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Abstract. Semantic Web knowledge representation standards such as
RDF and OWL have gained momentum in the last years and are widely
applied today. In the course of the standardization process of these and
other knowledge representation formalisms, decidability of logical entail-
ment has often been advocated as a central design criterion. On the
other hand, restricting to decidable formalisms inevitably comes with
constraints in terms of modeling power. Therefore, in this paper, we
examine the requirement of decidability and weigh its importance in dif-
ferent scenarios. Subsequently, we discuss a way to establish incomplete
— yet useful — reasoning support for undecidable formalisms by deploying
machinery from the successful domain of theorem proving in first-order
predicate logic. While elaborating on the undecidable variants of the on-
tology language OWL 2 as our primary examples, we argue that this
approach could likewise serve as a role model for knowledge representa-
tion formalisms from the Conceptual Structures community.

1 Introduction

Today, the Semantic Web serves as the primary testbed for practical ap-
plication of knowledge representation. A plethora of formalisms for repre-
senting and reasoning with Web knowledge has been designed and stan-
dardized under the auspices of the World Wide Web Consortium (W3C).
While the early days of this endeavor saw ad-hoc and semantically under-
specified approaches, interoperability requirements enforced their evolu-
tion into mature logical languages with clearly specified formal semantics.
In the process of defining more and more expressive such formalisms,
an often-debated requirement is decidability of logical entailment, i.e. the
principled existence of an algorithm that decides whether a body of knowl-
edge has a certain proposition as a consequence. While it goes without
saying that such an algorithm is clearly useful for all kind of querying or
knowledge management tasks, results established back in the 1930s show



that this property does not hold for all types of logics [6,24]. In par-
ticular, in many expressive knowledge representation formalisms (most
notably first-order predicate logic), entailment is undecidable.

Hence, whenever a knowledge representation formalism is to be de-
signed, the trade-off between decidability and expressivity has to be taken
into account. An examination of the Semantic Web languages hitherto
standardized by the W3C yields a mixed picture in that respect: logical
entailment in the basic data description language RDF [13]| and its light-
weight terminological extension RDF Schema [4] is decidable (although
already NP-complete in both cases). Within the OWL 2 language family
[17], only the most expressive variant OWL 2 Full [21] is undecidable,
whereas OWL 2 DL [16, 15] as well as its specified sublanguages (called
tractable profiles) OWL 2 EL, OWL 2 QL, OWL 2 RL [14] are decidable
(the latter three even in polynomial time). On the other hand, for the rule
interchange format RIF [12], only the very elementary core dialect RIF-
Core [2] is decidable whereas already the basic logic dialect RIF-BLD [3] —
and hence every prospective extension of it — turns out to be undecidable.

This small survey already shows that decidability is far from being a
common feature of the standardized Semantic Web languages. However,
extensive reasoning and knowledge engineering support is currently only
available for the decidable languages in the form of RDF(S) triple stores
or OWL 2 DL reasoners hinting at a clear practitioners’ focus on these
languages.

In this paper, we argue that inferencing support is important and fea-
sible also in formalisms which are undecidable and we provide an outlook
how this can be achieved, referring to our recent work on reasoning in un-
decidable Semantic Web languages as a showcase. We proceed as follows:
Section 2 will remind the reader of the important notions from theoretical
computer science. Section 3 proposes a schematic classification of infer-
encing algorithms by their practical usefulness. Section 4 distinguishes
cases where decidability is crucial to enable “failsafe” reasoning from cases
where it may make sense to trade decidability for expressivity. After these
general considerations, we turn to variants of OWL to demonstrate ways
to provide reasoning support for undecidable Semantic Web formalisms.
To this end, Section 5 gives an overview of OWL syntaxes and the asso-
ciated semantics. Section 6 shows two different ways of translating OWL
reasoning problems into first-order logic and Section 7 briefly reports on
our recent work of employing FOL reasoners in that context. In Section 8,
we discuss ramifications of our ideas for Common Logic. Section 9 con-



cludes. An extended version of this paper with examples of reasoning in
diverse undecidable languages is available as technical report [20].

