
Technical Report:
An Ontology of Services and Service Descriptions

Aldo Gangemi
Laboratory for Applied Ontology,

Institute for Cognitive Sciences and Technology,
National Research Council, I-00137 Rome, Italy

gangemi@ip.rm.cnr.it

Peter Mika, Marta Sabou
Vrije Universiteit, Amsterdam

de Boolelaan 1081a, 1081HV Amsterdam
pmika, marta@cs.vu.nl

Daniel Oberle
Institute AIFB

University of Karlsruhe
76128 Karlsruhe, Germany

oberle@aifb.uni-karlsruhe.de

November 28, 2003

1 Introduction

This Technical Report covers original work by the authors on an Ontology of Ser-
vices and Service Descriptions. This work has been initiated within the European
WonderWeb project [won].

The WonderWeb architecture envisages a tight integration between web-based
KR languages, ontology learning and manipulation tools, foundational ontologies
and ontology building methodologies.

WonderWeb also provides an infrastructure that facilitates plug’n’play engi-
neering of ontology-based modules and, thus, the development and maintenance
of comprehensive Semantic Web applications, an infrastructure which is called
Application Server for the Semantic Web (ASSW) [OVMS03]. It facilitates re-use
of existing modules, e.g. ontology stores, editors, and inference engines, combines
means to coordinate the information flow between such modules, to define depen-
dencies, to broadcast events between different modules and to translate between

1



1 INTRODUCTION 2

ontology-based data formats. Since software modules come as black boxes of
code, descriptions need to be attached to them in order to facilitate their discov-
ery. As a result, the ASSW features a registry that stores descriptions of the mod-
ule and its API. Such descriptions adhere to an ontology which is not only used
for module and API discovery, but also for manual classification, connectivity and
implementation tasks. An Application Server for the Semantic Web can therefore
be considered assemantic middleware. Additionally, there exists the possibility to
offer a module’s functionality by another paradigm. E.g., the module might not
only be represented as one object revealing a particular API, but its functionality
may also be accessible as separate web services. This is achieved by translating a
module’s ontological API description into corresponding web service descriptions.

Existing conceptualizations of web services, such as the Web Services Archi-
tecture (WSA) [BCF+03] are informal and thus cannot avoid ambiguities even in
the very definition of web services (see Section 7). Ontologies for the descriptions
of web services, in particular DAML-S [Coa03] and its successor OWL-S, attempt
to cater for both worlds, but make no distinction as to what are general aspects of
services and what are the notions specific to software or web services in particular.
As a result, confusion arises as to the nature of objects comprising and processed
by web services (see Section 6).

Therefore, the initiative was taken within the project to create an Ontology
of Services using the DOLCE foundational ontology, which has been also devel-
oped within the project. The resulting “upper ontology” of services based on well-
founded principles is expected to influence (support) the design of more specific
ontologies, such as the one designed for the description of software modules in the
ASSW use case. It was also confirmed that the Ontology of Services would help in
clearing up otherwise fuzzy definitions of concepts related to web services and in
pointing out inconsistencies or ambiguities in conceptualizations such as the WSA
document.

The Ontology of Services is thus part of a layered architecture of ontologies
developed within WonderWeb (cf. Figure 1). On the one hand, it is an exten-
sion (module) to the DOLCE foundational ontology [MBG+02]. In particular, it
makes extensive use of the Ontology of Descriptions (also called Descriptions &
Situations or D&S) available in the extended version of DOLCE, called DOLCE+
[GM] (see also Section 4). On the other hand, the Ontology of Services generalizes
notions of existing conceptualizations of web services or web service descriptions
such as the DAML-S [Coa03], the Web Services Architecture [BCF+03] or the On-
tology of Software Modules used within the ASSW [OSRV03]. More specifically,
the Ontology of Services covers all kinds of services, with information services as
a special case. At the bottom layer of the architecture we find domain-level on-
tologies. An example of such an ontology is the ontology of Semantic Web tools,
which provides descriptions directly processed by the ASSW.



2 MOTIVATION 3

Domain and application ontologies

WSA DAML-S ASSW

Core Ontology of Services

Descriptions & Situations

DOLCE

R
e

q
u

ir
e

m
e

n
ts

D
e

s
ig

n

Figure 1: Ontology stacking in WonderWeb.

Our method was a combination of a bottom-up and a top-down approach. On
the one hand, ontologies in the lower layers provided representation requirements
for the higher layers, which abstracted their concepts and relationships. On the
other hand, the upper layers provided design guidelines to the lower layers.

In the following, we will use the example of a typical (but hypothetical) web-
based flight booking service to illustrate some of the notions introduced.

2 Motivation

We share the motivation of the DAML coalition that descriptions of (web) services
should be formulated according to an ontology in order to support the automation
of service related task.

While DAML-S defines service related concepts in relation to each other, it
lacks the formal semantics to relate these concepts to the basic categories of phi-
losophy, linguistics or human cognition. Typically for a domain ontology, there
is no firm class or property hierarchy (most classes and properties are direct sub-
classes of the top level concept) and several relations takeThing as their domain or
range. Part of the missing semantics is in the text of the document, while some are
left to the reader or future work to decide.

We believe that this situation is not satisfactory: the level of commitment in
DAML-S will need to be raised if it is to support the complex tasks put forward
by the coalition (for a description of these tasks, see [Coa03, BCF+03]). Further
axiomatization through alignment to a foundational ontology will help to exclude
terminological and conceptual ambiguities due to unintended interpretations. This
capacity will be critical if DAML-S is to be employed on a global scale, where the
meaning of descriptions will need to be constantly negotiated.

Axiomatization is not without dangers of its own: it may lead to the creation of
an overly restrictive, rigid ontology which would require a commitment that is dif-
ficult to achieve on a global scale (see [vEA02] for an analysis of the contradiction
between the formality, sharing scope and stability of knowledge). However, we be-



3 METHODOLOGY 4

lieve that this danger is mitigated by the design of DOLCE. While extensively re-
searched and formalized, DOLCE is created with minimality in mind and includes
only the most reusable and widely applicable upper-level categories [MBG+02].
DOLCE also calls for a careful isolation of the fundamental ontological options
and their formal relationships and is built with modularization in mind. This means
that DOLCE can avoid to become a single, monolithic upper-ontology that would
be rejected by its users.

Note that DOLCE also allows us to observe minimality. In fact, our ontology
is chiefly a combination of basic DOLCE and two extensions (an Ontology of
Descriptions and an Ontology of Planning). To these existing ontologies less than
10 new concepts and 5 new properties were needed to be added to get to the core
Ontology of Services.

3 Methodology

For the engineering of the Ontology of Services, we have chosen to follow a
variation of ONIONS, the Ontologic Integration of Naive Sources methodology
[GPS99]. ONIONS has been successfully applied in the past for various develop-
ments (e.g. an ontology of fishery services for the FAO of the UN). The methodol-
ogy consists of the five steps shown below, which result in a new module (domain-
specific extension) to a given foundational ontology (FO). Foundational ontolo-
gies such as DOLCE are explicitly designed as upper-level frameworks for an-
alyzing, harmonizing and integrating existing ontologies and metadata standards
[MBG+02].

1. Re-engineering. In the re-engineering phase, the sources are acquired and
transformed in a uniform representation (data format).

2. Integration. In this step the sources are integrated in a logical sense. For
example, distinctions between classes and instances are made, data types are
harmonized etc.

3. Alignment. During alignment, concepts and relationships of the sources are
characterized in terms of the concepts and relationships of a Foundational
Ontology (FO). For example, at this stage classes described in the source
ontologies are defined as subclasses of the most specific superclass available
in the FO.

4. Merging. In the last step, concepts described in various sources are merged
when they carry the same meaning with respect to the application scenario.

The sources in our case were the WSA document, DAML-S, parts of the Com-
mon Information Model (CIM) and the Ontology of Software Modules used within
the ASSW.



4 ONTOLOGY OF DESCRIPTION 5

Instead of direct alignment to the DOLCE foundational ontology, we decided
to develop a Core Ontology of Services based on D&S (which is an extension to
DOLCE) and aligned the sources to this ontology. This two-stage alignment is a
common technique when the conceptual gap between the source ontologies and
the foundational ontology is large. Also, formulated at a more generic level, one
may expect the core ontology to be reusable later in other scenarios (e.g. our On-
tology of Services may be reused for descriptions of purely commercial services.
However, our sources are geared specifically towards information services, which
means that the resulting ontology may lack some of the notions necessary for the
matching and retrieval of commercial service offerings).

The remaining sections of this technical report is organized as follows. The
Ontology of Descriptions (D&S) is introduced in Section 4. The Core Ontology
of Services is presented in Section 5. Experiences with the alignment of the WSA
document, DAML-S, and the Application Server’s ontology are discussed in Sec-
tions 7 to 9, respectively.

4 Ontology of Description

The following subsections have been lifted from [GM] as background information
on the ontology of descriptions.

