
Conjunctive Query Answering for Directional Rules
Technical Report 3026

AIFB, Kalrsruhe Institute of Technology

Markus Krötzsch1 and Sebastian Rudolph2

1 Dep. of Computer Science, University of Oxford, UK, markus.kroetzsch@cs.ox.ac.uk
2 Institute AIFB, Karlsruhe Institute of Technology, DE, sebastian.rudolph@kit.edu

Abstract. This paper introduces Directional Rules, a new extension of Datalog
with existential quantifiers in rule heads in the spirit of formalisms like tuple-
generating dependencies, Datalog+/− and ∀∃-rules that have attracted new inter-
est recently. As opposed to known decidable classes of such existential rules, Di-
rectional Rules support complex join conditions as required for expressing tran-
sitivity. Nonetheless, the new language suggests surprisingly simple algorithms
for answering a broad class of conjunctive queries in polynomial time regarding
data complexity. In contrast, answering unrestricted conjunctive queries is un-
decidable, and we propose further restrictions and more complex algorithms for
recovering decidability in the general case. Besides their immediate use for data
integration and data exchange, Directional Rules are of particular interest since
they can capture large real-world ontologies that could hitherto be modelled in
description logics only, even though they are mostly used in database-driven ap-
plications.

1 Introduction

Datalog – the logical language of function-free first-order Horn clauses – has been
widely studied and applied in both in the field of deductive databases and that of
knowledge representation and reasoning. While pure Datalog can only be used to make
statements and infer information about the active domain (i.e., the set of constants or
database individuals that are given a priori), the capability to derive the existence of
new individuals – a feature commonly called value invention [10, 2] – is considered a
crucial prerequisite for the deployment of rule based paradigms for ontological knowl-
edge representation [31].

This led to the introduction of extensions of Datalog featuring value invention. In
the database community, the according logical fragment is usually referred to as tu-
ple generating dependencies (TGDs, see, e.g., [1]) and has been employed in the area
of data exchange and data integration [21]. The Datalog+/– formalism [12] which is
based on TGDs has been shown to be able to capture lightweight ontological languages
such as the DL-Lite family [15]. Coming from a parallel strand of research concerned
with graph-based knowledge representation [17, 33] ∀∃-rules have been suggested for

knowledge representation and reasoning on (hyper)graph data repositories [7], a notion
which also happens to coincides with that of TGDs.

In spite of these various efforts toward a rule-based foundation for expressive knowl-
edge representation and reasoning, ontological modelling applications today are more
often based on description logics (DLs), a family of knowledge representation lan-
guages that has gained prominence as the semantic foundation of the W3C Web On-
tology Language OWL (see [5, 22] for textbook introductions). This might be surpris-
ing given that ontologies are increasingly used in large scale and data-centric scenarios,
where a close integration with database technology is desirable.

A related example is the medical ontology SNOMED Clinical Terms that includes
about 300,000 concepts [24]. While DLs are used for developing SNOMED, the on-
tology is actually deployed as a materialised database that is shipped to customers in
CSV file format. But the development version of SNOMED uses expressive means of
logical modelling that are not available in Datalog. E.g., to specify that a particular class
of pharmaceutical products has an active ingredient from a particular class of chemical
compounds. Since this statement refers to some (not fully specified) element from a
class of compounds, the according axioms in SNOMED CT merely require the exis-
tence of a suitable element.

Besides this, SNOMED CT also uses a few simple rules, such as the one that states
that, if a procedure acts directly on some substance which in turn has a particular active
ingredient, then the procedure acts on the active ingredient:

direct-subst(x,y), active-ingredient(y,z)→ direct-subst(x,z) (1)

While this might suggest an approach based on Datalog and TGDs, this direct com-
bination turns out to be too expressive for efficient use in practice: even simple query
answering problems are undecidable for this language. In contrast, SNOMED CT is ac-
tually covered by the light-weight ontology language OWL EL for which simple queries
can be answered in polynomial time. Yet, existing proposals for decidable fragments of
TGDs typically exclude rules like (1) and many other join-expressions such as transi-
tivity.

These observations motivate the present paper. Drawing inspiration from the de-
scription logic EL++ that is underlying OWL EL, we define a new decidable TGD
language, called Directional Rules. Argument positions in predicates are partitioned in
inputs and outputs to enforce a certain direction of dependencies between existing val-
ues and newly invented ones. This form of directedness is indirectly enforced in some
DLs, but specifying it as an explicit and general paradigm allows Directional Rules to
be significantly more expressive than DLs. In particular, unlike DLs, Directional Rules
are not restricted to relations of one or two parameters, and can easily accommodate
arbitrary Datalog rules if the interaction with TGDs is suitably restricted.

Answering simple queries for Directional Rules is surprisingly simple: we show
that, in essence, one can safely replace existentially quantified variables by fresh con-
stants. This reduces inferencing to classical Datalog and allows existing tools and al-
gorithms to be used. It also allows us to obtain various complexity results, especially
polynomial data complexity. This simplicity is in stark contrast to the case of general

conjunctive queries that do not respect the requirements of directionality: checking their
entailment is undecidable.

To address this issue, we further restrict our language to Simple Directional Rules,
and adopt existing methods from description logics to decide conjunctive query entail-
ment. Simple Directional Rules are indeed closely related to the description logic EL.
We provide various undecidability results for conjunctive querying in the general case
to motivate this strong restriction. The complexities for query answering are adequate –
NP data complexity and PSpace combined complexity given reasonable assumptions –
and we show decidability for a TGD language that is outside any of the known decidable
fragments.

We begin by providing some basic notation and a short survey of related approaches
in Section 2. Directional Rules are defined in Section 3, and a method for answering
atomic and directional queries for them is presented in Section 4. General queries are
discussed in Section 5, where we introduce Simple Directional Rules and establish the
according decidability and complexity results. We finish with some further related work
and some outlook in Section 7.

2 Existentional Rules and Their Decidable Fragments

We now provide the basic notions of the logical framework we consider, followed by
an overview of a number of important approaches in this area.

Definition 1. Consider a signature 〈I,R,V〉 consisting of a finite set of constant sym-
bols I, a finite set of relation symbols R, and an infinite set of variable names V, all of
which are mutually disjoint. A function ar : R → N associates a natural number ar(s)
with each relation symbol r ∈ R that defines the (unique) arity of r. The set of positions
of a relation symbol r is the set Πr = {1, . . . , ar(r)}.

