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Abstract	
Contingency	plans	for	disaster	preparedness	and	concepts	for	resuming	regular	operation	as	quickly	as	possible	have	
been	an	integral	part	of	running	a	company	for	decades.	Today,	large	portions	of	revenue	generation	are	taking	place	
over	the	Internet	and	it	has	to	be	ensured	that	the	respective	resources	and	processes	are	secured	against	disasters,	
too.	Cloud‐Standby‐Systems	are	a	way	for	replicating	an	IT	infrastructure	to	the	Cloud.	In	this	work,	the	Cloud	Standby	
approach	and	a	Markov‐based	model	is	presented	that	can	be	used	to	analyze	and	configure	Cloud	Standby	systems	
on	a	long	term	basis.	It	is	shown	that	by	using	a	Cloud‐Standby‐System	the	availability	can	be	increased,	how	configu‐
ration	parameters	 like	the	replication	 interval	can	be	optimized,	and	that	the	model	can	be	used	for	supporting	the	
decision	whether	the	infrastructure	should	be	replicated	or	not.	
Keywords:		Cloud‐Standby,	Warm‐Standby,	BCM,	Cloud	Computing,	IaaS,	Disaster	Recovery	
__________________________________________________________________________________________________________________	
1. INTRODUCTION	

The effort of companies to protect their production facil-
ities, distribution channels or critical business processes 
against possible risks is not a new phenomenon. Instead, 
contingency plans for disaster preparedness and concepts for 
resuming regular operation as quickly as possible have been 
an integral part of running a company since the times of the 
industrial revolution. In this context, disasters are fire, 
earthquakes, terrorist attacks, power outages, theft, illness, 
or similar circumstances. The respective measures that must 
be taken in order to being prepared for such disasters and for 
keeping up critical business processes in the event of an 
emergency are commonly referred to as Business Continuity 
Management (BCM) (Hiles, 2010) in economics. The effec-
tiveness of BCM can be controlled via the key figures Re-
covery Time Objective (RTO) and Recovery Point Objective 
(RPO) (Hiles, 2010). RTO refers to the allowed time for 
which the business process may be interrupted and the RPO 
relates to the accepted amount of produced units or data that 
may be lost by an outage. 

Today, with the Internet being production site as well as 
distribution channel, BCM faces different challenges. One 
of the most important tasks in IT-related emergency man-
agement is the redundant replication of critical systems. 
Depending on the system class, different mechanisms are 
used to secure a system against prolonged outages. In this 
regard the RTO specifies the maximum allowed time within 
which the IT system must be up again and the RPO is the 
accepted period of data updates that may be lost, i.e. gener-
ally the time between two backups (Wood et al., 2010).  

This work presents an approach for a Cloud Standby 
system and the modeling of costs and availability based on 
Markov chains. Cloud Standby uses a meta model approach 
to describe distributed systems (Tanenbaum & Van Steen, 
2002) in a machine readable language that can be used to 
deploy the system on several cloud providers. For modeling 
the quality attributes the basic idea is to carry out a random 

walk (Gilks, Richardson, & Spiegelhalter, 1996) on the 
system’s state graph according to defined transition proba-
bilities. The costs and the availability can then be calculated 
by means of the Markov chain and the probability distribu-
tion for staying in each state. The presented model is illus-
trated by means of a simple example and it is shown that the 
model can be used to calculate optimal configuration op-
tions, like the replication interval, of the Cloud-Standby-
Systems. 

The remainder of this paper is structured as follows: 
First the related work and a description of the Cloud-
Standby-System is presented. Then the quality model itself 
is developed and it is shown how it can be used to make 
deliberate configuration decisions on the basis of a simple 
example. Finally, the conclusion sums up the paper and 
gives an outlook to future work in this field1.  

 

2. RELATED	WORK	
In this work we present a) the general approach of Cloud 

Standby, a warm standby for the Cloud and b) based on the 
states of the proposed Cloud Standby System a quality 
model for predicting the long term availability and costs 
with certain parameters. 

 
2.1	Cloud	Standby.	

Wood et al. (2010) describe a generic warm standby sys-
tem in order to evaluate whether Cloud Computing is bene-
ficial for this use case. This paper does however concentrate 
on the economic part and describes no real warm standby 
system. 

Klems, Tai, Shwartz, and Grabarnik (2010) describe a 
running system that allows to use the Cloud as a warm 
standby environment, using BPNM processes to orchestrate 
an IaaS provider’s infrastructure services. In contrast to the 

																																																													
1  This article is an extended version of the paper “Modeling Quali-

ty Attributes of Cloud-Standby-Systems” (Lenk & Pallas, 2013) 



International Journal of Cloud Computing (ISSN 2326-7550)      Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc  49 
	

model presented herein, their approach focuses on single 
machines and does not allow to secure whole distributed 
systems. 

PipeCloud (Wood, Lagar-Cavilla, Ramakrishnan, 
Shenoy, & Van der Merwe, 2011) targets private Clouds 
where the user has access to the hypervisor and uses this 
access for capturing disk writes and replicating them to the 
Cloud. Remus and SecondSite (Cully et al., 2008; Ra-
jagopalan, Cully, O’Connor, & Warfield, 2012) basically 
follow a similar approach: direct the access to the hypervi-
sor is used to dynamically replicate the whole virtual ma-
chine to another location. Due to the requirement of hyper-
visor access, these approaches can, however, not be applied 
in a public Cloud scenario. 

 
2.2	Quality	Model.	

The calculation of quality metrics addressed in this pa-
per can generally be subdivided into the two fields of cost 
and availability calculation. Regarding these calculations, 
related work already exists in the field of virtualized infra-
structures, Cloud Computing, and warm standby systems. 

The approach of Alhazmi and Malaiya (2012) describes 
a way of evaluating disaster recovery plans by calculating 
the costs. The approach is of generic nature and is not focus-
ing on the field of Cloud Computing with its own specific 
pricing models. 

Wood et al. (2010) describe a way of replicating data 
from one virtual machine to a replica machine. The respec-
tive cost calculation is limited to this specific approach and 
cannot be adapted to Cloud-Standby-Systems like the ones 
considered herein. 