4.1 Motivation

Foundational ontologies in WonderWeb are ontologies that contain a specification
of domain-independent concepts and relations based on formal principles derived
from linguistics, philosophy, and mathematics. Formal principles are needed to
allow an explicit comparison between alternative ontologies. Examples of formal
principles are spatio-temporal localization, topological closure, heterogeneity of
parts, dependency on the intention of agents, etc. We refer to [MBG+02] for a
detailed explanation.

While formalizing the principles governing physical objects or events is (quite)
straightforward, intuition comes to odds when an ontology needs to be extended
with non-physical objects, such as social institutions, organizations, plans, regula-
tions, narratives, mental contents, schedules, parameters, diagnoses, etc. In fact,
important fields of investigation have negated an ontological primitiveness to non-
physical objects [Moo02], because they are taken to have meaning only in combi-
nation with some other entity, i.e. their intended meaning results from a statement.
For example, a norm, a plan, or a social role are to be represented as a (set of)
statement(s), not as concepts. This position is documented by the almost exclusive
attention dedicated by many important theoretical frameworks (BDI agent model,
theory of trust, situation calculus, formal context analysis), to states of affairs,



4 ONTOLOGY OF DESCRIPTION 6

facts, beliefs, viewpoints, contexts, whose logical representation is set at the level
of theories or models, not at the level of concepts or relations.

On the other hand, recent work (e.g. [Moo02]) addresses non-physical objects
as first-order entities that can change, or that can be manipulated similarly to phys-
ical entities. This means that many relations and axioms that are valid for physical
entities can be used for non-physical ones as well.

Here we support the position by which non-physical entities can be represented
both as theories/models and as concepts with explicit reification rules, and we share
the following motivations:

1. Technology and society are full of reifications, for example when we divide
human experience into social, cultural, educational, political, religious, legal,
economic, industrial, scientific or technological experiences

2. In realistic domains, specially in socially-intensive applications (e.g. law,
finance, business, politics), a significant amount of terms convey concepts
related to non-physical entities, and such concepts seem to be tightly inter-
related

3. Interrelations between theories are notoriously difficult to be manipulated,
then it would be an advantage to represent non-physical objects as instances
of concepts instead of models satisfying some theory

4. For many domains of application, we are faced with partial theories and par-
tial models that are explicated and/or used at various detail levels. Partiality
and granularity are two more reasons to have some theories and models ma-
nipulated as first-order entities

5. Natural languages are able to reify whatever fragment of (usually infor-
mal) theories and models by simply creating or reusing a noun. Once lin-
guistically reified, a theory or a model (either formal or informal) enters a
life-cycle that allows agents to communicate even in presence of partial (or
even no) information about the reified theory or model. The Web contains
plenty of examples of such creatures: catalog subjects or topics, references
to distributed resources, unstructured or semi-structured (but explicitly refer-
enced) contents, such as plans, methods, regulations, formats, profiles, etc.,
and even linguistic elements and texts (taken independently from a particular
physical encoding) can be considered a further example

6. Recent (still) unpublished work by one of the authors reports that more 25%
of WordNet (v1.6) noun synsets [Fel98] can be formalised as non-physical
object classes

In general, we feel entitled to say that representing ontological (reified) con-
texts is a difficult alternative to avoid, when so much domain-oriented and linguistic



4 ONTOLOGY OF DESCRIPTION 7

categorisations involve reification. However, we also want to provide an explicit
account of the contextual nature of non-physical entities and thus aim for a reifi-
cation that accounts to some extent for the partial and hybrid structure of such
entities.

From the logical viewpoint, any reification of theories and models provides a
first order representation. From the ontological engineering viewpoint, a straight-
forward reification is not enough, since the elements resulting from reification must
be framed within an ontology, possibly built according to a foundational ontology.

We also need specific reification rules for at least some distinct elements of
a theory or a model. Moreover, from a practical viewpoint, the actual import of
theories and models (when they are used as concepts) into an ontology requires
not only reification rules, but also mapping and inheritance rules. This partial and
hybrid transformation allows an easy grasp and manipulation of reified theories
and models.

4.2 An Ontology of Descriptions and Situations

The Descriptions and Situations ontology (D&S) [GM03] is an attempt to define
a theory that supports a first-order manipulation of theories and models, indepen-
dently from the particular foundational ontology it is plugged in.

In general, D&S commits only to a widespread and very ancient ontological
distinction betweenflux, or an unstructured world or context, andlogos, or an
intentionality. D&S is neutral with respect to realism issues, such as whether we
conceive a structure because it is in the flux, or because it is in our intentionality
[Mil02]. D&S as a representation mechanism makes no pretense in either direction.
Hence, a flux can have as many inherent structure (parts, boundaries, qualities, etc.)
as one might want to believe in or might claim to have discovered, but without a
logos, a flux would have no description of that structure.

When logos is applied to the description of the flux, somestructure emerges
(this reflects the cognitive structuring cognitive process [K¨oh29]). The emerging
structure is not necessarily equivalent to the actual structure.

Due to its neutrality with respect to realism, D&S can generalize the flux/logos
distinction, in order to obtain an epistemological layering. Epistemological layer-
ing consists of assuming that any logical structureLi (either formal or capable of
being at least partly formalised) is built upon a flux-like structure that it describes
according to a more abstract, logos-like theoryTi (either formal or capable of being
at least partly formalised).

In other words,Ti describes what kind of ontological commitmentLi is sup-
posed to have within the epistemological layer that is shared by the encoder of an
ontology.

Epistemological layering reflects the so-calledfigure-ground shifting cognitive



4 ONTOLOGY OF DESCRIPTION 8

process [K¨oh29]. Moreover, most assumption-makings in any domain of interest
apply epistemological layering (several names have been used to refer to flux-like
structures: tacit knowledge, context, substrate, etc.).

D&S implements reification rules for anyTi, called adescription, and a basic
framework for anyLi, called asituation1, and for their elements.

Flux-like structures are not reified in D&S, but they result to be the structures
that include all the (ground) logical dependencies of the components of a situation
S classified within an ontology O, plus any additional elements that could be part
of the ground context of S according to some encoder of O, but that are not inside
O. A flux-like structure is called astate of affairs (SOA) in D&S.

4.3 Implementing the Ontology of Descriptions in DOLCE

DOLCE [MBG+02] has four top categories: endurant (including object- and
substance-like entities), perdurant (event- and state-like entities), quality (indi-
vidual attributes), and abstracts (mainly conceptual “regions” for structuring at-
tributes).

Within DOLCE, D&S is plugged in as follows. A situation is a (new) top
category, a description is a non-physical endurant. Description is disjoint from
situation. A description may be satisfied by a SOA. The satisfaction relation is
reified in D&S as a first-orderreferenced-by relation. A description satisfied by a
SOA is ans-description. A SOA satisfying a description is a situation.2

Concerning the reification of the elements of a theory, the descriptions that
reify a selection rule on DOLCE regions (e.g. speed limit or visibility) are called
parameters, the descriptions that reify a functional property of DOLCE endurants
(e.g. citizen or judge) are calledfunctional roles, and the descriptions that reify
sequences of DOLCE perdurants (e.g. schedule or pathway) are calledcourses.

In D&S for DOLCE, descriptions have only other descriptions as parts. S-
descriptions have courses, functional roles, and parameters as components. (See
Fig. 2.) Between such components some relations hold:modality-target holding
between functional roles and courses, andrequisite-for holding between parame-
ters and either functional roles or courses. Modality-target reifies the modal de-
pendence between a functional property, and a sequence, while requisite-for reifies
the logical dependence between a selection rule and either functional properties or
sequences.

Situations and s-descriptions are systematically related. The basic relation is

1We are keeping these names for the historical reasons. Other intuitive names have been proposed
so far, e.g. representation, conceptualisation, or schema for description, and setting, Gestalt, or
configuration for situation.

2A situation can satisfy a (s-)description in many ways, so that we can build a taxonomy of
satisfaction (referenced by) relations. This work, however, is outside the scope of this paper.



4 ONTOLOGY OF DESCRIPTION 9

Figure 2: UML overview of the D&S ontology of descriptions

selects, and it reifies the instantiation relation between an individual in a model
and a concept in a theory. Within DOLCE,selects relates components of an (s-)
description to instances of DOLCE categories. Intuitively, selects(x,y) binds an
individual y classified in a DOLCE category to a situation s that is referenced
(satisfies) the s-description d that has x as a component. In particular: parameters
arevalued-by regions, f-rolesplay endurants, and coursessequence perdurants.

Examples of descriptions and situations include:

� A clinical condition (situation) has an associated diagnosis (s-description)
made by some agent.

� A case in point (situation) is constrained by a certain norm (s-description)

� A murder (situation) has been reported by a witness (functional role) in a
testimony (s-description)

� Information science as a topic (s-description) references the manipulation
of data structures (situation), both as a pure or applied science (parent s-
descriptions)

� A person (endurant) plays the role of judge (functional role) in the context
of a constitutive Law (s-description)

� 40kmph (region) is the value for a speed limit (parameter) in the context of
an accident (state of affairs) described as a speed excess case (situation) in
an area covered by traffic Law (s-description)



5 THE CORE ONTOLOGY OF SERVICES 10

D&S results to be a theory of ontological contexts because it is capable to
describe various notions of context (physical and non-physical situations, topics,
provisions, plans, assessments, beliefs, etc.) as first-order entities.