A term is a variable x ∈ V or a constant c ∈ I. An atom is a formula of the form
r(t1, . . . , tn) if t1, . . . , tn are terms, and r ∈ R is a relation symbol with ar(r) = n. A
tuple generating dependency (TGD, sometimes simply called rule if there is no danger
of confusion) is a formula of the form ∀x.B[x]→ ∃y.H[x, y] with B[x] = B1 ∧ . . . ∧ Bk

and H[x, y] = y.H1 ∧ . . . ∧ Hl
)
, where B1, . . . , Bk,H1, . . . ,Hl are atoms all of whose

variables are in the scope of some quantifier, and where no variable occurs more than
once in x, y. We use sets of atoms as a convenient notation for conjunctions of atoms. A
Datalog rule is a TGD that has no existential quantifiers. A TGD with k = 0 is called a
fact, and a TGD with l = 0 is called a constraint. The premise B[x] of a TGD is called
the rule body while the conclusion H[x, y] is called the rule head. Since all variables in
TGDs are quantified, we will often omit the explicit preceding universal quantifier.

Clearly the rule language hereby introduced is a syntactic fragment of first-order
predicate logic (FOL) and we also consider it under the according semantics.

Definition 2. Let Σ be a set of rules. We call Σ satisfiable if it has a model according to
the standard semantics of first-order logic. Two rule sets Σ and Σ′ are equisatisfiable if
either both or none of them is satisfiable. A Boolean conjunctive query (BCQ) is a set of
atoms. We say that a BCQ Q is entailed by Σ, if ∃x.Q (with x containing all variables

occurring in Q) is a logical consequence of Σ according to standard FOL semantics. In
particular, we refer to the case |Q| = 1 as simple or fact entailment.

It has long been known that checking satisfiability and BCQ entailment for unre-
stricted TGDs is undecidable [16, 9] even with very strong restrictions on the vocab-
ulary or the number of rules [7]. Therefore, a comprehensive body of work has been
devoted to identifying specific types of TGDs which are decidable and still allow for
sufficient expressiveness. A generic tool for establishing decidability results is the chase
introduced in [29] and extended to query containment in [25]. Intuitively the chase pro-
cedure starts with a given set of factual data (ground facts) and “applies” TGDs in a
production rule style by introducing new domain elements whenever required by an
existentially quantified variable in a rule head. In general, termination of this proce-
dure cannot be guaranteed and an infinite set of new domain elements and facts may be
created.

Many of the decidable TGD classes come about by establishing properties about
the chase they create. Finiteness of the chase is one possible straightforward criterion
for decidability. In [7], a TGD set with this property is referred to as finite extension
set, but it is also shown that this criterion is undecidable in general. However, several
sufficient conditions on TGD sets for chase-finiteness have been identified: Pure Dat-
alog (also referred to as full implicational dependencies [16] or total TGDs [9]) is an
immediate case, as no new domain elements are created at all. Weakly acyclic TGDs
[20, 21] constitute a more elaborate way by – roughly speaking – allowing for bounded
value generation sequences by taking record of predicate positions. Another way of en-
suring finiteness of the chase is to require acyclicity of the graph of rule dependencies
as introduced in [6].

An even more relaxed condition than finiteness of the chase is that the (possibly
infinite) chase enjoys a variant of the bounded treewidth property. TGDs of that kind
are referred to as bounded treewidth sets in [7] and their decidability is an immediate
consequence of the decidability of classes of first order logic with the bounded treewidth
model property [18]. Again TGDs with this property are not recognizable in general,
but a variety of sufficient conditions has been established. The definition of guarded
TGDs – which enjoy this property – has been inspired by the guarded fragment of first-
order logic [3]. It has been generalized to weakly guarded TGDs [11] and to frontier-
guarded rules [7], both being subsumed by weakly frontier-guarded TGDs [7]. The
most expressive currently known bts fragments are that of greedy bounded treewidth
sets [8] and glut-guarded TGDs [27].

Independently of the chase, other decidability criteria can be established by consid-
ering rewritings of the query in a backward-chaining manner. In analogy to the finite
chase condition, one can define finite unification sets [7] as sets of TGDs where this
subsequent rewriting procedure terminates resulting in a finite set of rewritten queries.
Again, recognizing whether a given TGD set has this abstract property is undecidable,
but many easily identifiable subclasses are known such as atomic-hypothesis rules and
domain restricted rules [7] as well as linear Datalog+/– [12] and sticky sets of TGDs
and sticky-join sets of TGDs [13, 14]. Note that being a finite unification set implies
first-order rewritability and in turn AC0 data complexity of BCQ entailment checking.

3 Directional Rules

In this section, we introduce a class of rule sets, called Directional Rules. Intuitively, this
definition captures the idea of directedness by stipulating for every predicate symbol
which positions are considered as input (or source) and which ones as output (or target)
positions. As an illustrative example, one may think of directed graphs that are encoded
using a binary predicate edge where the first position is defined to be input and the
second as output.

Definition 3. Given a relation symbol r ∈ R, a mode for r is a pair 〈Πin, Πout〉 of disjoint
sets of positions such thatΠin∪Πout = Πr, whereΠin is the set of input positions andΠout

is the set of output positions. Accordingly, a term t may be said to appear in an output
position (input position) of an atom r(t). Irrespective of the arity or order of arguments
of r, the notation r(in|out) is used to denote the terms in input and output positions of
r(t). When discussing the extension of r, a tuple 〈δ1, . . . , δar(n)〉 of domain elements will
be written as 〈δi|δo〉 where δi (δo) is the tuple of all elements of 〈δ1, . . . , δar(n)〉 at input
(output) positions of r.

We first consider sets of rules with the following properties:

Definition 4. Consider a signature 〈I,R,V〉 for which a unique mode has been as-
signed to each relation symbol. A set of rules Σ over 〈I,R,V〉 is directional if the fol-
lowing hold for each rule ∀x.B[x]→ ∃y.H[x, y]:

(1) Variables in input positions of H do not occur in output positions in B.
(2) If an existentially quantified variable occurs in an input position of an atom in H,

then it is the only input position of this atom and all other variables in that atom
are existentially quantified as well.

(3) No variable in B occurs in more than one output position.
(4) There is a strict order ≺ on variables in B such that x ≺ y holds whenever x occurs

on an input position of an atom where y occurs on an output position.

As an example for a directional rule set, consider Fig. 1. Mode assignments to
the used predicates are indicated as described in Definition 3. It can be readily checked
that the given set of TGDs is indeed directional. It becomes immediately clear that the
chase will become infinite in general, as the procedure will generate parents of persons
which are again persons. On the other hand, joins of many kinds occur in the program, as
well as projections etc. A closer inspection of the rule set reveals that it is not a bounded
treewidth set (cf. [7]) since – given an initial individual of type Person in the database
– the chase contains a substructure isomorphic to (N, <), w.r.t. the predicate Ancstr,
which does not allow for a tree decomposition of bounded tree width; consequently it
lies outside a number of concrete decidable classes of TGDs as discussed in Section 2.
Likewise the rules do not constitute a finite unification set as already witnessed by the
single rule stating transitivity of Ancstr.

We next review the question how hard it is to find an appropriate assignment of
modes for a given set of TGDs.

