
International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 48
	

CLOUD	STANDBY	SYSTEM	AND	QUALITY	MODEL	
Alexander	Lenk,	Frank	Pallas	

FZI	Forschungszentrum	Informatik	
Friedrichstr.	60,	10117	Berlin,	Germany	

{lenk,	pallas}@fzi.de	
Abstract	
Contingency	plans	for	disaster	preparedness	and	concepts	for	resuming	regular	operation	as	quickly	as	possible	have	
been	an	integral	part	of	running	a	company	for	decades.	Today,	large	portions	of	revenue	generation	are	taking	place	
over	the	Internet	and	it	has	to	be	ensured	that	the	respective	resources	and	processes	are	secured	against	disasters,	
too.	Cloud‐Standby‐Systems	are	a	way	for	replicating	an	IT	infrastructure	to	the	Cloud.	In	this	work,	the	Cloud	Standby	
approach	and	a	Markov‐based	model	is	presented	that	can	be	used	to	analyze	and	configure	Cloud	Standby	systems	
on	a	long	term	basis.	It	is	shown	that	by	using	a	Cloud‐Standby‐System	the	availability	can	be	increased,	how	configu‐
ration	parameters	 like	the	replication	 interval	can	be	optimized,	and	that	the	model	can	be	used	for	supporting	the	
decision	whether	the	infrastructure	should	be	replicated	or	not.	
Keywords:		Cloud‐Standby,	Warm‐Standby,	BCM,	Cloud	Computing,	IaaS,	Disaster	Recovery	
__	
1. INTRODUCTION	

The effort of companies to protect their production facil-
ities, distribution channels or critical business processes
against possible risks is not a new phenomenon. Instead,
contingency plans for disaster preparedness and concepts for
resuming regular operation as quickly as possible have been
an integral part of running a company since the times of the
industrial revolution. In this context, disasters are fire,
earthquakes, terrorist attacks, power outages, theft, illness,
or similar circumstances. The respective measures that must
be taken in order to being prepared for such disasters and for
keeping up critical business processes in the event of an
emergency are commonly referred to as Business Continuity
Management (BCM) (Hiles, 2010) in economics. The effec-
tiveness of BCM can be controlled via the key figures Re-
covery Time Objective (RTO) and Recovery Point Objective
(RPO) (Hiles, 2010). RTO refers to the allowed time for
which the business process may be interrupted and the RPO
relates to the accepted amount of produced units or data that
may be lost by an outage.

Today, with the Internet being production site as well as
distribution channel, BCM faces different challenges. One
of the most important tasks in IT-related emergency man-
agement is the redundant replication of critical systems.
Depending on the system class, different mechanisms are
used to secure a system against prolonged outages. In this
regard the RTO specifies the maximum allowed time within
which the IT system must be up again and the RPO is the
accepted period of data updates that may be lost, i.e. gener-
ally the time between two backups (Wood et al., 2010).

This work presents an approach for a Cloud Standby
system and the modeling of costs and availability based on
Markov chains. Cloud Standby uses a meta model approach
to describe distributed systems (Tanenbaum & Van Steen,
2002) in a machine readable language that can be used to
deploy the system on several cloud providers. For modeling
the quality attributes the basic idea is to carry out a random

walk (Gilks, Richardson, & Spiegelhalter, 1996) on the
system’s state graph according to defined transition proba-
bilities. The costs and the availability can then be calculated
by means of the Markov chain and the probability distribu-
tion for staying in each state. The presented model is illus-
trated by means of a simple example and it is shown that the
model can be used to calculate optimal configuration op-
tions, like the replication interval, of the Cloud-Standby-
Systems.

The remainder of this paper is structured as follows:
First the related work and a description of the Cloud-
Standby-System is presented. Then the quality model itself
is developed and it is shown how it can be used to make
deliberate configuration decisions on the basis of a simple
example. Finally, the conclusion sums up the paper and
gives an outlook to future work in this field1.

2. RELATED	WORK	
In this work we present a) the general approach of Cloud

Standby, a warm standby for the Cloud and b) based on the
states of the proposed Cloud Standby System a quality
model for predicting the long term availability and costs
with certain parameters.

2.1	Cloud	Standby.	

Wood et al. (2010) describe a generic warm standby sys-
tem in order to evaluate whether Cloud Computing is bene-
ficial for this use case. This paper does however concentrate
on the economic part and describes no real warm standby
system.

Klems, Tai, Shwartz, and Grabarnik (2010) describe a
running system that allows to use the Cloud as a warm
standby environment, using BPNM processes to orchestrate
an IaaS provider’s infrastructure services. In contrast to the

																																																													
1 This article is an extended version of the paper “Modeling Quali-

ty Attributes of Cloud-Standby-Systems” (Lenk & Pallas, 2013)

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 49
	

model presented herein, their approach focuses on single
machines and does not allow to secure whole distributed
systems.

PipeCloud (Wood, Lagar-Cavilla, Ramakrishnan,
Shenoy, & Van der Merwe, 2011) targets private Clouds
where the user has access to the hypervisor and uses this
access for capturing disk writes and replicating them to the
Cloud. Remus and SecondSite (Cully et al., 2008; Ra-
jagopalan, Cully, O’Connor, & Warfield, 2012) basically
follow a similar approach: direct the access to the hypervi-
sor is used to dynamically replicate the whole virtual ma-
chine to another location. Due to the requirement of hyper-
visor access, these approaches can, however, not be applied
in a public Cloud scenario.

2.2	Quality	Model.	

The calculation of quality metrics addressed in this pa-
per can generally be subdivided into the two fields of cost
and availability calculation. Regarding these calculations,
related work already exists in the field of virtualized infra-
structures, Cloud Computing, and warm standby systems.

The approach of Alhazmi and Malaiya (2012) describes
a way of evaluating disaster recovery plans by calculating
the costs. The approach is of generic nature and is not focus-
ing on the field of Cloud Computing with its own specific
pricing models.

Wood et al. (2010) describe a way of replicating data
from one virtual machine to a replica machine. The respec-
tive cost calculation is limited to this specific approach and
cannot be adapted to Cloud-Standby-Systems like the ones
considered herein.

Dantas, Matos, Araujo, and Maciel (2012) present a
Markov-based approach to model the availability of a
warm-standby Eucalyptus cluster. Even if the approach is
related to the work presented herein with regards to the used
mathematical model and also shows that Markov chains can
be used to model availabilities in Cloud Computing, it is not
used to model the costs and the calculation of the availabil-
ity is restricted to a single Eucalyptus installation with dif-
ferent clusters and does not consider settings with several
cloud providers.

Klems et al. (2010) present an approach for calculating
the downtime of a Cloud-Standby-System. This approach
evaluates the system in general but is a rather simplistic
short term approach, comparing a Cloud-Standby-System
with a manual replication approach.