5 The Core Ontology of Services

The core ontology of services consists of a repeated application of the Ontology of
Descriptions (D&S).

D&S provides reification rules for the three basic categories of DOLCE (re-
gion, endurants and perdurants), which are called parameters, roles and courses.
D&S also defines a template, called S-Description (Situation Descriptions) for
modelling non-physical contexts such as views, theories, beliefs, norms etc. An
important distinction is made in D&S between (the elements of) descriptions and
(elements of) a particular model, also called state-of-affairs (SOA): elements of
a SOA (regions, endurants and perdurants) may play the parameters, roles and
courses of a description, in which case the SOA is understood as a situation (case)
for a particular description. However, the same SOA may be interpreted according
to other, alternative descriptions. This captures an important feature of contexts,
namely that multiple overlapping (or alternative) contexts may match the same
world or model. For more information on D&S, we refer the reader to Section 4.

Service descriptions as non-physical contexts are ideally suited as applications
of D&S. Descriptions of services can be considered as views from various per-
spectives on a series of activities that constitute the service for the various parties
involved. In other words, service descriptions exhibit the same distinction between
what is offered, expected or planned (descriptions, theories) and the elements that
consist a particular model of the world.

Currently, we have considered five frequently occurring contexts regarding ser-
vices, where each is a separate description of the same service in the D&S sense.
More views may be added in the future when needs arise. Figure 3 shows their
interrelationships.

1. Service Offering (Description). The Service Offering is the viewpoint of
the legal entity providing the service. Much like commercial advertisements,
the service offering may not describe entirely how the service will be carried
out. This can also be considered as a proposal for a contract (agreement) for
a service.

2. Service Requirements (Description). This is the counterpart of the offering
in that it comprises the expectations of the requestor of the service. Require-
ments are often flexible, concerning only a subset of the tasks, roles and
parameters of service activities (but might also contain others).



5 THE CORE ONTOLOGY OF SERVICES 11

3. Service Agreement (Description). Once an agreement is reached between
the provider and the requestor of the service, their joint understanding re-
garding the service may be described in a Service Agreement. Agreement
means an understanding of the service as providing some value to the re-
questor, which may or may not be the same as the originally offered func-
tionality of the service (in an extreme case, even doing nothing can be a
service: consider the NOP command of machine language.)3

4. Service Assessment (Description). Typically, when an agreement is
reached measures are taken to monitor, assess and control the execution of
the service provided. Assessment concerns matching the service activities
against the agreement.4 Service assessment may be executed by a third party
and may also involve aspects not even mentioned in the above three descrip-
tions, e.g. the cleanliness of a hotel room may be checked by looking for
dust on the TV sets. In the web services area, assessment is of particular
concern to those interested in the management of web services.5

5. Service Activities Description. This is a description of the social conven-
tions regarding the execution of a service, whether a written code of practice
(ISO) or unwritten norm. This view is the basis for legal action once a ser-
vice deviates from the norms in ways not foreseen in the agreement.

5.1 The Service Offering Description

In the following, we detail the structure of a Service Offering Description (see
Figure 4). All other views are similar in nature.

TheService Offering Description is an S-Description, more precisely a Promise
which has at least a single Service Task as temporary component.6 A Task in
DOLCE+ is a Course, which has only other tasks as temporary components and
sequences at least one activity. A Task can also have a Situation as its precondition

3Independently from the fact that it may described, similarly to WSA we believe that in general
an agreement (written or unwritten) between provider and requestor is necessary to talk of a service.
Spam, or a dolphin saving someone in the middle of the ocean is not considered a service, no matter
how useful it proves afterwards.

4In an ideal world such a function would be meaningless. In reality, contracts are incomplete,
since it is difficult to imagine all possible outcomes flowing from the agreement. Also, violations
and the resulting penalties are often accepted rather than adhering to the contract (a kind of control
strategy).

5The WSA document, for example, stresses the manageability of web services as this is a key
feature to companies interested in providing management platforms for web services. The CIM
standard was also developed for creating a common format for exchanging information between
management systems (Software designed to manage the IT assets of companies, including both their
software and hardware environment).

6In the following, all categories and relations not printed in Italics are defined in DOLCE+, see
Section 4.



5 THE CORE ONTOLOGY OF SERVICES 12

Figure 3: Relationships between the various views on a service.

or postcondition, which may or may not relate to (elements of) a situation for the
description in which the Task is defined.7

We further define two disjoint subclasses of Task,Service Task andComputa-
tional Task. Service Tasks sequence only Service Activities and have only Service
Tasks as temporary components. Similar statements hold for Computational Tasks.
As we will see, the emergent distinction is that between tasks which require com-
putational execution and work with information objects and tasks which involve
physical objects.

A number of concepts from the Ontology of Planning are likely to be use-
ful conjunction with the Core Ontology of Services. These include the division
of tasks into elementary and complex tasks, and the construction of complex tasks
from elementary ones. This part of the ontology is not detailed here, but can be con-
sulted athttp://www.isib.cnr.it/infor/ontology/DOLCE.html.

The chief difference between tasks and activities is that of between a plan and a
particular execution of the plan: a plan represents possible sequences of execution.
Examples of Computational Task are the reservation of a flight and the collection
of payment, both in the sense of a transaction in an information system, even if
it may be implemented in a number of ways. A Service Task can be flying the
passenger (some passenger, not a particular one) to some destination. Again, this
may be carried out in several ways.

In our ontology we also define a number of roles that are most commonly found
in service descriptions. Two common agentive roles are introduced, namelyRe-
questor andProvider. These are described as subclasses of the legally-constructed-

7We decided not to give different names to elements of the offering such as Service Offering Task.
Unity criteria is given by the structure, i.e. the entire description.



5 THE CORE ONTOLOGY OF SERVICES 13

person notion imported from a legal extension of DOLCE (Legally constructed
persons are agentive functional roles played by socially constructed persons). In
agreement with WSA, we conceive them as legal entities so that they can enter
into agreement regarding a service. Examples are a passenger role (requestor of
the booking service) and the role of the travel agency (provider of the service). We
also conceive a third kind of agent role, namely that of theExecutor. This can be
used for modelling delegation.

Roles that are played by instruments of activities are called Instrumentality
Roles in DOLCE.Input andOutput are examples of such roles.Computational
Input andComputational Output are kinds of input and output that are played only
by information objects and only have exploitation within Computational Tasks.

Figure 4: UML diagram of the Service Offering Description.



5 THE CORE ONTOLOGY OF SERVICES 14

5.2 Service Situations

Our Service Offering Description introduced above stipulates the existence of a
number entities in situations that satisfy the description. We also add some ele-
ments which may be useful in describing the settings of service executions.

A Service Activity is kind of Activity (a perdurant in DOLCE). AComputa-
tional Activity is a special kind of Service Activity which has only information
objects or binary software as participants (Computational activity is another name
for software as a perdurant). An example of a Service Activity would be flying
Joe, a particular passenger, to his destination. An example of a Computational Ac-
tivity would be the execution of the procedure that reserves a particular seat for a
particular passenger.

Information Object is a non-physical endurant in DOLCE, which may be ex-
pressed according to a Description System. Examples of Description Systems are
RDF or WSDL. As described in 6,Software as Algorithm is an information object,
while Software as Binary represents its physical counterpart (more specifically,
Software as Binary is said to be the instrument of a Computational Activity, while
information objects aredata-for the Computational Activity).

Assuming a procedural programming paradigm as common in the web services
literature, Software as Algorithm is modelled as set ofMethods. Methods in turn
may have a number ofParameters as parts. Methods and Parameters are necessar-
ily identified by names. Parameters must also have exactly one type.

We further introduce the minimal notions necessary for modelling information
representation, partly based on earlier work on an ontology of communication and
interpretation [GM03]. See Fig. 5 for an illustration.

In this example, Joe is a physical agent, but has a representation counterpart,
namely the information object that is used to reference (identify) Joe in the soft-
ware. The information object represents a meaning, an S-Description which may
involve the entity in question. A Literal may extrinsically represent that informa-
tion object, in which case the literal is said to be the name of the entity.

5.3 Axiomatization

Service Offering Description(x)! promise(x)
8x:Service Offering Description(x)!

9y:temporary component(x; y) ^ Service Task(y)

Service Requestor(x)! Legally Constructed Person(x)

Service Provider(x)! Legally Constructed Person(x)

Service Executor(x)! agent role(x)

Service Input(x)! non agentive functional role(x)



5 THE CORE ONTOLOGY OF SERVICES 15

Figure 5: Modelling information representation.

Computational Input(x)! Service Input(x)

8x; y:Computational Input(x)^played by(x; y)! Information Object(y)

8x; y:Computational Input(x) ^ has exploitation within(x; y)!

Computational Task(y)

Service Output(x)! non agentive functional role(x)

Computational Output(x)! Service Output(x)

8x; y:Computational Output(x) ^ played by(x; y)!