Dantas, Matos, Araujo, and Maciel (2012) present a 
Markov-based approach to model the availability of a 
warm-standby Eucalyptus cluster. Even if the approach is 
related to the work presented herein with regards to the used 
mathematical model and also shows that Markov chains can 
be used to model availabilities in Cloud Computing, it is not 
used to model the costs and the calculation of the availabil-
ity is restricted to a single Eucalyptus installation with dif-
ferent clusters and does not consider settings with several 
cloud providers. 

Klems et al. (2010) present an approach for calculating 
the downtime of a Cloud-Standby-System. This approach 
evaluates the system in general but is a rather simplistic 
short term approach, comparing a Cloud-Standby-System 
with a manual replication approach.  

 
2.3	IaaS	Deployment	Meta	Model.	

Over the years several IaaS deployment standards were 
proposed in the industry and science. Some of them are 
related to the deployment model presented in this paper. 

Amazon Web Services (AWS Inc., 2013) is an IaaS pro-
vider that added additional services over the time. Today 
Amazon Web Services cannot just be used to start virtual 
machines but to deploy whole scalable application stacks. 
These “Cloud Formations” allow constraint definition and 

sophisticated monitoring. As one the industry leader in IaaS 
Cloud computing Amazon has a rich toolset and API. How-
ever Amazon does not support provider independence since 
as an industry leader they are more interested in creating 
lock-in effects than reducing them. 

Chieu et al (2010) introduce in their work the concept of 
a “Composite Appliance”'. A composite appliance is a col-
lection of virtual machine images that have to be started 
together in order to run a multi-tier application. The pro-
posed description language lacks support for runtime fea-
tures like the current configuration of the virtual machines. 
The architecture proposed in this work requires the language 
to be implemented in the vendor's Cloud computing plat-
form and thereby does not allow using different cloud pro-
viders.  

Konstantinou et al. (2009) describe in their work a mod-
el-driven deployment description approach. This approach is 
based on different parties that participate in the deployment 
process. A deployment is first modeled as a “Virtual Solu-
tion Model” and then by another party translated to a ven-
dor-specific “Virtual Deployment Model”. Maximilien et al. 
(2009) introduce a model that allows deploying middleware 
systems on a Cloud infrastructure. In the aspects of deploy-
ment both the meta model proposed by Konstantinou et al. 
and Maximilien et al. are related to our meta model. The 
approach of Maximilien et al. however is focused on the 
deployment of middleware technologies we are aiming on a 
more holistic approach that has the final distributed system 
in focus and not just middleare technologies. The approach 
of Konstantinou et al. does not allow having different Cloud 
vendors in a single deployment. However some of both the 
ideas of Konstantinou et al. and Maximilien et al. have in-
fluenced our meta model. 

Mietzner et al. (2009) orchestrate services by using 
workflows and web services using e.g. WS-BPEL. They 
concentrate on high level composition of services, rather 
than proposing an actual language for deployments. The 
focus on WS-BPEL gives the approach a great flexibility 
but also adds an overhead. The work we present in this pa-
per is influenced by the work done and the general ideas 
developed by Mietzner et al. However while Mietzner et al. 
is focusing on the BPEL deployment processes, our work is 
focusing on the distributed application itself and enriches it 
with meta data that can also be used for deployment and 
thereby supporting higher level processes like the ones de-
scribed by Mietzner et al. 

 

3. CLOUD	STANDBY	SYSTEM	
The recovery of IT systems can be achieved through dif-

ferent replication mechanisms (Henderson, 2008; Schmidt, 
2006). “Hot standby” is on the one side of the spectrum: A 
second data center with identical infrastructure is actively 
operated on another site with relevant data being continu-
ously and consistently mirrored in almost real-time from the 
first to the second data center. The operating costs of such a 
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hot standby system, however, amount to the operating costs 
of the secondary system plus the cost of the mirroring. On 
the other side of the spectrum is the “cold standby”, the low-
cost backup, e.g. on tape, without retaining a second site 
with backup infrastructure resources. A tape backup is not 
possible during productive operation and is usually done at 
times of low load like at night or during weekends. In this 
case, a RPO of days or weeks is common. Due to the fact 
that the IT infrastructure has to be newly procured in case of 
a disaster, an RTO of several days to months is possible. 
Between these two extremes lies the concept of “warm 
standby”. Although a backup infrastructure is kept at anoth-
er location in this case, it is not fully active and must be 
initially put into operation in case of a disaster. A warm 
standby system usually has a RPO and RTO between 
minutes and hours. 

A common option for reducing the operating costs of on-
ly sporadically used IT infrastructure, such as in the case of 
the “warm standby” (Henderson, 2008; Schmidt, 2006), is 
Cloud Computing. Cloud Computing provides the user with 
a simple, direct access to a pool of configurable, elastic 
computing resources (e.g. networks, servers, storage, appli-
cations, and other services, with a pay-per-use pricing mod-
el) (Lenk, Klems, Nimis, Tai, & Sandholm, 2009; Mell & 
Grance, 2011). More specifically, this means that resources 
can be quickly (de-)provisioned by the user with minimal 
provider interaction and are also billed on the basis of actual 
consumption. This pricing model makes Cloud Computing a 
well-suited platform for hosting a replication site offering 
high availability at a reasonable price. Such a warm standby 
system with infrastructure resources (virtual machines, im-
ages, etc.) being located and updated in the Cloud is herein 
referred to as a “Cloud-Standby-System”. The relevance and 
potential of this cloud-based option for hosting standby 
systems gets even more obvious in the light of the current 
situation in the market. Only fifty percent of small and me-
dium enterprises currently practice BCM with regard to 
their IT-services while downtime costs sum up to $12,500-
23,000 per day for them (Symantec, 2011).  

The calculation of quality properties, such as the costs or 
the availability of a standby system, and the comparison 
with a “no-standby system” without replication is an im-
portant basis for decision-making in terms of both the intro-
duction and the configuration of Cloud-Standby-Systems. 
However, due to the structure and nature of standby sys-
tems, this calculation is not trivial, as in each replication 
state different kinds of costs (replication costs, breakdown 
costs, etc.) with different cost structures incur. Furthermore, 
determining the quality of the system is difficult due to the 
long periods of time and the low probability of disasters 
(e.g. only one total outage every 10 years). A purely exper-
imental determination by observing a reference system over 
decades is therefore not feasible. Instead, a method for 
simulating and calculating the long-term quality characteris-
tics of different configurations is needed. 