2.3	IaaS	Deployment	Meta	Model.	

Over the years several IaaS deployment standards were
proposed in the industry and science. Some of them are
related to the deployment model presented in this paper.

Amazon Web Services (AWS Inc., 2013) is an IaaS pro-
vider that added additional services over the time. Today
Amazon Web Services cannot just be used to start virtual
machines but to deploy whole scalable application stacks.
These “Cloud Formations” allow constraint definition and

sophisticated monitoring. As one the industry leader in IaaS
Cloud computing Amazon has a rich toolset and API. How-
ever Amazon does not support provider independence since
as an industry leader they are more interested in creating
lock-in effects than reducing them.

Chieu et al (2010) introduce in their work the concept of
a “Composite Appliance”'. A composite appliance is a col-
lection of virtual machine images that have to be started
together in order to run a multi-tier application. The pro-
posed description language lacks support for runtime fea-
tures like the current configuration of the virtual machines.
The architecture proposed in this work requires the language
to be implemented in the vendor's Cloud computing plat-
form and thereby does not allow using different cloud pro-
viders.

Konstantinou et al. (2009) describe in their work a mod-
el-driven deployment description approach. This approach is
based on different parties that participate in the deployment
process. A deployment is first modeled as a “Virtual Solu-
tion Model” and then by another party translated to a ven-
dor-specific “Virtual Deployment Model”. Maximilien et al.
(2009) introduce a model that allows deploying middleware
systems on a Cloud infrastructure. In the aspects of deploy-
ment both the meta model proposed by Konstantinou et al.
and Maximilien et al. are related to our meta model. The
approach of Maximilien et al. however is focused on the
deployment of middleware technologies we are aiming on a
more holistic approach that has the final distributed system
in focus and not just middleare technologies. The approach
of Konstantinou et al. does not allow having different Cloud
vendors in a single deployment. However some of both the
ideas of Konstantinou et al. and Maximilien et al. have in-
fluenced our meta model.

Mietzner et al. (2009) orchestrate services by using
workflows and web services using e.g. WS-BPEL. They
concentrate on high level composition of services, rather
than proposing an actual language for deployments. The
focus on WS-BPEL gives the approach a great flexibility
but also adds an overhead. The work we present in this pa-
per is influenced by the work done and the general ideas
developed by Mietzner et al. However while Mietzner et al.
is focusing on the BPEL deployment processes, our work is
focusing on the distributed application itself and enriches it
with meta data that can also be used for deployment and
thereby supporting higher level processes like the ones de-
scribed by Mietzner et al.

3. CLOUD	STANDBY	SYSTEM	
The recovery of IT systems can be achieved through dif-

ferent replication mechanisms (Henderson, 2008; Schmidt,
2006). “Hot standby” is on the one side of the spectrum: A
second data center with identical infrastructure is actively
operated on another site with relevant data being continu-
ously and consistently mirrored in almost real-time from the
first to the second data center. The operating costs of such a

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 50
	

hot standby system, however, amount to the operating costs
of the secondary system plus the cost of the mirroring. On
the other side of the spectrum is the “cold standby”, the low-
cost backup, e.g. on tape, without retaining a second site
with backup infrastructure resources. A tape backup is not
possible during productive operation and is usually done at
times of low load like at night or during weekends. In this
case, a RPO of days or weeks is common. Due to the fact
that the IT infrastructure has to be newly procured in case of
a disaster, an RTO of several days to months is possible.
Between these two extremes lies the concept of “warm
standby”. Although a backup infrastructure is kept at anoth-
er location in this case, it is not fully active and must be
initially put into operation in case of a disaster. A warm
standby system usually has a RPO and RTO between
minutes and hours.

A common option for reducing the operating costs of on-
ly sporadically used IT infrastructure, such as in the case of
the “warm standby” (Henderson, 2008; Schmidt, 2006), is
Cloud Computing. Cloud Computing provides the user with
a simple, direct access to a pool of configurable, elastic
computing resources (e.g. networks, servers, storage, appli-
cations, and other services, with a pay-per-use pricing mod-
el) (Lenk, Klems, Nimis, Tai, & Sandholm, 2009; Mell &
Grance, 2011). More specifically, this means that resources
can be quickly (de-)provisioned by the user with minimal
provider interaction and are also billed on the basis of actual
consumption. This pricing model makes Cloud Computing a
well-suited platform for hosting a replication site offering
high availability at a reasonable price. Such a warm standby
system with infrastructure resources (virtual machines, im-
ages, etc.) being located and updated in the Cloud is herein
referred to as a “Cloud-Standby-System”. The relevance and
potential of this cloud-based option for hosting standby
systems gets even more obvious in the light of the current
situation in the market. Only fifty percent of small and me-
dium enterprises currently practice BCM with regard to
their IT-services while downtime costs sum up to $12,500-
23,000 per day for them (Symantec, 2011).

The calculation of quality properties, such as the costs or
the availability of a standby system, and the comparison
with a “no-standby system” without replication is an im-
portant basis for decision-making in terms of both the intro-
duction and the configuration of Cloud-Standby-Systems.
However, due to the structure and nature of standby sys-
tems, this calculation is not trivial, as in each replication
state different kinds of costs (replication costs, breakdown
costs, etc.) with different cost structures incur. Furthermore,
determining the quality of the system is difficult due to the
long periods of time and the low probability of disasters
(e.g. only one total outage every 10 years). A purely exper-
imental determination by observing a reference system over
decades is therefore not feasible. Instead, a method for
simulating and calculating the long-term quality characteris-
tics of different configurations is needed.

In this work we introduce Cloud-Standby. It is a novel
Cloud based warm standby approach where a formally de-
scribed primary distributed system (PS) running in Cloud 1
(C1) is periodically synced as a replica system (RS) to
Cloud 2 (C2). The states of this Cloud-Standby-System are
depicted in Fig. 1.

Fig. 1. State chart of a Cloud-Standby-System

3.1	States.	

PS Deployment. The PS is deployed on C1 at first and
goes into runtime after ݐௗ௘௣௟. The time the deployment takes
depends highly on its structure. For each use case the de-
ployment time can be determined by means of experimenta-
tion.

PS Runtime. During PS runtime, the RS is turned off
and generates no costs. The PS data are, however backed up
using standard backup tools. This ensures the RPO can be
met when a disaster occurs.

PS Runtime + RS Update. Periodically (after
 ௨௣ௗ௔௧௘ூ௡௧) the RS is started and changes are updated on theݐ
RS. This ensures that the deployment time of the RS is re-
duced when an actual disaster occurs. The time the update
process lasts is defined as ݐ௨௣ௗ௔௧௘

RS Deployment. When C1 fails the RS is started and
takes over the service. The time for the deployment is
 ௥௘௣௟஽௘௣௟. The deployment time varies with the amount ofݐ
data that needs to be installed or stored during the deploy-
ment process. This means that ݐ௥௘௣௟஽௘௣௟ decreases with de-
creasing ݐ௨௣ௗ௔௧௘ூ௡௧. The correlation between ݐ௥௘௣௟஽௘௣௟ and
-௨௣ௗ௔௧௘ூ௡௧ can be determined through experiments or moniݐ
toring over time.

