusion, adding a hidden layer does

not improve the test accuracy. Therefore, I will not add more hidden layers, as this would

lead to an even higher model capacity and an over�tting on the training data.

5.1.1.3. Optimization of Word Preprocessing

Besides optimizing the number of hidden layers, batch size and learning rate, it is nec-

essary to �nd the best suited word inputs. Thus, I compare di�erent methods for word

preprocessing that were discussed in Section 4.3.1. Combinations of stop word removal

(swr), stemming and lemmatization are tested. Just like in Subsection 5.1.1.1, I use the

Vector Space Model with term frequency as representation for the vehicle description

texts, a learning rate of 0.003 and a batch size of 512.

Figure 5.2.: The plot shows the test accuracy per training iteration for di�erent word

preprocessing methods. The performances of stop word removal (green),

stemming (blue) and lemmatization (orange) are displayed. To see if word

preprocessing can make a di�erence, the red curve illustrates the performance

of an unprocessed word input. A lemmatized input without stop word removal

performs best.

Figure 5.2 shows how the di�erent word preprocessing methods perform. For the sake of

clarity, I only illustrate the performance of an unprocessed, stop word removed, stemmed

and lemmatized word input. I also test all other useful combinations, such as lemmatization

with stop word removal, but will not show their results here, since the best suited word

preprocessing technique for the FNN is already included in the Figure.

In general, stop word removal does not improve prediction accuracy on the test set. On the

contrary, it lowers it. This is a result that was expected, because stop words can change the

whole meaning of a statement, which makes them important for price prediction. Thus,
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stop word removal will be left out. A lemmatized input is better than any other word input

for the FNN. Lemmatizing reduces the vocabulary in the new cars dataset from 38,965

to 36,297 words and therefore decreases the number of input features by 6.8 percentage

points. The words are joined with their lemmas, which enables the FNN to recognize

similar words. In order to get price information from vehicle description texts, it helps

when words that have a similar meaning are associated with each other. This makes it

easier to deduce the actual message of a text. With lemmatization a maximum accuracy

of 45.78% is achieved. Every other combination of word preprocessing, such as applying

lemmatization, stemming and stop word removal at the same time, perform worse than

mere lemmatization. Therefore, I assume that a tokenized word input with lemmatization

and no stop word removal works best for predicting relative price residual classes.

5.1.1.4. Choosing the Best Document Representation

Apart from word preprocessing, the transformation of the vehicle description texts into a

document vector is also important for optimizing the FNN. Averaged word2vec, the Vector

Space Model with term frequency and tf-idf are compared to choose the best document

vector as input. This will be the last optimization I will do for the FNN.

Since lemmatization performs best for term frequency, I train the FNN with tf-idf and

averaged word2vec embeddings on lemmatized words with no stop word removal. In

addition, I also evaluate an unprocessed input with no lemmatization, no stop word removal

and no stemming for tf-idf and averaged word2vec. The training is again done with a

batch size of 512 and η = 0.003. The results generated by tf-idf are not better than those

created with term frequency. Lemmatization with tf-idf reaches a maximum accuracy of

45.31% after 64 training iterations, while the unprocessed input achieves an accuracy of

45.29%.

The averaged word2vec vectors as input do not improve test accuracy either. A maximum

accuracy of 44.26% is achieved with unlemmatized word embeddings. They are probably

su�ering from an averaging e�ect here. To test lemmatization, I train word vectors based

on lemmatized words and calculate their average for every document. However, by using

lemmatized word vectors as input, a maximum accuracy of 44.19% is reached.

Since RNNs are able to process word embeddings sequentially, I assume that they perform

better in RNNs. This will be evaluated in the next section. Nevertheless, the best outcome

that the FNN creates is an accuracy of 45.78% based on term frequency and lemmatization.

5.1.2. Long Short-TermMemory Networks

This Section discusses the results of RNNs. The structure of my LSTM and attention-based

LSTM were illustrated in Section 4.4.3. I will investigate if sequence-based approaches

outperform FNN and Random Forest. This section mainly focuses on the LSTM, because

I �rst optimize it and use the insights for deploying the more complex attention-based

LSTM whose performance will be evaluated in Subsection 5.1.2.3.