In this work we introduce Cloud-Standby. It is a novel 
Cloud based warm standby approach where a formally de-
scribed primary distributed system (PS) running in Cloud 1 
(C1) is periodically synced as a replica system (RS) to 
Cloud 2 (C2). The states of this Cloud-Standby-System are 
depicted in Fig. 1. 

 

Fig. 1. State chart of a Cloud-Standby-System 

 
3.1	States.	

PS Deployment. The PS is deployed on C1 at first and 
goes into runtime after ݐௗ௘௣௟. The time the deployment takes 
depends highly on its structure. For each use case the de-
ployment time can be determined by means of experimenta-
tion. 

PS Runtime. During PS runtime, the RS is turned off 
and generates no costs. The PS data are, however backed up 
using standard backup tools. This ensures the RPO can be 
met when a disaster occurs. 

PS Runtime + RS Update. Periodically (after 
 ௨௣ௗ௔௧௘ூ௡௧) the RS is started and changes are updated on theݐ
RS. This ensures that the deployment time of the RS is re-
duced when an actual disaster occurs. The time the update 
process lasts is defined as ݐ௨௣ௗ௔௧௘ 

RS Deployment. When C1 fails the RS is started and 
takes over the service. The time for the deployment is 
 ௥௘௣௟஽௘௣௟. The deployment time varies with the amount ofݐ
data that needs to be installed or stored during the deploy-
ment process. This means that ݐ௥௘௣௟஽௘௣௟ decreases with de-
creasing ݐ௨௣ௗ௔௧௘ூ௡௧.  The correlation between ݐ௥௘௣௟஽௘௣௟  and 
-௨௣ௗ௔௧௘ூ௡௧ can be determined through experiments or moniݐ
toring over time. 

RS Runtime. In case of an outage on C1, the RS takes 
over and only if during this time an outage also takes place 
on C2 the whole system is unavailable. 

RS Runtime + PS Deployment. As soon as C1 is up 
again, the PS can be redeployed and then takes over the 
service. 

Outage. If the systems on both Clouds are not available 
the outage of the service could not be avoided. Now the 
whole system must be recovered from the scratch by hand. 

 
3.2	IaaS	Deployment	Meta	Model.	

For the automatic deployment of the PS and RS a ma-
chine readable deployment description is needed which 
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allows the deployment of distributed systems on different 
IaaS providers. In this section we present a modeling ap-
proach for formalizing distributed systems on top of feder-
ated IaaS Clouds. In this context a distributed system is a 
software stack capable of providing a distributed application 
and all its artifacts (Object Management Group – OMG, 
2011). Software artifacts are applications like a self-
contained webserver binary or application packages like jar-
files. Even a whole operation system including kernel, bina-
ries, and other files, packaged in an image file is considered 
as an artifact. In the UML-notation the Component acts as a 
“DeploymentTarget” for the “DeployedArtifacts” (Object 
Management Group – OMG, 2011).  

Deployment languages in federated Clouds have to meet 
several requirements (Lenk, Danschel, Klems, Bermbach, & 
Kurze, 2011). A Cloud service, by definition, needs to be 
elastic, meaning to scale up and down with changing de-
mand within a short time (Mell & Grance, 2011). Since it 
should also be possible to deploy a service not only on a 
single Cloud provider, the model must also support Cloud 
federation (Kurze et al., 2011; Lenk et al., 2011). 

Fig. 2. Distributed system deployment meta model 

In Fig. 2 we depict a meta model for distributed systems 
in federated Clouds. A distributed system consists of several 
elastic components that have dependencies between each 
other (“component a” requires “component b”), representing 
the tiers in the distributed system. These components can be 
application servers, databases, key-value stores, etc. All 
components are running on a single cloud provider at a time 
but can - in the case of a disaster - be deployed on another 
provider in the federated Cloud. Each of these components 
has several instances running a configured operation system 
with a predefined software stack. This software stack is 
either stored in a basic image held by Cloud provider or is 
applied during the deployment process via installation of 
software packages on a single basic image or all the images 
of a component. 

This modeling approach of having the federated image, 
federated virtual machine, and installation tasks assigned to 
the component ensures that all instances of a component 
have the same configuration and are thereby horizontally 
scalable. We assume that the functionality of the load bal-
ancing is done via an external service having access to the 
model, or the load balancer being one component, required 
by the component it controls. 

Infrastructure part. This part is modeled by a profes-
sional (the IaaS Admin) knowing the different Cloud pro-
viders, images, and software stacks. The task of the IaaS 
Admin is to select feasible virtual machines and basic imag-
es from the available infrastructure and software packages 
that can be installed on top of the basic images for the prep-
aration of configured images. Configured images are the 
functional design time representations of instances. Differ-
ently configured images for different  Cloud providers 
which are functionally equivalent will be grouped to feder-
ated images. This ensures that the federated image has the 
same functionality even when instantiated on different 
Clouds. 

In order to instantiate an instance the image needs to be 
deployed on a runtime, or virtual machine (VM). The virtual 
machine represents the non-functional attributes of the in-
stance. The selected VM determines the properties like 
price, performance etc. for the instance. By defining inter-
vals for these properties and by grouping the VMs along 
these dimensions in the intervals, the IaaS Admin guaran-
tees that a federated virtual machine has the same or at least 
similar non-functional qualities on each provider.  

Furthermore, the IaaS Admin groups for each Cloud ex-
actly one VM and one configured image in the correspond-
ing federated element. Thus, during the deployment phase 
the federated image and federated VM can be deployed on 
any Cloud provider represented in the infrastructure model.  

One challenge in in this approach is to determine the vir-
tual machines and basic images of different Cloud providers 
that are grouped to federated virtual machines and federated 
images. Furthermore, to determine the software that should 
be installed on a certain image is a highly manual task that 
should be automated in the future. Concepts like feature 
modeling for selection of Cloud services (Wittern, Kuhlen-
kamp, & Menzel, 2012) could be used to automate this pro-
cess. 

