

DC Proposal: Online Analytical Processing of Statistical Linked Data

Benedikt Kämpgen

The 10th International Semantic Web Conference (ISWC2011) 24 October 2011

Institute of Applied Informatics and Formal Description Methods (AIFB)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outline

- 1. Problem: General decision support using Statistical Linked Data (SLD)
- 2. Approach: Online Analytical Processing (OLAP)
- 3. Research plan: challenges and evaluation

OLAP frontends intuitive, interactive, explorative, fast

- Common front-end: Pivot tables
- Understandable by non-technicians

- Different angles
- Aggregations
- Drill-down / Roll-up
- Filters
- Drill-through
- What-if-analyses

Aggregate function Subtotals aggreg	on: M ate fui	EAN nction:	COUNT	· •						
Filter list										
Link: [all] 🔹	х									
StudyArea: [all]			•	• X						
AnalysisObject:	[all]									
Date: [all]	-	Х								
Day: [all] 👻 X										
Unit: [all] 👻 X										
Month: [all] 👻	X									
Value	Year	2000	2001	2002	2003	2004	2005	2006	2007	Year
LocationName										
AB3143		-198.00	-200.53	-203.14	-203.55	-203.74	-208.24	-211.04	-214.46	
AB3148]	-257.74	-262.70	-258.06	-253.10	-262.27	-259.05	-262.56	-257.64	
AB3149		-274.62	-269.89	-270.98	-267.73	-270.77	-271.80	-273.89	-275.75	

Pivot table

OLAP functionality provided by many tools and may be reused

- Client libraries for Java (olap4j), JavaScript (olap4js).
- Microsoft provides OLAP functionality in Excel: PowerPivot

EnglishPromotionType		K		FiscalQuarter
New Product No Discount		duct		DimSalesTerritory
Excess Inventory Seasonal Discount		t		□ Sales I erritoryAiternatekey □ SalesTerritoryRegion ☑ SalesTerritoryCountry □ SalesTerritoryGroup □ EactInternetSales
				ProductKey
Sum of OrderQuantity Colu Row Labels 👻 2001 Australia	nn Labels 💌 2002 20 394 859	003 2004 Gr 5335 6757	13345	OrderDateKey OrderDateKey OueDateKey ShipDateKey
Sum of OrderQuantity Colur Row Labels 2001 Australia Canada France	nn Labels 2002 20 394 859 47 226 59 233 76 232	003 2004 Gr 5335 6757 3086 4261 2291 2975 2254 2062	d Total 13345 7620 5558	
Sum of OrderQuantity Colur Row Labels 2001 Australia Canada France Germany Jnited Kingdom Jnited States	nn Labels 2002 20 394 859 47 226 59 233 76 233 96 265 341 861	003 2004 Gr 5335 6757 3086 4261 2291 2975 2254 3062 2966 3579 8511 11631	1 Total 13345 7620 5558 5625 6906 21344	OrderDateKey DueDateKey DueDateKey Drag fields between the areas below: If Slicers Vertical Slicers Ho EnglishProm Column Li

http://www.powerpivotblog.nl/working-with-gemini-and-excel-2010-to-make-a-pivot-table

OLAP features fulfill Statistical Linked Data requirements

Statistical Linked Data	OLAP (ETL / Data Warehousing)
Many, large, and distributed datasources	ETL
Heterogeneous data with variable quality	Multidimensional Model (OLAP model)
Data not available permanently	Data Warehouse
Dynamic changes	Near real-time updates
Confidential information	Access-control

Institute of Applied Informatics and Formal Description Methods (AIFB)

Research question

- **OLAP** client OLAP client **OLAP** client RDF RDF Linked Linked Linked Data Data Data Ontology Ontology
- Research question: How to allow OLAP on Statistical Linked Data?
- Hypothesis: Statistical Linked Data self-descriptive enough to be automatically preprocessed for common OLAP systems

Related work

- OLAP-like operations on Web data without using Semantic Web technologies
 - Exchange formats often based on XML (e.g., XBRL, SDMX, and DDI)
 - E.g., Google Public Data Explorer
 - **Problem:** Creating XML from datasources manual effort.
- OLAP-like operations on Web data with Semantic Web technologies
 - Based on ontologies
 - E.g., Marko Niinimäki and Tapio Niemi An ETL Process for OLAP Using RDF/OWL Ontologies, 2009
 - **Problem:** Ontology engineering from datasources manual effort.

- (1) Issuing OLAP queries on statistical Linked Data
- (2) Transforming statistical Linked Data into OLAP model
- (3) Integrating statistical LinkedData for transformation intoOLAP model
- (4) Matching statistical Linked Data

- (1) Issuing OLAP queries on statistical Linked Data
- (2) Transforming statistical Linked Data into OLAP model
- (3) Integrating statistical LinkedData for transformation intoOLAP model
- (4) Matching statistical Linked Data

(1) Issuing OLAP queries on statistical Linked Data

The top 10 most discussed product types of products from a specific country based on number of reviews by reviewers from a certain country.