At �rst, I will start again with a grid search on the hyperparameters for the LSTM. This

time not only the batch size and learning rate must be optimized, but also the size of

the hidden state. Afterwards, I will compare the performance of word2vec, GloVe and
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Hyperparameters: Values:

Learning Rate: {0.0003, 0.001, 0.003}

Batch Size: {128, 256, 512}

Size of Hidden State: {64, 128, 256, 512}

Input Representation: word2vec, GloVe, fastText

Table 5.5.: Four di�erent hyperparameters for the LSTM are tested, as this table illustrates.

I use three di�erent learning rates and three batch sizes to �nd the optimal

setting. The dimension of the LSTM’s hidden state is set to 64, 128, 256 and 512.

fastText as input. I will not compare stop word removal or a stemming, because they do

not improve the result of the FNN. Furthermore, I will not test whether preprocessing

words with lemmatization will provide an improvement in accuracy. Since RNNs use

word embeddings as input, lemmatization will not lead to an enhancement, because a

lemma of a word has a word vector similar to the word itself. In addition, unlemmatized

word embeddings provided a better input for the FNN than lemmatized ones, as discussed

in Section 5.1.1.4. Table 5.5 shows hyperparameters and their values for optimizing the

LSTM.

5.1.2.1. Grid Search on Hidden Size, Batch Size and Learning Rate

The grid search for the hyperparameters of the LSTM is similar to that for the FNN.

However, LSTMs have a hidden state size that also needs to be optimized. I chose di�erent

dimensions for the hidden state vectors and test a size of 64, 128, 256 and 512. Furthermore,

the batch size is set to 128, 256 and 512. The grid search implements learning rates of

0.0003, 0.001, and 0.003. This leads to 27 di�erent training-settings for LSTM at least. I will

again increase the grid, if a edge value performs best. The input for the network in this

grid search is created by word2vec trained on user-generated vehicle description texts that

were extracted from the online marketplace separately, as explained in Subsection 4.3.2.2.

I use locally trained embeddings, because they usually outperform global embeddings

trained on a general word corpus [Wan+18]. Table A.3 in the appendix provides the results

for the LSTM’s hyperparameter optimization. The test accuracy is again computed on all

12,389 test instances in every training epoch. The best result is achieved with a batch size

of 512, a learning rate of 0.0003 and a hidden size of 64. These parameters are further used

for �nding the best word embeddings.

5.1.2.2. Finding the Best Word Embedding

This subsection is dedicated to the evaluation of di�erent word embedding approaches,

which were proposed in Subsection 4.3.2.2. I will compare word2vec and GloVe that are

trained on vehicle description texts from the online car market. The performance of

fastText trained on German news and Wikipedia texts will also be analyzed.
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Figure 5.3.: The test accuracy per training epoch of the LSTM is displayed here. Three dif-

ferent word embeddings that provide the input for LSTM are tested; word2vec

(green) and GloVe (red) are almost identical in performance, while fastText

(blue) achieves the lowest results.

Figure 5.3 illustrates the test accuracy of the LSTM per training epoch across these word

embedding approaches. The green curve shows how well the LSTM performs when

word2vec is used as word embedding. The performance of GloVe (red) is comparable to

that of word2vec. fastText achieves the lowest accuracy, which is illustrated by the blue

curve. These results display that my approach works better on locally word embeddings

that are trained on the domain-speci�c description texts than general word embeddings

computed on German news and Wikipedia articles. This fact is also con�rmed in literature

[Wan+18]. The vehicle description texts do contain many domain-speci�c vocabulary and

abbreviations. In addition, words are used in other contexts than in news or Wikipedia

articles. The orthography of the user-generated texts is also on a di�erent level, which was

shown by Figure 4.7 in Subsection 4.3.2.2. Because word2vec achieves a marginally higher

accuracy, I will use this method to compute input word vectors for the attention-based

LSTM. The LSTM achieves a best accuracy of 44.98% that surpasses the performance of

Random Forest, but does not exceed the results of the FNN.