RS Runtime. In case of an outage on C1, the RS takes
over and only if during this time an outage also takes place
on C2 the whole system is unavailable.

RS Runtime + PS Deployment. As soon as C1 is up
again, the PS can be redeployed and then takes over the
service.

Outage. If the systems on both Clouds are not available
the outage of the service could not be avoided. Now the
whole system must be recovered from the scratch by hand.

3.2	IaaS	Deployment	Meta	Model.	

For the automatic deployment of the PS and RS a ma-
chine readable deployment description is needed which

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 51
	

allows the deployment of distributed systems on different
IaaS providers. In this section we present a modeling ap-
proach for formalizing distributed systems on top of feder-
ated IaaS Clouds. In this context a distributed system is a
software stack capable of providing a distributed application
and all its artifacts (Object Management Group – OMG,
2011). Software artifacts are applications like a self-
contained webserver binary or application packages like jar-
files. Even a whole operation system including kernel, bina-
ries, and other files, packaged in an image file is considered
as an artifact. In the UML-notation the Component acts as a
“DeploymentTarget” for the “DeployedArtifacts” (Object
Management Group – OMG, 2011).

Deployment languages in federated Clouds have to meet
several requirements (Lenk, Danschel, Klems, Bermbach, &
Kurze, 2011). A Cloud service, by definition, needs to be
elastic, meaning to scale up and down with changing de-
mand within a short time (Mell & Grance, 2011). Since it
should also be possible to deploy a service not only on a
single Cloud provider, the model must also support Cloud
federation (Kurze et al., 2011; Lenk et al., 2011).

Fig. 2. Distributed system deployment meta model

In Fig. 2 we depict a meta model for distributed systems
in federated Clouds. A distributed system consists of several
elastic components that have dependencies between each
other (“component a” requires “component b”), representing
the tiers in the distributed system. These components can be
application servers, databases, key-value stores, etc. All
components are running on a single cloud provider at a time
but can - in the case of a disaster - be deployed on another
provider in the federated Cloud. Each of these components
has several instances running a configured operation system
with a predefined software stack. This software stack is
either stored in a basic image held by Cloud provider or is
applied during the deployment process via installation of
software packages on a single basic image or all the images
of a component.

This modeling approach of having the federated image,
federated virtual machine, and installation tasks assigned to
the component ensures that all instances of a component
have the same configuration and are thereby horizontally
scalable. We assume that the functionality of the load bal-
ancing is done via an external service having access to the
model, or the load balancer being one component, required
by the component it controls.

Infrastructure part. This part is modeled by a profes-
sional (the IaaS Admin) knowing the different Cloud pro-
viders, images, and software stacks. The task of the IaaS
Admin is to select feasible virtual machines and basic imag-
es from the available infrastructure and software packages
that can be installed on top of the basic images for the prep-
aration of configured images. Configured images are the
functional design time representations of instances. Differ-
ently configured images for different Cloud providers
which are functionally equivalent will be grouped to feder-
ated images. This ensures that the federated image has the
same functionality even when instantiated on different
Clouds.

In order to instantiate an instance the image needs to be
deployed on a runtime, or virtual machine (VM). The virtual
machine represents the non-functional attributes of the in-
stance. The selected VM determines the properties like
price, performance etc. for the instance. By defining inter-
vals for these properties and by grouping the VMs along
these dimensions in the intervals, the IaaS Admin guaran-
tees that a federated virtual machine has the same or at least
similar non-functional qualities on each provider.

Furthermore, the IaaS Admin groups for each Cloud ex-
actly one VM and one configured image in the correspond-
ing federated element. Thus, during the deployment phase
the federated image and federated VM can be deployed on
any Cloud provider represented in the infrastructure model.

One challenge in in this approach is to determine the vir-
tual machines and basic images of different Cloud providers
that are grouped to federated virtual machines and federated
images. Furthermore, to determine the software that should
be installed on a certain image is a highly manual task that
should be automated in the future. Concepts like feature
modeling for selection of Cloud services (Wittern, Kuhlen-
kamp, & Menzel, 2012) could be used to automate this pro-
cess.

Deployment part. In the deployment part the System
Administrator defines the structure of the final distributed
system on the basis of the infrastructure model. Since it is
not clear how the different components are orchestrated for
the final service, this task (currently) has to be carried out
manually by the system administrator. He defines the com-
ponents, the dependencies between them, and the software
packages installed on the components. By grouping instanc-
es in components the model enables elasticity.2

																																																													
2 It is, however, not subject of this work to describe mechanisms

that are used to add/remove resources based on monitoring data or that deal

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 52
	

Deployment parallelization. The relation “component
requires component” allows to calculate the dependency
graph ܩ that is essential for the deployment process of the
PS and the RS. It depends on the structure of the deploy-
ment modeled with the description language how long the
actual deployment takes. If there are many single software
packages to be installed and the deployment graph allows no
parallelization this process takes longer than in cases with
completely configured virtual machines that all can be de-
ployed in parallel.

Without this graph it is not clear in which order the
components have to be deployed. When having the depend-
ency graph calculated with a topological sort the sequential
deployment order of the components can be calculated. This
sequential deployment order is not optimal when it comes to
deployment time. In the deployment graph there are often
parallel paths where deployments can be started at the same
time without violating the constraints introduced by the
“requires” relation.

Fig. 3. Cloud Standby Deployment Algorithm

In computer science there are several algorithms for the
parallel execution of jobs or tasks. All these algorithms,
however, have in common that they assume that the re-
sources are limited. In Cloud computing the assumption is
that there are unlimited resources available. Therefor we use
in this work a modified version of the MPM net planning
algorithm (Thulasiraman & Swamy, 2011) from the disci-
pline of operations research which is listed in Fig 3.

We use the forward calculation of the MPM algorithm to
get the Early Start Dates (ESD) and the Early Finish Dates

																																																																																																							
with the problems of migrating of the data and so on. By using this design
we just make sure that distributed systems described with this language are
able to be elastic.

(EFD). The ESD give us an idea when approximately the
component will be deployed but it is no guarantee. With the
EST however the deployment scheduling can be calculated:
components with the same start time can be deployed in
parallel. The EFD give an approximation on how long the
whole process will take with:

t஽௘௣௟ ൌ max	ሺܦܨܧሻ

4. CLOUD	STANDBY	QUALITY	MODEL	
Using the Cloud Standby approach on the one hand

leads to additional costs but on the other hand increases
availability. In order to provide decision support regarding
the question whether the introduction of such a Cloud
Standby System is useful or not, the states are transferred
into a mathematical model. In this chapter we build such a
quality model using a graph and Markov chain, based on the
UML chart in Fig.1.