2 Recap: Decidability and Semidecidability

Let us first recap some basic notions from theoretical computer science
which are essential for our considerations. From an abstract viewpoint,
a logic is just a (possibly infinite) set of sentences. The syntaxz of the
logic defines how these sentences look like. The semantics of the logic is
captured by an entailment relation |= between sets of sentences @ and
sentences ¢ of the logic. @ = ¢ then means that @ logically entails ¢
or that ¢ is a logical consequence of @. Usually, the logical entailment
relation is defined in a model-theoretic way.

A logic is said to have a decidable entailment problem (often this
wording is shortened as to calling the logic itself decidable — we will adopt
this common practice in the following) if there is an algorithm which,
taking as an input a finite set ® = {¢1,..., ¢, } of sentences of that logic
and a further sentence ¢, always terminates and provides the output YES
iff & = ¢ or NO iff & [~ ¢. As a standard example for a decidable
logic, propositional logic is often mentioned, a straightforward decision
procedure being based on truth tables. However, there are decidable logics
of much higher expressivity, e.g., the guarded fragment of first-order logic
[1].

A logic is said to have a semidecidable entailment problem (also here,
this can be abbreviated by calling the logic itself semidecidable) if there
exists an algorithm that, again given @ and ¢ as input, terminates and
provides the output YES iff & = ¢, but may not terminate otherwise.
Consequently, such an algorithm is complete in the following sense: ev-
ery consequence will eventually be identified as such. However the algo-
rithm cannot be used to get a guarantee that a certain sentence is not
a consequence. Clearly, every decidable logic is also semidecidable, yet,
the converse does not hold. The prototypical example for a logic that is
semidecidable but not decidable is first-oder predicate logic (FOL). While
undecidability of FOL can be shown by encoding the halting problem of
a Turing machine into a FOL entailment problem, its semidecidability is
a consequence from the fact that there exists a sound and complete de-
duction calculus for FOL [7], hence every consequence can be found in
finite time by a breadth-first search in the space of all proofs w.r.t. that
deduction calculus. Clearly, today’s first-order theorem provers use much



more elaborated and goal-directed strategies to find a proof of a given
entailment.

Obviously, in semi-decidable logics, the critical task which cannot be
completely solved, is to detect the non-entailment @ [~ ¢. In model-
theoretically defined logics such as FOL, @ [~ ¢ means that there exists
a model M of @ that is not a model of ¢. In other words, finding such a
model means proving the above non-entailment. Indeed, there are rather
effective (yet incomplete) FOL model finders available dedicated to this
purpose. For straightforward reasons, most of these model finders focus on
finite models. In fact, if there is a finite model with the wanted property,
it is always possible to find it (due to the reason that the set of finite mod-
els is enumerable and first-order model checking is easy). Hence, the case
which is intrinsically hard to automatically detect is when @ [~ ¢ but ev-
ery model of @ that is not a model of ¢ has infinite size. While seemingly
exotic at first sight, such cases exist and are not very hard to construct.
An example for such a situation is the question whether ¢ = Jz.(p(z, x))
is a logical consequence of & = {1, p2} with ¢1 = Vz.3y.(p(z,y)) and
w2 = YaVyVz.(p(x,y) A p(y,z) — p(x,z)). In this example, ¢; enforces
that in every model of @ every element must be in a p-relationship to
something, whereas (o requires that p must be interpreted by a transitive
relation. A side effect of p’s transitivity is that whenever a model contains
a p-cycle, all the elements in that cycle are p-related to themselves which
makes ¢ satisfied. Therefore, any model of @ that does not satisfy ¢ must
be p-cycle-free which is only possible if the model is infinite. The problem
with infinite models is that, even if one has a method to represent and
refer to them somehow, the set of all infinite models cannot fully be enu-
merated. Hence, whatever enumeration strategy is used, it will only cover
a strict subset of all possible models.