5.1.2.3. Attention-LSTM

Optimizing the hyperparameters of the LSTM illustrate that a batch size of 512 and a small

hidden size of 64 perform best. In addition, word embeddings trained on the user-generated

description texts generate the highest accuracy. To �ne-tune the hyperparameters of the

attention-based LSTM, I do another grid search based on a batch sizes of 256, 512 and

1024. The hidden size is set to 32, 64 and 128. The word vectors that provide the input are

generated by word2vec. Table 5.6 illustrates the results of the grid search.
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Maximum Accuracy on the Test Set - Early Stopping

Batch Size
Dimension
of Hidden

State

Learning Rate η

0.0003 0.001 0.003 0.01

256

32 42.09% 43.98% 45.26% 44.65%

64 44.72% 44.85% 45.07% 44.40%

128 44.58% 45.04% 45.31% 45.04%

512

32 43.01% 43.92% 43.64% 44.74%

64 43.96% 44.81% 45.47% 44.73%

128 44.33% 45.05% 45.26% 44.90%

1024

32 41.98% 43.42% 44.92% 45.04%

64 43.22% 44.32% 44.75% 44.97%

128 43.88% 44.16% 45.33% 44.58%

Table 5.6.: The table shows the results of the grid search done for the Attention-LSTM.

The highest accuracy on the test set of 45.47% is achieved with a training batch

size of 512, a hidden state dimension of 64 and η = 0.003.

The attention-based LSTM performs best with a batch size of 512 and a hidden size of 64,

such as LSTM. The highest accuracy is 45.47%. The attention mechanism increases the

accuracy of the LSTM by marginal 0.49 percentage points. On the new cars dataset, the

LSTM with attention delivers the second best performance. It is 2.25% more accurate than

Random Forest but can not surpass the FNN. Therefore, the FNN based on term frequency

is best suited for the prediction of price residual classes in an online car market.

5.1.3. Di�erence between Reduced and Full Feature Model

This subsection will examine whether my approach explains the price residuals more

precisely for a less or a more accurate pricing model. Moreover, it will investigate if it

is possible to predict price residual classes from vehicle description texts in general. As

shown by Table 4.1, two di�erent price prediction models exist for the new cars dataset.

I evaluate FNN on both models and compare their results. Test and training instances

are the same, but the predicted price in the target objective PRrel is computed one time

with the Full Feature Model and another time with the Reduced Feature Model, which

was trained on less structured attributes. I assume that the class prediction accuracy for

the vehicle description texts is higher if the target variable is computed with the Reduced

Feature Model. The vehicle description texts often contain the same information that is

already included in structured attributes. Therefore, a price di�erence between selling

price and predicted price based on fewer attributes can be more easily improved by the

74



5.2. Evaluation of the Approach on Old Cars

texts. Attributes that have been left out for predicting the market price are described in

the texts. The FNN extracts the information about these attributes to predict the price

residual class. Thus, it should be more precise in explaining the price deviation for the

feature-poor pricing model. In addition, if this assumption holds, the comparison shows

that my approach can improve an existing pricing model.

Plot 5.4 illustrates the results of the FNN on the Reduced and Full Feature Model. The

accuracy of predicting price residual classes is higher when the predicted sales prices are

forecasted by the Reduced Feature Model. Therefore, it is possible to predict relative price

residuals with user-generated vehicle description texts. The texts do explain the price

residual classes more precisely when a less accurate model is used to predict the market

price of a vehicle.

Figure 5.4.: The red and blue curves illustrate the accuracy of a FNN based on the Vector

Space Model with term frequency. The red curve displays the classi�cation

accuracy of the price residuals classes computed with the Reduced Feature

Model. In contrast, the blue line shows the accuracy when the classes are

computed by the Full Feature Model. The evaluation is performed on all 12,389

test instances in each epoch.

5.2. Evaluation of the Approach on Old Cars

In the following sections, I will present the results of my approach on the old cars dataset.

I want to improve the price prediction of old cars in particular, because their structured

attributes are less decisive for their price, which was illustrated in Section 4.2. Table

5.7 shows the results for the old cars dataset. All models are trained with the optimized

hyperparameters that were found in the previous sections. Random Forest achieves a

maximum accuracy of 40.40%, which is lower compared to the results for the new cars
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dataset. Besides Random Forest, the FNN performs also worse on the old cars dataset.

An accuracy of 42.62% is reached by the FNN after 4 training epochs. The LSTM and

Attention-LSTM also have a lower accuracy on the old cars dataset. After 15 training

iterations, the LSTM reaches an accuracy of 42.31%. The attention-based LSTM is only

marginally better than the mere LSTM. The best performance is again achieved by the

FNN.

Model: Accuracy:

Random Forest: 40.40%

FNN: 42.62%

LSTM: 42.31%

Attention-LSTM 42.52%

Table 5.7.: The table shows the accuracy for all predictive models on the old cars dataset.