Deployment part. In the deployment part the System 
Administrator defines the structure of the final distributed 
system on the basis of the infrastructure model. Since it is 
not clear how the different components are orchestrated for 
the final service, this task (currently) has to be carried out 
manually by the system administrator. He defines the com-
ponents, the dependencies between them, and the software 
packages installed on the components. By grouping instanc-
es in components the model enables elasticity.2  

																																																													
2  It is, however, not subject of this work to describe mechanisms 

that are used to add/remove resources based on monitoring data or that deal 
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Deployment parallelization. The relation “component 
requires component” allows to calculate the dependency 
graph ܩ that is essential for the deployment process of the 
PS and the RS. It depends on the structure of the deploy-
ment modeled with the description language how long the 
actual deployment takes. If there are many single software 
packages to be installed and the deployment graph allows no 
parallelization this process takes longer than in cases with 
completely configured virtual machines that all can be de-
ployed in parallel. 

Without this graph it is not clear in which order the 
components have to be deployed. When having the depend-
ency graph calculated with a topological sort the sequential 
deployment order of the components can be calculated. This 
sequential deployment order is not optimal when it comes to 
deployment time. In the deployment graph there are often 
parallel paths where deployments can be started at the same 
time without violating the constraints introduced by the 
“requires” relation. 

 

Fig. 3. Cloud Standby Deployment Algorithm 

In computer science there are several algorithms for the 
parallel execution of jobs or tasks. All these algorithms, 
however, have in common that they assume that the re-
sources are limited. In Cloud computing the assumption is 
that there are unlimited resources available. Therefor we use 
in this work a modified version of the MPM net planning 
algorithm (Thulasiraman & Swamy, 2011) from the disci-
pline of operations research which is listed in Fig 3. 

We use the forward calculation of the MPM algorithm to 
get the Early Start Dates (ESD) and the Early Finish Dates 

																																																																																																							
with the problems of migrating of the data and so on. By using this design 
we just make sure that distributed systems described with this language are 
able to be elastic. 

(EFD). The ESD give us an idea when approximately the 
component will be deployed but it is no guarantee. With the 
EST however the deployment scheduling can be calculated: 
components with the same start time can be deployed in 
parallel. The EFD give an approximation on how long the 
whole process will take with: 

t஽௘௣௟ ൌ max	ሺܦܨܧሻ 

4. CLOUD	STANDBY	QUALITY	MODEL	
Using the Cloud Standby approach on the one hand 

leads to additional costs but on the other hand increases 
availability. In order to provide decision support regarding 
the question whether the introduction of such a Cloud 
Standby System is useful or not, the states are transferred 
into a mathematical model. In this chapter we build such a 
quality model using a graph and Markov chain, based on the 
UML chart in Fig.1. 

In order to facilitate the calculation of quality properties 
at all, some variables must be defined and parameterized for 
calculation. Some of the parameters are defined in the use 
case, or of experimental origin, others are taken from exter-
nal sources and some can only be estimated. Together with 
results from previous experiments, average start times can 
then be calculated. Table 1 represents the time variables to 
be parameterized as well as the underlying source for its 
parameterization. 

Table 1. Parameters 

Type Variable Unit 
Duration of the initial 
deployment 

 .ௗ௘௣௟ minݐ

Backup interval ݐ௨௣ௗ௔௧௘ூ௡௧ min. 
RS update time ݐ௨௣ௗ௔௧௘ min. 
Duration of the replica 
deployment 

 .௥௘௣௟஽௘௣௟ minݐ

Transition from emergency 
to normal state 

 .௘௥௥௢௥ minݐ

Primary Cloud provider costs ܿݐݏ݋ଵ €/h/server 
Secondary Cloud provider 
costs 

 ଶ €/h/serverݐݏ݋ܿ

Unavailability costs  ܿݐݏ݋௘ €/h 
Primary Cloud availability ݈ܽ݅ܽݒଵ years 
Secondary Cloud availability ݈ܽ݅ܽݒଶ years 
 
To calculate the total costs, the costs for the run-time of 

each server must be known. These data can be found in the 
offers of the Cloud providers. For some evaluations, the 
costs / loss of profit faced by the company in the case of 
system unavailability must also be known or at least esti-
mated. All types of costs included in the following analysis 
are summarized in Table 1. The availability of the Cloud 
provider is an important basis for the calculation of the 
overall availability of the system and thus also of the costs. 
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Many Cloud providers declare such availability levels in 
their SLA. However, this availability is less interesting in 
the context of this calculation because this work focuses on 
global, long-term outages caused by disasters that cannot be 
handled by traditional backup techniques. The availability 
described in the third part of Table 1 indicates the average 
time period in which exactly one such global outage of the 
respective Cloud provider is likely to be expected. 

Even if elasticity (Mell & Grance, 2011) is a key con-
cept of Cloud Computing and although the prices for Cloud 
resources constantly changed during the past years, we use 
static values for the average amount of servers and for the 
costs over the years. These dynamic aspects could nonethe-
less easily be added in future work by not having constant 
prices and servers but functions representing these values. 
For a first step towards modeling the costs of Cloud-
Standby-Systems, however, the use of static values appears 
acceptable. 

 
4.1	Units.	

The states for the state graph that should represent the 
basis for further calculations can be directly derived from 
the different states of the UML state chart (Fig. 1). In that 
regard, ௜ܵ corresponds to the description of the state ݅ from 
the state space ܫ. To calculate the quality properties of the 
system, stopping times must be assigned to each of the 
states (see Table 2). It is assumed that the step length of the 
Markov chain is one minute and the stopping time is 
݀௜	∀	݅ ∈ 	in a state ܫ ௜ܵ. 