Information Object(y)

8x; y:Computational Output(x) ^ has exploitation within(x; y)!

Computational Task(y)

Conditional Output(x)! Service Output(x)

Computational Task(x)! Task(x)

8x; y:Computational Task(x) ^ sequences(x; y)!

Computational Activity(y)

8x; y:Computational Task(x) ^ temporary component(x; y)!

Computational Task(y)



5 THE CORE ONTOLOGY OF SERVICES 16

Service Task(x)! Task(x)

8x; y:Service Task(x) ^ sequences(x; y)! Service Activity(y)

8x; y:Service Task(x) ^ temporary component(x; y)! Service Task(y)

Service Activity(x)! Activity(x)

Computational Activity(x)! Activity(x)

8x; y:Computational Activity(x) ^ participant(x; y)!
Information Object(y) _ Software As Binary(y)

:(Computational Activity(x) ^ Service Activity(x))

:(Computational Task(x) ^ Service Task(x))

Software as Algorithm(x)! Information Object(x)

Software as Binary(x)! Physical Endurant(x)

Literal(x)! Concrete Datatype(x)

Identifier(x)! Literal(x)

Method(x)! Information Object(x)

8x; y:Method(x) ^ name(x; y)! Identifier(y)^ 6 9zy 6=

z ^ name(x; z) ^ Identifier(z)

Formal Parameter(x)! Information Object(x)

8x; y:Formal Parameter(x) ^ name(x; y)! Identifier(y) ^ :9zy 6=
z ^ name(x; z) ^ Identifier(z)

8x; y:Formal Parameter(x) ^ name(x; y)!

Concrete Datatype(y) ^ :9zy 6= z ^ name(x; z) ^ Concrete Datatype(z)

type(x; y)! Property(x; y)

type(x; y)! Formal Parameter(x)

type(x; y)! Concrete Datatype(y)

type of(x; y)! Property(x; y)

type of(x; y)! Concrete Datatype(x)

type of(x; y)! Formal Parameter(y)

type(x; y)$ type of(y; x)

extrinsically represented by(x; y)! extrinsic relation(x; y)

extrinsically represented by(x; y)! Information Object(x)
extrinsically represented by(x; y)! Literal(y)

extrinsically represents(x; y)! extrinsic relation(x; y)

extrinsically represents(x; y)! Literal(x)



5 THE CORE ONTOLOGY OF SERVICES 17

extrinsically represents(x; y)! Information Object(y)

extrinsically represents(x; y)$ extrinsically represented by(y; x)

name of(x; y)! extrinsic relation(x; y)

name of(x; y)! Literal(x)

name of(x; y)! Endurant(y)

name(x; y)! extrinsic relation(x; y)

name(x; y)! Endurant(x)
name(x; y)! Literal(y)

name(x; y)$ name of(y; x)

data for(x; y)! used in(x; y)

data for(x; y)! Information Object(x)

data for(x; y)! Computational Activity(y)

data(x; y)! situation of use of(x; y)

data(x; y)! Computational Activity(x)

data(x; y)! Information Object(y)

data(x; y)$ data for(y; x)

task input(i; t)$ Task(t) ^ Input(i) ^modality target(i; t)

task output(o; t)$ Task(t) ^Output(i) ^modality target(o; t)

NameOf(x; y)$ Literal(x)^Entity(y) ^ 9z; w:Information Object(z) ^

Meaning(w) ^ extrinsically represents(x; z) ^ represents(z; w) ^

involves(w; y) ^ refers to(z; y)

input for(io; a)$

Information Object(io) ^Activity(a) ^ 9d; t; r:Serive Offering-
Description(d) ^Agentive Functional Role(r) ^ Task(t) ^ Input(r) ^

task input(r; t) ^ sequences(t; a)

requestor in(e; a)$

Endurant(e) ^ Service Requestor(a) ^ plays(e; a) ^ participant in(e; a)

provider in(e; a)$

Endurant(e) ^ Service Provider(a) ^ plays(e; a) ^ participant in(e; a)

sequences(t; a) ^ part(a; b)! sequences(t; b)

participant� in(e; p) ^ setting(p; s)! setting(e; s)



6 DEFINING WEB SERVICES: ON THE BORDER OF INFOLANDIA 18

6 Defining web services: On the border of Infolandia

The greatest obstacle in conceptualizing web services seems to be the name it-
self, which is severely overloaded in meaning. Here are just some of the various
definitions found in the literature:

1. A web service is a software system identified by a URI, whose public inter-
faces and bindings are defined and described using XML. Its definition can
be discovered by other software systems. These systems may then interact
with the web service in a manner prescribed by its definition, using XML
based messages conveyed by internet protocols [BCF+03].

2. A web service is viewed as an abstract notion that must be implemented by
a concrete agent. The agent is the physical entity (a piece of software) that
sends and receives messages, while the service is the abstract set of function-
ality that is provided. To illustrate this distinction, you might implement a
particular web service using one agent one day (perhaps written in one pro-
gramming language), and a different agent the next day (perhaps written in
a different programming language). Although the agent may have changed,
the web service remains the same (also from [BCF+03], although in clear
contradiction to the previous def.)

3. A service is an active program or a software component in a given environ-
ment that provides and manages access to a resource that is essential for the
function of other entities in the environment. A web service is a service that
abides by a specific framework to offer its services. The framework provides
the means to describe and discover the service, audit its service offering, and
integrate the service with other services to offer higher-level services.8

4. Loosely speaking, a web service is a piece of functionality (an object, a com-
ponent, an application, a database call) that can be invoked over a network
using a predefined syntax.9

5. First of all, we start with an application that you want others to use. That
is, you have a piece of software that initiates or accepts business transac-
tions, provides or updates enterprise information, or perhaps manages the
very systems and processes that make your business run. You may want
to make this accessible to people in other parts of your organization, or a
business partner, or a supplier, or a customer. We’re really thinking here
about software-to-software communication rather than the person-sitting-at-
a-browser-talking-to-server-software situation, though it turns out that web
services can be used there as well.10

8cf. http://www.informit.com under “Web Development”, “Web services”.
9cf. http://www.informit.com, Article “Web Services Part 3: What Are Web Services”

by Alex Nghiem.
10cf. http://searchwebservices.techtarget.com, definition of web services



6 DEFINING WEB SERVICES: ON THE BORDER OF INFOLANDIA 19

6. Among the most important Web resources are those that provide services.
By “service” we mean Web sites that do not merely provide static informa-
tion but allow one to effect some action or change in the world, such as the
sale of a product or the control of a physical device. The Semantic Web
should enable users to locate, select, employ, compose, and monitor Web-
based services automatically... Any Web-accessible program/sensor/device
that is declared as a service will be regarded as a service. DAML-S does not
preclude declaring simple, static Web pages to be services. But our primary
motivation in defining DAML-S has been to support more complex tasks like
those described above. [Coa03]

These definitions call one of the following (or both, as in the case of WSA) a
web service:

1. An information system, invokeable using particular technologies such as
XML, i.e. accessible through the Web. This is often confused with the
functionality attributed to the service, even though functionality of a tool
is contingent on usefulness in a particular situation.11

2. Some functionality (service) provided and a task to be fulfilled. This task is
external to the software, e.g. a business transaction.

3. An interface to a software or heterogeneous system, which makes it web
accessible. Having a publicly available description of a service is often con-
sidered a requirement to call it a web service. As a consequence, this view
often goes as far as equating the web service to (the description of) an inter-
face.

We have to separate these concepts in order to modularize our descriptions of
services. It seems that at the heart of the entanglement between software, func-
tionality and interfaces lies a disregard to the fact that web services exist on the
boundary of the world inside an information system (Infolandia) and the outside
world:

The scope of “Web services” as that term is used by this working group is
somewhat different. It encompasses not only the Web and REST Web services whose
purpose is to create, retrieve, update, and delete information resources but extends
the scope to consider services that perform an arbitrarily complex set of operations
on resources that may not be “on the Web.” Although the distinctions here are
murky and controversial, a “web service” invocation may lead to services being
performed by people, physical objects being moved around (e.g. books delivered).
[BCF+03]

11Similar phenomena exist with real world objects: a hammer becomes a “tool” instead of an
artifact when it is in the hands of someone who knows how to use it. Otherwise, it’s an amount of
matter.



6 DEFINING WEB SERVICES: ON THE BORDER OF INFOLANDIA 20

Thus web services carry out computational activities tosupport a service. But
can we call the software a service? We believe that is not the case: usefulness,
which is an essential property of a service, arises from the entire process involv-
ing real world as well as computational activities. In the case of a flight booking
service, the customer of the service values the fact that as a result of the service,
he will be able to transport himself to one place or another. The fact that part
of the execution involves an interaction between the travel agent and the customer
through an information system (e.g. a WWW site) is a mere implementation aspect
from the customer point of view. This is not to say that there cannot exist services
which concern purely information objects, e.g. the transformation of some data
from one from to another. Most services offered via the Web, however, will not be
pure information services.