FNN reaches an accuracy of 42.62% and outperforms all other algorithms.

The results of the old cars dataset illustrate that my approach can improve the price

prediction for older cars. However, all predictive models are more accurate on the new

cars dataset. As illustrated in Section 4.2 it is more di�cult to predict car prices based

on structured attributes for older cars. My analysis shows that this is also holds for their

description texts. Therefore, the descriptive texts for older vehicles do not explain the

price residuals more precisely than those for newer vehicles. Compared to the random

classi�cation of vehicle description texts, the accuracy is increased by 9.29 percentage

points. The human-based evaluation on texts from the old cars dataset in Section 4.2.1

showed that a human could reach a maximum accuracy of 51.67%. My approach, which

produces an accuracy of 42.62%, is only 9.05 percentage points less accurate than a human.

The human-based evaluation was the most accurate on mid-priced cars. To see whether

my approach provides the same results, I will investigate its performance on low, mid and

high priced cars in the next section.

5.2.1. Results on Low, Mid and High Priced Cars

The human-based evaluation that was discussed in Section 4.2.1 divides the old cars dataset

into three price classes (low, mid, high). This was done to test whether vehicle description

texts of higher or lower priced cars have a di�erent impact on their relative price residuals.

For example, in the case of a cheap car, the replacement of a high-priced vehicle component

that could be described in the description text leads to a di�erent e�ect on PRrel than in

the case of an expensive car. I will evaluate if my approach produces the same results as

the human-based evaluation. To test this, I train the FNN three times on each price range

to examine if they also have a di�erent accuracy when predicting price residual classes for

lower or higher priced cars. In each price range I use 80% of the texts for training. The

evaluation is done on the remaining 20%. Table A.1 in the appendix illustrates the price

ranges in more detail.
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Figure 5.5 displays the results of the FNN across the three price ranges. It clearly illustrates

that cars with mid-ranged car prices can be predicted more precisely, which is consistent

with the results of the human-based evaluation in Section 4.2.1. Therefore, vehicle de-

scription texts of mid priced cars have the greatest in�uence on the explanation of their

price residuals. For example, let us assume we have two cars that are both described by a

similar user-generated text. Furthermore, one car is in the mid price range and the other

one is from the low price range. Both description texts include a price reducing fact, such

as a bump or scratch in a car’s bodywork, which should be re�ected in the selling price.

Mid priced cars do usually have a better condition than low priced cars. Since, it is not

expected that a mid priced car has scratches, the description text has a greater impact on

its price. On the contrary, the relative price residuals of a high priced car does not change

much if a scratch exist, because repainting a small car part does have small impact on a

high price.

Figure 5.5.: The Figure displays the accuracy of a FNN that is based on the Vector Space

Model with term frequency. The red curve illustrates the performance on low

priced cars, while the green curve displays the accuracy on high priced cars.

The most precise prediction is done on the mid priced car range (blue). These

results are consistent with the human based evaluation from Section 4.2.1.

5.3. Summary of the Observed Results in Evaluation and
Discussion

The practical part of this thesis shows that it is possible to increase price prediction by

incorporating vehicle description texts. The evaluation of my approach on a target variable

that was computed by a Reduced and Full Feature Model in Section 5.1.3 provides evidence
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for this. Moreover, it is possible to increase the classi�cation accuracy for predicting price

residual classes up to 12.45 percentage points compared to random classi�cation. The best

predictive model from my approach is a FNN with no hidden layer. All models are more

precise on the new cars dataset than on the older cars dataset. Discussing the results from

the previous subsection showed that the relative price residual classes can be predicted

the most accurate on vehicle description texts from mid priced cars.
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„In literature and in life we ultimately
pursue, not conclusions, but beginnings.“

Sam Tanenhaus

This master thesis presented current state-of-the-art techniques in NLP and showed an

approach to apply these NLP methods to the prediction of price residual classes for user-

generated vehicle description texts in an online car market.