∀x.Person(x|)→ ∃y,z.Parents(x|y, z)∧Woman(y|)∧Man(z|)
∀x.Man(x|)→ Person(x|)

∀x.Woman(x|)→ Person(x|)
∀x, y, z.Parents(x|y, z) ∧Married(y, z|)→ LegitimateChild(x|)

∀x, y.Married(x, y|)→ Married(y, x|)
∀x, y, z,w.Twin(x, y|) ∧ Parents(x|z,w)→ Parents(y|z,w)

∀x, y, z.Parents(x|y, z)→ Parent(x|y) ∧ Parent(x|z)
∀x, y.Parent(x|y)→ Ancstr(x|y)

∀x, y.Ancstr(x|y) ∧ Ancstr(y|z)→ Ancstr(x|z)
∀x,y,z,w.Ancstr(x|y)∧Ancstr(z|w)∧Enemy(y,w|)→ Enemy(x, z|)

Fig. 1. Example directional rule set using | to denote modes as in Definition 3

Theorem 1. Deciding whether modes can be assigned to relation symbols in such a
way that a given set of rules Σ is directional is NP-complete w.r.t. the number of predi-
cates in Σ.

Proof. Membership in NP is straightforward, as for a given assignment of modes to
predicates the criteria for directionality can be checked in polynomial time.

We show NP-hardness by a reduction from 3-SAT to the directionality decision
problem. Consider a finite set Prop of propositional atoms and a propositional formula
ϕ = ϕ1 ∧ . . . ∧ ϕn with ϕi = ai1 ∨ ai2 ∨ ai3 such that ai j ∈ Prop ∪ {¬p | p ∈ Prop}. We
use binary predicates rp, r¬p, and sp for each p ∈ Prop, and a unary predicate aux. The
rule set Σϕ is defined as follows:

For every propositional atom p contained in ϕ we let Σϕ contain the rules

rp(x, y) ∧ rp(x, z)→ (2)
r¬p(x, y) ∧ r¬p(x, z)→ (3)

→ ∃x, y.sp(x, y) (4)
aux(z) ∧ sp(x, y)→ rp(z, x) (5)
aux(z) ∧ sp(x, y)→ r¬p(z, y) (6)

rp(x, y) ∧ r¬p(y, x)→ (7)

This ensures that every assignment of modes making Σϕ directional assigns input to the
first position of predicates rp and r¬p as a consequence of Rules (2) and (3) together with
criterion (3). Second, Rule (4) ensures that at least one position of sp must be assigned
output according to criterion (2). Consequently, Rules (5) and (6) together with criterion
(1) require that at least one of rp, r¬p must have output assigned to its second position.
Finally, Rule (7) and criterion (4) rule out the case that both rp, r¬p have second position
output, whence we conclude that exactly one of rp, r¬p has second position output. So
the possible mode combinations are rp(i, i), r¬p(i, o) and rp(i, o), r¬p(i, i). We will use
rp(i, i) to encode that p is evaluated to true, and r¬p(i, i) to encode that ¬p is evaluated
to true.

Now we create for every ϕi = ai1 ∨ ai2 ∨ ai3 the rule

rai1 (x, y) ∧ rai2 (y, z) ∧ rai2 (z, x)→ (8)

Due to criterion (4) and the above established restriction on assignments, rule (8) en-
sures that at least one of rai1 , rai2 , rai3 must have two input positions. Hence ϕ is satisfi-
able if there is an assignment of modes to the predicates of Σϕ that makes Σϕ directional.
We can obtain an according truth value assignment as follows: a propositional atom p
is assigned true exactly if all positions of rp are assigned input. ut

4 Directional Query Answering

We now turn to the problem of answering atomic queries, i.e. conjunctive queries with
only one atom. Clearly, any procedure for answering such queries can be applied to all
conjunctive queries that are legal as rule bodies of a set of Directional Rules, since one
can extend the set with a suitable rule to obtain query results.

Definition 5. Given a signature with associated modes, a BCQ Q with variables x is
called directional if ∀x.Q→ is a Directional Rule.

We will answer atomic queries using the following easy transformation of rule sets:

Definition 6. For a set of rules Σ, the set of rules Γ(Σ) contains, for every rule ρ in
Σ, a rule ρ′ obtained by uniformly replacing each existentially quantified variable that
occurs in an output position of a head atom of ρ by a fresh constant symbol.

For the example of Fig. 1, Γ(Σ) contains all the TGDs of the original rule set except
for the first one, which is replaced by

∀x.Person(x|)→ Parents(x|w,m) ∧Woman(w|) ∧Man(m|),

where w,m are fresh constants which have not previously occurred in the rules nor the
data. This translation alters the semantics of the theory as it introduces generic parents
for all individuals (e.g., Parents(w,w,m) and Parents(m,w,m) are consequences of the
newly generated Datalog program), however we will show that it still faithfully reflects
certain aspects of the original TGD set and can be used for satisfiability and certain
entailment checks.

The main result of this section is as follows:

Theorem 2. Deciding satisfiability, fact entailment, and entailment of directional con-
junctive queries for Directional Rules is NP-complete for bounded arity and ExpTime-
complete for unbounded arity. Data complexity is P-complete in both cases.

To prove this result, we verify the following essential statement.

Lemma 1. Γ(Σ) and Σ are equisatisfiable.

Proof. It is easy to see that Γ(Σ) |= Σ, so every model of Γ(Σ) is also a model of Σ as
required.

For the other direction, consider a model I of Σ, and let D denote the set of all
constants that have been introduced when constructing Γ(Σ) from Σ. A modelJ of Γ(Σ)
is constructed as follows. The domain ofJ is ∆J B ∆I∪D where we assume this to be
a disjoint union. We first introduce some auxiliary notions to define the interpretation
function.

For a constant d ∈ D that was introduced in Γ(Σ) when replacing an existentially
quantified variable z in a rule ∀x.B→ ∃y.H, we define ϕd to be the formula ∃x.∃y′.B∧
H where y′ consists of all variables in y other than z. Thus ϕd is a formula with one
free variable z, and we may write ϕd[z] to emphasise the variable name. We say that an
element ε ∈ ∆I is an I-instance of an element δ ∈ ∆J if either ε = δ ∈ ∆I, or δ ∈ D
and I, {x 7→ ε} |= ϕδ[x]. Analogously, a tuple 〈ε1, . . . , εn〉 is an I-instance of a tuple
〈δ1, . . . , δn〉 if εi is an I-instance of δi for all i = 1, . . . , n.

Now the interpretation function of J can be defined as follows:

– cJ = c for all c ∈ D, and cJ = cI for all other constants,
– 〈δi|δo〉 ∈ rJ if, for all I-instances εi of δi, there is an I-instance εo of δo such that
〈εi|εo〉 ∈ rI, and there is at least one I-instance of δi.