The curious positioning of web services holds a particular challenge for onto-
logical modelling. Descriptions of web services are, in fact, descriptions of two
parallel worlds. In Infolandia, the world consist of software manipulating (rep-
resentations of) information objects. Activities are sequenced by computational
processes. Meantime in the real world passengers and airplanes are flying to their
destinations. The connection between these worlds is simply that some of the infor-
mation objects in Infolandia are symbols of (or identifiers for) real world objects.
Also, computational activities comprise part of the service execution in the real
world. For example, a booking needs to be entered by the travel agent into an in-
formation system, so that the airline would know which passengers to allow on the
plane.

Since software stands in between the information and the real world, it stretches
the categories of foundational ontologies.12 Upon close inspection, it seems that
the term software is also heavily inflicted by polysemy and refers to at least four
different concepts:

1. An algorithm. An algorithm is like a tune in music, distinct from its notations
or executions. Algorithm is an endurant in DOLCE terms.

2. The encoding of an algorithm in some kind of representation, e.g. binary or
Java code. Encoding can be either in mind, on paper or any other form. This
is software as information object, which is also an endurant.

3. Static implementation of software, which is a file on someone’s computer
with the executable code. Different from the previous category in that it’s a
directly exploitable form. This kind of software is a perdurant or 4D object13.

12The problem is similar to modelling communication, which occurs in three layers: 1) meaning
2) symbols, expressions 3) physical signals transmitted through a channel. The first two aspects are
logical, while the last one is physical, yet part of the same process.

13Strictly speaking software is a 4D object: while someone can sit on a chair at a certain point
in time, it is not possible to make sense of software at a given point in time. 4D objects are not yet
covered by DOLCE.



7 ALIGNMENT OF THE WEB SERVICES ARCHITECTURE 21

4. The running system, which is the result of an execution. This is the form
of software which manifests itself in the form electrical signals rising and
dropping, the screen flickering and sound coming out the machine. This
form of software is a physical perdurant or 4D object.

The first two items represent software as a product, while the latter two refer to
the process nature of software.14 The two seem just as inseparable as the wave and
particle nature of light: without hardware in the physical world, no software would
exist. In other words, perdurancy mutually depends on endurancy: for each state of
a perdurant (software), there is a state of an endurant (hardware) reflecting that per-
durant. Nevertheless, when we want to separate the two aspects of software in our
descriptions, we will talk about Software-as-Perdurant and Software-as-Endurant.

7 Alignment of the Web Services Architecture

The Web Services Architecture (WSA) document is a work of the similarly named
working group of the W3C, whose membership is almost exclusively comprised by
industry representatives. The document is an effort by the W3C to create a concep-
tual framework of web services based, which matches the requirements collected
in [ABFG02]. The document is also input to other web services related activities at
the W3C, namely the XML Protocol Working Group (responsible, among others,
for SOAP), the Web Services Description Working Group (working on WSDL)
and the Web Services Choreography Working Group (working on service compo-
sition). The WSA is still a work in progress15, which means that our comments
may be outdated.

In general, the document shows a great deal of confusion over the definition
of a web service (see also Section 6). The current defines the web service as a
software system and requires that web services are identified by a URI and their
public interfaces and bindings are defined and described using XML. However,
the authors themselves express doubts whether it’s truly required for a web service
to have a public description. The notion of binding is left undefined. Mention-
ing XML as base technology is also somewhat awkward, considering that it only
concerns representation (ASCII or Unicode is then also a requirement).16

Only one section later, in contradiction with the earlier definition, a web service
is called an abstract notion that is implemented by an agent (a software). While it’s
not explained what this abstract notion is, the document notes that the purpose of

14Similar bipolar effect characterizes the difference between service and product in the commercial
world. Products can be viewed as a service: if someone buys a house for lifetime rental, what he
actually buys is the right to live there for the end of his life.

15W3C Working Draft of May 14, 2003
16The intention of the definition is to stress the interoperability requirements for web services .

The document tries to be neutral with regard to more web-service-specific protocols.



7 ALIGNMENT OF THE WEB SERVICES ARCHITECTURE 22

a web service is to provide some functionality on behalf of its owner.17 Further,
in Section 1.6.2, the document returns to the original definition, when doubts are
expressed in the comments whether the web service is the external code or an
interface to some external code.

Besides notes on the architecture, the document also provides a collection of
“Core Concepts and Relationships”. Unfortunately, this is only available in text
and pictures. (For that reason, we did not perform the actual physical alignment.)

Here we go through the major concepts, skipping features of the entire archi-
tecture, acts and concepts related to the management of web services.

Skipped: authentication, choreography description language, correlation, dis-
covery, discovery service, feature, identifier, intermediary, life cycle, management
capability, management configuration, management event, manager, manageable
element, manageability interface, management metric, message exchange pattern,
message header, message description language, message identifier, reliable mes-
saging, representation, resource, SOAP, WSDL.

Agent A program, i.e. a software acting on behalf of a legal entity. A deployed
element, i.e. physical.
sameAs SoftwareAsEndurant and it plays computational agent role

Choreography A choreography is a set of possible interactions between a set of
services.
A choreography is thus another description, which operates on the union
of the regions, endurants and perdurants referenced by the individual ser-
vice descriptions. A choreography expresses only possible interactions, and
therefore it is distinct from a composite service, i.e. a possible realization of
interacting services.

Deployed element Deployed element is the collective name for physical objects.
Agents, services and descriptions are mentioned as kinds of deployed ele-
ments. Deployed element is introduced also as a unit of manageability.

Legal entity Same as our definition.

Message A “unit of interaction between agents”.
Message is a functional role in communication played exclusively by infor-
mation objects. (Pigeons carrying letters seem to be excluded )

Message Sender, Message Receiver Conceived as kinds of agents.
We model sender and receiver as functional roles in communication.

17“The provider entity is the legal entity that provides an appropriate agent to implement a par-
ticular service.” How does one determine whether an agent is appropriate before an agreement is
reached over the service? General feeling is that the industry community thinks of a web service as
an extra interface to an existing line-of-business system, i.e. functionality is engrained.



8 ALIGNMENT OF DAML-S 23

Service Again a new definition, emphasizing the process nature of a service and
the agreement needed: “A service is a set of actions that form a coherent
whole from the point of view of service providers and service requesters.”
If we disregard the universal, objectivist view of a service, this seems to be
close to the set of tasks performed by a service or the entire description.

Service Description A “set of documents” that describe the interface to and
semantics of a service.

If set of documents is meant in a representation-independent way, its akin to
an information object representing the service (offering) description.

Service Provider, Service Requester Conceived as kinds of agents.
We model providers and requesters as functional roles in some description
of a service.

Service Semantics “The semantics of a service is the contract between the service
provider and the service requester that expresses the effect of invoking the
service.”
Clearly, this is the Service Agreement Description.

Service Task “A service task is a unit of activity associated with a service. It is
denoted by a pair: a goal and an action; the goal denotes the intended effect
of the task and the action denotes the process by which the goal is achieved.”
Matches the DOLCE notion of a task.

8 Alignment of DAML-S

DAML-S divides information about a web service into three kinds of descriptions:
profiles, processes and groundings. The reason behind this separation are the dif-
ferent functions these descriptions are designed to support. Profiles are primarily
intended for discovery and matching of service offerings and requests, therefore
profiles contain metadata about the service (classification, ratings, source) as well
as inputs, outputs, preconditions and effects of the entire service. Process descrip-
tions, on the other hand, support the composition of web services by describing the
IOPEs of individual atomic services that may be identified within the service and
valid sequences of executions. Lastly, grounding concerns the information neces-
sary to invoke a web service over the internet. (All three kinds of descriptions are
meant for machine processing.)

The goal of all modularizations is a separation of concerns. Given some di-
vision of concerns, a modularization is optimal if it reduces the need for links
between modules in order to attend to those concerns (overlapping or cross-cutting
concerns are problematic as there is a need to duplicate information, see the dif-
ficulty of maintaining consistency between IOPEs in the process and the profile).



8 ALIGNMENT OF DAML-S 24

This suggests that related information, which is expected to be used in conjunction
with the same concern, should be allocated to the same module. Without a history
of usage of web services, it is not known at this point how the information available
in web service descriptions would be used and therefore it is difficult to tell if the
divisions in DAML-S are indeed the optimal ones.

Our ontology suggests one important dimension for modularization: the dis-
tinction between elements of the description (a plan) and a situation (its execu-
tion). However, we leave further modularization dependent on future use cases for
our descriptions (on the technical side, we are also waiting for a more versatile
modularization mechanism than namespaces).

Although the definition of a service is ambiguous even in the natural text de-
scription of DAML-S, for the sake of argument we considered andaml-s:Service
as a Service Offering Description, which has theServiceProfile andServiceModel
(also Service Offering Descriptions) as parts. Actors in theServiceProfile are
aligned as Agentive Functional Roles . TheServiceModel concept was aligned
to our Service Task concept, while the individual control constructs were mapped
to task components provided by the Ontology of Plans.