Current research in NLP-based text analysis focuses on advanced Arti�cial Neural Net-

works that use meaningful word representations as input. This thesis covered FNNs, RNNs,

attention based RNNs, HANs and CNNs that are contemporarily used to analyze texts

with respect to a given target variable. Furthermore, I presented di�erent types of word

embeddings and used them in the approach to show their performance on user-generated

vehicle description texts. The theory behind deep contextualized word representations

like ELMo was also treated to give an outlook on the development of recent trends in

NLP. The transformation of words into meaningful and machine-readable formats is an

emerging �eld of research in NLP, driven by complex deep learning architectures like

deep bidirectional RNNs. By providing theoretical foundations and a literature review in

Chapters 2 and 3, the thesis answered the �rst research question: Which state-of-the-art
NLP-approaches exist to analyze user-generated product description texts with respect to their
in�uence on the product price? The focus was mainly set on text classi�cation here, because

this provided the best solutions to analyze texts with respect to their impact on product

prices. Moreover, research indicated that the analysis of product description texts alone to

predict a business outcome, such as a price, is sparsely covered in literature. The most

similar work that is comparable to my approach was done by Pryzant et al. [PCJ17]. They

use an attention-based LSTM to predict sales volumes based on product description texts.

The practical part of this thesis veri�ed that user-generated texts in an online car market do

have small in�uence on vehicle prices. To prove this, I tested whether vehicle description

texts can explain the residuals between cars’ predicted market prices based on structured

attributes and actual selling prices. Chapters 4 and 5 focus on this and answered my second

research question from Section 1.2: How do such approaches perform on real description text
data for vehicles in an online car market? The theory from Chapters 2 and 3 was applied to

a real world scenario.

I showed that state-of-the-art NLP approaches can achieve an accuracy of 45.78 % in

predicting price residuals for vehicle description texts using three equiprobable classes.

The best performance was achieved by a FNN with no hidden layers. Compared to a

79



6. Conclusion and Outlook

classical machine learning model, the FNN improved accuracy by 2.2 to 2.5 percentage

points. Since these user-generated texts contain on average 20 words, their analysis with

respect to their price in�uence was not easy, be it for a human or a machine. The human-

based evaluation in Section 4.2.1 showed that only 50% of user-generated description texts

explain a price deviation between a car’s predicted and observed selling price. This leads to

the assumption that these description texts only contain few additional price information

that is not already covered by the structured attributes. Further assumption can be that

my models or data representation are not good enough. The evaluation of my approach on

price residuals computed by a Full and Reduced Feature Model in Section 5.1.3 provided

evidence against this. The performance of my approach was better when less structured

attributes were used to compute the market prices. This showed that a price in�uence

can be recognized by analyzing vehicle description texts with my approach, but a lot of

price-relevant data is already contained in the structured attributes.

In conclusion, the di�erence between a car’s market price based on its structured attributes

and its selling price cannot be fully explained by user-generated vehicle description texts.

More information to justify a price divergence could lie in the associated car images. Fur-

thermore, other market factors, such as word of mouth or customer-speci�c automotive

experience, that can hardly be summarized in data can have another in�uence on a car’s

price. However, text analysis can contribute a little to improve price prediction for vehicles

in the online car market that provided data for my research. My results showed that the

price residual classes for newer cars that had their �rst registration in 2009 or later could

be predicted more accurately. For vehicles licensed before 2009, it was possible to predict

mid priced cars more precisely, as discussed in Section 5.2.1.

Further work to improve the results of my approach could be done by using ELMo or

other contextualized word representations as explained in Section 3.2. I did not apply

these methods, because this would have exceeded the scope of my thesis. The next step

for including my approach into the pricing model of the online car market would be

the prediction of the relative price residual and not a price residual class. However, It

was necessary to perform a fundamental analysis in this thesis at �rst to see whether

it is possible to improve price prediction for vehicles by analyzing their user-generated

description texts. The classi�cation of these texts simpli�ed this analysis and made it

more comparable. Nevertheless, it is easy to adapt the ANNs in my approach to regression

analysis by changing the activation function on top of the output layer. Future work

that deals with the NLP-based analysis of vehicle description texts, should incorporate

the facts that they are very short and have a domain-speci�c vocabulary. In addition,

approximately 50% of the texts contain useful price information, which was shown by

the human based-analysis. Compared to this upper limit, my approach, which predicts

a correct price residual class for 45.78% of the texts, is only 4.22 percentage points less

accurate than a human.
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A. Appendix

The following pages display �gures and tables that have been left out in Chapters 1 to 6

in order to increase readability. All illustrations were referenced in the text to support a

statement or provide additional information.