To show that J is a model of Γ(Σ), consider any rule ∀x.B[x] → H′[x] ∈ Γ(Σ)
that was obtained from a rule ∀x.B[x] → ∃y.H[x, y] ∈ Σ. Also, let xi denote the
variables in x that occur in input positions of atoms in B only. Assume that there is a
variable assignment Z for J such that J ,Z |= B. We iteratively construct a variable
assignment Z̃ for I by repeating the following step until Z̃ is defined for all variables
in B:

– Select a variable x in B such that, if x occurs in the output position of any atom in
B, then Z̃ has been defined for all variables in input positions of this atom.

– Select a value Z̃(x) as follows:
(1) There is some atom r[t i|to] ∈ B where x occurs in to. By the choice of x,

t i
I,Z̃ is a tuple of elements in ∆I. Let εo be an I-instance of to

J ,Z such that
〈t i
I,Z̃, εo〉 ∈ rI. Then, for all variables y at a position p in to, set Z̃(y) B εop.

(2) If the above is not the case, set Z̃(x) to an arbitrary I-instance ofZ(x).

We need to check that this is a valid definition. First note that Z̃(x) is guaranteed to be
an I-instance of Z(x) in all cases of the definition. A suitable variable x can be found
in each iteration step due to the forest structure of B. For case (1), the forest structure
of B also implies that the atom r[t i|to] ∈ B is unique, so this part of the definition is
deterministic. Moreover, since we haveJ ,Z |= r[t i|to], the definition ofJ implies that,
for all I-instances of t i

J ,Z, there is an I-instance εo of to
J ,Z as required in (1). Hence

such an instance can always be found since t i
I,Z̃ is indeed an I-instance of t i

J ,Z. The
variable assignments constructed in this case are consistent since the variables in to
occur at most once in 〈t i|to〉. Together with the forest shape of B, this also shows that
Z̃ has not been defined for any of the variables in to before. Finally, for item (2) the
required assignment is possible since x must occur in some input position of an atom
A ∈ B with J ,Z |= A, and the definition of J implies that there is an I-instance for all

terms in A. Note that this part of the definition is not deterministic: we can freely chose
any I-instance as a value. This is exploited below.

It is easy to see that I, Z̃ |= B. This is a direct consequence of J ,Z |= B and the
definition of Z̃.

We can now apply this construction to see that all head atoms in H′ are satisfied by
J andZ. Consider any atom s[t i|to] ∈ H with corresponding atom s[t′

i
|t′o] ∈ H′. Since

we observed that Z̃ can always be constructed, it follows that I, Z̃ |= H since I is a
model of Σ. By definition of I-instances, 〈t i

I,Z̃|to
I,Z̃〉 is an I-instance of 〈t′

i
J ,Z|t′o

J ,Z〉,
establishing that some such instance exists. This is easy to check using the definition of
ϕd that is underlying the notion of I-instances. We show that the remaining conditions
in the definition of sJ are also satisfied. Definition 4 allows two cases: either (a) t i = 〈z〉
and z as well as all variables from to are existentially quantified, or (b) t i contains no
existentially quantified variables at all.

For (a), t′
i

= 〈d〉 and the I-instances ε of dJ ,Z are such that I, {z 7→ ε} |= ϕd[z],
where ϕd[z] is of the form ∃x.∃y′.B ∧ H. This requires that for all I-instances ε, there
is a variable assignment Z′ for the variables in x and y such that I,Z′ |= B ∧ H and
Z′(z) = ε. In particular I,Z′ |= s[〈z〉|to]. Thus, for any I-instance ε of d, we find
an I-instance to

I,Z′ with 〈〈ε〉|to
I,Z′〉} ∈ sI (note that the satisfaction of the respective

characteristic formulae is straightforward), and thus 〈〈d〉|t′o
J ,Z〉} ∈ sJ as required. Note

that this argument builds on the above result that some I-instance exists.
For (b), Definition 4 ensures that all variables in t i are universally quantified, and

no such variable occurs in output positions of B. Thus item (2) of the above definition
of Z̃ applies for any such variable. Thus, for an arbitrary I-instance εi of t′

i
J ,Z, we can

construct Z̃ such that t i
I,Z̃ = εi. Since I, Z̃ |= B, we find that I, Z̃ |= ∃y.H. So there is

an extension Z̃′ of Z̃ to variables in y such that I, Z̃′ |= s[t i|to]. The existence of this
assignment also shows that to

I,Z̃′ is an I-instance of t′o
J ,Z. Since t i

I,Z̃′ = εi can be an
arbitrary I-instance of t′

i
J ,Z, this establishes the conditions for 〈t′

i
J ,Z|t′o

J ,Z〉 ∈ sJ .
We have thus shown that, for all variable assignments Z under which J satisfies

the body of a rule in Γ(Σ), it also satisfies each atom in the respective rule head. ut

Proof (of Theorem 2). First note that directional query entailment and fact entailment
can be reduced to checking satisfiability by adding a rule ∀x.Q → to Σ. In particular,
this implies that facts over constants of Σ are entailed by Σ if and only if they are
entailed by Γ(Σ). Then the data complexity as well as upper complexity bounds for the
bounded and unbounded arity case are immediate consequences from respective results
for pure Datalog [19] via Lemma 1. Lower complexity bounds arise from the same
results by the observation that every Datalog program is a set of directional rules if we
define all positions to be input positions. ut

5 Conjunctive Query Answering

Conjunctive queries that are not restricted as in Section 4 are significantly harder to
evaluate against Directional Rules: the problem turns out to be undecidable. We now ex-
plain various reasons for this undecidability, motivating the introduction of a restricted
fragment of Simple Directional Rules for which decidability is regained. In spite of its

limitations, the latter set can still not be captured by previous approaches for defining
decidable TGD fragments.

The following two theorems illustrate how various features of Directional Rules
contribute to undecidability of conjunctive querying.

Theorem 3. Checking entailment of conjunctive queries for Directional Rules is un-
decidable, even when restricting to binary predicates with exactly one input and one
output position.

Proof. Strings of a formal language can be represented as linear relational structures
with labelled edges. We use this to reduce the (known undecidable) problem of check-
ing the emptiness of the intersection of two context-free languages to query entailment.
Consider context-free grammars G1 and G2 over an alphabet A. For each alphabet or
non-terminal symbol α, let rα be a binary predicate with first position as its input and
second position as its output. For each α ∈ A, create a rule ∀x.∃y.rα(x, y) (ensuring that
arbitrary chains of alphabet-encoding relations exist in any model). For each grammar
production rule (in either grammar) T B S1 . . . Sn with T a non-terminal, and Si alpha-
bet symbols or non-terminals, create a rule rS1(x1, x2), . . . , rSn(xn, xn+1) → rT (x1, xn+1).
All of these rules are directional. It is not hard to see that the languages described by
G1 and G2 share a common word if and only if the query S1(x, y), S2(x, y) is entailed,
where Si is the start non-terminal of Gi. ut

Similar problems are encountered when studying (conjunctive query answering for)
description logics, which also support existential quantifiers and means of encoding
context-free grammars [28]. The solution that has been proposed there is to restrict
theories in such a way that only regular languages can be encoded. Transitivity axioms
and many other expressions are then still allowed. For predicates with more than two
arguments, however, it is not clear how regularity is to be formulated, and the following
result shows that even very basic recursive axioms are problematic in this case.