3 A Classification of Decision Procedures by Usefulness

We will now take a closer look on the question how useful a sound and
complete decision algorithm may be in practice. For the sake of better
presentation, assume that we consider not all the (infinitely many) possible
inputs to the algorithm but only the finitely many (denoted by the set
P) below a fixed size s. Let us furthermore make the very simplifying
assumption that every entailment problem in P is equally “important” in
the sense that it will be posed to our reasoning algorithm with the same
probability as the other problems. Now, a decision algorithm A comes
with the guarantee, that it terminates on each of the inputs after finite



time, hence it gives rise to a function runtimey : P — R™ assigning to
each of the inputs the corresponding (finite) runtime of the algorithm.
Now, the algorithm can be described by a characteristic curve assigning
to a time span At the fraction of elements from P on which A terminates
after time less or equal to At. Formally, this function char4 : Rt — [0, 1]
would be defined by

i <
char 4(At) = {perp| runt|I;1|eA(p) < At}

Figure 1 schematically displays characteristic curves which may be en-
countered for complete decision procedures. As a common feature, note
that the curves are always monotonic by definition. Moreover, every such
curve will hit the 100% line at some time point due to the facts that we
have a complete decision algorithm and P is finite.

We now assume that the decision algorithm is to be employed in a
practical scenario, which gives rise to the following specific figures:

— a maximal time span that is worth to be spent on the computation of
an answer to an entailment problem of size s, referred to as acceptable
wasiting time;

— aratio characterizing the probability of getting an answer below which
a use of the algorithm will be considered worthless, called the perceived
added value threshold; and

— aratio characterizing the probability of getting an answer above which
the algorithm can be considered practically reliable, called the accept-
able reliability threshold.

Figure 1 also depicts these values, according to which the four schematic
characteristic curves can now be coarsely distinguished in terms of prac-
tical usefulness.

— In the ideal case, the maximal runtime of the algorithm is smaller than
the acceptable waiting time. Then every size s problem is guaranteed
to be decided within the available time span, which allows for calling
the algorithm failsafe.

— If this guarantee cannot be given, yet the probability that a solution
will be obtained in the available time lies above the acceptable reli-
ability threshold, the algorithm can still be said to be (practically)
reliable and may be used within regular and automated knowledge
management work flows. Then the rare cases not being covered could
be dealt with by a kind of controlled exception handling mechanism.
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Fig. 1. Schematic representation of different characteristic curves for complete decision
algorithms.

— If the expected frequency of termination within the available time span
is below the acceptable reliability threshold but above the perceived
added value threshold, the algorithm’s output should be perceived as
nice-to-have additional information which may be taken into account
if available. The overall work flow in which it is to be used should not
crucially rely on this, yet we can still see that the algorithm may be
rightfully called useful.

— Finally, if the ratio of the timely obtainable answers is even below
the perceived added value threshold, the algorithm is of little or no
practical value. Note however, that the existence of a complete deci-
sion algorithm — even if it happens to lie within this class — is still a
research question worthwhile pursuing since optimizations and hard-
ware improvements may well turn such an algorithm into something
practically useful. Conversely, the proven non-existence of a decision
algorithm may prevent many ambitious researchers from vainly trying
to establish one. This justifies to at least characterize this type of al-
gorithm as of theoretical interest. For a prototypical example of this
kind see [19].

Now, turning our attention to incomplete decision algorithms, we can
assign to them characteristic curves in the same way as to complete ones
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Fig. 2. Sketches of characteristic curves for incomplete decision procedures of practical
interest.

(extending the range of runtime4 to Rt U {oo}). The only difference here
is, that the curve will not hit the 100% line. Nevertheless, as Fig. 2 illus-
trates, there may be incomplete algorithms still satisfying the usefulness or
even the reliability criterion defined above leading to the conclusion that
there may be cases where the practically relevant behavior of incomplete
decision algorithms is just as good as that of complete ones, the notable
exception being that no failsafe behavior can be obtained. It should be
noted here that inferencing in expressive decidable formalisms comes with
high worst-case complexities (normally ExpTime and higher, for instance
N2ExpTime for OWL 2 DL) which implies that there are “malicious” in-
puts of already small size for which the runtime exceeds any reasonable
waiting time. Although the runtime on average cases is usually much bet-
ter, this fact normally vitiates failsafety guarantees. Of course, the case
is different for so-called tractable languages which are of time-polynomial
or even lower complexity.