Table 2. Designation of the states from the process steps 

Process Step Model State 
PS Deployment ଵܵ 
PS Runtime ܵଶ
PS Runtime + RS Update ܵଷ
RS Deployment ܵସ
RS Runtime ܵହ 
RS Runtime + PS Deployment ܵ଺
Outage ܵ଻

Ԧ݀ ≔

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ௗ௘௣௟ݐ
௨௣ௗ௔௧௘ூ௡௧ݐ
௨௣ௗ௔௧௘ݐ

௨௣ௗ௔௧௘ூ௡௧൯ݐ௥௘௣௟஽௘௣௟൫ݐ

௘௥௥௢௥ݐ െ ௥௘௦௧௢௥௘ݐ	െ	௨௣ௗ௔௧௘ூ௡௧൯ݐ௥௘௣௟஽௘௣௟൫ݐ
௥௘௦௧௢௥௘ݐ
௘௥௥௢௥ݐ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

As shown in the definition of the stopping times Ԧ݀, all 
times except those of ݀ଶ, ݀ସ and ݀ହ can be determined from 
the previously set parameters (Table 1). The update interval 
-௨௣ௗ௔௧௘ூ௡௧ is part of the configuration and has a major influݐ
ence on the costs and the availability of the system. The 
time it takes to start the replica deployment (݀ସሻ strongly 

depends on when the server has last been updated. Conse-
quently, the start time of the replica is increased by a long 
update interval. Hence, an increase of the backup interval 
results in a reduction of the deployment time and according-
ly the function ݐ௥௘௣௟஽௘௣௟ሺݐ௨௣ௗ௔௧௘ூ௡௧ሻ is increasing monoton-
ically. For ݀ହ it is assumed that the time ݐ௘௥௥௢௥ is constant, 
regardless of the use of a standby system. The run-time of 
the standby system is therefore made up of the outage time 
less replication deployment time (݀ସሻ and the time for the 
return to the production system (݀଺ሻ. 

 
4.2	Markov	chain	and	transition	graph.	

The quality properties of the standby system can be cal-
culated by modeling the states as a Markov chain and a 
long-term distribution of the stopping time probabilities in 
the states	ܵ. Due to the lack of memory of the Markov chain 
(Markov property) it is not possible to directly model the 
stopping times. The stopping times must be transferred into 
recurrence probabilities. These must be designed so that, on 
average, in ݀௜ of the cases the state is maintained and in one 
case the state is left. It follows that the total number of pos-
sible cases is	݀௜ ൅ 1. Thus, the recurrence probabilities have 
to be calculated with	ߣ௜	∀	݅ ∈  :ܫ

௜ߣ ൌ
݀௜

݀௜ ൅ 1
∀	݅ ∈  ܫ

In addition to the recurrence probabilities, the probabili-
ties of an outage are required. These are calculated analo-
gously to the recurrence probabilities. On the average, nor-
malized to the iteration step of the Markov chain of one 
minute, one outage in the period of ݈ܽ݅ܽݒ௜, ݅	 ∈ 	 ሼ1, 2ሽ 
should incur: 

௜ߝ ൌ
1

௜݈݅ܽݒܽ ∗ 365 ∗ 24 ∗ 60
	, ݅ ∈ ሼ1,2ሽ 

 

Fig. 4. States of the standby system as a Markov chain (ܥܯଵ) 
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Standby System. Considering these probabilities, the 
Markov chain ܥܯଵ for the standby system can now be es-
tablished as shown in Fig 4. 

The transition matrix ଵܲ  can be read directly from the 
Markov chain in Fig. 4: 

ۉ

ۈ
ۈ
ۈ
ۇ

λଵ 0 1 െ λଵ െ εଵ 0 0 εଵ 0
0 λଶ 1 െ λଶ െ εଵ εଵ 0 0 0
0 1 െ λଷ െ εଵ λଷ εଵ 0 0 0
0 0 0 λସ 1 െ λସ െ εଶ 0 εଶ
0 0 0 0 λହ 1 െ λହ െ εଶ εଶ
εଶ 0 1 െ λ଺ െ εଶ 0 0 λ଺ 0

1 െ λ଻ 0 0 0 0 0 λ଻ی

ۋ
ۋ
ۋ
ۊ

  

No-Standby System. As the properties of the standby 
system should in the end be compared to the original sys-
tem, now the Markov chain ܥܯଶ	and the transition matrix 
ଶܲ  must be created as a reference for the system without 

replication. The two chains only differ in the fact that no 
update is performed, which means ݐ௨௣ௗ௔௧௘ூ௡௧ → 	∞ , the 
stopping time in the states ܵଷ െ ܵ଺ are equal to zero and no 
second provider exists, the probability of outage εଶ is there-
fore 1. In case these parameters are applied to ܥܯଵ , the 
states ܵହ and ܵ଺	are no longer obtainable.  With a probability 
of 1 the state of ܵସ	merges directly with ܵ଻ and can thus be 
combined with ܵ଻. 

Due to the fact that the update interval is infinite, the re-
currence probability of 	ܵଶ  is one3. This also results in a 
negative transition probability from ܵଶ	to	ܵଷ . However, as 
the recurrence probability of ܵଷ is zero, this negative transi-
tion probability can be resolved by combining the vertices 
	ܵଶ and ܵଷ to ܵଶ. Eventually, this results in a new recurrence 
probability for ܵଶ	of 1 െ εଵ. 

The new Markov chain is therefore	ܥܯଶ  (as shown in 
Fig. 5). 

 

Fig. 5. States of the no-standby system as a Markov chain (ܥܯଶ) 

The transition matrix ଶܲ was created similarly to ଵܲ as a 
Թ଻௫଻	matrix, so that the same algorithms are applicable on 
both matrices. The transitions to and from the states ܵଷ െ ܵ଺ 
have a probability of zero: 

																																																													
3  lim

௧ೠ೛೏ೌ೟೐಺೙೟→	ஶ
௨௣ௗ௔௧௘ூ௡௧൯ݐ൫ߣ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→	ஶ

௧ೠ೛೏ೌ೟೐಺೙೟
௧ೠ೛೏ೌ೟೐಺೙೟ାଵ

ൌ 1 

ۉ

ۈ
ۈ
ۈ
ۇ

λଵ 1 െ λଵ െ εଵ 0 0 0 0 εଵ
0 1 െ εଵ 0 0 0 0 εଵ
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1 െ λ଻ 0 0 0 0 0 λ଻ی

ۋ
ۋ
ۋ
ۊ

 

	
4.3	Long‐term	distribution.	

The stationary distribution of a Markov chain ܥܯ can be 
calculated in order to reach a long-term distribution of the 
system. This distribution ߨ௜	, ݅ ∈  states the probability of ܫ
the system to be in the state ௜ܵ 	, ݅ ∈ ܫ  at any given time 
݊ ∈ Գ. With the help of the probability distribution, long-
term quality properties such as the cost of γ and the overall 
availability of ߙ can easily be calculated. The algorithm for 
determining the stationary distribution is represented in 
shortened form as follows4. In this case ߃௥ is the unit matrix 
and ܾ௥ሬሬሬԦ is the unit vector with the rank ݎ. 