Theorem 4. Checking entailment of conjunctive queries for Directional Rules is unde-
cidable, even with only a single recursive rule that uses a single predicate only.

Proof. The undecidable Post Correspondence Problem (PCP) is as follows: Given two
lists of words u1, . . . , un and v1, . . . , vn over some alphabet A, is there a sequence of
numbers i1, . . . , ik (1 ≤ i j ≤ n) such that ui1 . . . uik = vi1 . . . vik ? We encode words using
predicates rα as in the proof of Theorem 3. We also use a 4-ary predicate pair with the
first two positions as its input. For each α ∈ A, create a rule ∀x.∃y.rα(x, y) (cf. Theo-
rem 3). Now for each pair of words ui = U1 . . .Un and vi = V1 . . .Vm, create a rule
rU1(x1, x2), . . . , rUn(xn, xn+1), rV1(y1,y2), . . . , rVm(ym,ym+1) → pair(x1, y1, xn+1, ym+1). Fi-
nally, add the rule pair(x1, y1, x2, y2), pair(x2, y2, x3, y3) → pair(x1, y1, x3, y3), the only
recursive rule in the rule set. All of the rules are clearly directional. This rule set entails
the query pair(x, x, y, y) if and only if the underlying PCP has a solution. ut

The previous proof could be modified to combine the recursive rule with the rules
for recognising matching pairs, making them recursive instead. This allows for combin-
ing the first two (or last two) arguments of pair into one, showing that basic head (or tail)
recursion with ternary predicates suffices for undecidability. To recover decidability, we
combine conditions that prevent the encodings of both Theorem 3 and 4.

Definition 7. A set Σ of Directed Rules is simple if it satisfies the following conditions:

(1) All predicates in Σ are either unary or binary, and their first position is their one
and only input position.

(2) Rule bodies are connected, i.e. the graph obtained from a rule body by taking vari-
ables as nodes and atoms as (undirected) edges is connected.

(3) Binary head atoms contain at most one existentially quantified variable.
(4) There is a strict partial order ≺ between binary predicate symbols with the follow-

ing property: If a rule head contains a binary atom r(x, y) with universally quanti-
fied variables x and y, then either x = y or the body contains a (necessarily unique)
path of binary predicates from x to y which must have one of the following forms:

– r(x, z), r(z, y),
– r(x, z1), s1(z1, z2), . . . , sn(zn, y),
– s1(x, z2), . . . , sn(zn, zn+1), r(zn+1, y),
– s1(x, z2), . . . , sn(zn, y),

where si ≺ r for all i = 1, . . . , n.
(5) Constant symbols only occur in rules that are facts.

Note that these conditions are easy to verify. With the modes predefined, one can
check the requirements of Definition 4 in polynomial time. Condition (4) in Definition 7
is not hard to check: each path to which the condition applies can have at most one of the
normal forms, and this can be checked effectively. To show the existence of the order ≺,
it suffices to verify pairwise if the ≺ relationships that are required for the normal forms
are free of cycles.

Definition 7 (4) captures a sufficient condition for preventing the encoding of context-
free languages as in the proof of Theorem 3. Essentially, it ensures that the relevant
chains of binary relations form regular languages. The complexity of the required con-
structions relates to the maximal length l of chains s1 ≺ . . . ≺ sl for the order ≺ used in
Definition 7 (4), so we refer to l as the depth of ≺.

We can restrict attention to the following special case of Simple Directional Rules.

Definition 8. A set of Simple Directional Rules is in normal form if each of its rules is
either a fact, or in one of the following forms

r(x, y), p(y)→ q(x) r(x, y)→ ∃z.t(x, z), q(z) r(x, y), s(y, z)→ t(x, z)
p1(x), p2(x)→ q(x) p(x)→ t(x, x) r(x, y)→ t(x, y)

where r, s, t are binary predicates, and p, q are unary predicates, >, or ⊥.

Proposition 1. For every set of Simple Directional Rules Σ, there is a set of Simple Di-
rectional Rules in normal form Σ′ that entails the same consequences over the signature
of Σ. Moreover, Σ′ can be computed in polynomial time.

Proof. Essentially, two types of basic propositional transformations are used: (a) the
transformation of an implication p → q ∧ r into two implications p → q and p → r;
(b) the transformation of an implication p ∧ q → r into two implications p ∧ a → r
and q → a where a is a new symbol (or, in our case, formula). Transformations of
type (b) introduce new auxiliary signature symbols, hence the normalisation does not
preserve semantic equivalence. But since auxiliary symbols are fresh, it is clear that

every model of the original formula can be extended to the enlarged signature to obtain
a corresponding model of the transformed formulae. Thus a formula over the original
signature is a logical consequences of the original rule set precisely if it is a consequence
of the transformed rule set.

The normalisation proceeds in several stages. Initialise Σ′ B Σ. First, consider
every rule head as a conjunction

∧n
i=1 ϕi formulae ϕi of one the forms t(x, y), q(x),

∃z.t(x, z), q(z), and ∃z.q(z). This is possible by applying each existential quantifier in
the head to only those atoms that contain the quantified variable. Due to Definition 7
(3) and Definition 4 (2) this must result in the required form (where q can be >). Now
each rule of the form B →

∧n
i=1 ϕi with n > 1 is replaced by n rules B → ϕi for each

i = 1, . . . , n, thus introducing a linear number of new rules; a transformation of type
(a). Moreover, all rule heads ∃z.q(z) are replaced by ∃z.s(x, z), q(z) for a fresh auxiliary
predicate s and with x being the (unique) variable of the rule body that does not occur
in output positions. After this step, every rule head in Σ′ is in a form as in one of the
normal forms.

Second, repeat the following “rolling-up” reduction as often as possible: Select a
body atom r(x, y) in a rule that does not have y in its rule head or in any other binary
body atom, but for which x occurs in some other body atom. Let ψ(y) denote the (possi-
bly empty) conjunction of all unary body atoms p(y). Now replace r(x, y)∧ψ(y) with an
atom a(x) for some fresh unary predicate a, and add a new rule r(x, y)∧ ψ(y)→ a(x) (a
type (b) transformation). After this step, each rule is either of the form r(x, y)∧ ψ(y)→
a(x) or has a body of the form ψ1(x1), s1(x1, x2), ψ2(x2), . . . , ψn(xn), sn(xn, xn+1) where
x1 and xn+1 occur in the head (a special case of this is x1 = xn+1).

Third, repeat the following reduction as often as possible: Select two body atoms
p(x), q(x) in some rule that has more than two atoms in its body, replace this occurrence
with a(x) for a fresh unary predicate a, and add a new rule p(x), q(x) → a(x). This is
a transformation of type (b). At most linearly many such reductions are possible. After
completing this step, all rules with body atoms of the form p(x), q(x) are in normal
form.