In order to facilitate the calculation of quality properties
at all, some variables must be defined and parameterized for
calculation. Some of the parameters are defined in the use
case, or of experimental origin, others are taken from exter-
nal sources and some can only be estimated. Together with
results from previous experiments, average start times can
then be calculated. Table 1 represents the time variables to
be parameterized as well as the underlying source for its
parameterization.

Table 1. Parameters

Type Variable Unit
Duration of the initial
deployment

 .ௗ௘௣௟ minݐ

Backup interval ݐ௨௣ௗ௔௧௘ூ௡௧ min.
RS update time ݐ௨௣ௗ௔௧௘ min.
Duration of the replica
deployment

 .௥௘௣௟஽௘௣௟ minݐ

Transition from emergency
to normal state

 .௘௥௥௢௥ minݐ

Primary Cloud provider costs ܿݐݏ݋ଵ €/h/server
Secondary Cloud provider
costs

 ଶ €/h/serverݐݏ݋ܿ

Unavailability costs ܿݐݏ݋௘ €/h
Primary Cloud availability ݈ܽ݅ܽݒଵ years
Secondary Cloud availability ݈ܽ݅ܽݒଶ years

To calculate the total costs, the costs for the run-time of

each server must be known. These data can be found in the
offers of the Cloud providers. For some evaluations, the
costs / loss of profit faced by the company in the case of
system unavailability must also be known or at least esti-
mated. All types of costs included in the following analysis
are summarized in Table 1. The availability of the Cloud
provider is an important basis for the calculation of the
overall availability of the system and thus also of the costs.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 53
	

Many Cloud providers declare such availability levels in
their SLA. However, this availability is less interesting in
the context of this calculation because this work focuses on
global, long-term outages caused by disasters that cannot be
handled by traditional backup techniques. The availability
described in the third part of Table 1 indicates the average
time period in which exactly one such global outage of the
respective Cloud provider is likely to be expected.

Even if elasticity (Mell & Grance, 2011) is a key con-
cept of Cloud Computing and although the prices for Cloud
resources constantly changed during the past years, we use
static values for the average amount of servers and for the
costs over the years. These dynamic aspects could nonethe-
less easily be added in future work by not having constant
prices and servers but functions representing these values.
For a first step towards modeling the costs of Cloud-
Standby-Systems, however, the use of static values appears
acceptable.

4.1	Units.	

The states for the state graph that should represent the
basis for further calculations can be directly derived from
the different states of the UML state chart (Fig. 1). In that
regard, ௜ܵ corresponds to the description of the state ݅ from
the state space ܫ. To calculate the quality properties of the
system, stopping times must be assigned to each of the
states (see Table 2). It is assumed that the step length of the
Markov chain is one minute and the stopping time is
݀௜	∀	݅ ∈ 	in a state ܫ ௜ܵ.

Table 2. Designation of the states from the process steps

Process Step Model State
PS Deployment ଵܵ
PS Runtime ܵଶ
PS Runtime + RS Update ܵଷ
RS Deployment ܵସ
RS Runtime ܵହ
RS Runtime + PS Deployment ܵ଺
Outage ܵ଻

Ԧ݀ ≔

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ௗ௘௣௟ݐ
௨௣ௗ௔௧௘ூ௡௧ݐ
௨௣ௗ௔௧௘ݐ

௨௣ௗ௔௧௘ூ௡௧൯ݐ௥௘௣௟஽௘௣௟൫ݐ

௘௥௥௢௥ݐ െ ௥௘௦௧௢௥௘ݐ	െ	௨௣ௗ௔௧௘ூ௡௧൯ݐ௥௘௣௟஽௘௣௟൫ݐ
௥௘௦௧௢௥௘ݐ
௘௥௥௢௥ݐ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

As shown in the definition of the stopping times Ԧ݀, all
times except those of ݀ଶ, ݀ସ and ݀ହ can be determined from
the previously set parameters (Table 1). The update interval
-௨௣ௗ௔௧௘ூ௡௧ is part of the configuration and has a major influݐ
ence on the costs and the availability of the system. The
time it takes to start the replica deployment (݀ସሻ strongly

depends on when the server has last been updated. Conse-
quently, the start time of the replica is increased by a long
update interval. Hence, an increase of the backup interval
results in a reduction of the deployment time and according-
ly the function ݐ௥௘௣௟஽௘௣௟ሺݐ௨௣ௗ௔௧௘ூ௡௧ሻ is increasing monoton-
ically. For ݀ହ it is assumed that the time ݐ௘௥௥௢௥ is constant,
regardless of the use of a standby system. The run-time of
the standby system is therefore made up of the outage time
less replication deployment time (݀ସሻ and the time for the
return to the production system (݀଺ሻ.

4.2	Markov	chain	and	transition	graph.	

The quality properties of the standby system can be cal-
culated by modeling the states as a Markov chain and a
long-term distribution of the stopping time probabilities in
the states	ܵ. Due to the lack of memory of the Markov chain
(Markov property) it is not possible to directly model the
stopping times. The stopping times must be transferred into
recurrence probabilities. These must be designed so that, on
average, in ݀௜ of the cases the state is maintained and in one
case the state is left. It follows that the total number of pos-
sible cases is	݀௜ ൅ 1. Thus, the recurrence probabilities have
to be calculated with	ߣ௜	∀	݅ ∈ :ܫ

௜ߣ ൌ
݀௜

݀௜ ൅ 1
∀	݅ ∈ ܫ

In addition to the recurrence probabilities, the probabili-
ties of an outage are required. These are calculated analo-
gously to the recurrence probabilities. On the average, nor-
malized to the iteration step of the Markov chain of one
minute, one outage in the period of ݈ܽ݅ܽݒ௜, ݅	 ∈ 	 ሼ1, 2ሽ
should incur:

௜ߝ ൌ
1

௜݈݅ܽݒܽ ∗ 365 ∗ 24 ∗ 60
	, ݅ ∈ ሼ1,2ሽ

Fig. 4. States of the standby system as a Markov chain (ܥܯଵ)

s1 s3 s4

s2

s5

s7

1-λ2-ε1 1-λ3-ε1

ε1 1-λ4-ε2

1-λ5-ε2

ε2

1-λ1-ε1

ε1

ε2

λ1

λ2

λ3

λ4 λ5

λ7

1-λ7

ε1

s6

λ6

ε2

1-λ6-ε2

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 54
	

Standby System. Considering these probabilities, the
Markov chain ܥܯଵ for the standby system can now be es-
tablished as shown in Fig 4.