4 On the Importance of Failsafe Decision Procedures

Having identified the possible existence of a failsafe decision procedure
as the only principled practical advantage that the use of a decidable
formalism may have, let us now investigate under which circumstances



such a procedure is strictly needed and in what cases it is dispensable. In
the following, we will identify general criteria for this assessment.

4.1 Where Failsafe Decidability is Crucial

Failsafe decidability is important in situations where automated reasoning
is a central part of the functionality of a knowledge-based system and the
questions posed to the system are normally “yes-or-no” questions of a
symmetric form, the answers to which are to be used to trigger different
follow-up actions in a highly or purely automated system (“if yes, then do
this, otherwise do that”).

One important case of this is when entailment checks are to be car-
ried out in “closed-world situations,” that is, when one can assume that
all necessary information about a state of affairs has been collected in
a knowledge base such that the non-entailment of a queried proposition
justifies the assumption that the situation expressed by that proposition
does indeed not hold. Under these circumstances, both possible answers
to an entailment check provide information about the real state of affairs.

In other cases, the entailment check may be aimed at finding out
facts about the considered knowledge base itself, instead of the real-world
domain that it describes. In fact, this can be seen as a particular closed-
world situation. As an example for this, consider the reasoning task of
classification, i.e. the computation of a conceptual hierarchy. Here, the
typical reasoning task to be performed is to answer the question “are two
given classes in a subsumption relationship, or not?” This is a common
task in today’s ontology management systems, useful both for supporting
human ontology engineers and speeding up further reasoning tasks.

4.2 Where Failsafe Decidability is Dispensable

Yet, there are also scenarios, where failsafe decision procedures for logical
entailment seem to be of less importance.

First of all, this is the case when the emphasis of the usage of knowl-
edge representation is on modeling rather than on automated inferencing.
In fact, there will often be situations where logical languages are just
used for noting down specifications in an unambiguous way and probably
making use of available tool support for modeling and navigating these
specifications. Clearly, in these cases, no reasoning support whatsoever is
required, let alone failsafe decision procedures.

In other cases, reasoning may still be required, yet the available knowl-
edge is assumed to be sound but incomplete w.r.t. the described domain,



i.e. we have an “open-world situation.” Then, non-entailments cannot be
conceived as guarantees for non-validity in the domain, as opposed to en-
tailments, which (given that the knowledge base is sound) ensure validity.
As a consequence thereof, non-entailment information is of less immedi-
ate value and an entailment checker just notifying the user of established
entailments may be sufficient.

A more concrete case where failsafe decidability will often not be a
strict requirement is human modeling support that will alarm the knowl-
edge engineer upon the detection of inconsistencies in the knowledge base.
(Note that detecting if a knowledge base K B is inconsistent is equivalent
to checking the entailment K B |= false.) In practical ontology engineer-
ing, one certainly wants to make sure that a created ontology is free of
semantic errors, and therefore good reasoning support for the detection of
inconsistencies should be available. For many application domains, it will
then be sufficient if such inconsistency checking does not find an issue after
some considerable time of searching, while true consistency confirmation
will only be nice to have.

Query answering scenarios represent a further type of setting normally
not requiring failsafe decision procedures. When doing query answering,
as e.g. in SPARQL, one has, in the simplest case, one or more axioms con-
taining variables where otherwise individuals or class expressions would
occur. One asks for all solutions that semantically follow from the queried
knowledge base and match the query pattern. In this scenario, one is not
interested in non-solutions, but in an enumeration of solutions. There-
fore, what one needs is an enumeration algorithm, which does not really
require a complete decision procedure. Also, from the practical viewpoint,
in many applications such as search, completeness of the presented set of
solutions is less important than when just one entailment is to be checked.
What normally matters is that enough solutions are provided and that rel-
evant solutions are among them, relevance being a measure that has to
be defined for the specific purpose.