SELECT {[Measures].[Count rev:Review]} ON COLUMNS,

TopCount({[bsbm:reviewFor].[bsbm:ProductTy pe].members}

, 10

, [Measures].[Count rev:Review]

) ON ROWS

FROM [rev:Review]

WHERE

[bsbm:reviewFor].[bsbm:producer].[bsbm:coun try].[%Country1%] AND

[rev:reviewer].[bsbm:country].[%Country2%]

OLAP query (MDX)

prefix bsbm: <http://www4.wiwiss.fuberlin.de/bizer/bsbm/v01/vocabulary/> prefix rev: <http://purl.org/stuff/rev#> Select ?productType ?reviewCount { Select ?productType (count(?review) As ?reviewCount) ?productType a bsbm:ProductType . ?product a ?productType . ?product bsbm:producer ?producer . ?producer bsbm:country %Country1%. ?review bsbm:reviewFor ?product . ?review rev:reviewer ?reviewer . ?reviewer bsbm:country %Country2%. Group By ?productType Order By desc(?reviewCount) ?productType Limit 10

SPARQL 1.1

(1) Issuing OLAP queries on statistical Linked Data

prefix bsbm: <http://www4.wiwiss.fu-The top 10 most discussed product types berlin.de/bizer/bsbm/v01/vocabulary/> of products from a specific country based prefix rev: <http://purl.org/stuff/rev#> on number of reviews by reviewers from a Select ?productType ?reviewCount certain country. { Select ?productTvpe (count(?review) As ?reviewCount) SELECT {[Measures].[Count rev:Review]} ON COLUMNS, ?productType a bsbm:ProductType . ?product a ?productType . TopCount({[bsbm:reviewFor].[bsbm:ProductTy] ?product bsbm:producer ?producer . pe].members} ?producer bsbm:country %Country1% ?review bsbm:reviewFor ?product . . 10 ?review rev:reviewer ?reviewer. , [Measures].[Count rev:Review] ?reviewer bsbm:country %Country2%. **ON ROWS** FROM [rev:Review] Group By ?productType WHERE [bsbm:reviewFor].[bsbm:producer].[bsbm:coun try].[%Country1%] AND Order By desc(?reviewCount) ?productType [rev:reviewer].[bsbm:country].[%Country2%] Limit 10 SPARQL 1.1 OLAP query (MDX)

Institute of Applied Informatics and Formal Description Methods (AIFB)

(1) Challenge: Optimise Linked Data queries for OLAP

Evaluation: Query performance; Berlin SPARQL benchmark

- (1) Issuing OLAP queries on statistical Linked Data
- (2) Transforming statistical Linked Data into OLAP model
- (3) Integrating statistical LinkedData for transformation intoOLAP model
- (4) Matching statistical Linked Data

(2) Transforming statistical Linked Data into conceptual model [1]

RDF Data Cube vocabulary (QB)

Dimension

OLAP model

qb:DataSet + qb:DataStructureDefinition	Data Hypercube (Cube)
qb:Observation + qb:DataSet	Fact
qb:ComponentProperty	Dimension

[1] Kämpgen, Harth – Transforming Statistical Linked Data for Use in OLAP Systems, ISEM 2011

(2) Challenge: Construct OLAP hierarchies from statistical Linked Data

For instance, data with Dimension "gender"

Result

Two Cubes with Dimension gender with 2-Level-Hierarchy

- Cube 1: Total data; Cube 2: Male/Female data
- **Evaluation:** Total = Male + Female

- (1) Issuing OLAP queries on statistical Linked Data
- (2) Transforming statistical Linked Data into OLAP model
- (3) Integrating statistical Linked Data for transformation into OLAP model
- (4) Matching statistical Linked Data

(3) Integrating statistical Linked Data for transformation into OLAP data model

- Statistics may heterogeneously describe related information, e.g.,
 - Dimensions: "Geo" and "Location"
 - Members: "DE" and "Germany"

(3) Challenge: Extract relations between elements in different statistics

- Relating "Geo" and "Location" / "DE" and "Germany"
- One approach: Exploit owl:sameAs links between instances of Dimensions and Members

Evaluation: Possible to compare related statistics

Institute of Applied Informatics and Formal Description Methods (AIFB)

- (1) Issuing OLAP queries on statistical Linked Data
- (2) Transforming statistical Linked Data into OLAP model
- (3) Integrating statistical LinkedData for transformation intoOLAP model
- (4) Matching statistical Linked Data

(4) Matching Statistical Linked Data

Institute of Applied Informatics and Formal Description Methods (AIFB)

(4) Challenge: Model statistics automatically

- Find interesting Cubes, Dimensions, Measures...
- In data using various vocabularies
- Evaluation: Quality criteria for OLAP models, e.g., analyzability and simplicity

Conclusion

- OLAP for generic decision support using statistical Linked Data
- Status research plan
 - Preliminary work: B. Kämpgen, A. Harth Transforming Statistical Linked Data for Use in OLAP Systems, ISEM 2011
 - Future work: Fulfilling the requirements of our use cases, e.g., hierarchies
 - Ongoing work: Java Linked Data driver for various OLAP clients

Q&A

- Questions?
- Feedback?
 - Use cases...
 - Research challenges
 - Evaluation