Fourth, for each unary predicate p in Σ′, introduce a fresh binary predicate rp, and
add a rule p(x) → rp(x, x). Then replace all occurrences of p(x) in bodies of rules
that are not in normal form yet by rp(x, x′) for a fresh variable x′, and replace x by x′

in all input positions of other body atoms and in all output positions of head atoms.
Again, only a linear number of replacements can happen. It is easy to see that this
transformation preserves the semantics of the rule set, even though we use rp(x, x′)
instead of rp(x, x) in rule bodies. After this step, rules that are not in normal form contain
only a single chain of binary body atoms.

Fifth, for each rule that contains more than two binary body atoms, select body
atoms s(x, y), r(y, z). For a fresh binary predicate t, replace s(x, y), r(y, z) in the body
with t(x, z) and add a rule s(x, y), r(y, z) → t(x, y). Again, only a linear number of these
type (b) steps is possible. After this, all rules are in normal form.

It is easy to see that this transformation preserves Definition 7 (4), as all of the ad-
ditional binary predicates can be integrated into the order ≺. In particular, the auxiliary
predicates rp for encoding unary predicates can be assumed to be ≺-minimal as they
do not occur in the head of any rule which includes binary body atoms. The auxiliary

Table 1. Correspondence of Simple Directional Rules and Description Logic axioms

p1(x), p2(x) → q(x) p1 u p2 v q r(x, y) → ∃z.t(x, z), q(z) ∃r.> v ∃t.q
r(x, y), p(y) → q(x) ∃r.p v q p(x) → t(x, x) p v ∃t.Self

r(x, y), s(y, z) → t(x, z) r ◦ s v t r(x, y) → t(x, y) r v t

binary predicates t introduced in the fifth step can be assumed to be ≺-larger than the
predicates s, r that they replace, but ≺-smaller than all predicates that are ≺-larger than
s and r.

Based on this normal form, it is easy to see that the semantics of many Simple Di-
rectional Rules can be expressed in the syntax of description logics as shown in Table 1.
The DL axioms on the right have the same first-order semantics as the rules on the left.
The required expressive features are already found in the tractable ontology language
OWL EL, which can be viewed as a DL [26]. However, there are no results about the
complexity of conjunctive query answering for this logic yet. The DL Horn-SROIQ
covers all features of Table 1 and is known to admit query answering in 2ExpTime (Exp-
Time if the depth of ≺ is bounded) [30]. A logic that is closer to OWL EL is EL++,
for which query answering is possible in exponential time (PSpace if the depth of ≺ is
bounded) [28]. We will show below how this result can be extended to Simple Direc-
tional Rules.

6 A Query Entailment Algorithm

The only feature in Table 1 that is missing in EL++ are axioms of the form p v ∃t.Self.
In this section, we show how the EL++ query entailment procedure from [28] can be
extended to cover this case. We point out that our techniques do not solve the problem
for arbitrary uses of Self in OWL EL. Our main result is as follows.

Theorem 5. Checking conjunctive query entailment for Simple Directional Rules is
decidable. The problem is NP-complete in the size of the query and P-complete in the
size of the data. For rule sets for which the depth of the order ≺ in Definition 7 is
bounded, the combined complexity of query entailment is PSpace-complete.

The conjunctive query entailment procedure in [28] is highly non-deterministic
since it aims at obtaining optimal complexity bounds rather than at providing a ba-
sis for implementations. The procedure translates inferencing tasks into word recog-
nition problems for regular languages by associating words w = s1 . . . sn over an al-
phabet R ∪ I of unary and binary relation symbols and constants to formulae ϕw. A
word w encodes a chain of elements connected by the given predicates, where con-
stant symbols in w state that the current element in the chain is denoted by this con-
stant. So words w encode paths in a model. For example, the word prqcsp encodes
the formula p(x0) ∧ r(x0, c) ∧ q(c) ∧ s(c, x2) ∧ p(x2). To formalise this, we write w
as w = u01u02 . . . u0m0 r1 u11u12 . . . u1m1 . . . u(n−1)1 . . . u(n−1)mn−1 rn un1 . . . unmn , where each
ui = ui1 . . . uimi is a (possibly empty) word of unary predicate symbols and constants,

and ri is binary predicate symbol. For each word ui, define a term t(ui) B c if ui con-
tains a constant c ∈ I, and t(ui) B xi ∈ V otherwise (in particular if ui is empty). We
only consider words for which t(ui) is well-defined, i.e., where ui contains at most one
constant symbol.3 Now define a formula ϕ(ui) B

∧
{ui j(t(ui)) | 1 ≤ j ≤ mi and ui j < I},

and set ϕw B
∧n

i=0 ϕ(ui) ∧
∧n

i=1 ri(t(ui−1), t(ui)).
We now give a standard result from description logics, and a less standard result

that has been established for EL++:

Lemma 2 ([23]). Consider a set Σ of Simple Directional Rules of form r(x, y)→ t(x, y)
and r(x, y), s(y, z) → t(x, z). For every binary predicate r, there is a non-deterministic
finite automaton (NFA)Ar that accepts a word w = s1 . . . sn iff Σ |= ϕw → r(x0, xn).

Let ≺ be the order used in Definition 7. The size of Ar is exponential in the depth
of ≺ and polynomial in the size of Σ for fixed depth of ≺.Ar can be constructed in time
polynomial to its size.

Lemma 3 ([28] Theorem 2). Consider a set of Simple Directional Rules Σ. For every
unary predicate p, there is an NFAAp such that, for every word w over predicates and
constants, Σ entails p(x0)→ ∃ (var(ϕw) \ {x0}).ϕw iff one of the following holds:

– Ap accepts the word w, or
– Σ is inconsistent, or Σ implies that p is empty.

Similarly, there are NFA Ac for all constants c, such that the above conditions hold iff
Σ entails the formula ∃ (Var(ϕw) \ {x0}).(ϕw{x0 7→ c}) where x0 has been replaced by c.
Ap andAc can be constructed in time polynomial in the size of Σ, and it has linearly

many states in the size of Σ.

Proof. The construction for EL++ as given in [28] proceeds incrementally by adding
transitions to the constructed automaton (see Table 1 cit.loc.). For example, translated
to Datalog syntax, the construction rule (CR1) states that, whenever there is a transition
C

p
→ C and a rule p(x) → q(x), a transition C

q
→ C is to be added (if not done

already). It is easy to see that a similar construction rule can be given to cover axioms
p(x) → t(x, x), where we require that C

p
→ C and p(x) → t(x, x) ∈ Σ imply C

t
→ C.