5 OWL, Syntactic and Semantic Variants

After these abstract considerations we will turn to OWL 2 as a specific
knowledge representation formalism where the aforementioned issues are
of particular interest, since both decidable and undecidable versions ex-
ist as well as well-investigated reasoning approaches for either. We will
particularly focus on approaches for reasoning in undecidable formalisms.



First, let us recap the main aspects of syntax and semantics of OWL 2
to the degree needed for our considerations. When dealing with the Web
Ontology Language OWL, one has to distinguish between two represen-
tation strategies which are interrelated but not fully interchangeable. The
so called functional syntax [16] emphasizes the formula structure of what
is said in the logic. As an example, consider the fact that an individual
characterized as “happy cat owner” indeed owns some cat and everything
he or she cares for is healthy. Expressed in OWL functional syntax, this
statement would look as follows:

SubClass0f (
ex:HappyCatOwner
ObjectIntersectionOf (
ObjectSomeValuesFrom( ex:owns ex:Cat )
ObjectAllValuesFrom( ex:caresFor ex:Healthy ) ) )

On the other hand, there is the RDF syntax [18] which expresses
all information in a graph (which in turn is usually encoded as a set of
vertice-edge-vertice triples labeled with so-called Uniform Resource Iden-
tifiers, short: URIs). The above proposition in RDF representation would

rdfs:subClassOf owl:intersectionOf
ex:HappyCatOwner ‘

ex:caresFor

owl:

Fig. 3. RDF representation as graph.

look as displayed in Fig. 3. As opposed to the XML-based syntax often
used for machine processing, the so-called Turtle syntax better reflects the



triple structure, yet allows for abbreviations for structural bnodes' and
list structures. The Turtle representation of the RDF graph from Fig. 3
would look as follows:

ex:HappyCatOwner rdfs:subClassOf
[ owl:intersectionOf
( [ rdf:type owl:Restriction ;
owl:onProperty ex:owns ;
owl:someValuesFrom ex:Cat ]
[ rdf:type owl:Restriction ;
owl:onProperty ex:caresFor ;
owl:allValuesFrom ex:Healthy ] ) ]

Clearly, every functional syntax ontology description can be trans-
formed into RDF representation. The converse is, however, not always
the case. For all ontologies expressible in functional syntax, the specifi-
cation provides the so-called direct semantics [15]. This semantics is very
close to the extensional semantics commonly used in description logics: an
interpretation is defined by choosing a set as domain, URIs denoting indi-
viduals are mapped to elements of that domain, class URIs to subsets and
property URIs to sets of pairs of domain elements. It is noteworthy that
the class of ontologies expressible via the functional syntax is not decid-
able, but only a subclass of it where further, so-called global restrictions
apply. It is this decidable class which is referred to as OWL 2 DL and
for which comprehensive tool support is available both in terms of ontol-
ogy management, infrastructure and inferencing (software implementing
decision procedures for entailment are typically called reasoners).

On the other hand, there is a formal semantics applicable to arbitrary
RDF graphs. This so-called RDF-based semantics [21] is more in the spirit
of the semantics of RDF(S): all URIs are mapped to domain elements in
the first place and might be further interpreted through an extension
function.

The two different semantics are related. A correspondence theorem [21]
ensures that, given certain conditions which are easy to establish, the di-
rect semantics on an ontology in functional syntax (taking into account
the global restrictions of OWL 2 DL) will only provide conclusions that
the RDF-based semantics provides from the ontology’s RDF counterpart
as well. However, the RDF-based semantics will often provide additional
conclusions that are not provided by the direct semantics, for instance

! Bnodes, also called blank nodes, are unlabeled vertices in the RDF graph represen-
tation and often used as auxiliary elements to encode complex structures.



conclusions based on metamodeling. The difference between the two se-
mantics becomes significant for those ontologies that are still covered by
the direct semantics but are not OWL 2 DL ontologies, i.e. ontologies that
are beyond the scope of the correspondence theorem. Furthermore, there
are ontologies to which only the RDF-based semantics applies but not the
direct semantics, since not every RDF graph can be translated into an
ontology in functional syntax. Figure 4 summarizes the relationships just
stated.

extraction of ontological structure

\ ontologies
corTespon- global in functional

dence restrictions

theorem satisfied

RDF-serialisation of ontological
structure

Fig. 4. Syntaxes and semantics for OWL 2.