In the Core Ontology of Services, the notions of Inputs and Outputs were mod-
elled as Non-Agentive Functional Roles and not as relations in DAML-S. Nev-
ertheless, alignment was possible by means of a composed relationship. On the
other hand, the notion of preconditions and effects are inherited from the Ontol-
ogy of Plans (task-precondition and task-postcondition) where they are modelled
as Situations.

As it was not related to the focus of work, we omitted the alignment of the
particular grounding ontology for WSDL [CCMW03]. Nevertheless, the notion of
Software is present in the Core Ontology of Services asInformation Object that
can be expressed according to any number description systems.18 WSDL could
be considered as such a description system and modelled to the extent required to
express groundings.

To the observer, our ontology might seem to be more verbose than DAML-
S. In fact, we decompose many of the relationships in DAML-S, such as the link
between endurants and their representation in information systems. We also de-
compose the grounding relation of DAML-S between processes and software im-
plementations. Our goal in these decompositions is to find semantically distinct
building blocks of these relationships and thus reconstruct semantics. In effect,
DAML-S relationships may be easily recomposed from these blocks. For example,
we may introduce a composed relationship between information objects and tasks,
which says that if an information objectplays input and that inputhas exploitation
within a given task, we might say that such an information object isinput-for that

18An alternative, more refined representation we considered was to modelSoftware as an S-
Description, in the sense of an abstract algorithm.



8 ALIGNMENT OF DAML-S 25

task, mimicking the similar relationship in DAML-S.

8.1 Illustrated example

In this Section we show how the semantics of the Congo example of DAML-S
could be represented by our Core Ontology of Services. For the purposes of this
demonstration, we shortened the example to the part described in [MBD+03].

We begin with the Service Offering Description proposed by Congo Inc., called
CongoBuyOffering. CongoBuyOffering has a number of functional roles and tasks
as parts.

CongoBuyOffering(x)! Service Offering Description(x)

CongoCustomer(x)! Service Requestor(x)

8x; y:CongoCustomer(x) ^ temporary component of(x; y)!

CongoBuyOffering(y)

CongoProvider(x)! Service Provider(x)

8x; y:CongoProvider(x) ^ temporary component of(x; y)!

CongoBuyOffering(y)

In all situations, CongoInc necessarily plays the role of the provider (a role restric-
tion).

agentive physical object(CongoInc)

8x; y:CongoProvider(x) ^ played by(x; y)! y = CongoInc

LocateBook and BuyBook are elementary computational tasks.

LocateBook(x)! Computational Task(x)

LocateBook(x)! elementary task(x)

BuyBook(x)! Computational Task(x)

BuyBook(x)! elementary task(x)

ExpandedCongoBuy is a complex service task, which has LocateBook and
BuyBook as parts and is itself a temporary component of the offering. It is in-
ferred that LocateBook and BuyBook are also temporary components.

ExpandedCongoBuy(x)! Service Task(x)

ExpandedCongoBuy(x)! complex Task(x)

8x; y:LocateBook(x) ^ part of(x; y)! ExpandedCongoBuy(y)

8x; y:BuyBook(x) ^ part of(x; y)! ExpandedCongoBuy(y)
8x; y:ExpandedCongoBuy(x) ^ temporary component of(x; y)!

CongoBuyOffering(y)



8 ALIGNMENT OF DAML-S 26

BookToLocate is a computational input to LocateBook. DescriptionOutput and
CatalogueBookOutput are conditional computational outputs of LocateBook.

BookToLocate(x)! Computational Input(x)

8x; y:BookToLocate(x) ^modality target(x; y)! LocateBook(y)

DescriptionOutput(x)! Conditional Output(x)
DescriptionOutput(x)! Computational Output(x)

CatalogueBookOutput(x)! Conditional Output(x)

CatalogueBookOutput(x)! Computational Output(x)

8x; y:DescriptionOutput(x) ^modality target(x; y)! LocateBook(y)

8x; y:CatalogueBookOutput(x) ^modality target(x; y)! LocateBook(y)

BookToLocate is played by information objects in RDF that reference a book
(Role playing can be similarly restricted for the outputs of BookToLocate).

BookDescription(x)! Information Object(x)

language(RDF )

8x; y:BookDescription(x) ^ expressed according to(x; y)! y = RDF

Book(x)! Physical Endurant(x)

8x; y:BookDescription(x) ^ refers to(x; y)! Book(y)
8x; y:BookToLocate(x) ^ played by(x; y)! BookDescription(y)

Next, we model an actual sale of a book. We show that this can be understood
as a situation for the above description by mapping between elements of the set-
ting and the service offering description. Note that this implies, for example, that
CongoInc is necessarily participating in this sale as the provider.

Situation(CongoSale)

CongoBuyOffering(cbo)

satisfies(CongoSale; cbo)

Joe is a CongoInc customer, who participates in the activity.

natural person(Joe)

CongoCustomer(cc)
plays(Joe; cc)

participant in(Joe;BuyingWinnieThePooh)

BookObject is an information object (document), which refers to WinnieThe-
Pooh, a book that the customer would like to find.

Book(WinnieThePooh)



9 ALIGNMENT OF THE APPLICATION SERVER’S ONTOLOGY 27

Literal("WinnieThePooh")

name of(WinnieThePooh; "WinnieThePooh")

part of(WinnieThePooh;CongoSale)

BookDescription(BookObject)

refers to(BookObject;WinnieThePooh)
BookToLocate(WinnieThePooh)

plays(BookObject;WinnieThePooh)

part(BookObject; CongoSale)

BuyingWinnieThePooh is the actual activity that is performed in this sale ac-
cording to the task description. LocatingWinnieThePooh is a computational part
of the activity that is carried out to locate the book. The BookObject is data for this
activity.

Service Activity(BuyingWinnieThePooh)

Computational Activity(LocatingWinnieThePooh)

part of(LocatingWinnieThePooh;BuyingWinnieThePooh)

setting(BuyingWinnieThePooh;CongoSale)

ExpandedCongoBuy(ecb)
sequences(ecb;BuyingWinnieThePooh)

data for(BookObject; LocatingWinnieThePooh)

We don’t capture that Joe provides the information object, i.e. the book to
locate. We do capture that the information object references a book, and we could
capture as a precondition that Joe wants book. We could also describe the effect:
Joe has a book.

9 Alignment of the Application Server’s ontology

9.1 Original Ontology

The Application Server for the Semantic Web uses an ontology for software mod-
ule and API discovery, manual classification of software modules and for imple-
mentation tasks [OVMS03]. During its design we tried to stay as close as possible
to DAML-S (cf. Section 8) for it is an accepted standard that has been investigated
for a long time and has a sound basis [OSRV03].

Although DAML-S serves as a good starting point for our ontology, the main
difficulty was in the type of software entities to be described. While DAML-S de-
scribes web services, our goal is to describe software modules and their APIs. As
a result some parts of DAML-S were not reusable. In the Appendix we present all
the subontologies in DAML-S in comparison to ours before the alignment. What



9 ALIGNMENT OF THE APPLICATION SERVER’S ONTOLOGY 28

we will achieve in the next subsection is the alignment from the generic level, rep-
resented by DOLCE, D&S and the Core Ontology of Services, to the intermediate
and domain level.

TheImplementation subontology is primarily used to facilitate component dis-
covery for the client and of particular importance as it introduces several new con-
cepts. Its terminology is shown below.

Software Module Speaking in terms of the object-oriented paradigm, a software
module is an object revealing an Application Programming Interface (API).
A software module fulfills complex computational tasks. Examples: ontol-
ogy store, inference engine.

Component Software module that is deployed to the Application Server for the
Semantic Web19.

System Component Component providing functionality for the Application
Server for the Semantic Web itself, e.g. the registry.

Functional Component Component that is of interest to the client and can be dis-
covered. Ontology-related software modules become functional components
by making them deployable, e.g. RDF stores.

External Module An external module cannot be deployed directly as it may be
programmed in a different language, live on a different computing platform,
etc. It equals a functional component from a client perspective. This is
achieved by having a proxy component deployed that relays communication
to the external module.

Proxy Component Special type of functional component that manages the com-
munication to an external module. Examples are proxy components for in-
ference engines, like FaCT.

Interceptor Software that monitors requests and modifies them. Examples: trans-
action or semantic interoperation interceptor.

Surrogate Software embedded in the client application. It offers the same API as
a particular component and relays communication to it. Meant for ease of
use in the ASSW scenario, similar to stubs in CORBA.

9.2 Aligning the taxonomy

In a first step, we strive to align the terminology in the subsection above. Figure
6 sketches an overview before we detail the concept’s axioms in the following
paragraphs.

19We use the word deployment as the process of registering, possibly initializing and starting a
component to the Microkernel.