The transition matrix ଵܲ can be read directly from the
Markov chain in Fig. 4:

ۉ

ۈ
ۈ
ۈ
ۇ

λଵ 0 1 െ λଵ െ εଵ 0 0 εଵ 0
0 λଶ 1 െ λଶ െ εଵ εଵ 0 0 0
0 1 െ λଷ െ εଵ λଷ εଵ 0 0 0
0 0 0 λସ 1 െ λସ െ εଶ 0 εଶ
0 0 0 0 λହ 1 െ λହ െ εଶ εଶ
εଶ 0 1 െ λ଺ െ εଶ 0 0 λ଺ 0

1 െ λ଻ 0 0 0 0 0 λ଻ی

ۋ
ۋ
ۋ
ۊ

No-Standby System. As the properties of the standby
system should in the end be compared to the original sys-
tem, now the Markov chain ܥܯଶ	and the transition matrix
ଶܲ must be created as a reference for the system without

replication. The two chains only differ in the fact that no
update is performed, which means ݐ௨௣ௗ௔௧௘ூ௡௧ → 	∞ , the
stopping time in the states ܵଷ െ ܵ଺ are equal to zero and no
second provider exists, the probability of outage εଶ is there-
fore 1. In case these parameters are applied to ܥܯଵ , the
states ܵହ and ܵ଺	are no longer obtainable. With a probability
of 1 the state of ܵସ	merges directly with ܵ଻ and can thus be
combined with ܵ଻.

Due to the fact that the update interval is infinite, the re-
currence probability of 	ܵଶ is one3. This also results in a
negative transition probability from ܵଶ	to	ܵଷ . However, as
the recurrence probability of ܵଷ is zero, this negative transi-
tion probability can be resolved by combining the vertices
	ܵଶ and ܵଷ to ܵଶ. Eventually, this results in a new recurrence
probability for ܵଶ	of 1 െ εଵ.

The new Markov chain is therefore	ܥܯଶ (as shown in
Fig. 5).

Fig. 5. States of the no-standby system as a Markov chain (ܥܯଶ)

The transition matrix ଶܲ was created similarly to ଵܲ as a
Թ଻௫଻	matrix, so that the same algorithms are applicable on
both matrices. The transitions to and from the states ܵଷ െ ܵ଺
have a probability of zero:

																																																													
3 lim

௧ೠ೛೏ೌ೟೐಺೙೟→	ஶ
௨௣ௗ௔௧௘ூ௡௧൯ݐ൫ߣ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→	ஶ

௧ೠ೛೏ೌ೟೐಺೙೟
௧ೠ೛೏ೌ೟೐಺೙೟ାଵ

ൌ 1

ۉ

ۈ
ۈ
ۈ
ۇ

λଵ 1 െ λଵ െ εଵ 0 0 0 0 εଵ
0 1 െ εଵ 0 0 0 0 εଵ
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1 െ λ଻ 0 0 0 0 0 λ଻ی

ۋ
ۋ
ۋ
ۊ

	
4.3	Long‐term	distribution.	

The stationary distribution of a Markov chain ܥܯ can be
calculated in order to reach a long-term distribution of the
system. This distribution ߨ௜	, ݅ ∈ states the probability of ܫ
the system to be in the state ௜ܵ 	, ݅ ∈ ܫ at any given time
݊ ∈ Գ. With the help of the probability distribution, long-
term quality properties such as the cost of γ and the overall
availability of ߙ can easily be calculated. The algorithm for
determining the stationary distribution is represented in
shortened form as follows4. In this case ߃௥ is the unit matrix
and ܾ௥ሬሬሬԦ is the unit vector with the rank ݎ.

ܳ ൌ ܲ െ Ε଻

ܳᇱ ൌ ቌ
ଵ,ଵݍ ⋯ ଵ,଻ݍ 1
⋮ ⋱ ⋮ ⋮
଻,ଵݍ ⋯ ଻,଻ݍ 1

ቍ

்

The result of the equation system

ܳᇱ ∗ ሬԦߨ ൌ ܾ଻ሬሬሬԦ

is the stationary distribution ߨሬԦ. This distribution is a vec-
tor of which point ߨ௜ ∈ indicates the probability to be in ܫ
the state 	 ௜ܵ at a given step ݊.

5. QUALITY	METRICS	AND	DECISION	
SUPPORT	

After defining the stationary distribution ߨ௜	, ݅ ∈ ܫ , the
quality properties of costs and availability can be deter-
mined.

5.1	Cost.	

The costs ܿଵ for provider 1 result from the sum of the
costs in the states ଵܵ, ܵଶ, ܵଷ, ܵ଺. The costs ܿଶ incur for pro-
vider 2 during the update, in the emergency mode in
ܵଷ, ܵସ, ܵହ and the recurrence via state ܵ଺. The costs ܿக	for the
non-availability of the system incur in the states ଵܵ, ܵସ, ܵ଻.

																																																													
4 A detailed description of the calculation of the stationary distri-

bution is given in [6].

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 55
	

,ሬԦߨሺߛ Ԧܿ, ݊௦௘௥௩௘௥ሻ ≔ ܿଵ݊௦௘௥௩௘௥ ෍ ௜ߨ

௜∈ሼଵ,ଶ,ଷ,଺ሽ

௜

൅ ܿଶ݊௦௘௥௩௘௥ ෍ ௜ߨ

௜∈ሼଷ,ସ,ହ,଺ሽ

௜

൅ ܿఌ ෍ ௜ߨ

௜∈ሼଵ,ସ,଻ሽ

௜

	
5.2	Availability.	

The availability results from the sum of the probabilities
of the states in which the system is available (ܵଶ, ܵଷ, ܵସ, ܵ଺)
or from the recurrence probability for the states in which the
system is unavailable (ଵܵ, ܵସ, ܵ଻):

ሬԦሻߨሺߙ ≔ ෍ ௜ߨ

௜∈ሼଶ,ଷ,ହ,଺ሽ

௜

ൌ 1 െ ෍ ௜ߨ

௜∈ሼଵ,ସ,଻ሽ

௜

	
5.3	Decision	support	based	on	the	quality	metrics	

In case of a decision having to be made whether the
standby system should be used in a particular configuration
or not, it is useful to compare the quality properties of the
different options. Especially during the introduction phase
such a direct comparison between the no-standby and the
standby system makes sense.

In many cases companies cannot accurately predict cer-
tain parameters such as the cost of an outage (ܿݐݏ݋௘) and
can only make estimations in a specific interval. Therefore,
it is appropriate to make quality properties not only depend-
ent on the update interval, but also on other parameters.