ܳ ൌ ܲ െ Ε଻ 

ܳᇱ ൌ ቌ
ଵ,ଵݍ ⋯ ଵ,଻ݍ 1
⋮ ⋱ ⋮ ⋮
଻,ଵݍ ⋯ ଻,଻ݍ 1

ቍ

்

 

The result of the equation system 

ܳᇱ ∗ ሬԦߨ ൌ ܾ଻ሬሬሬԦ 

is the stationary distribution ߨሬԦ. This distribution is a vec-
tor of which point ߨ௜ ∈  indicates the probability to be in ܫ
the state 	 ௜ܵ at a given step ݊. 

5. QUALITY	METRICS	AND	DECISION	
SUPPORT	

After defining the stationary distribution ߨ௜	, ݅ ∈ ܫ , the 
quality properties of costs and availability can be deter-
mined. 

 
5.1	Cost.	

The costs ܿଵ for provider 1 result from the sum of the 
costs in the states ଵܵ, ܵଶ, ܵଷ, ܵ଺. The costs ܿଶ incur for pro-
vider 2 during the update, in the emergency mode in 
ܵଷ, ܵସ, ܵହ and the recurrence via state ܵ଺. The costs ܿக	for the 
non-availability of the system incur in the states ଵܵ, ܵସ, ܵ଻. 
  

																																																													
4  A detailed description of the calculation of the stationary distri-

bution is given in [6]. 
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,ሬԦߨሺߛ Ԧܿ, ݊௦௘௥௩௘௥ሻ ≔ ܿଵ݊௦௘௥௩௘௥ ෍ ௜ߨ

௜∈ሼଵ,ଶ,ଷ,଺ሽ

௜

൅ ܿଶ݊௦௘௥௩௘௥ ෍ ௜ߨ

௜∈ሼଷ,ସ,ହ,଺ሽ

௜

൅ ܿఌ ෍ ௜ߨ

௜∈ሼଵ,ସ,଻ሽ

௜

 
 

	
5.2	Availability.	

The availability results from the sum of the probabilities 
of the states in which the system is available (ܵଶ, ܵଷ, ܵସ, ܵ଺) 
or from the recurrence probability for the states in which the 
system is unavailable ( ଵܵ, ܵସ, ܵ଻): 

ሬԦሻߨሺߙ ≔ ෍ ௜ߨ

௜∈ሼଶ,ଷ,ହ,଺ሽ

௜

ൌ 1 െ ෍ ௜ߨ

௜∈ሼଵ,ସ,଻ሽ

௜

 

	
5.3	Decision	support	based	on	the	quality	metrics	

In case of a decision having to be made whether the 
standby system should be used in a particular configuration 
or not, it is useful to compare the quality properties of the 
different options. Especially during the introduction phase 
such a direct comparison between the no-standby and the 
standby system makes sense.  

In many cases companies cannot accurately predict cer-
tain parameters such as the cost of an outage (ܿݐݏ݋௘) and 
can only make estimations in a specific interval. Therefore, 
it is appropriate to make quality properties not only depend-
ent on the update interval, but also on other parameters. 

Ratio of outage costs to replication interval. To per-
form a comparison of the total costs in relation to the outage 
costs and update interval, the total costs with variable out-
age costs (ܿݐݏ݋௘ሻ and update interval (ݐ௨௣ௗ௔௧௘ூ௡௧) have to be 
calculated first. We represent these total costs as: 

,௨௣ௗ௔௧௘ூ௡௧ݐ௜൫ߛ ௘൯ݐݏ݋ܿ ≔	
,௨௣ௗ௔௧௘ூ௡௧൯ݐሬԦ௜൫ߨ൫ߛ	 Ԧܿሺܿݐݏ݋௘ሻ, ݊௦௘௥௩௘௥൯,	
	݅ ∈ ሼ1,2ሽ 

By using these variable cost calculation functions the ar-
ea in which the two systems have the same cost can be de-
termined. This is achieved by sectioning the function: 

௨௣ௗ௔௧௘ூ௡௧൯ݐ௘൫ݐݏ݋ܿ ∶ൌ	
,௨௣ௗ௔௧௘ூ௡௧ݐଵ൫ߛ ௘൯ݐݏ݋ܿ ∩ ,௨௣ௗ௔௧௘ூ௡௧ݐଶ൫ߛ  ௘൯ݐݏ݋ܿ

The function will facilitate the consideration of the limit 
of value. In this case limits for the update interval are the 
value of continuous updates and an update interval tending 
to infinity. Due to the cost structure of the Cloud provider 

(billing period of an hour) the continuous replication is to be 
equated with a replication interval of 1 hour or 60 minutes: 

௘௠௜௡ݐݏ݋ܿ ≔ lim
௧ೠ೛೏ೌ೟೐಺೙೟→ஶ

௘ݐݏ݋ܿ ൫ݐ௨௣ௗ௔௧௘ூ௡௧൯ 

௘௠௔௫ݐݏ݋ܿ ≔ lim
௧ೠ೛೏ೌ೟೐಺೙೟→଺଴

௘ݐݏ݋ܿ ൫ݐ௨௣ௗ௔௧௘ூ௡௧൯ 

Outside of the interval ሾcostୣ୫୧୬, costୣ୫ୟ୶ሿ  a Cloud-
standby replication such as described in this work doesn't 
make sense. Should the costs costୣ୫୧୬  decrease, the no-
standby system is always cheaper and should the update 
interval be 60 minutes, two systems are operated in parallel. 
In this case, there would be a direct transition to a hot 
standby approach because it guarantees an even higher 
availability. 