9 ALIGNMENT OF THE APPLICATION SERVER’S ONTOLOGY 29

Endurant

Non-Physical Endurant

Information objectSoftware as binary

Software Module

API

Method

Formal Parameter

offers

part_of

part_of

Interceptor Surrogate

proxying_for

deployed_

with

ASSW

DOLCE

D&S

COS

Role

Instrumentality Role

ASSW Component

Functional ComponentSystem Component

Proxy ComponentRegistry

Physcal Endurant

played_by

. . .
relaying_communication_to

Figure 6: Alignment of the ASSW’s concepts

Software Module, Interceptor and Surrogate become subconcepts of Software-
as-binary. A Software module offers an API which in turn is subconcept of In-
formation Object. An API consists of Methods and a Method may have Formal
Parameters. Software Modules are deployed with an Interceptor and Surrogates
proxy for Software Modules on the client side.

Software Module(x)! Software as binary(x)

Interceptor(x)! Software as binary(x)

Surrogate(x)! Software as binary(x)

API(x)! Information object(x)
offers(x; y)! Software Module(x)

offers(x; y)! API(y)

deployed with(x; y) ! Software Module(x)

deployed with(x; y) ! Interceptor(y)

proxying for(x; y)! Surrogate(x)

proxying for(x; y)! Software Module(y)

While the conceptualization above is quite generic, Software Modules can be-
come Components in the Application Server for the Semantic Web setting (formal-
izing the specializations of Component is straightforward). This behavior shows a
clear contextual nature and, thus, we model an ASSW Component as a role played
by a Software Module. The most prominent example for that is an Ontology Store



9 ALIGNMENT OF THE APPLICATION SERVER’S ONTOLOGY 30

Software Module which is a first order entity but can be both the registry (i.e. a
System Component) and a Functional Component within the Application Server.

ASSW Component(x)! Instrumentality Role(x)

8x; y:ASSW Component(x) ^ played by(x; y)! Software Module(y)

Functional Component(x)! ASSW Component(x)

Proxy Component(x)! Functional Component(x)

System Component(x)! ASSW Component(x)

Registry(x)! System Component(x)

:::

Note that we do not list all specializations of System Component here (Reg-
istry, Association Management, Component Loader, Cascading Component, etc.).
Note also, that there is no need to model External Modules. It is enough to formal-
ize Proxy Component as a role that relays communication to a Software Module.

relaying communication to(x; y)! Proxy Component(x)

relaying communication to(x; y)! Software Module(y)

9.3 API Descriptions

After aligning the terminology we would like to capture the intuition that is com-
mon in both DAML-S and ASSW, namely that there are semantic descriptions of
software (describing functionality or tasks) and syntactic descriptions of software
(describing parts of software as an object). Hence we come up with a new kind of
description in the D&S sense, called APIDescription (cf. Figure 7).

In fact, we formalize a whole hierarchy of APIDescriptions as domain knowl-
edge. E.g., in the Semantic Web domain, StoreAPIDescription along subconcepts
like RDFStoreAPIDescription or OntologyStoreAPIDescription. What is common
to all APIDescriptions is that there has to be a role ASSW Component played by
Software Module and the ASSW Component has exploitation within at least one
Computational Task. The last relation is refined for specializations of APIDescrip-
tions, e.g. in an RDFStoreAPIDescription the role of a Functional Component has
exploitation within a StoreTriple Computational Task etc.

StoreAPIDescription(x)! APIDescription(x)

RDFStoreAPIDescription(x)! StoreAPIDescription(x)

OntologyStoreAPIDescription(x)! StoreAPIDescription(x)

:::

8x:APIDescription(x)! 9y; z; t:component of(x; y) ^

ASSW Component(y) ^ played by(y; z) ^ SoftwareModule(z) ^

has exploitation within(y; t) ^ computational task(t)



9 ALIGNMENT OF THE APPLICATION SERVER’S ONTOLOGY 31

Method
ASSW

DOLCE

COS

D&S

S-Description

APIDescription

Course

Computational Task

Store

StoreTriple StoreOntology

component_of

has

exploitation

within

Description System

Task

component_of

Instrumentalitiy Role

Operation

expressed-

according-

to

component_of
component_of

...

IDL

Query

ASSW Component

Parameter Role

Information Object

Role

Object

played-by

APIDescriptionParameter

ComponentID
queryLanguage

representationLanguage

Argument

belongs_to

belongs_to

Figure 7: API Description

:::

8x:RDFStoreAPIDescription(x)!

9y; z; t:component of(x; y)^Functional Component(y)^ played by(y; z)^

SoftwareModule(z) ^ has exploitation within(y; t) ^ StoreTriple(t)

:::

9.3.1 Roles

The new roles introduced in the subsection above are relevant for the API Descrip-
tion. So-called ASSW Components and specializations are played by Software
Modules (cf. Figure 6). Every ASSW Component has exploitation within a Com-
putational Task.

9.3.2 Courses

As depicted in Figure 7 we use Computational Task which is part of the Core On-
tology of Services and subconcept of DOLCE’s Course. We define new, domain
dependent, specializations thereof. In the example, we come up with Semantic
Web related Computational Task like StoreTriple or StoreOntology. They become
components of the API Description and have exploitation within the ASSW Com-
ponent role which are ultimately played by Software Modules.



9 ALIGNMENT OF THE APPLICATION SERVER’S ONTOLOGY 32

Store(x)! computational task(x)

StoreTriple(x)! Store(x)

StoreOntology(x)! Store(x)

:::

Query(x)! computational task(x)

The other way around, it is important to model which Method fulfills the Com-
putational Tasks mentioned above. Therefore we have to define a new relation
’fulfills’ between Information Object and Computational Task independent of the
APIDescription.

fulfills(x; y)! Information Object(x)

fulfills(x; y)! Computational Task(x)

9.3.3 Parameters

When a Software Module is deployed to the Application Server for the Semantic
Web, it automatically gains several attributes, most prominently a ComponentID.
Such properties do not belong to the software module but show a clear context
dependency. Hence, we model them as new parameters that are component of the
APIDescription (cf. Figure 7).

ComponentID(x)! APIDescriptionParameter(x)

8x:ComponentID(x)! 9y:APIDescription(y) ^ component of(y; x)

:::

In addition, specializations of the APIDescription may have several domain-
dependent properties. E.g., an StoreAPIDescription may have a parameter repre-
sentationLanguage or queryLanguage. [Per02] gives a nice overview of different
Semantic Web software modules and their characteristika. Such relations have to
axiomatized accordingly, e.g.

queryLanguage(x)! APIDescriptionParameter(x)
8x:queryLanguage(x)!

9y:StoreAPIDescription(y) ^ component of(y; x)

:::

Figure 7 sketches the newly introduced parameter called APIDescriptionPa-
rameter which can be component of APIDescriptions only. Note that an API-
Description is not expected to have a certain number of parameters as component.
They are optional altogether.



9 ALIGNMENT OF THE APPLICATION SERVER’S ONTOLOGY 33

9.4 IDL Descriptions

For the syntactic descriptions of software we come up with a new kind of descrip-
tion called IDLDescription. For this purpose we formalized the terminology of
IDL (Interface Description Language [Gro02]), viz. Object, Operation, Argument
etc., as instrumentality roles. The idea is that such roles are played by informa-
tion objects, e.g. Object is played by Software Module and Operation is played by
Method.

The general idea is already featured in the Core Ontology of Services where
Description Systems are introduced as subconcept of D&S’s description. Informa-
tion Objects, which are non physical Endurants, are expressed according to such a
Description System. Examples would be RDF or the aforementioned IDL.

IDLDescription(x)! APIDescription(x)

8x:IDLDescription(x)! 9y:component of(x; y) ^Object(y)
8x:IDLDescription(x)! 9y:component of(x; y) ^Operation(y)

8x:IDLDescription(x)! 9y:component of(x; y) ^ Parameter(y)

:::

8x:Object(x)! 9y:played by(x; y) ^ Software Module(y)

8x:Operation(x)! 9y:played by(x; y) ^Method(y)

8x:Argument(x)! 9y:played by(x; y) ^ Formal Parameter(y)

:::

9.5 Example

Last but not least, the example in Figure 8 shows both an APIDescription and an
IDLDescription of a KAON Ontology Store which is part of the KAON Tool suite
[BEH+02]. For the sake of brevity, we limit ourselves to one Method ’AddState-
ment’ which is part of the KAONOntologyStore Software Module and fulfills the
task of storing a triple.

In our context, the KAONOntologyStoreAPIDescription plays the role of a
functional component deployed to the Application Server. The description fea-
tures several parameters, such as representationLanguage and the ComponentID.
Furthermore, the Functional Component has exploitation within the StoreTriple
task.

The KAONOntologyIDLDescription consists only of roles: Object is played
by the KAONOntologyStore Software Module, Operation is played by the
AddStatement Method, Argument played by a Formal Parameter and so on.

Note that an APIDescription is expected to have several Tasks, like StoreTriple,
Query, Retrieve and so on. The same holds for IDLDescription which should fea-
ture one Object role related to a multitude of Operation roles.



REFERENCES 34

KAONOntologyStoreAPIDescription

representationLanguage Functional Component Store Triple

KAON KAONOntologyStore

played-by

location-ofSituation

Object Operation Argument
belongs_to

AddStatementpart_of

played-byvalued-by

belongs_to

Parameter Role Course (Task)

Role Role Role

KAONOntologyStoreIDLDescription

Literal Software Module Method

fulfills

Figure 8: KAON Ontology Store Example

References

[ABFG02] Daniel Austin, Abbie Barbir, Christopher Ferris, and Sharad Garg.
Web services architecture requirements. http://www.w3.org/TR/wsa-
reqs, Nov 2002.