Ratio of outage costs to replication interval. To per-
form a comparison of the total costs in relation to the outage
costs and update interval, the total costs with variable out-
age costs (ܿݐݏ݋௘ሻ and update interval (ݐ௨௣ௗ௔௧௘ூ௡௧) have to be
calculated first. We represent these total costs as:

,௨௣ௗ௔௧௘ூ௡௧ݐ௜൫ߛ ௘൯ݐݏ݋ܿ ≔	
,௨௣ௗ௔௧௘ூ௡௧൯ݐሬԦ௜൫ߨ൫ߛ	 Ԧܿሺܿݐݏ݋௘ሻ, ݊௦௘௥௩௘௥൯,	
	݅ ∈ ሼ1,2ሽ

By using these variable cost calculation functions the ar-
ea in which the two systems have the same cost can be de-
termined. This is achieved by sectioning the function:

௨௣ௗ௔௧௘ூ௡௧൯ݐ௘൫ݐݏ݋ܿ ∶ൌ	
,௨௣ௗ௔௧௘ூ௡௧ݐଵ൫ߛ ௘൯ݐݏ݋ܿ ∩ ,௨௣ௗ௔௧௘ூ௡௧ݐଶ൫ߛ ௘൯ݐݏ݋ܿ

The function will facilitate the consideration of the limit
of value. In this case limits for the update interval are the
value of continuous updates and an update interval tending
to infinity. Due to the cost structure of the Cloud provider

(billing period of an hour) the continuous replication is to be
equated with a replication interval of 1 hour or 60 minutes:

௘௠௜௡ݐݏ݋ܿ ≔ lim
௧ೠ೛೏ೌ೟೐಺೙೟→ஶ

௘ݐݏ݋ܿ ൫ݐ௨௣ௗ௔௧௘ூ௡௧൯

௘௠௔௫ݐݏ݋ܿ ≔ lim
௧ೠ೛೏ೌ೟೐಺೙೟→଺଴

௘ݐݏ݋ܿ ൫ݐ௨௣ௗ௔௧௘ூ௡௧൯

Outside of the interval ሾcostୣ୫୧୬, costୣ୫ୟ୶ሿ a Cloud-
standby replication such as described in this work doesn't
make sense. Should the costs costୣ୫୧୬ decrease, the no-
standby system is always cheaper and should the update
interval be 60 minutes, two systems are operated in parallel.
In this case, there would be a direct transition to a hot
standby approach because it guarantees an even higher
availability.

Ratio of availability to the replication interval. To es-
tablish a ratio between availability and replication interval,
the availability ߙ is represented as a function that is depend-
ent on ݐ௨௣ௗ௔௧௘ூ௡௧:

௨௣ௗ௔௧௘ூ௡௧൯ݐ௜൫ߙ ∶ൌ ,ሬԦ௜ሻߨሺߙ	 ݅	 ∈ ሼ1,2ሽ

This ratio allows a determination of the interval in which
the standby system can ensure availability:

ଵߙ
௠௜௡ ≔ lim

௧ೠ೛೏ೌ೟೐಺೙೟→ஶ
 ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ

ଵߙ
௠௔௫ ≔ lim

௧ೠ೛೏ೌ೟೐಺೙೟→଺଴
 ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ

The system without replication availability is independ-
ent of ݐ௨௣ௗ௔௧௘ூ௡௧:

ଶߙ ൌ ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ൫ߙ

As the availability function ߙଵ൫ݐ௨௣ௗ௔௧௘ூ௡௧൯ is convex,
ଵߙ
௠௜௡ ൏ ଵߙ	

௠௔௫ always applies. Furthermore, it also applies:

ଶߙ ൑ ଵߙ	
௠௜௡

This connection which is surprising at first glance can be
explained by the fact that in case of an error in the no-
standby system it will be directly changed to the state ܵ଻,
while in case of a replication the outage time can be bridged
by using Cloud provider 2. Only in case of ݐ௘௥௥௢௥ ൌ 0 ap-
plies:

ଶߙ ൌ ଵߙ
௠௜௡

i.e. for	ݐ௘௥௥௢௥ ൐ 0	 ௨௣ௗ௔௧௘ூ௡௧ݐ	∨ ൐ 60 applies:

ଶߙ ൏ ௨௣ௗ௔௧௘ூ௡௧ሻݐଵሺߙ	

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 56
	

Thus, it can be assumed that from an availability point of
view, the outage time ݐ௘௥௥௢௥ ൐ 0 should definitely be used
on a standby system, even if a very large update interval is
chosen.

Determining the cost neutral update interval. In order
to decide on the length of the replication interval it makes
sense to perform a comparison of the systems on a cost
basis. It is assumed that outage costs ܿݐݏ݋௘ can be quanti-
fied. In order to perform a cost comparison, the two total
cost functions are set up:

௨௣ௗ௔௧௘ூ௡௧൯ݐ௜,௖௢௦௧೐൫ߛ ൌ ,௨௣ௗ௔௧௘ூ௡௧ݐ௜൫ߛ ,௘൯ݐݏ݋ܿ ݅	߳	ሼ1,2ሽ

The maximum and minimum costs for the standby sys-
tem can easily be determined by considering the limit val-
ues:

ଵ,௖௢௦௧೐ߛ
௠௜௡ ∶ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→ஶ
 ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ

ଵ,௖௢௦௧೐ߛ
௠௔௫ ∶ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→଺଴
 ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ

The cost neutral update interval can be determined by
the intersection of the two cost functions:

௨௣ௗ௔௧௘ூ௡௧ݐ ≔	
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,௖௢௦௧೐൫ߛ 	∩ ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ,௖௢௦௧೐൫ߛ	

	

6. USE	CASE	
In section 3 we motivated that a quality model is needed

to evaluate if a Cloud-Standby-System is useful in a given
use case. In this chapter we evaluate the model by applying
it to a given use case. We demonstrate how the quality mod-
el can be applied to a server deployment of 10 servers and
given or experimentally determined metrics (see Table 3). It
is further illustrated how the administrator of the application
can be supported in his decision whether to use Cloud
Standby or not.

Table 3. Input Parameter (see Table 1-3) Assumptions

Variable Value
 .ௗ௘௣௟ 60 minݐ
 .௕௔௖௞௨௣ 30 minݐ
 .௘௥௥௢௥ 1440 minݐ
݊௦௘௥௩௘௥ 10
 ଵ 0,68€/h/server5ݐݏ݋ܿ
 ଶ 0,68€/h/serverݐݏ݋ܿ
 ଵ݈݅ܽݒܽ 10 years
 ଶ݈݅ܽݒܽ 10 years

																																																													
5 „Extra Large“ Amazon EC2 instance in the availability zone EU-

West or performance wise comparable instance on another vendor [5]

For the calculation of the quality properties, it is neces-
sary to determine the time for the deployment of the replica
 As the time depends on the update frequency, it .(௥௘௣௟஽௘௣௟ݐ)
must be adopted via a function. We assume that 50% of the
deployment process is fixed and 50% may be affected by
the update interval. The strictly monotonically increasing
function should have its lowest point at an update interval of
60 and approach the limit of the time for the initial deploy-
ment ݐௗ௘௣௟ at infinity (see Fig. 6):

௨௣ௗ௔௧௘ூ௡௧൯ݐ௥௘௣௟஽௘௣௟൫ݐ ൌ		

ௗ௘௣௟ݐ ቆ1 െ 0,5	
60

௨௣ௗ௔௧௘ூ௡௧ݐ
ቇ , ௨௣ௗ௔௧௘ூ௡௧ݐ ∈ ሾ60,∞ሿ

This function will in our future work be determined by in-
terpolation of data points from real experiments.