A.1. Figures and Tables Supporting the Approach

The �gures and tables in this section support the statements in Chapter 4. Many of them

provide more insights into the datasets new cars and old cars that were extracted from an

online car market to test my approach.

Figure A.1.: The plot shows the amount of cars per year of �rst registration for the new

cars dataset. Most cars in this set had their �rst registration between 2010

and 2012, so they were 8 to 6 years old. The dataset contains 61,943 vehicle

listings overall.
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Figure A.2.: The plot shows the amount of cars per year of �rst registration for the old car

dataset. The dataset contains 112,289 vehicle listings overall. The dataset only

included cars that had their �rst registration before June 2009.

Figure A.3.: The plot shows the average text length of vehicle description texts per year of

�rst registration. It illustrates that older cars do have longer description texts

on average. The instances are taken from the second dataset.
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A.1. Figures and Tables Supporting the Approach

Figure A.4.: The histogram shows the average text length of vehicle description texts per

relative price residual PRrel . It illustrates that underpredicted cars do have

longer description texts on average than overpredicted vehicles. This implies

that longer text should enhance a cars price. The leftest bar only contains

35 cars and I assume that they are outlier. The instances are taken from the

second dataset.

Price Range: min(pricepred) max(pricepred) µ(pricepred) σ(pricepred)

low 1,166.00 e 2,914.00 e 2,087.88 e 444.93 e

mid 2,915.00 e 5,527.00 e 4,072.38 e 748.10 e

hiдh 5,528.00 e 155,154.00 e 10,231.42 e 7,191.00 e

Table A.1.: The table shows price ranges, mean and standard deviation of three di�erent

price sets. The older car dataset was split into a low, mid and high price range.

33.3% of the cars are in each price set. This split was done to investigate whether

vehicle description texts do have di�erent impacts on a low, mid or high priced

car.
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Figure A.5.: The Venn diagram illustrates the vocabulary in the test and train set of the

old car dataset. The red area is the common vocabulary. 88.39% are contained

in the training set. Only 28.53% of the vocabulary occur in the test and the

train set. Overall 2,276,870 words appear in the vehicle description texts and

2,217,651 words are shared in the text and train set. This means that 97.40%

of the words are covered by 28.53% of the vocabulary.
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A.2. Tables Supporting Evaluation

The following tables show additional results omitted from Chapter 5. Table A.2 illustrates

the performance of a FNN with one hidden layer and L2-regularization. In addition, the

outcome of the grid search for the hyperparameters of the LSTM is shown in Table 5.6.

Weight Decay Grid Search - Maximum Accuracy
on the Test Set - Early Stopping

λ = Accuracy:

0.003 42.99%

0.001 44.99%

0.0003 45.04%

0.0001 45.25%

0.00003 45.22%

Table A.2.: To prevent over�tting and to improve generalization, a weight decay penalty

term is added when updating weights of the network. I test �ve di�erent

values for λ and used the L2-regularization term. The network is trained using

a hidden dimension of 32, a batch size of 512 and a learning rate of 0.003.

λ = 0.0001 performs best with an accuracy of 45.25%.
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Maximum Accuracy on the Test Set - Early Stopping

Batch Size
Dimension
of Hidden

State

Learning Rate η

0.0001 0.0003 0.001 0.003

128

64 43.90% 44.29% 44.21% 43.50%

128 44.12% 44.43% 43.91% 43.67%

256 44.41% 44.47% 44.45% 43.39%

512 44.28% 44.02% 44.26% 44.13%

256

64 44.06% 44.41% 44.28% 44.17%

128 44.41% 44.63% 44.39% 44.18%

256 44.77% 44.34% 44.57% 44.07%

512 44.47% 44.01% 44.46% 43.97%

512

32 42.23% 43.33% 44.08% 43.33%

64 44.71% 44.98% 44.54% 44.34%

128 43.86% 44.92% 44.23% 44.47%

256 44.77% 44.39% 44.41% 44.29%

512 44.67% 44.45% 44.44% 44.49%

1024

32 41.09% 43.32% 43.25% 43.13%

64 44.29% 43.52% 44.23% 44.23%

128 44.88% 44.48% 44.97% 44.06%

Table A.3.: The table shows the results of the grid search done for the LSTM. The highest

accuracy on the test set of 44.98% is achieved with a training batch size of 512, a

hidden state dimension of 64 and η = 0.0003. The LSTM reaches this accuracy

after 17 training iterations.
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