Ratio of availability to the replication interval. To es-
tablish a ratio between availability and replication interval, 
the availability ߙ is represented as a function that is depend-
ent on ݐ௨௣ௗ௔௧௘ூ௡௧: 

௨௣ௗ௔௧௘ூ௡௧൯ݐ௜൫ߙ ∶ൌ ,ሬԦ௜ሻߨሺߙ	 ݅	 ∈ ሼ1,2ሽ 

This ratio allows a determination of the interval in which 
the standby system can ensure availability: 

ଵߙ
௠௜௡ ≔ lim

௧ೠ೛೏ೌ೟೐಺೙೟→ஶ
 ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ

ଵߙ
௠௔௫ ≔ lim

௧ೠ೛೏ೌ೟೐಺೙೟→଺଴
 ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ

The system without replication availability is independ-
ent of ݐ௨௣ௗ௔௧௘ூ௡௧: 

ଶߙ ൌ  ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ൫ߙ

As the availability function ߙଵ൫ݐ௨௣ௗ௔௧௘ூ௡௧൯  is convex, 
ଵߙ
௠௜௡ ൏ ଵߙ	

௠௔௫ always applies. Furthermore, it also applies: 

ଶߙ ൑ ଵߙ	
௠௜௡ 

This connection which is surprising at first glance can be 
explained by the fact that in case of an error in the no-
standby system it will be directly changed to the state ܵ଻, 
while in case of a replication the outage time can be bridged 
by using Cloud provider 2. Only in case of ݐ௘௥௥௢௥ ൌ 0 ap-
plies: 

ଶߙ ൌ ଵߙ
௠௜௡ 

i.e. for	ݐ௘௥௥௢௥ ൐ 0	 ௨௣ௗ௔௧௘ூ௡௧ݐ	∨ ൐ 60 applies: 

ଶߙ ൏  ௨௣ௗ௔௧௘ூ௡௧ሻݐଵሺߙ	
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Thus, it can be assumed that from an availability point of 
view, the outage time ݐ௘௥௥௢௥ ൐ 0 should definitely be used 
on a standby system, even if a very large update interval is 
chosen. 

Determining the cost neutral update interval. In order 
to decide on the length of the replication interval it makes 
sense to perform a comparison of the systems on a cost 
basis. It is assumed that outage costs ܿݐݏ݋௘ can be quanti-
fied. In order to perform a cost comparison, the two total 
cost functions are set up: 

௨௣ௗ௔௧௘ூ௡௧൯ݐ௜,௖௢௦௧೐൫ߛ ൌ ,௨௣ௗ௔௧௘ூ௡௧ݐ௜൫ߛ ,௘൯ݐݏ݋ܿ ݅	߳	ሼ1,2ሽ 

The maximum and minimum costs for the standby sys-
tem can easily be determined by considering the limit val-
ues: 

ଵ,௖௢௦௧೐ߛ
௠௜௡ ∶ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→ஶ
 ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ

ଵ,௖௢௦௧೐ߛ
௠௔௫ ∶ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→଺଴
 ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ

The cost neutral update interval can be determined by 
the intersection of the two cost functions: 

௨௣ௗ௔௧௘ூ௡௧ݐ ≔	
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,௖௢௦௧೐൫ߛ 	∩  ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ,௖௢௦௧೐൫ߛ	

	

6. USE	CASE	
In section 3 we motivated that a quality model is needed 

to evaluate if a Cloud-Standby-System is useful in a given 
use case. In this chapter we evaluate the model by applying 
it to a given use case. We demonstrate how the quality mod-
el can be applied to a server deployment of 10 servers and 
given or experimentally determined metrics (see Table 3). It 
is further illustrated how the administrator of the application 
can be supported in his decision whether to use Cloud 
Standby or not.  

Table 3. Input Parameter (see Table 1-3) Assumptions  

Variable Value 
 .ௗ௘௣௟ 60 minݐ
 .௕௔௖௞௨௣ 30 minݐ
 .௘௥௥௢௥ 1440 minݐ
݊௦௘௥௩௘௥  10 
 ଵ 0,68€/h/server5ݐݏ݋ܿ
 ଶ 0,68€/h/serverݐݏ݋ܿ
 ଵ݈݅ܽݒܽ 10 years 
 ଶ݈݅ܽݒܽ 10 years 

																																																													
5  „Extra Large“ Amazon EC2 instance in the availability zone EU-

West or performance wise comparable instance on another vendor [5] 

For the calculation of the quality properties, it is neces-
sary to determine the time for the deployment of the replica 
 As the time depends on the update frequency, it .(௥௘௣௟஽௘௣௟ݐ)
must be adopted via a function. We assume that 50% of the 
deployment process is fixed and 50% may be affected by 
the update interval. The strictly monotonically increasing 
function should have its lowest point at an update interval of 
60 and approach the limit of the time for the initial deploy-
ment ݐௗ௘௣௟ at infinity (see Fig. 6): 

௨௣ௗ௔௧௘ூ௡௧൯ݐ௥௘௣௟஽௘௣௟൫ݐ ൌ		

ௗ௘௣௟ݐ ቆ1 െ 0,5	
60

௨௣ௗ௔௧௘ூ௡௧ݐ
ቇ , ௨௣ௗ௔௧௘ூ௡௧ݐ ∈ ሾ60,∞ሿ 

This function will in our future work be determined by in-
terpolation of data points from real experiments. 

 

Fig. 6. RS deployment time 

 
6.1	Ratio	of	outage	costs	to	the	replication	interval.		

With the help of the stationary distributions ߨ௜ (see Sec-
tion 4.3) and the costs in Table 5 the cost functions ߛ௜	can 
now be defined depending on ݐ୳୮ୢୟ୲ୣ୍୬୲  and cost௘  using 

formula ߛ௜൫ݐ௨௣ௗ௔௧௘ூ௡௧, ௘൯ݐݏ݋ܿ  with ݅ ൌ 1	 (Cloud Standby 
System) and ݅ ൌ 2 (No-Standby-System).  

Representing the two functions in a graph (Fig. 7) re-
veals combinations where ߛଵ		 has lower function values 
(total costs) and others where	ߛଶ	is lower. The intersection 
of the functions establishes a curve on which both systems 
have the same level of costs. This function is represented in  
Fig. 8. Besides the combinations leading to the same costs 
(grey line), the combinations in which the standby system is 
monetarily inferior to the normal system (grey area) as well 
as those in which the standby system is cheaper (white area) 
can be identified.  