A binary relation t in an accepted word corresponds to a path segment t(x, x′), i.e.,
identity of x is not encoded unless the current state is a constant. It is easy to see that
this does not affect the applicability of other Simple Directional Rules which cannot
contain t(x, x) due to the syntactic restrictions. ut

The construction of Ap in [28] is such that the states of the NFA are exactly the
unary relation symbols and constants, with the intuition that each state represents po-
tential domain elements of which we know nothing else but that they belong to this
relation, or that they are identified by this constant. This is used in the proofs of [28]
that use a universal model to establish the correctness of the procedure. These argu-
ments work exactly as in [28], so we omit repeating the details here. For completing
our rule-based exposition of the algorithm, we record the following definition:

3 This is sufficient since co-occurrence of two constants would encode their equality which
cannot be derived in our language.

Table 2. A non-deterministic algorithm for deciding conjunctive query entailment for a set rb of
Simple Directional Rules in normal form

A. Factorise query
1 Select a (possibly empty) set X ⊆ Var(q)
2 For each x ∈ X
3 Select some e ∈ Var(q) ∪ I and
4 replace all occurrences of x in q with e

B. Initialise proof graph (N, L, E)
5 N B I ∪ Var(q), let E be undefined for all arguments
6 For each a ∈ I, L(a) B a
7 For each x ∈ Var(q), select L(x) ∈ (C \ I) ∪ {>}
8 For each n ∈ N, a ∈ I, E(n, a) B A(L(n), L(a))
9 While there is an unreachable node

10 Select some unreachable x ∈ Var(q),
11 select some reachable n ∈ N
12 E(n, x) B A(L(n), L(x))

C. Check proof graph
13 For each n ∈ N, m ∈ Var(q)
14 If E(n,m) is defined and accepts no word,
15 terminate with failure

D. Check entailment of unary and reflexive atoms
16 For each query atom ψ[n] ∈ q of form p(n) or t(n, n)
17 If L(n) ∈ R (and thus n ∈ Var(q))
18 if Σ 6|= L(n)(n)→ ψ, terminate with failure
19 If L(n) ∈ I (and thus n ∈ I)
20 if Σ 6|= ψ, terminate with failure

E. Split inferencing automata
21 For each binary atom r(n,m) ∈ q
22 Compute shortest path n = n0, . . . , nk = m

from n to m
23 SplitAr into k automata
24 A(r(n,m), n0, n1), . . . ,A(r(n,m), nk−1, nk)
25 For eachA(r(n,m), ni−1, ni)
26 IfA(r(n,m), ni−1, ni) accepts no word,
27 terminate with failure

F. Check entailment of binary atoms
28 acc B true
29 For each n, m ∈ N with E(n,m) defined
30 If m ∈ I
31 For each split automatonA(F, n,m)
32 IfA(F, n,m) and E(n,m) do not accept a

common word
33 acc B false
34 Else if m ∈ Var(q)
35 If no there is no word that is accepted by
36 E(n,m) and by all split automataA(F, n,m)
37 acc B false
38 If acc is false, then terminate with failure
39 Else accept the query

Definition 9. Given an NFA Ap and a unary relation or constant symbol q, the NFA
A(p, q) is obtained from Ap by removing all transitions that are labelled with unary
predicates or constants, and by changing the set of final states to {q} if Σ |= ∃x.p(x),
and to ∅ otherwise.

The NFA A(p, q) encodes the paths of binary relations between the types of el-
ements characterised by p and q. This completes the NFA constructions that are the
basis of our query entailment algorithm.

The algorithm constructs a proof graph which establishes, for all models I of Σ,
the existence of a suitable variable assignment that shows query entailment. Intuitively,
the nodes of the proof graph are abstract representations of domain elements, and the
proof graph encodes a fragment of an arbitrary model of Σ. Formally, let C be the set
of all unary relation symbols and constant names. A proof graph is a tuple (N, L, E)
consisting of a set of nodes N, a labelling function L : N → C ∪ {>}, and a partial
transition function E : N × N → A, where A is the set of all NFA over the alphabet
R ∪ I. A node m ∈ N is reachable if there is some node n ∈ N such that E(n,m) is
defined, and unreachable otherwise.

The algorithm for deciding conjunctive query entailment is given in Table 2. Any
occurrence of the word “select” in the description indicates a non-deterministic choice
of the algorithm. Step A factorises the query to allow multiple variables to refer to the
same element or to a constant. Guessing this initially is not practical but convenient
for an algorithm that aims at establishing complexity bounds. Step B initiates the proof

graph and ensures that all nodes are reachable. Variable nodes eventually are reachable
through exactly one predecessor node.

Steps C and D verify that the chosen proof graph implies the existence of all re-
quired elements (C) and the entailment of the query’s unary atoms (D). Step D has been
extended to also verify binary atoms of the form t(x, x). This is not necessary for EL++:
since it cannot express statements of the form p(x) → t(x, x), query atoms t(x, x) can
only match if x takes the value of a constant (checked in Step F). In contrast, Simple
Directional Rules allow t(x, x) to be derived for other elements. Our extension covers
all additional cases: rules p(x) → t(x, x) can largely be eliminated from the rule set by
replacing occurrence of t(x, y) in rule bodies by p(x) and renaming y to x. The correct-
ness of our modified algorithm then follows from the correctness of the algorithm in
[28], and the fact that the inferencing procedure of Section 4 can be used to check the
entailments in lines 18 and 20.

Step E computes the automata A(R) of Lemma 2 and applies a non-deterministic
splitting operation (see [28] for a formal definition). Splitting an NFA into k parts results
in k copies of the NFA that only differ in their start and end states. The first part begins
with the original initial state and terminates at some intermediate state that the next
automaton starts at. The last part of the split again terminates in the original final state.
The intuition underlying this operation is that each NFA Ar encodes possible chains
of relations that suffice to derive r. One such chain must be found for every query
atom r(n,m). The structure of the proof graph defines how elements n and m can be
connected, so any match with r must be distributed along the paths of the proof graph.
This is implemented by the split.

Finally, Step F again verifies the earlier choices of the algorithm by comparing the
(logically deducible) chains of relations that provided by the generating edge NFA with
the chains that the split NFA require to exist for establishing a match. The case dis-
tinction reflects the different intention of edges leading to individual or variable nodes.
For edges leading to a variable node, only a single generating role path exists in the
canonical model, and all split automata must match one such path (line 35/36). For
edges leading to constant nodes, all accepted paths exist in every model. Hence line 32
implements pairwise comparisons of each split NFA with the edge NFA.

There are two approaches for implementing the checks in lines 32 and 35/36, used
for establishing different complexity bounds [28]. Computing the intersection automa-
ton of two NFA can be done in quadratic time w.r.t. the size of the NFA. If the number
of required intersections is bounded, this leads to a polynomial procedure, provided
that the size of the NFA is polynomially bounded as in Lemma 2. The number of in-
tersections is bounded if either the query or the size of Σ is bounded. If this is not the
case, the intersection NFA can be exponentially large and a more efficient approach is to
run all (still linearly many) NFA in parallel, choosing transitions non-deterministically
for each. If this procedure concurrently reaches a final state in all NFA, then they ac-
cept a common word. This can be done in polynomial space, and Savitch’s Theorem
(NPSpace = PSpace) yields the desired complexity. All remaining steps of the algo-
rithm can be performed in NP for all cases considered in Theorem 5.