Fig. 6. RS deployment time

6.1	Ratio	of	outage	costs	to	the	replication	interval.		

With the help of the stationary distributions ߨ௜ (see Sec-
tion 4.3) and the costs in Table 5 the cost functions ߛ௜	can
now be defined depending on ݐ୳୮ୢୟ୲ୣ୍୬୲ and cost௘ using

formula ߛ௜൫ݐ௨௣ௗ௔௧௘ூ௡௧, ௘൯ݐݏ݋ܿ with ݅ ൌ 1	 (Cloud Standby
System) and ݅ ൌ 2 (No-Standby-System).

Representing the two functions in a graph (Fig. 7) re-
veals combinations where ߛଵ		 has lower function values
(total costs) and others where	ߛଶ	is lower. The intersection
of the functions establishes a curve on which both systems
have the same level of costs. This function is represented in
Fig. 8. Besides the combinations leading to the same costs
(grey line), the combinations in which the standby system is
monetarily inferior to the normal system (grey area) as well
as those in which the standby system is cheaper (white area)
can be identified.

	௨௣ௗ௔௧௘ூ௡௧ݐ

௥௘௣௟஽௘௣௟ݐ

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 57
	

Fig. 7. Comparison of the total costs ߛଵ
(colored area) and ߛଶ(grey area) at variable ݐ௨௣ௗ௔௧௘ூ௡௧ and ܿݐݏ݋௘

The limits of the function ܿݐݏ݋௘ሺݐ௨௣ௗ௔௧௘ூ௡௧ሻ result in the
interval in which a Cloud-standby approach on the basis of
total costs makes sense:

௘௠௜௡ݐݏ݋ܿ ൌ lim
௧→ஶ

௘ݐݏ݋ܿ ሺݐሻ ൌ 	6.79€/݄

௘௠௔௫ݐݏ݋ܿ ൌ lim
௧→଺଴

௘ݐݏ݋ܿ ሺݐሻ ൌ 	8198.79€/݄

In the case of the costs for the outage being lower than
the assumed values for server costs, costs for outage times,
etc. at more than 8198.79 € per hour, a standby system
should be deployed in any case. However, such high costs
suggest the approach of a hot standby as two systems can be
operated in parallel without any further costs. Given the
above-mentioned assumptions, the use of a standby system
does not make sense when the outage costs are less than
6.79 € per hour. In this case no matter how large the replica-
tion interval is selected, the use of a simple, unsecured sys-
tem makes more sense from a cost perspective (but not in
terms of availability).

6.2	Ratio	of	availability	to	the	replication	interval.		

Applying the values from Table 5, the availability func-
tions of ߙଵ and ߙଶ can be calculated depending on
 .௨௣ௗ௔௧௘ூ௡௧ݐ

The overall availability of the system increases noticea-
bly by introducing the standby system. The limit of the
function ߙଵ and the value of ߙଶ are:

ଵߙ
௠௜௡ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→ஶ
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ ൌ 0.9999883

ଵߙ
௠௔௫ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→଺଴
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ ൌ 	0.9999940

ଶߙ ൌ ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ൫ߙ ൌ 	0.999988201

Fig. 8. ݐ௨௣ௗ௔௧௘ூ௡௧ and ܿݐݏ݋௘	combinations in which the
standby system is more expensive (grey area), costs the

same (grey line) and is cheaper (white area).

Since an outage time of ݐ௘௥௥௢௥ ൐ 0 was assumed, thus it

always makes sense in terms of availability to use the
standby system as already presumed.

6.3	Determining	the	cost	neutral	update	interval.		

Now the cost neutral update interval has to be defined,
i.e. the time ݐ௨௣ௗ௔௧௘ூ௡௧ in which the no-standby system and
the standby system produce the same costs. Therefore, it is
exemplarily assumed that the outage costs are deter-
mined: ௘ݐݏ݋ܿ	 ൌ 400€/h . With the help of these outage
costs, the new cost functions can be set up now:

௨௣ௗ௔௧௘ூ௡௧൯ݐ௜,ସ଴଴൫ߛ ൌ ,௨௣ௗ௔௧௘ூ௡௧ݐ௜൫ߛ 400൯, ݅	߳	ሼ1,2ሽ

Consideration of the limit value easily depicts the mini-
mal and maximal costs:

ଵ,ସ଴଴ߛ
௠௜௡ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→ஶ
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ

ൌ 	59650.34	€	/	year

ଵ,ସ଴଴ߛ
௠௔௫ ൌ lim

௧ೠ೛೏ೌ೟೐಺೙೟→଺଴
௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ

ൌ 	99772.07€	/	year

The costs for the use of the system without replication
can be calculated with the function	ߛଶ,ସ଴଴൫ݐ௨௣ௗ௔௧௘ூ௡௧൯. These
costs are independent of t and thus constant. It is evident
that the costs of ߛଵ,ସ଴଴ are reduced with an increasing update
interval and at some point cut with ߛଶ,ସ଴଴. By calculating the
equation

௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ ൌ 	 ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ,ସ଴଴൫ߛ

	௜ߛ

	௨௣ௗ௔௧௘ூ௡௧ݐ 	௘ݐݏ݋ܿ

0	

1000

5000

1000	

60000	

78000	

200

0
1000 5000

	௎௣ௗ௔௧௘ூ௡௧ݐ

1000

	௘ݐݏ݋ܿ

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 58
	

to ݐ௨௣ௗ௔௧௘ூ௡௧ , the update interval that can be selected
without additional monetary expenses can be determined:
௨௣ௗ௔௧௘ூ௡௧ݐ ൌ 1923.03	݉݅݊.

Considering the outage costs, the system assumed in the
example can be made more available without higher costs at
an update interval of 1923 minutes, which is a bit less than a
daily update (every 1.33 days). The following changes in the
availability arise from this: ߙଵሺ1923ሻ െ	ߙଶሺ1923ሻ ൌ
0.000274.	This means that the system in the given use case
is within 10 years 1440 minutes or one day more available
and consequently the availability class will rise from 3 to 4
with the same costs6.