	௨௣ௗ௔௧௘ூ௡௧ݐ

௥௘௣௟஽௘௣௟ݐ
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Fig. 7. Comparison of the total costs ߛଵ  
(colored area) and ߛଶ(grey area) at variable ݐ௨௣ௗ௔௧௘ூ௡௧ and ܿݐݏ݋௘ 

The limits of the function ܿݐݏ݋௘ሺݐ௨௣ௗ௔௧௘ூ௡௧ሻ result in the 
interval in which a Cloud-standby approach on the basis of 
total costs makes sense: 

௘௠௜௡ݐݏ݋ܿ ൌ lim
௧→ஶ

௘ݐݏ݋ܿ ሺݐሻ ൌ 	6.79€/݄ 

௘௠௔௫ݐݏ݋ܿ ൌ lim
௧→଺଴

௘ݐݏ݋ܿ ሺݐሻ ൌ 	8198.79€/݄ 

In the case of the costs for the outage being lower than 
the assumed values for server costs, costs for outage times, 
etc. at more than 8198.79 € per hour, a standby system 
should be deployed in any case. However, such high costs 
suggest the approach of a hot standby as two systems can be 
operated in parallel without any further costs. Given the 
above-mentioned assumptions, the use of a standby system 
does not make sense when the outage costs are less than 
6.79 € per hour. In this case no matter how large the replica-
tion interval is selected, the use of a simple, unsecured sys-
tem makes more sense from a cost perspective (but not in 
terms of availability).  

 
6.2	Ratio	of	availability	to	the	replication	interval.		

Applying the values from Table 5, the availability func-
tions of ߙଵ  and ߙଶ  can be calculated depending on 
 .௨௣ௗ௔௧௘ூ௡௧ݐ

The overall availability of the system increases noticea-
bly by introducing the standby system. The limit of the 
function ߙଵ and the value of ߙଶ are: 

ଵߙ
௠௜௡ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→ஶ
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ ൌ 0.9999883 

ଵߙ
௠௔௫ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→଺଴
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ ൌ 	0.9999940 

ଶߙ ൌ ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ൫ߙ ൌ 	0.999988201 

 
  

Fig. 8. ݐ௨௣ௗ௔௧௘ூ௡௧ and ܿݐݏ݋௘	combinations in which the 
standby system is more expensive (grey area), costs the 

same (grey line) and is cheaper (white area). 

 
Since an outage time of ݐ௘௥௥௢௥ ൐ 0 was assumed, thus it 

always makes sense in terms of availability to use the 
standby system as already presumed. 

 
6.3	Determining	the	cost	neutral	update	interval.		

Now the cost neutral update interval has to be defined, 
i.e. the time ݐ௨௣ௗ௔௧௘ூ௡௧ in which the no-standby system and 
the standby system produce the same costs. Therefore, it is 
exemplarily assumed that the outage costs are deter-
mined: ௘ݐݏ݋ܿ	 ൌ 400€/h . With the help of these outage 
costs, the new cost functions can be set up now: 

௨௣ௗ௔௧௘ூ௡௧൯ݐ௜,ସ଴଴൫ߛ ൌ ,௨௣ௗ௔௧௘ூ௡௧ݐ௜൫ߛ 400൯, ݅	߳	ሼ1,2ሽ

Consideration of the limit value easily depicts the mini-
mal and maximal costs: 

ଵ,ସ଴଴ߛ
௠௜௡ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→ஶ
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ

ൌ 	59650.34	€	/	year 

ଵ,ସ଴଴ߛ
௠௔௫ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→଺଴
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ

ൌ 	99772.07€	/	year 

The costs for the use of the system without replication 
can be calculated with the function	ߛଶ,ସ଴଴൫ݐ௨௣ௗ௔௧௘ூ௡௧൯. These 
costs are independent of t and thus constant. It is evident 
that the costs of ߛଵ,ସ଴଴ are reduced with an increasing update 
interval and at some point cut with ߛଶ,ସ଴଴. By calculating the 
equation 

௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ ൌ 	   ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ,ସ଴଴൫ߛ

	௜ߛ

	௨௣ௗ௔௧௘ூ௡௧ݐ 	௘ݐݏ݋ܿ

0	

1000
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1000	

60000	

78000	

200

0
1000 5000

	௎௣ௗ௔௧௘ூ௡௧ݐ

1000

	௘ݐݏ݋ܿ
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to ݐ௨௣ௗ௔௧௘ூ௡௧ , the update interval that can be selected 
without additional monetary expenses can be determined: 
௨௣ௗ௔௧௘ூ௡௧ݐ ൌ 1923.03	݉݅݊. 

Considering the outage costs, the system assumed in the 
example can be made more available without higher costs at 
an update interval of 1923 minutes, which is a bit less than a 
daily update (every 1.33 days). The following changes in the 
availability arise from this: ߙଵሺ1923ሻ െ	ߙଶሺ1923ሻ ൌ
0.000274.	This means that the system in the given use case 
is within 10 years 1440 minutes or one day more available 
and consequently the availability class will rise from 3 to 4 
with the same costs6. 

 

7. CONCLUSION	
In this work we presented a novel approach for warm 

standby in the Cloud. Our Cloud Standby approach repli-
cates the modeled primary system periodically to another 
Cloud provider. The quality attributes of this new Cloud 
Standby System are formalized by a novel Markov chain 
based approach. In this paper it was presented that this for-
mal model can be used to calculate the availability and long-
term costs of a Cloud Standby System. It was also shown 
that a Cloud Standby System has an advantage over a no-
standby system in matters of availability even if the replica-
tion is not even performed once. It was also shown how the 
model can be used to configure a Cloud Standby System. 
Since it was proven that a Cloud Standby System provides a 
higher availability by design, future work is to develop a 
reference architecture for this kind of systems. Future work 
might concentrate on the support of the different roles when 
formalizing the distributed system. It can also concentrate 
on the introduction of more dynamic parameters regarding 
provider costs, outage costs, etc. into the model presented 
herein. 
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