[BCF+03] David Booth, Michael Champion, Chris Ferris, Francis McCabe, Eric
Newcomer, and David Orchard. Web Services Architecture, May
2003.

[BEH+02] E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche,
B. Motik, D. Oberle, C. Schmitz, S. Staab, L. Stojanovic, N. Sto-
janovic, R. Studer, G. Stumme, Y. Sure, J. Tane, R. Volz, and
V. Zacharias. KAON - towards a large scale Semantic Web. In
Kurt Bauknecht, A. Min Tjoa, and Gerald Quirchmayr, editors,
E-Commerce and Web Technologies, Third International Confer-
ence, EC-Web 2002, Aix-en-Provence, France, September 2-6, 2002,
Proceedings, volume 2455 ofLecture Notes in Computer Science.
Springer, 2002.

[CCMW03] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web services description language (WSDL).http:
//www.w3.org/TR/wsdl, Mar 2003. W3C Note.

[Coa03] The DAML Services Coalition. DAML Services, May 2003.



REFERENCES 35

[Fel98] Christiane Fellbaum, editor. WordNet - An electronic lexical
database. MIT Press, 1998.

[GM] Aldo Gangemi and Peter Mika. Understanding the Semantic Web
through Descriptions and Situations. Submitted to ODBASE 2003.

[GM03] Aldo Gangemi and Peter Mika. Understanding the semantic web
through descriptions and situations. InDOA/CoopIS/ODBASE
2003 Confederated International Conferences DOA, CoopIS and
ODBASE, Proceedings, LNCS. Springer, 2003.

[GPS99] Aldo Gangemi, Domenico M. Pisanelli, and Geri Steve. An overview
of the ONIONS project: Applying ontologies to the integration of
medical terminologies. Data Knowledge Engineering, 31(2):183–
220, 1999.

[Gro02] Object Modelling Group. Idl / language mapping specification - java
to idl, Aug 2002. 1.2.

[Köh29] Wolfgang Köhler. Gestalt Psychology. Liveright, New York,
1947/1929.

[MBD+03] David Martin, Mark Burstein, Grit Denker, Jerry Hobbs, Lalana
Kagal, Ora Lassila, Drew McDermott, Sheila McIlraith, Massimo
Paolucci, Bijan Parsia, Terry Payne, Marta Sabou, Evren Sirin,
Monika Solanki, Naveen Srinivasan, and Katia Sycara. DAML-
S (and OWL-S) 0.9 draft release.http://www.daml.org/
services/daml-s/0.9/, Nov 2003.

[MBG+02] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino,
Alessandro Oltramari, and Luc Schneider. The WonderWeb Library
of Foundational Ontologies. WonderWeb Deliverable 17, 2002.

[Mil02] Alexander Miller. The Stanford Encyclopedia of Philosophy, chapter
Realism. Stanford University, winter edition edition, 2002.

[Moo02] Michael S. Moore. Legal Reality: A Naturalist Approach to Legal
Ontology. Law and Philosophy, 21(6):619–705, 2002.

[OSRV03] D. Oberle, M. Sabou, D. Richards, and R. Volz. An ontology for
semantic middleware: extending DAML-S beyond web-services. In
On the Move to Meaningful Internet Systems and Ubiquitous Comput-
ing, 2003 - DOA/CoopIS/ODBASE 2003 Confederated International
Conferences DOA, CoopIS and ODBASE 2003 Catania, Sicily, Italy,
November 3 - 7, 2003, Workshops, Lecture Notes in Computer Sci-
ence. Springer, 2003. In press.



REFERENCES 36

[OVMS03] D. Oberle, R. Volz, B. Motik, and S. Staab. An extensible open soft-
ware environment. International Handbooks on Information Systems,
chapter III, pages 311–333. Springer, 2003.

[Per02] Asuncion Gomez Perez. A survey on ontology tools. OntoWeb De-
liverable 1.3, May 2002. www.ontoweb.org.

[vEA02] Ludger van Elst and Andreas Abecker. Ontologies for information
management: balancing formality, stability, and sharing scope.Ex-
pert Systems with Applications, 23(4):357–366, November 2002.

[won] The WonderWeb project (under EU-IST contract IST-2001-33052 ).
Seehttp://wonderweb.semanticweb.org.



REFERENCES 37

Appendix

S
o
ftw

are
M

o
d
u
le

Im
p
lem

en
tatio

n
S

o
ftw

areM
o
d
u
le-

G
ro

u
n
d
in

g

S
o
ftw

areM
o
d
u
le-

P
ro

file

S
o
ftw

a
re

M
o
d
u
le

G
en

eric
O

n
to

lo
g
y

D
A

M
L

-S
P

ro
file´P

ro
file

h
a

sA
P

ID
escrip

tio
n

A
P

ID
escrip

tio
n

A
P

I
D

escrip
tio

n

h
a

sM
eth

o
d

M
eth

o
d

P
aram

eter

...

S
erv

iceP
aram

eter

service-
P

a
ra

m
eter

ID
L

G
ro

u
n
d
in

g

ID
L

G
ro

u
n
d
in

g

In
terfaceG

ro
u
n
d
in

g

M
eth

o
d
G

ro
u
n
d
in

g

In
p
u
tG

ro
u
n
d
in

g

O
u
tp

u
tG

ro
u
n
d
in

g

C
o
m

p
o
n
en

t

F
u
n
ctio

n
al-

C
o
m

p
o
n
en

t
S

y
stem

-
C

o
m

p
o
n
en

t
P

ro
x
y
-

C
o
m

p
o
n
en

t

In
terface

O
p
eratio

n

P
aram

eter

h
a

sO
p

era
tio

n

retu
rn

s

ID
L

C
o
d
e-

D
etails

L
ib

rary

req
u

ires

.
.

.

Im
p
lem

en
ta

tio
n

G
e

n
e

ric

In
te

rm
e

d
ia

te

D
o

m
a

in

S
o
ftw

areM
o
d
u
le-

Im
p
lem

en
tatio

n

(s
u

b
)o

n
to

lo
g

y

p
ro

p
e

rty

c
o

n
c
e

p
t

u
s
e

s
o

n
to

lo
g

y

s
u

b
c
o

n
c
e

p
t

A
cto

r

co
n

ta
ctIn

fo

n
a

m
e

...

h
a

sP
a

ra
m

eter

T
h
in

g
h

a
sT

yp
e

In
p
u
t

O
u
tp

u
t

P
reco

n
d
itio

n
E

ffect

h
a

sIn
terfa

ceG
ro

u
n

d
in

g

m
a

p
sIn

terfa
ce

h
a

sO
u

tp
u

tG
ro

u
n

d
in

g

h
a

sM
eth

o
d

G
ro

u
n

d
in

g

O
p
eratio

n
T

y
p
e

S
trin

g

T
y
p
e

+
v
o
id

T
y
p
e

typ
eS

p
ecifica

tio
n

h
a

sT
yp

e

p
a

ra
m

eterId
en

tifier

o
p

era
tio

n
Id

en
tifier

in
terfa

ceId
en

tifier

m
a

p
sO

p
era

tio
n

m
a

p
sP

a
ra

m
eter

h
a

sIn
p

u
tG

ro
u

n
d

in
g

m
a

p
sR

etu
rn

T
yp

e

m
a

p
sM

eth
o

d

m
a

p
sIn

p
u

t
m

a
p

sO
u

tp
u

t

m
a

p
sA

P
I

h
a

sIn
terfa

ce

In
tercep

to
r

req
u

iresL
ib

ra
ry

d
ep

lo
yed

W
ith

.
.

.

.
.

.

h
a

sC
o

d
eD

eta
ils

p
resen

ts

su
p

p
o

rts
p

resen
ted

B
y

im
p

lem
en

ted
B

y im
p

lem
en

ts

su
p

p
o

rted
B

y

S
o
ftw

areM
o
d
u
le

O
n
to

lo
g
y
S

to
re

P
ro

file

S
em

a
n
tic

W
eb

P
ro

files

Q
u
ery

E
n
g
in

e
P

ro
file

D
a

ta
typ

es

R
eifica

tio
n

...
...

S
to

re
A

P
ID

escrip
tio

n

S
em

a
n
tic

W
eb

A
P

I
D

escrip
tio

n

Q
u
ery

A
P

ID
escrip

tio
n

q
u

eryL
a

n
g

u
a

g
e

...
rep

resen
ta

tio
n

L
a

n
g

u
a

g
e

S
to

re

R
etriev

e
...

...

...

...
S

to
reA

n
d
Q

u
ery

A
P

ID
escrip

tio
n

h
a

sM
eth

o
d

h
a

sM
eth

o
d

S
to

reT
rip

le
S

to
reO

n
to

lo
g
y

Figure 9: Application Server ontology overview before alignment