6 FOL-Empowered OWL Reasoning beyond Decidability

As stated before, for the decidable fraction of OWL 2, decision procedures
have been implemented and are widely used today. Here, we will focus
on the problem of providing practical inferencing support for the more
expressive yet undecidable versions of OWL. Thereby, we want to question
an attitude sometimes encountered in the OWL community according to
which the quest for automated inferencing beyond decidability is futile.
It seems in place to take a look at the prototypical example of undecid-
ability: first-order predicate logic. Despite the fact that its undecidability
was proven way before the wide-spread adoption of computers, automated
first-order logic reasoning has always been a focus of interest and is mean-



while well-established also in practical applications such as hard- and soft-
ware verification [26]. There are many FOL theorem provers which are able
to find out when a set of FOL formulas is unsatisfiable or implies another
set of formulas. Even model-finding is well supported, although typically
restricted to finding finite models.?

In view of the success of FOL-based inferencing, which also substanti-
ates our claim that reasoning in undecidable formalisms can be useful, it
seems tempting to harness the comprehensive theoretical work and highly
optimized implementations originating from that line of research for cop-
ing with inferencing problems in the undecidable variants of OWL. As it
turns out, OWL inferencing with respect to both syntaxes and accord-
ing semantics admits translation into FOL entailment problems. In the
following, we will describe these embeddings in a bit more detail.

6.1 Translating Direct Semantics Reasoning into FOL

Given an ontology in functional syntax, the translation into FOL can be
performed along the lines of the standard translation of description logics
into FOL as, e.g., described in [9]. For instance, the ontology axiom pre-
sented in Section 5 would be translated into the following FOL sentence:

Va.HappyCatOwner(x) —
Jy.(owns(z,y) A Cat(y)) A Vz.(caresFor(x, z) — Healthy(z))

We see that URIs referring to classes are translated into unary predicates
while those denoting properties are mapped to binary predicates. The ex-
istential and the universal property restrictions have been translated into
an existentially and a universally quantified subformula, respectively. The
two subformulas are connected by a conjunction symbol, which is the re-
sult of translating the intersection class expression. Finally, the outermost
class subsumption axiom has been translated into a universally quantified
implication formula.

After this transformation, reasoning can be performed by means of
FOL reasoners: FOL theorem provers can be used to find entailments and
to detect inconsistent ontologies, whereas FOL model finders can be used
to detect non-entailment and to confirm consistency of an ontology. In
fact this approach is not new but has already been demonstrated in [23].

2 For a comprehensive collection of online-testable state-of-the-art provers and
model finders, we refer the reader to http://www.cs.miami.edu/ tptp/cgi-bin/
SystemOnTPTP.



In general, one can use this approach to embed OWL 2 DL into arbi-
trary subsets of FOL. This includes reasoning in the OWL 2 direct seman-
tics beyond OWL 2 DL, i.e., reasoning with ontologies that are given in the
functional syntax but are not constrained by any of the global restrictions
of OWL 2 DL. This relaxation allows, for example, to recognize circular
relationships such as cyclic chemical molecules, a feature that has often
been asked for but is not available in OWL 2 DL due to its syntactic re-
strictiveness (see e.g. [25]). This strategy further covers many well-known
undecidable extensions of OWL such as the semantic web rules language
SWRL [10] as well as the combination of the rule interchange dialect RIF
BLD with OWL described in [5].