7 Conclusions

We have proposed novel fragments of TGDs for which atomic and conjunctive query
answering is decidable. While these approaches are not subsumed by any of the TGD
fragments that have been discussed in the literature before, they cover important real-
world models such as SNOMED CT.

In spite of these encouraging results, we believe that much more research is needed
to properly understand the complex mechanisms that are encountered when combining
value invention with complex rule languages. Description logics have long dealt with
related issues but do not typically provide the complex dependency structures that rules
can offer. Our results suggest that some ideas of DL show new ways for extending
TGDs, whereas other DL-specific restrictions are actually unnecessary. Moreover, it is
far from clear how to further extend our results on deciding general conjunctive queries
– classical languages and automata are hardly applicable in the general n-ary case.

Thus further sources need to be tapped to advance this growing field. For example,
the idea of assigning modes to predicates in order to establish a form of directedness
has already been considered for Prolog more than a decade ago [4, 32]. This strand of
work, which is also the source of our terminology, is not asking for decidability of logic
programming but strives to improve the efficiency of unification. Yet, the underlying
mechanisms of both approaches are clearly related.

Finally, the increasing amount of ideas on TGD formalisms needs to be further con-
solidated. Previous work has shown that it is often possible to combine and generalise
different approaches, and it seems likely that Directional Rules can also be extended by
incorporating some of the other ideas in the field. In addition to the work on such the-
oretical questions, increased development effort will be required to supply the software
tools needed to help Datalog-based formalisms to become as widespread as some other
modelling formalisms are today.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
2. Abiteboul, S., Vianu, V.: Datalog extensions for database queries and updates. J. of Computer

and System Sciences 43, 62–124 (1991)
3. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of pred-

icate logic. J. of Philosophical Logic 27(3), 217–274 (1998)
4. Apt, K., Etalle, S.: On the unification free Prolog programs. In: Mathematical Foundations

of Computer Science (MFCS-93). LNCS, vol. 711, pp. 1–19. Springer (1993)
5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-

scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edn. (2007)

6. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: Extending decidable cases for rules with
existential variables. In: Boutilier, C. (ed.) Proc. 21st Int. Joint Conf. on Artificial Intelligence
(IJCAI’09). pp. 677–682. IJCAI (2009)

7. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables: Walk-
ing the decidability line. Artificial Intelligence 175(9–10), 1620–1654 (2011)

8. Baget, J.F., Mugnier, M.L., Rudolph, S., Thomazo, M.: Walking the complexity lines for
generalized guarded existential rules. In: Walsh [34], pp. 712–717

9. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv,
O. (eds.) Proc. 8th Colloquium on Automata, Languages and Programming (ICALP’81).
LNCS, vol. 115, pp. 73–85. Springer (1981)

10. Cabibbo, L.: The expressive power of stratified logic programs with value invention. Infor-
mation and Computation 147(1), 22–56 (1998)

11. Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive
relational constraints. In: Brewka, G., Lang, J. (eds.) Proc. 11th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR’08). pp. 70–80. AAAI Press (2008)

12. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query
answering over ontologies. In: Paredaens, J., Su, J. (eds.) Proc. 28th Symposium on Princi-
ples of Database Systems (PODS’09). pp. 77–86. ACM (2009)

13. Calì, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. Proceedings
of VLDB 2010 3(1), 554–565 (2010)

14. Calì, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in Datalog+/-. In:
Hitzler, P., Lukasiewicz, T. (eds.) Proc. 4th Int. Conf. on Web Reasoning and Rule Systems
(RR 2010). LNCS, vol. 6333, pp. 1–17. Springer (2010)

15. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

16. Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependencies and
their inference problem. In: Proc. 13th Annual ACM Symposium on Theory of Computation
(STOC’81). pp. 342–354. ACM (1981)

17. Chein, M., Mugnier, M.L.: Graph-Based Knowledge Representation: Computational Foun-
dations of Conceptual Graphs. Springer (2008)

18. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation 85(1), 12–75 (1990)

19. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Computing Surveys 33(3), 374–425 (2001)

20. Deutsch, A., Tannen, V.: Reformulation of XML queries and constraints. In: Calvanese,
D., Lenzerini, M., Motwani, R. (eds.) Proc. 9th Int. Conf. on Database Theory (ICDT’03).
LNCS, vol. 2572, pp. 225–241. Springer (2003)

21. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answer-
ing. Theoretical Computer Science 336(1), 89–124 (2005)

22. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

23. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., My-
lopoulos, J., Welty, C.A. (eds.) Proc. 10th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR’06). pp. 57–67. AAAI Press (2006)

24. James, A.G., Spackman, K.A.: Representation of disorders of the newborn infant by
SNOMED CT. In: Andersen, S.K., Klein, G.O., Schulz, S., Aarts, J. (eds.) Proc. 21st Int.
Congress of the European Federation for Medical Informatics (MIE’08). pp. 833–838 (2008)

25. Johnson, D.S., Klug, A.: Testing containment of conjunctive queries under functional
and inclusion dependencies. In: Proc. 1st Symposium on Principles of Database Systems
(PODS’82). pp. 164–169. ACM (1982)

26. Krötzsch, M.: Efficient rule-based inferencing for OWL EL. In: Walsh [34], pp. 2668–2673
27. Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and

guardedness. In: Walsh [34], pp. 963–968
28. Krötzsch, M., Rudolph, S., Hitzler, P.: Conjunctive queries for a tractable fragment of OWL

1.1. In: Aberer, K., Choi, K.S., Noy, N., Allemang, D., Lee, K.I., Nixon, L., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) Proc. 6th Int.
Semantic Web Conf. (ISWC’07). LNCS, vol. 4825, pp. 310–323. Springer (2007)

29. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM
Transactions on Database Systems 4, 455–469 (1979)

30. Ortiz, M., Rudolph, S., Simkus, M.: Worst-case optimal reasoning for the Horn-DL frag-
ments of OWL 1 and 2. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proc. 12th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR’10). pp. 269–279. AAAI
Press (2010)

31. Patel-Schneider, P.F., Horrocks, I.: A comparison of two modelling paradigms in the Seman-
tic Web. J. of Web Semantics 5, 240–250 (2007)

32. Rao, M., Shyamasundar, R.: Unification-free execution of well-moded and well-typed Prolog
programs. In: Mycroft, A. (ed.) Static Analysis. LNCS, vol. 983, pp. 243–260. Springer
(1995)

33. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley (1984)

34. Walsh, T. (ed.): Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11). AAAI
Press/IJCAI (2011)