7. CONCLUSION	
In this work we presented a novel approach for warm

standby in the Cloud. Our Cloud Standby approach repli-
cates the modeled primary system periodically to another
Cloud provider. The quality attributes of this new Cloud
Standby System are formalized by a novel Markov chain
based approach. In this paper it was presented that this for-
mal model can be used to calculate the availability and long-
term costs of a Cloud Standby System. It was also shown
that a Cloud Standby System has an advantage over a no-
standby system in matters of availability even if the replica-
tion is not even performed once. It was also shown how the
model can be used to configure a Cloud Standby System.
Since it was proven that a Cloud Standby System provides a
higher availability by design, future work is to develop a
reference architecture for this kind of systems. Future work
might concentrate on the support of the different roles when
formalizing the distributed system. It can also concentrate
on the introduction of more dynamic parameters regarding
provider costs, outage costs, etc. into the model presented
herein.

8. REFERENCES	
Alhazmi, O. H., & Malaiya, Y. K. (2012). Assessing Disaster Recovery
Alternatives: On-site, Colocation or Cloud. In Software Reliability Engi-
neering Workshops (ISSREW), 2012 IEEE 23rd International Symposium
on (pp. 19–20). IEEE.

AWS Inc. (2013). Amazon Web Services, Cloud Computing: Compute,
Storage, Database. Retrieved May 30, 2013, from https://aws.amazon.com/

Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., &
Warfield, A. (2008). Remus: High Availability Via Asynchronous Virtual
Machine Replication. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (pp. 161–174).

Dantas, J., Matos, R., Araujo, J., & Maciel, P. (2012). An availability
model for eucalyptus platform: An analysis of warm-standy replication
mechanism. In Systems, Man, and Cybernetics (SMC), 2012 IEEE Interna-
tional Conference on (pp. 1664–1669). Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6377976

																																																													
6 The introduction of the Cloud-Standby-System may, however,

introduce other costs that are not included herein but are subject to future
work.

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov chain
Monte Carlo in practice (Vol. 2). CRC press.

Henderson, C. (2008). Building scalable web sites. O’reilly.

Hiles, A. (2010). The definitive handbook of business continuity manage-
ment. Wiley.

Klems, M., Tai, S., Shwartz, L., & Grabarnik, G. (2010). Automating the
delivery of IT Service Continuity Management through cloud service
orchestration. In Network Operations and Management Symposium
(NOMS), 2010 IEEE (pp. 65–72).

Konstantinou, A. V., Eilam, T., Kalantar, M., Totok, A. A., Arnold, W., &
Snible, E. (2009). An architecture for virtual solution composition and
deployment in infrastructure clouds. In Proceedings of the 3rd international
workshop on Virtualization technologies in distributed computing (pp. 9–
18).

Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., & Kunze, M.
(2011). Cloud federation (pp. 32–38). Presented at the CLOUD
COMPUTING 2011, The Second International Conference on Cloud Com-
puting, GRIDs, and Virtualization.

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sandholm, T. (2009). What’s
inside the Cloud? An architectural map of the Cloud landscape. In Software
Engineering Challenges of Cloud Computing, 2009. CLOUD’09. ICSE
Workshop on (pp. 23–31).

Lenk, Alexander, & Pallas, F. (2013). Modeling Quality Attributes of
Cloud-Standby-Systems. In Service-Oriented and Cloud Computing (pp.
49–63). Springer. Retrieved from
http://link.springer.com/chapter/10.1007/978-3-642-40651-5_5

Maximilien, E. M., Ranabahu, A., Engehausen, R., & Anderson, L. C.
(2009). Toward cloud-agnostic middlewares. In Proceeding of the 24th
ACM SIGPLAN conference companion on Object oriented programming
systems languages and applications - OOPSLA ’09 (p. 619). Orlando,
Florida, USA. doi:10.1145/1639950.1639957

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.
NIST special publication, 800, 145.

Mietzner, R., Unger, T., & Leymann, F. (2009). Cafe: A generic configura-
ble customizable composite cloud application framework. On the Move to
Meaningful Internet Systems: OTM 2009, 357–364.

Object Management Group, Inc. (OMG). (2011). Unified Modeling Lan-
guage (UML), Superstructure Specification Version 2.4.1. Retrieved from
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

Rajagopalan, S., Cully, B., O’Connor, R., & Warfield, A. (2012). Sec-
ondSite: disaster tolerance as a service. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments (pp.
97–108). Retrieved from http://dl.acm.org/citation.cfm?id=2151039

Schmidt, K. (2006). High availability and disaster recovery. Springer.

Symantec. (2011). 2011 SMB Disaster Preparedness Survey - Global
Results. Retrieved from
http://www.symantec.com/content/en/us/about/media/pdfs/symc_2011_SM
B_DP_Survey_Report_Global.pdf?om_ext_cid=biz_socmed_twitter_faceb
ook_marketwire_linkedin_2011Jan_worldwide_dpsurvey

Tanenbaum, A. S., & Van Steen, M. (2002). Distributed systems (Vol. 2).
Prentice Hall.

Thulasiraman, K., & Swamy, M. N. (2011). Graphs: theory and algorithms.
Wiley-Interscience.

Trieu Chieu, Karve, A., Mohindra, A., & Segal, A. (2010). Simplifying
solution deployment on a Cloud through composite appliances. In Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010
IEEE International Symposium on (pp. 1–5).
doi:10.1109/IPDPSW.2010.5470721

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc 59
	

	

Wittern, E., Kuhlenkamp, J., & Menzel, M. (2012). Cloud service selection
based on variability modeling. In Service-Oriented Computing (pp. 127–
141). Springer.

Wood, T., Lagar-Cavilla, H. A., Ramakrishnan, K., Shenoy, P., & Van der
Merwe, J. (2011). PipeCloud: using causality to overcome speed-of-light
delays in cloud-based disaster recovery. In Proceedings of the 2nd ACM
Symposium on Cloud Computing (p. 17).

Wood, Timothy, Cecchet, E., Ramakrishnan, K. K., Shenoy, P., Van der
Merwe, J., & Venkataramani, A. (2010). Disaster recovery as a cloud
service: Economic benefits & deployment challenges. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing. Retrieved from
http://www.usenix.org/event/hotcloud10/tech/full_papers/Wood.pdf

Authors

Alexander Lenk is department manager at
the FZI Research Center for Information
Technology (Berlin office) and researcher
at the Karlsruhe Institute of Technology.
He has been focusing on Cloud Compu-
ting since 2008 with his main research
interests in disaster recovery, deployment

description, and distributed systems.

Frank Pallas is postdoc researcher at the
FZI Research Center for Information
Technology (Berlin office) as well as at
the Karlsruhe Institute of Technology. His
main research areas include the managea-
bility and governability of complex sys-
tems like Cloud Computing and Smart

Grids. Furthermore, he holds a professorship for data pro-
tection and information economics at the TU Berlin.	

	