6.2 Translating RDF-Based Semantics Reasoning into FOL

Under the RDF-based semantics, a translation into FOL is also possi-
ble but works differently than for the direct semantics. The RDF graph
representation of the example ontology is translated into a conjunction
of ternary atomic FOL formulas, which correspond to the different RDF
triples in the RDF graph:

Elb()y bla b27 b37 b4(
iext(rdfs:subClass0f, ex:HappyCatOwner, by)

A iext(owl:intersectionOf, by, by)

A iext(rdf :first, by, b3)

A iext(rdf :rest, by, bo)

A iext(rdf :first, bo, by)

A iext(rdf :rest,be, rdf:nil)

A iext(rdf :type, b3, owl:Restriction)

A iext(owl:onProperty, b3, ex:owns)

A iext(owl:someValuesFrom, b3, ex:Cat)
A iext(rdf :type, by, owl:Restriction)

A iext(owl:onProperty, by, ex:caresFor)
A iext(owl:allValuesFrom, by, ex:Healthy) )

All atoms are built from a single FOL predicate ‘iext’, which corresponds
to the function ‘IEXT(.)” used in the RDF-based semantics to represent
property extensions. Terms within the atoms are either constants or exis-
tentially quantified variables, which correspond to the URIs and the blank
nodes in the RDF triples, respectively.

The above formula only represents the RDF graph itself without its
meaning as an OWL 2 Full ontology. The OWL 2 Full meaning of an



RDF graph is primarily defined by the collection of model-theoretic se-
mantic conditions that underly the RDF-based semantics. The semantic
conditions add meaning to the terms being used in the graph, such as
‘rdfs:subClass0f’, and by this means put constraints on the use of the
‘TEXT(.)’ function. The semantic conditions have the form of first-order
formulas and can therefore be directly translated into FOL formulas. For
example, the FOL representation for the semantic condition about the
term ‘rdfs:subClass0f’ |21, Sec. 5.8] has the form:

Veq, co.(lext(rdfs:subClassOf, ¢, ca) <
iext(rdf:type, c1, owl:Class)
A iext(rdf :type, c2, owl:Class)
A Vr.(iext(rdf:type,x, 1) — iext(rdf:type, z,¢2)))

The RDF-based semantics consists of several hundred semantic conditions.
The meaning of the example ontology is given by the FOL translation
of the actual RDF graph plus the FOL translations of all the semantic
conditions of the RDF-based semantics.

While the semantic conditions of the RDF-based semantics only quan-
tify over elements of the domain, a restricted form of higher-order logic
(HOL) is provided by both the syntax and semantics of OWL 2 Full, with-
out however the full semantic expressivity of HOL. Nevertheless, ontolo-
gies with flexible metamodeling are supported and some useful HOL-style
reasoning results can be obtained.

7 Experimental Results

In previous work, we have translated the OWL 2 RDF-based semantics
into a FOL theory and done a series of reasoning experiments using FOL
reasoners, which generally indicate that rather complicated reasoning be-
yond OWL 2 DL is possible. These experiments included reasoning based
on metamodeling as well as on syntactic constellations that violate the
global restrictions of OWL 2 DL. The used FOL reasoners generally suc-
ceeded on most or all of the executed tests, and even often did so consid-
erably fast, while the state-of-the-art OWL 2 DL reasoners that were used
for comparison only succeeded on a small fraction of the tests. However,
one often observed problem of the FOL reasoners needs to be mentioned:
while they were very successful in solving complicated problems, they of-
ten showed difficulties on large input sizes. In the future, we will have
to further investigate how to cope with this scalability issue. Our results
have been described in [22].



In addition, we have recently conducted some initial experiments con-
cerning reasoning in the direct semantics beyond OWL 2 DL, including
positive and negative entailment checking based on cyclic relationships.
Again, we have found that FOL reasoners can often quickly solve such
problems, provided that the input ontologies are of reasonable size.

8 Come on, Logic!

Common Logic (CL) [11] has been proposed as a unifying approach to dif-
ferent knowledge representation formalisms, including several of the for-
malisms currently deployed on the Web. Semantically, CL is firmly rooted
in FOL3, whereas its syntax has been designed in a way that accounts for
the open spirit of the Web by avoiding syntactic constraints typically oc-
curring in FOL, such as fixed arities of predicates, or the strict distinction
between predicate symbols and terms.

The syntactic freedom that CL provides allows for flexible modeling
in a higher-order logic (HOL) style and it is even possible to receive some
useful HOL-style semantic results, similar to metamodeling in OWL 2 Full.
In fact, OWL 2 Full can be translated into CL in an even more natural
way than into standard FOL, as demonstrated by Hayes [8|. Furthermore,
CL allows to represent the OWL 2 Direct Semantics, as well as other
Semantic Web formalisms, such as SWRL and RIF. Compared to all these
Semantic Web formalisms, CL is significantly more expressive and flexible
and, therefore, users of CL should benefit from extended modeling and
reasoning capabilities.

By becoming an ISO standard, CL has taken another dissemination
path than the commonly adopted Semantic Web languages. While syn-
tax and semantics of CL are well-defined, software support for editing
and managing CL knowledge bases has just started to be developed and
support for reasoning in CL is close to non-existent to the best of our
knowledge. This arguably constitutes the major obstacle for wide deploy-
ment — as we have argued in the preceding section, the often criticized
undecidability of CL does not qualify as a sufficient reason to dismiss this
formalism right away:.

While the development of scalable, ergonomic tools is certainly an en-
deavor that should not be underestimated, the above presented approach
provides a clear strategy for accomplishing readily available state-of-the-
art reasoning support. In fact, since the translation of CL into FOL is

3 Strictly speaking, in order to keep within FOL, one has to avoid the use of so called
sequence markers.



even more direct than for the two considered variants of OWL, creating a
reasoning back-end for CL should be even more straight-forward.

We are convinced that a system capable of reading CL knowledge bases
and performing inferences with it would lead to a significant breakthrough
toward a wider visibility and practical deployment of CL.

9 Conclusion

In our paper, we have discussed the importance of decidability for practical
knowledge representation, putting particular emphasis on well-established
Semantic Web languages. On a general level, we argued that from a prac-
tical perspective, decidability only provides a qualitative advantage if it
comes with a decision algorithm the runtime of which can be guaranteed
to be below an acceptable time span. We then identified scenarios where
such an algorithm is strictly required as well as scenarios where this is not
the case.

We therefore conclude that the necessity to constrain to decidable
formalisms strongly depends on the typical automated reasoning tasks
to be performed in a knowledge-based system dedicated to a concrete
purpose.

In order to still provide necessary reasoning services, we proposed
to use available highly optimized implementations of first-order theorem
provers and model finders. Realistically, specialized reasoners such as ex-
isting OWL 2 DL reasoners are likely to be more efficient on their specific
language fragment than generic FOL reasoners. But as these reasoners
happen to provide (syntactically restricted) FOL reasoning themselves,
all considered reasoners are largely interoperable and, therefore, could be
applied in parallel to solve complex reasoning tasks conjointly. This ap-
proach offers a smooth transition path towards advanced OWL 2 reasoning
without loss of efficiency on existing application areas.

Our own experiments, currently using off-the-shelf standard first-order
reasoners, have yielded first encouraging results. We are confident that the
good results obtained for undecidable OWL variants will carry over to Se-
mantic Web knowledge representation formalisms that even go beyond the
OWL 2 specification, such as SWRL or RIF-BLD combined with OWL 2.
We will, in principle, only be limited by what first-order logic provides us.

In the light of these promising results, we strongly believe that the
described strategy of providing inferencing services via a translation into
FOL and the deployment of first-order reasoning machinery can also pave
the way to establishing reasoning support for undecidable formalisms



cherished by the conceptual structures community. Endowing conceptual
graphs and common logic with ready-to-use inferencing services along the
same lines seems a feasible and worthwhile endeavor and will most likely
lead to a more wide-spread adoption of these formalisms among knowledge
representation practitioners.
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